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Abstract. We show that there is a perfectly normal non-metrizable manifold if
there is a Luzin subset of the real line, and that there is a countably compact perfectly
normal non-metrizable manifold in any model of set-theory obtained by adding Cohen
reals to a model of ZFC +♦.

1. Introduction

An old question of R. Wilder [W] asks: Is every perfectly normal generalized
manifold metrizable? M.E. Rudin and P.L. Zenor [RZ] showed that a negative an-
swer is consistent with ZFC by constructing a counterexample from the continuum
hypothesis CH. Another one constructed by Rudin under ♦, an axiom stronger
than CH, is countably compact. (This one also appears in [RZ], but with a brief
hand-waving argument; see [N1], Example 3.14, for more details.) Rudin[R] later
showed that on the other hand, under Martin’s Axiom plus the negation of CH,
every perfectly normal manifold is metrizable1.

There has been continued interest in the theory of non-metrizable manifolds.
See [N1] and [N2] for surveys of results up to about 1993. More recently, per-
fectly normal manifolds with interesting dimension-theoretic properties have been
constructed by V.V. Fedorchuk and others; see, e.g., [F1],[F2], [F3], and [FC].

But as yet, the only examples of perfectly normal non-metrizable manifolds ap-
pearing in the literature assume CH or something stronger. In this paper we con-
struct, in two very different ways, perfectly normal manifolds that exist in models
where CH fails. More precisely, we show:

(1) If there is a Luzin subset of the real line, then there is a perfectly normal
hereditarily separable non-metrizable manifold.

(2) Consider the countably compact, perfectly normal, hereditarily separable
manifold constructed as in [RZ] or [N1] in a model of ZFC + ♦. If any
number of Cohen reals are added to this model, then in the extension the
“same” manifold has all of the afore-mentioned properties.
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2 ZOLTAN BALOGH AND GARY GRUENHAGE

Recall that L is a Luzin set in the real line R if L is an uncountable subset of
R which has a countable intersection with every nowhere dense subset of R , and
that CH implies the existence of Luzin sets. Also recall that Luzin sets exist in
various models of ¬CH (e.g., add uncountably many Cohen reals to any model of
ZFC. See [M] for more background information on Luzin sets.) Our construction
for (1) uses ideas from the Rudin-Zenor CH construction along with some Luzin
set combinatorics due to Todorcevic [T]. For (2), we use Borel codes locally to
define what “same” means, and show that a key combinatorial property of Rudin’s
manifold is preserved by the extension.

2. Manifold from Luzin set

The purpose of this section is to prove:

Theorem 2.1. If there is a Luzin subset of the real line, then there is a perfectly
normal non-metrizable manifold.

First, let us recall a consequence of the existence of a Luzin set regarding un-
bounded families in ωω. If f, g ∈ ωω , let f <∗ g mean that f(n) < g(n) for
sufficiently large n ∈ ω. A family F ⊂ ωω is <∗-unbounded if there is no g ∈ ωω

with f <∗ g for all f ∈ F . The least cardinal of a <∗-unbounded family 1n ωω is
denoted by b.

If X is a Luzin set and D is a countable dense subset of X, it is immediate
from the definition of a Luzin set that every open set containing D contains all
but countably many points of X; i.e., X is concentrated about D. The existence
of an uncountable set of reals concentrated about a countable set is equivalent to
the statement “b = ω1”. (See [vD], Theorem 10.2). So the existence of a Luzin set
implies b = ω1.

Other related facts that will be used later are:

(1) There is a <∗-unbounded <∗-increasing family {fα : α < b} of increasing
functions in ωω;

(2) If F ⊂ ωω is a <∗-unbounded family of increasing functions in ωω, then for
every infinite subset A of ω, {f ¹ A : f ∈ F} is <∗-unbounded on A (i.e., for
each g ∈ ωA, there is f ∈ F with f(n) ≥ g(n) for infinitely many n ∈ A).

See [vD] for these and many other facts about b.
Now let us describe the rough idea of the construction. As in [RZ], the underlying

set for the manifold will be X = B ∪⋃
α<ω1

Iα, where B is the open unit disk in
R2 centered at the origin, and the Iα’s are disjoint copies of [0, 1). At stage α + 1,
B ∪⋃

β<α Iβ is homeomorphic to B, and we define the topology on B ∪⋃
β≤α Iβ so

that it remains homeomorphic to B. Also, the index α is associated with a point in
∂B – let us just say ω1 ⊂ ∂B – and the topology on X is defined so that the map
f : X → B ∪ω1 ⊂ R2 defined by f ¹ B = idB and f(x) = α if x ∈ Iα is continuous.
Perfect normality essentially comes from this f and the following property built
into the construction:

(∗) If H ⊂ X is closed, then for sufficiently large α, either α 6∈ f(H) or Iα ⊂ H.

In [RZ] this is done by indexing all countable subsets of X in type ω1 as
{Aα}α<ω1 , and making sure that at stage α + 1, if α is a limit point of some
f(Aβ), β < α, then every point of Iα is a limit point of Aβ . Of course, there
are too many countable subsets of X to do it this way without CH. Instead we
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choose at stage α a certain sequence of compact subsets of B ∪⋃
β≤α Iβ such that

the image under f of this sequence converges to α ∈ ∂B, and make each point of
Iα the limit of some subsequence of this sequence of compact sets. The difficulty is
to make sure that this sequence is “generic” enough so that property (∗) will hold.
The following lemma should illustrate some of what we mean.

Lemma 2.2. Let ω1 be Luzin set in ∂B. Then one can assign to each α ∈ ω1 a
sequence {Kα,n}n∈ω of disjoint compact subsets of B such that

(i) Kα,n → α (i.e., every Euclidean neighborhood of α contains all but finitely
many Kα,n’s );

(ii) whenever Z ⊂ B and Z∩ω1 is uncountable, then for sufficiently large α ∈ Z,
{n : Kα,n ∩ Z 6= ∅} is infinite.

Proof. Since B \ {p}, where p ∈ ∂B, is homeomorphic to [0, 1) × (0, 1), we need
only prove the lemma with the unit square S = (0, 1)× (0, 1) in place of B and ω1

a Luzin subset of {0} × (0, 1). We may assume ω1 ∩ ({0} ×Q) = ∅.
For each n, let Vn = {1/2n+1} × (0, 1). For each n and k such that k/2n is

reduced to lowest terms, let H(n, k) be the horizontal line segment with endpoints
(0, k/2n) and (1/2n, k/2n). This divides S into countably many rectangles.

Let {Rn}n∈ω be the collection of these rectangles, where Rn includes the left
side and the bottom (if the bottom is in S) of the rectangle. Then {Rn}n∈ω is a
partition of S into σ-compact sets. Write Rn as the increasing union of compact
sets {Kn,m}m∈ω.

For each α ∈ ω1, let P (α) be the union of all the rectangles meeting the horizontal
line through α. Let P (α, n) = P (α) ∩ ((0, 1/2n) × (0, 1)). Let S(α) = {n : Rn ⊂
P (α)}.

Now consider a <∗-unbounded <∗-increasing family {fα}α<ω1 ⊂ ωω of increasing
functions. Let {Kn,fα(n)}n∈S(α) be the sequence of compact sets assigned to α. We
claim that this works.

Suppose Z ⊂ S and Z∩ω1 is uncountable. Define g : ω → ω so that if Z∩Rn 6= ∅,
then Kn,g(n) ∩ Z 6= ∅.

Fact 1. Let T (α) = {n ∈ S(α) : Rn ∩ Z 6= ∅}. Then for sufficiently large α ∈ Z,
T (α) is infinite.

Proof of Fact 1. If not, then for uncountably many α ∈ Z, there is nα such that
P (α, nα) ∩ Z = ∅. For some m, nα = m for uncountably many α. These α’s are
dense in some open interval I in {0}× (0, 1). But the union of P (α, m)’s for α in a
dense subset of I contains a Euclidean neighborhood of each point in I ⊂ S, which
must therefore meet Z. This proves Fact 1.

Now if T (α) is infinite, there is β(α) such that fβ(α)(n) ≥ g(n) for infinitely
many n ∈ T (α). Let E be a countable dense subset of {α : T (α) is infinite}.
Choose γ > sup{β(α) : α ∈ E}.

Fact 2. For sufficiently large δ ∈ Z, fγ(n) ≥ g(n) for infinitely many n ∈ T (δ).
Proof of Fact 2. If not, then for uncountably many δ ∈ Z, there is nδ such that

if Rn ⊂ P (δ, nδ) and Rn ∩ Z 6= ∅, then fγ(n) < g(n). As in the proof of Fact 1,
there is an integer m and an interval I ⊂ {0}× (0, 1) such that the δ’s with nδ = m
are dense in I. This implies that if Rn ⊂ (0, 1/2m) × I and Rn ∩ Z 6= ∅, then
fγ(n) < g(n). Now choose α ∈ E ∩ I. Then fβ(α)(n) ≥ g(n) for infinitely many
n ∈ T (α); since β(α) < γ, the same is true for fγ . It follows that fγ(n) ≥ g(n) for
some n ∈ T (α) with Rn ⊂ (0, 1/2m)× I, a contradiction. So Fact 2 holds.
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Now Lemma 2.2 follows from Fact 2, because if fγ(n) ≥ g(n) for infinitely many
n ∈ T (δ), then fδ(n) ≥ g(n) for infinitely many n ∈ T (δ) whenever δ ≥ γ. ¤
Lemma 2.3. Let {Iα}α<ωl

be a collection of disjoint copies of [0, 1) , and let ω1

be a Luzin set. For Z ⊂ ⋃
α<ω1

Iα, let f(Z) = {α : Z ∩ Iα 6= ∅}, and for K ⊂ [0, 1),
let Kα denote its copy in Iα. Then there are {Hk(α) : α < ω1, k < ω} and
fk

α : Hk(a) → ω such that
(i) Hk(α) ⊂ α;
(ii)

⋃
k<ω Hk(α) is either finite or a sequence converging to α (in the Luzin set

topology on ω1);
(iii) Hk(α) ∩H l(α) = ∅ for k 6= l;
(iv) whenever Z ⊂ ⋃

α<ω1
Iα and f(Z) has uncountable closure in ω1, then for

sufficiently large α ∈ f(Z), for all k < ω, Z ∩ (
⋃

β∈Hk(α)[0, 1− 1/2fk
α(β)]β)

is infinite, where for A ⊂ [0, 1), Aβ denotes its copy in Iβ.

Proof. Since a Luzin subset of R is zero-dimensional, it is homeomorphic to a Luzin
subset of the irrationals ωω; so we may assume ω1 ⊂ ωω is Luzin in ωω.

The following construction of the Hk(α)’s, through the proof of Fact 2 below, is
a modification of a construction of Todorcevic (see pg. 52 of [T]).

For α < ω1, let eα : α → ω be one-to-one such that if β ≥ α, then eα =∗ eβ ¹ α
(i.e., ea(γ) 6= eβ(γ) for at most finitely many γ < α. See, e.g., the construction of
an Aronszajn tree in [K].) Let ∆(α, β) = min{n : α(n) 6= β(n)}. (Recall ω1 ⊂ ωω.)
Let {Ak}k<ω be a partition of ω into infinite sets. Now define

Hk(α) = {β < α : eα(β) < ∆(β, α) and ∆(β, α) ∈ Ak}.
Clearly (i) and (iii) are satisfied, and (ii) follows from the fact that eα is one-to-

one. We need to prove (iv).
Fact 1. Suppose F ⊂ ω1 is uncountable and D ⊂ F is countable and dense.

Then there exists d ∈ D such that for each k < ω, there exists αk ∈ F \ D with
d ∈ Hk(αk).

Proof of Fact 1. Pick α < ω1 such that D ⊂ α. Since {eγ ¹ D : γ ∈ F \ α} is
countable, there exists e : D → ω and uncountable F ′ ⊂ F \ α with eγ ¹ D = e for
each γ ∈ F ′. Let σ ∈ ωω be such that F ′ is dense in [σ] = {x ∈ ωω : σ ⊂ x}, and
choose d ∈ [σ] ∩D.

Let k ∈ ω , and choose n ∈ Ak, n > e(d) + |σ|. Choose αk ∈ F ′∩ [d ¹
n_〈d(n) + 1〉]. Then eαk

(d) = e(d) < n = ∆(d, αk) ∈ Ak, so d ∈ Hk(αk).
Fact 2. If D ⊂ ω1 has uncountable closure, then for sufficiently large α ∈ D,

Hk(α) ∩D is infinite for each k < ω.
Proof of Fact 2. Suppose not. Choose δα ∈ D \ (α ∪ D) and k(α) < ω such

that Hk(α)(δα) ∩ D is finite. There is an uncountable A ⊂ ω1, k < ω, and finite
E ⊂ D such that k(α) = k and Hk(α)(δα) ∩ D = E for all α ∈ A. Let F =
(D \ E) ∪ {δα : α ∈ A}. Then D \ E is dense in F , and for each x ∈ F \ (D \ E),
we have Hk(x) ∩ (D \ E) = ∅. This contradicts Fact 1.

Now we define the fk
α’s. Let {aα}α<ω1 be an unbounded <∗-increasing family of

increasing functions in ωω . For β ∈ Hk(α), let fk
α(β) = aα(eα(β)). It remains to

prove that condition (iv) holds with these definitions of Hk(α) and fk
α.

Let Z ⊂ ⋃
α<ω1

Iα be such that D = f(Z) has uncountable closure in ω1. We may
assume Z is countable, so let D ⊂ γ. Define g : D → ω so that Z∩[0, 1−1/2g(d)]d 6=
∅ for each d ∈ D.
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Fact 3. If D = {d ∈ D : aα(eα(d)) ≥ g(d)}, then for sufficiently large α,
Dα ⊃ D \D.

Proof of Fact 3. Since eα ¹ D =∗ eγ ¹ D for α > γ, and the aα’s are <∗-
increasing, it follows that Dβ ⊂∗ Dα for β < α (i.e., Dβ \Dα is finite).

Let x ∈ D \D. There is a sequence Sx ⊂ D with Sx → x. So there is αx such
that aαx(eγ(d)) ≥ g(d) infinitely often on Sx. Then aαx(eαx(d)) ≥ g(d) infinitely
often on Sx, so x ∈ Dαx

. Choose α such that {x : βx < α} is dense in D \D. Since
Dβ ⊂∗ Dα for β < a, it follows that Dα ⊃ D \D.

Now by Facts 2 and 3, and Dβ ⊂∗ Dα for β < α, for sufficiently large α ∈ D,
Hk(α)∩Dα is infinite for all k < ω. If d ∈ Hk(α)∩Dα , then fk

α(d) = aα(eα(d)) ≥
g(d), so [0, 1−1/2fk

α(d)]d ⊃ [0, 1−1/2g(d)]d. Condition (iv) follows immediately. ¤
The next lemma is similar to Lemma 1 of [RZ].

Lemma 2.4. Let (Un)n<ω be a decreasing nested sequence of connected open sub-
sets of B such that B ∩ ⋂

n∈ω Un = ∅. Let Kn ⊂ Un \ Un+1 compact, and let
{Nr}r∈Q∩[0,1) be a partition of ω into infinite sets.

Then there is a homeomorphism g : B → B \ ([0, 1)× {0} such that
(a) [0, 1)× {0} ∪ g(Un) is open in B;
(b) for each r ∈ Q ∩ [0, 1), every neighborhood of (r, 0) contains all but finitely

many members of {g(Kn) : n ∈ Nr}.
Proof. As in Step 1 of the proof of Lemma 1 of [RZ], there is a homeomorphism
h : B → (−1, 1)× (0, 1) = D satisfying:

(i) h(Un) ⊃ {(x, y) ∈ D : y < 1
2n+1 } = Dn;

(ii) h(Kn) ⊂ Dn \Dn+1 for each n < ω.
(Connectedness of the Un’s is used here; it is needed to get the existence of the
such an h.)

Now let qn : Dn \ Dn+1 → Dn \ Dn+1 be a homeomorphism which leaves the
boundary fixed and moves h(Kn) so that if n ∈ Nr , then (r, y) ∈ h(Kn) for
some y, and diam(h(Kn)) < 1/2n. Let f : D → D be the result of pasting these
homeomorphisms together.

Let D′ = D ∪ {(x, 0) : −1 < x < 1}, and define k : D′ → D′ by k ¹ D = idD′ ,
and k(x, 0) = (|x|, 0). Then k(D′) with quotient topology is homeomorphic to B by
a homeomorphism j : k(D′) → B such that j ¹ [0, 1)× {0} is the identity. Finally,
let g = j ◦ k ◦ f ◦ h. Clearly g satisfies the desired conditions. ¤

Proof of Theorem 2.1. Let B be the open unit ball in R2 , and let {Iα}α<ω1 be
disjoint copies of [0, 1) unrelated to B. Let ω1 ⊂ ∂B be Luzin in ∂B. Let Hk(α)
and fk

α : Hk(α) → ω be as in Lemma 2.3, and let {Kα,n : a < ω1, n < ω} be as in
Lemma 2.2.

Let Xα = B ∪ ⋃
β<α Iβ and X =

⋃
α<ω1

Xα. Define f : X → B ∪ ω1 by
f ¹ B = idB and f(Iα) = α. Let {rk}k<ω index Q ∩ [0, 1) with r0 = 0.

Inductively construct a topology τα on Xα such that
(i) (Xα, τα) is homeomorphic to B and f ¹ Xα is continuous;

further, for β < α,
(ii) (Xβ , τβ) is dense open in (Xα, τα);
(iii) Kβ,n → 0 in Iβ ; and
(iv) {[0, 1− 1/2fk

β (γ)]γ}γ∈Hk(β) → rk ∈ Iβ if Hk(β) is infinite.
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Let τ0 be the Euclidean topology on X0 = B, and for limit α, let τα =
⋃

β<α τβ .
At stage α + 1, we need to say how neighborhoods of x ∈ Iα reach into Xα. Since⋃

k<ω Hk(α) is a sequence converging to α in ∂B, clearly there is a sequence Bn(α)
of Euclidean open sets containing α such that

(a) Bn(α) ∩B is connected;
(b) ∂Bn(α) ∩ ω1 = ∅;
(c) Bn+1(α) ⊂ Bn(α) and diam(Bn(α)) → 0 as n →∞;
(d) Each member of {Kα,n}n∈ω ∪

⋃
k∈ω Hk(α) is contained in some Bn(α) \

Bn+1(α);
(e) Bn(α)\Bn+1(α) contains at most one member of {Kα,n}n∈ω∪

⋃
k∈ω Hk(α).

Let Un = f−1(Bn(α) ∩ (B ∪ α)). Then {Un}n∈ω is a nested family of connected
open subsets of Xα with Xα ∩

⋂
n∈ω Un = ∅.

Let N0 = {n ∈ ω : Un \ Un+1 contains some Kα,m}, and for k ≥ 1, let Nrk
=

(n ∈ ω : (Bn(α) \ Bn+1(α)) ∩ Hk(α) 6= ∅}. Note that the Nrk
’s are disjoint. If

n ∈ N0, let Kn be that Kα,m which is contained in Un \ Un+1. If n ∈ Nrk
, k ≥ 1,

let Kn = [0, 1 − 1/2fk
α(β)]β , where β ∈ (Bn(α) \ Bn+1(α)) ∩ Hk(α). Note that

Kn ⊂ Un \ Un+1.
Let gα : Xα → B\([0, 1)×{0}) be a homeomorphism satisfying the conditions of

Lemma 2.4. (Since Xα is homeomorphic to B, such gα exists.) Define g∗α : Xα+1 →
B by g∗α ¹ Xα = gα and g∗α(x) = (x, 0) for x ∈ Iα. Let τα be the topology on Xα+1

which makes g∗ a homeomorphism.
Note that if Vn = Un ∪ Iα, then the Vn’s are a decreasing sequence of open (in

Xα+1) supersets of Iα closing down on Iα. This follows from by Lemma 2.4(a),
which implies that the images of the Vn’s in B under gα close down on [0, 1)×{0}.
With this in mind, it is easily seen that (i)-(iv) above are satisfied.

Let τ =
⋃

α<ω1
τα. Then (X, τ) is a non-metrizable manifold, being separable

but not Lindelöf.
It remains to prove (X, τ) is perfectly normal, or equivalently, every closed set

is a regular Gδ-set (see, e.g., [E], Exercise 1.5.K ). So let H be closed in X.
Fact 1. For sufficiently large α ∈ ω1, either α 6∈ f(H) or Iα ⊂ H.
Proof of Fact 1. Let Z0 = H ∩B and Z1 = H ∩ (

⋃
α<ω1

Iα). By Lemma 2.2 and
the construction, there exists a0 < ω1 such that α > α0 implies either α 6∈ c1R2(Z0)
or the point 0 in Iα is a limit point of Z0, and in this latter case Iα ∩Z1 6= ∅. And
by Lemma 2.3 and the construction, there is α1 < ω1 such that α > α1 implies
either α 6∈ f(Z1) or clτ (Z1) ⊃ Iα .

Suppose α > α0 + α1 and α ∈ f(H); we need to show Iα ⊂ H. If α ∈ c1R2(Z0),
then since α > α0, we have Z1 ∩ Iα 6= ∅, so α ∈ f(Z1) and hence, by α > α1,
Iα ⊂ clτ (Z1) ⊂ H. If on the other hand α 6∈ c1R2(Z0), then α ∈ f(Z1) and again
Iα ⊂ clτ (Z1) ⊂ H.

Fact 2. f−1(f(H)) \H ⊂ Xα for some α.
Proof of Fact 2. Let α be such that β ≥ α implies either β 6∈ f(H) or Iβ ⊂ H.

Suppose p ∈ f−1(f(H)) \ H. Then f(p) ∈ f(H) ∩ ω1. Since p 6∈ H, If(p) 6⊂ H.
Thus by Fact 1, f(p) < α, and so f−1(f(H)) \H ⊂ Xα.

Now we can complete the proof that H is regular Gδ in X. Since f(H) is regular
Gδ in B ∪ ω1, f−1(f(H)) is regular Gδ in X. By Fact 2, f−1(f(H)) \ H can be
covered by countably many open sets whose closures miss H. It follows that H is
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a regular Gδ-set. ¤

3. Adding Cohen reals

The purpose of this section is to show that the existence of a countably compact,
perfectly normal, hereditarily separable non-metrizab1e manifold is consistent with
the negation of the continuum hypothesis. We do this by considering the manifold
with these properties constructed by Rudin under ♦ , and we show that if one adds
any number of Cohen reals to this model of ♦, then in the extension the “same”
manifold retains the relevant properties. In order to work out this idea, we must find
a way of describing what “same” means. One can use Borel codes to define what
“same” means with respect to Borel sets in Rn and homeomorphisms from Rn into
Rn (more details later). So we start with a way to describe 2-manifolds of weight
ω1 via homeomorphisms of R2 into R2 . We are thinking of our manifold M as an
increasing union of open submanifo1ds Mα, α < ω1, with each Mα homeomorphic
to R2 . Then the identity map of Mβ into Mα can be coded by a homeomorphism
of R2 into R2. With this in mind, we call a collection {φβα : β ≤ α < ω1} of
homeomorphisms of R2 into R2 an ω1-system if

(i) φβα ◦ φγβ = φγα whenever γ < α < ω1;
(ii) φββ = idR2 for all β < ω1.
Now define M to be the collection of all sequences ~x = 〈xδ〉δ≥α, α < ω1, such

that
(a) φαδ(xα) = xδ for all α ≤ δ < ω1;
(b) there is no β < α and x ∈ R2 with φβα(x) = xα .
Note that the coherence property (i) of the ω1-system implies that for each

x ∈ R2 and α < ω1, there is a unique ~x ∈ M with xα = x.
For each ~x =< xδ >δ≥α∈ M , call α the rank of ~x and denote it by rk(~x) . Let

Mα = {~x ∈ M : rk(~x) ≤ α}, and let φα : Mα → R2 be defined by φα(~x) = xα. Note
that each φα is a bijection, and φβα = φα ◦ φ−1

β whenever β ≤ α < ω1. Let τα be
the topology on Mα making φα a homeomorphism. Note that if β < α < ω1, then
(Mβ , τβ) is an open subspace of (Mα, τα) since φα(Mβ) = φα ◦ φ−1

β ◦ φβ(Mβ) =
φβα(R2) is open in R2 . Equip M with the topology τ =

⋃
α<ω1

τα. We call
M = M({φβα}) with this topology the inverse semi-limit of {φβα : β ≤ α < ω1}.

Let E be all open balls in R2 with rational centers and radii, and let

Bα = {φ−1
α (E) : E ∈ E and ∀β < a(φ−1

α (E) 6⊂ Mβ)}.

Then Bα is a basis for all points of Mα \
⋃

β<α Mβ . Let B =
⋃

α<ω1
Bα. We call B

the standard basis for M . Note that M is non-metrizable if M is separable and B
is uncountable (for this means Mα \

⋃
β<α Mβ 6= ∅ for uncountably many α < ω1,

whence M is not Lindelöf).
Now, given an inverse semi-limit M = M({φβα}) in a model V , we can use Borel

codes for the φβα’s to say what is meant by the “same” manifold in an extension
V [G] of the universe V . For the benefit of the reader unfamiliar with Borel codes
and absoluteness of Π1

1-relations, we start with a brief intuitive description of the
ideas.

In V , let B be an open ball in Rn with rational center and radius. Let B∗ denote
the same ball in V [G], i.e., the ball in (Rn)V [G] = (Rn)∗ with the same center and
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radius. Now any open set U in Rn (in V ) is a countable union
⋃

n∈ω Bn of balls
with rational center and radii, so we can consider the set U∗ in V [G] built in the
same way as U , i.e., U∗ =

⋃
n∈ω B∗

n. Similarly, if F is the complement of U , let
F ∗ = (Rn)∗ \ ⋃

n∈ω B∗
n. One can go on to associate to any Borel set A in (Rn)V

a set A∗ in (Rn)V [G] built from balls with rational centers and radii in the same
way that A is. Using a definable enumeration of the balls with rational centers and
radii, the way in which A is built can be coded by a function c : ω → ω in V ; c
is called a Borel code for A. Then A∗ is the set in (Rn)V [G] built from the B∗’s
using the same code c. Here’s the basic absoluteness result that we need. (See pp.
537-540 of [J] for a proof of the result for R ; the proof for Rn is entirely analogous.)

Lemma 3.1.
(a) For any Borel set A in V , A∗ does not depend on the choice of Borel code

for A;
(b) Let A, B, and {An}n<ω be Borel sets in V , where the enumeration of the

An’s is also in V . Then (A ∩ B)∗ = A∗ ∩ B∗, (
⋃

n∈ω An)∗ =
⋃

n∈ω A∗n,
(A \B)∗ = A∗ \B∗, and A ⊂ B ⇐⇒ A∗ ⊂ B∗.

We will prove the rest of what we need about the ∗ operation from Lemma 3.1.

Lemma 3.2. In V , let F ⊂ Rn be closed. Then F ∗ = F , where the closure is
taken in (Rn)V [G] . Further, if F is compact, so is F ∗.

Proof. In V , let Rn \F =
⋃

m∈ω Bm, where the Bm’s are balls with rational centers
and radii. Then (Rn \ F )∗ = (Rn)∗ \ F ∗ =

⋃
n∈ω B∗

m, whence F ∗ is closed. If
F ∗ \ F 6= ∅, then some B∗ meets F ∗ but not F . Hence ∅ 6= B∗ ∩ F ∗ = (B ∩ F )∗ =
∅∗ = ∅, a contradiction.

It remains to prove that F ∗ is compact if F is. Note that in this case the set
F in V [G] is bounded, and hence its closure is too. So F ∗ is closed and bounded,
hence compact. ¤

Any continuous φ : R2 → R2 is a closed subset of R2×R2 = R4 , so φ∗ is defined.

Lemma 3.3. In V , if φ : R2 → R2 is a homeomorphism of R2 into R2 , then so
is φ∗. Also, φ∗(U∗) = (φ(U))∗ for any open set U in Rn.

Proof. In V , let K be any compact subset of R2. Then φ ¹ K is uniformly contin-
uous, and (φ ¹ K)∗ = (φ ¹ K). It is an elementary excercise to show that if φ is
a uniformly continuous map from a subset E ⊂ R2 into R2, then φ is a function
with domain E, and φ is continuous on E. So φ∗ = φ =

⋃
n<ω φ ¹ [−n, n]2 is a

continuous function from (R2)V [G] into (R2)V [G]. Since (φ∗)−1 = (φ−1)∗ is by the
same argument a continuous function, φ∗ is a homeomorphism.

To see the last statement consider again a compact K in Rn. Then (φ(K))∗ =
φ(K) = φ(K) = φ∗(K∗). If U ⊂ Rn is open, let U =

⋃
n∈ω Kn, where Kn is

compact. Then (φ(U))∗ = (φ(
⋃

n∈ω Kn))∗ = (
⋃

n∈ω φ(Kn))∗ =
⋃

n∈ω(φ(Kn))∗ =⋃
n∈ω φ∗(K∗

n) = φ∗(
⋃

n∈ω K∗
n) = φ∗((

⋃
n∈ω Kn)∗) = φ∗(U∗). ¤

Now, given an inverse semi-limit M = M({φβα}) in V with standard base B,
we can consider the manifold M({φ∗βα}), which we denote by M∗, in a generic
extension V [G]. Let φ∗α be defined from the φ∗βα’s in V [G] in the same way that φα

was defined in V . If B = φ−1(E) ∈ B, let B∗ = (φ∗α)−1(E∗). Then {B∗ : B ∈ B}
is the standard base for M∗.
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Lemma 3.4. Results of countable Boolean operations in V on elements of B are
in a given containment relationship if and only if the results of the same Boolean
operations on the corresponding elements of B∗ are in the same containment rela-
tionship.

Proof. Let {Bn}n∈ω be an enumeration (in V ) of all members of appearing in the
Boolean operations. Let Bn = φ−1

βn
(En), where En ∈ E . Let α > supn∈ωβn. Now

it is enough to show that the results of the afore-mentioned Boolean operations on
the sets φα(Bn) = φβnα(En) are in a given containment relationship if and only if
it is true for φ∗α(B∗

n) = φ∗βnα(E∗
n) = (φα(En))∗, n < ω. But this is true by Lemma

3.1. ¤
Lemma 3.4 implies the transfer of some statements about uncountable subfami-

lies of B to the corresponding subfamilies of B∗. For example, if A ⊂ B is a cover
of M , then A∗ = {A∗ : A ∈ A} is a cover of M∗ . Indeed, it is enough to show that
each M∗

α gets covered by A∗. To see this, let A0 ⊂ A be a countable cover of Mα

in V . By Lemma 3.4, {A∗ : A ∈ A0} covers M∗
α.

Call a collection U of sets point-uncountable if every x ∈ ∪U is a member of un-
countably many members of U . Recall that Rudin’s manifold, indeed any separable
perfectly normal manifold, is hereditarily separable [RZ]. We need the following
combinatorial property of hereditarily separable spaces.

Lemma 3.5. Let X be hereditarily separable. Then every uncountable collection
U of open subsets of X contains a point-uncountable subcollection.

Proof. Assume not. Then we can inductively define pα ∈ X and Uα ∈ U with
pα ∈ Uα such that Uα ∩ {pβ : β < α} = ∅. (Choose a point pα which is in at least
one but only countably many members of U \ {U ∈ U : pβ ∈ U for some β < α}. )
Choose α < ω1 such that {pβ}β<α ⊃ {pβ : β < ω1}. Then pβ ∈ Uα for some β < α,
a contradiction. ¤

From now on, let P be the poset for adding κ-many Cohen reals to V , i.e., P is
the set of all finite functions from κ to 2 ordered by extension. Let G be a P -generic
filter over V .

Lemma 3.6. In V , let B = {Bα}α<ω1 be the standard basis for the inverse semi-
limit M({φβα}), and suppose that every uncountable collection of members of B
contains a point-uncountable subcollection. Then in V [G], for every uncountable
A ⊂ ω1, there is an uncountable H ⊂ ω1 in V such that

⋃
α∈H B∗

α ⊂
⋃

α∈A B∗
α.

Proof. Let Ȧ be a P -name such that ȦG = A and 1 ° Ȧ ∈ [ω1]ω1 . Let A be all
subsets of ω1 in V , and suppose indirectly that there is no H as stated in Lemma
3.6. Then there is a p ∈ G such that

p ° ∀H ∈ Ǎ(
⋃

α∈H

Ḃ∗
α 6⊂

⋃

α∈Ȧ

Ḃ∗
α).

Since p ° “Ȧ is uncountable”, there is in V an H ∈ [ω1]ω1 and a system 〈pα〉a∈H

of elements of P extending p such that
(a) {dom pα}α∈H forms a ∆-system with root ∆;
(b) There is r ∈ P with pα ¹ ∆ = r for all α ∈ H; and
(c) pα ° α̌ ∈ Ȧ.
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By hypothesis, we may assume that {Bα : α ∈ H} is point-uncountable. We will
prove

(1) r °
⋃

α∈H

Ḃ∗
α ⊂

⋃

α∈Ȧ

Ḃ∗
α

which will contradict r ≤ p (which holds since each pα extends p) . Suppose
indirectly that there are r′ ≤ r and β ∈ H such that

(2) r′ ° Ḃ∗
β 6⊂

⋃

α∈Ȧ

Ḃ∗
α.

In V , by the point-uncountability of {Bα}α∈H , and since Bβ is first-countable, each
x ∈ Bβ has a neighborhood contained in uncountably many members of {Bα}α∈H .
Hence there is a countable sub-collection {Cn}n∈ω of B such that Bβ =

⋃
n∈ω Cn

and each Cn is contained in uncountably many members of {Bα}α∈H . Since 1 °⋃
n∈ω Ċ∗n = Ḃ∗

β , there is r′′ ≤ r′ and k < ω such that

(3) r′′ ° Ċ∗k 6⊂
⋃

α∈Ȧ

Ḃ∗
α.

Now let γ ∈ H be such that q = r′′ ∪ pγ ∈ P and Ck ⊂ Bγ . Then

(4) q ° “Ċ∗k 6⊂
⋃

α∈Ȧ

Ḃ∗
α and γ̌ ∈ Ȧ”.

But 1 ° Ċ∗k ⊂ Ḃ∗
γ , so we have a contradiction. ¤

Corollary 3.7. In V , let M = M({φβα}) be non-metrizable, and suppose that
M \ ∪A compact for every uncountable A ⊂ B. In V [G], let M∗ = M({φ∗βα}).
Then M∗ is countably compact, perfectly normal, and hereditarily separable.

Proof. Since M is non-metrizable, the standard basis B has cardinality ω1, so we
can let B = {Bα}α<ω1 . Suppose that in V [G], A ⊂ ω1 is uncountable; we shall
show that M∗\⋃α∈A B∗

α is compact. Indeed, by Lemma 3.6 there is an uncountable
H ⊂ ω1 in V such that C = M∗ \ ⋃

α∈A B∗
α ⊂ M∗ \ ⋃

α∈H B∗
α. There is a finite

F ⊂ B such that, in V , M \⋃
α∈H Bα ⊂ ∪F , i.e., {Bα}α∈H ∪ F is a cover of M .

So {B∗
α}α∈H ∪ {F ∗ : F ∈ F} is a cover of M∗ , whence {F ∗ : F ∈ F} is a finite

cover of C. As C is closed, C must be compact.
To see that M∗ is countably compact, let us consider a countable cover V of

M∗. Then there is a V ∈ V that contains uncountably many B∗
α’s , making M∗ \V

compact.
M∗ is perfectly normal since each of its closed sets is either compact or has

second countable complement.
M∗ is separable, for otherwise it would contain an uncountable collection of

pairwise disjoint open sets. The complement of the union of this would be compact,
making M∗ metrizable.

Finally, M∗ is hereditarily separable since it is separable and perfectly nor-
mal. ¤

Now we have the main result of this section:
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Theorem 3.8. Add any number of Cohen reals to a model of ZFC +♦. Then in
the resulting extension, there is a countably compact, perfectly normal, hereditarily
separable, non-metrizable manifold.

Proof. Let N be Rudin’s manifold constructed from ♦. Then N is the strictly
increasing union of open subspaces Nα, α < ω1, such that each Nα is homeomorphic
to R2 and such that any open set which is not contained in some Nα has compact
complement. (The latter claim’follows from the claim on page 654 of [N1]).

Let θα : Nα → R2 be a homeomorphism, and for β < α, let φβα = θα ◦ θ−1
β .

For p ∈ Nα , let h(p) be the point ~x ∈ M = M({φβα}) such that xα = θα(p).
It is easy to check that h : N → M is a homeomorphism such that h(Nα) = Mα

for all α < ω1. So M satisfies the conditions of Corollary 3.7, and the proof is
complete. ¤
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