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17 Montonically countably paracompact (MCP) . . . . . . . . . . . . . 22
18 β and strong β-spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
19 Noetherian type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
20 Base paracompact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
21 Sharp base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
22 dis(X) and m(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
23 Generalized metrizable spaces and topological algebra . . . . . . 28
24 Domain representability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3



4 Contents

1 Introduction

Roughly speaking, I consider a class of spaces to be a class of generalized
metrizable spaces if every metrizable space is in the class, and if the defining
property of the class gives its members enough structure to make a reasonably
rich and interesting theory. See my article [71] for basic information about
many of these classes. In this article, I will survey results in this area from
approximately 2001 to the present. This article can be considered a sequel to
[74] and [77] which appeared in earlier volumes in this series.

Throughout this article, all spaces are assumed to be at least T1; in some
sections we will announce that more separation is assumed.

2 Around regular Gδ-diagonals

A space X has a (regular ) Gδ-diagonal if the diagonal ∆ = {(x, x) : x ∈ X}
is a (regular) Gδ-set in X2, where a subset H of a space Y is regular Gδ if
there are open sets Un, n ∈ ω, such that H =

∩
n∈ω Un =

∩
n∈ω Un. Also,

X has a zero-set diagonal if ∆ = f−1(0) for some continuous f : X2 → R.
Finally, X is submetrizable if X has a weaker metrizable topology. Clearly

submetrizable ⇒ zero-set diagonal ⇒ regular Gδ-diagonal ⇒ Gδ-diagonal.

If X is ccc and submetrizable, then X has a weaker separable metrizable
topology and hence has cardinality not greater than 2ω. This suggests the
question, asked by Arhangel’skii [3], and by Ginsburg and Woods [66] specif-
ically for Gδ-diagonal, whether the same might hold when submetrizable is
replaced by a weaker diagonal condition.

Shakhmatov [133] ( see also Uspenskii [154] ) showed that regular ccc
spaces with aGδ-diagonal can be arbitrarily large. But Buzyakova [45] showed
that the regular Gδ-diagonal case is different.

Theorem 2.1. A ccc space with a regular Gδ-diagonal has cardinality at most
2ω.

In another paper, Buzyakova [43] proved the following related result:

Theorem 2.2. If X has a zero-set diagonal and X2 has countable extent
(i.e., every uncountable subset of X2 has a limit point), then X is submetriz-
able (with respect to a separable metrizable space).

This theorem was motivated in part by an old theorem of Martin [108]
stating that a separable space with a zero-set diagonal must be submetrizable.
It is not known if Theorem 2.2 holds whenX2 has countable extent is replaced
by X has countable extent, or when zero-set diagonal is replaced by regular
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Gδ-diagonal. Buzyakova does show that ifX2 has countable extent andX has
a regular Gδ-diagonal then X has a weaker 2nd-countable Hausdorff topology.

Buzyakova [44] also constructed some relevant examples.

Theorem 2.3. 1. There is a hereditary realcompact locally compact locally
countable separable Tychonoff space with countable extent and a Gδ-
diagonal that fails to be submetrizable.

2. Assuming the Continuum Hypothesis, there is a pseudocompact non-compact
locally compact locally countable separable Tychonoff space that has count-
able extent and a Gδ - diagonal.

In the same paper, she asks the following questions suggested by the above
examples:

Question 2.4. 1. Is there a ZFC example of a pseudocompact non-compact
Tychonoff space with countable extent that has a Gδ-diagonal?

2. Let X be a countably paracompact Tychonoff space with countable extent
and a Gδ- diagonal. Is then X submetrizable? What if X is first-countable
(or locally compact)?

Recalling that X has a Gδ-diagonal iff there is a sequence Gn, n ∈ ω, of
open covers of X such that {x} = ∩{st(x,Gn) : n ∈ ω}1 for all x ∈ X,
Arhangel’skii and Buzyakova [13] define X to have a rank k diagonal iff
{x} = ∩{stk(x,Gn) : n ∈ ω} for all x ∈ X. Moore spaces have a rank 2 di-
agonal, submetrizable implies rank k for all k, and P. Zenor had shown that
rank 3 diagonal implies regular Gδ-diagonal. In [13], the authors construct
a separable Tychonoff space with a diagonal of exactly rank 3 (rank 3 but
not higher) which does not have a zero-set diagonal (hence is not submetriz-
able). This seems to be the first known example of a Tychonoff space with
a regular Gδ-diagonal with no zero-set diagonal, as well as the first known
example of a separable Tychonoff space with a regular Gδ-diagonal which is
not submetrizable.

The question of the existence of spaces having diagonals of exactly rank
k for higher k was left open, but was subsequently answered by Y. Zuoming
and Y. Ziqiu [159]:

Example 2.5. For all k ≥ 4, there is a separable subparacompact Tychonoff
space X with a diagonal of exactly rank k which does not have a zero-set
diagonal.

We end this section with an interesting result of Burke and Arhangel’skii.
A subset A ⊆ X is said to be bounded in X if each locally finite family of
open sets in X, all of which meet A, is finite. A space which is bounded in
itself is usually called feebly compact. W. G. McArthur [111] proved that
every regular feebly compact space with a regular Gδ-diagonal is compact
and metrizable. Burke and Arhangel’skii [11] generalize this as follows:

1 If G is a collection of subsets of X, and P ⊂ X, then st(P,G) = st1(P,G) =
∪
{G ∈ G :

G ∩ P ̸= ∅}. For k > 1, stk(P,G) = st(stk−1(P,G),G). Also st({x},G) = st(x,G).
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Theorem 2.6. If X is a regular space with a regular Gδ-diagonal, then the
closure of every bounded subset of X is metrizable.

This result was improved in [13]: under the same assumptions, one may
conclude that every closed and bounded subset ofX is completely metrizable.
See Section 23 for results in [11] in the area of topological algebra.

3 Small diagonal

Spaces in this section are assumed to be regular and T1. A space X has a
small diagonal provided that whenever an uncountable subset A of X ×X is
disjoint from the diagonal, there is an uncountable subset of A whose closure
is disjoint from the diagonal. This condition is a natural weakening of the
Gδ-diagonal property. As is well-known, (countably) compact spaces with
a Gδ-diagonal are metrizable. An old problem of Hušek asks if a compact
Hausdorff space with a small diagonal must be metrizable. Assuming CH,
the answer is positive; this is due to Juhasz and Szentmiklossy [93], whose
results also imply that every compact Hausdorff space with a small diagonal
has countable tightness. But Hušek’s problem is unsolved in ZFC. Here are
some recent partial and/or related results:

Theorem 3.1. 1. PFA implies every compact space with a small diagonal is
metrizable [56];

2. Assuming ♢+, there is a perfect preimage of ω1 with a small diagonal [56];
3. No scattered perfect preimage of ω1 has a small diagonal [57];
4. If 2ω > ω1, then there is a Lindelöf space with a small diagonal but no

Gδ-diagonal [56];
5. Assuming MA(Cohen)+2ω = 2ω1 , there is a countably compact space with

a small diagonal which is not metrizable [56];
6. If X is compact and has a small diagonal, then every ccc subspace of X

has countable π-weight [53];
7. If X is compact, has a small diagonal, and admits a continuous map onto

a space of weight ω1 with metric fibers, then X is metrizable [53];
8. If there is a Luzin set, then every compact space with a small diagonal has

points of countable character [53].

The second result answers several questions in [75], and the fourth and fifth
results show that some examples in [75] exist under weaker assumptions. The
seventh result generalizes my result [75] that a metrizably fibered compact
space with a small diagonal must be metrizable.
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4 Continuously Urysohn, 2-Maltsev, and (P)

P. Zenor[158] defined the class of weakly continuously Urysohn (wcU) spaces
as those spaces X admitting a continuous function ϕ : X2 \ ∆ × X → R
such that ϕ(x, y, x) ̸= ϕ(x, y, y) for all x ̸= y ∈ X. It is easy to show that
zero-set diagonal implies wcU (if f : X2 → [0, 1] is such that ∆ = f−1(0),
let ϕ(x, y, z) = f(x, z)/(f(x, z) + f(y, z))). Zenor proved that X being wcU
is equivalent to the existence of a certain kind of continuous extender of
real-valued functions defined on compact subsets of X.

Theorem 4.1. [158] Let X be a Hausdorff space, and let CK(X) be the space
of all continuous partial functions into R whose domain is some compact
subset of X, equipped with the Vietoris topology (identifying a partial function
with its graph). Then the following are equivalent:

1. There is a continuous “extender” e : CK(X)×X → R such that e(f, x) =
f(x) for all x ∈ dom f ;

2. X is weakly continuously Urysohn.

As the name implies, wcU spaces generalize the previously known class
of continuously Urysohn (cU) spaces, i.e., spaces X admitting a continuous
function ϕ : X2 \ ∆ → C∗(X), where C∗(X) is the space of all bounded
continuous real-valued functions with the topology of uniform convergence,
such that ϕ(x, y)(x) ̸= ϕ(x, y)(y) for every x ̸= y ∈ X. This class was first
studied by Stepanova [145], who showed that a paracompact p-space which
is cU must be metrizable. Zenor and I [85] showed:

Theorem 4.2. 1. A regular wcU w∆-space has a base of countable order;
2. Monotonically normal wcU spaces are hereditarily paracompact;
3. Separable wcU spaces are submetrizable (hence cU);
4. Nonarchimedean spaces are cU.

The first part of the above theorem generalizes Stepanova’s result (since
paracompact p-spaces are w∆ and paracompact spaces with a base of count-
able order are metrizable), and the second part generalizes the same result
for cU GO-spaces obtained by Bennett and Lutzer [28]. The fourth part was
subsequently generalized by A. Guldurdek [87] by showing that protometriz-
able spaces are cU. Guldurdek also showed that the wcU and cU properties
are not preserved by finite products or perfect images, but that wcU spaces
are preserved by perfect open maps. Surprisingly, the following remains open:

Question 4.3. [85] Is every wcU space cU?

One may rephrase the wcU property as follows.2 Given a space X and
i = 1, 2, or 3, let Πi = {(x1, x2, x3) ∈ X3 : xj = xk if i ̸∈ {j, k}}, and let ∆

2 This was noted in J. Chaber’s review [46] of [85].
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be the diagonal of X3. Then X is wcU iff Π1 \∆ and Π2 \∆ can be separated
in X3 \ Π3 by a continuous function. Inspired by results in the theory of
compact topological groups, Gartside and Reznichenko [65] define a space to
be generalized 2-Maltsev if there is a Gδ subset of X3 \Π3 containing Π1 \∆
and whose closure in X3\Π3 misses Π2\∆.3 Clearly wcU implies generalized
2-Maltsev. They note that X is 2-Maltsev if there is a weaker topology τ on
X such that (X, τ) has a Gδ-diagonal or (X, τ)3 \∆ is normal. They go on
to define the following still weaker condition (P):

(P) To eachM ∈ [X]<ω, one can assign an open cover γ(M) ofX such that,
for any A ⊂ X and x ∈ A \A, we have {x} =

∩
{st(x, γ(M)) : M ∈ [A]<ω}.

Then they prove:

Theorem 4.4. 1. Generalized 2-Maltsev spaces have (P);
2. A separable space with (P) has a Gδ-diagonal;
3. A regular M -space with (P) is metrizable;
4. A regular Σ-space with (P) is a σ-space.

The third and fourth items in the above theorem have results of M. Kate-
tov, J. Chaber, J. Pelant, and myself as corollaries.

5 Gruenhage spaces and property (∗)

We now mention a couple of properties related to Gδ-diagonals which have
had some impact in functional analysis. All spaces in this section are as-
sumed to be Hausdorff. Long ago [73] I introduced the following property,
and showed that any compact space with this property has a dense metriz-
able subspace. Given a space X, I called a collection U of open subsets of X
a σ-distributively point-finite T0-separating open cover if U =

∪
n∈ω Un such

that, given x ̸= y ∈ X, there is n ∈ ω such that

1. there exists U ∈ Un containing exactly one of x and y;
2. ord(x,Un)< ω or ord(y,Un)< ω.

(Here, ord(x,V)= |{V ∈ V : x ∈ V }|.)
Subsequently, spaces (not necessarily compact) with such an open cover

U were called Gruenhage spaces (see Def. 2.1 of [131]), and were shown to
have a connection with renorming in Banach spaces. For example, R.J. Smith
proved:

Theorem 5.1. [137] If K is a compact Gruenhage space, then C(K)∗ admits
a strictly convex dual norm.

3 The definition of generalized 2-Maltsev given here is equivalent to that in [65]; we have
only interchanged the roles of Π2 and Π3.
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Later, Smith, Orihuela, and Troyanski defined a property weaker than
both Gδ-diagonal and Gruenhage, which they called (∗). A space X has (∗)
iff there is a sequence Un, n ∈ ω, of collections of open subsets of X such
that, given x ̸= y ∈ X, there is n ∈ ω such that

1. U ∩ {x, y} is a singleton for some U ∈ Un;
2. No U ∈ Un contains both x and y.

They proved:

Theorem 5.2. ([118])

1. A compact scattered space K has (∗) iff C(K)∗ admits a strictly convex
dual norm;

2. Every Gruenhage space and every space with a Gδ-diagonal has (∗)
3. Assuming CH or b = ω1, there is a locally compact scattered space with a

Gδ-diagonal which is not Gruenhage, and hence its one-point compactifi-
cation is a compact space satisfying (∗) but not Gruenhage.

Subsequently, Smith [138] obtained a ZFC example satisfying the con-
ditions of 5.2(3). We list some other results about these properties in the
following theorem.

Theorem 5.3. 1. X is Gruenhage iff there is a sequence Un, n ∈ ω, of col-
lections of open subsets of X, and sets Rn, n ∈ ω, such that U ∩ V = Rn

for every U ̸= V ∈ Un, and, given x ̸= y ∈ X, there is n ∈ ω and U ∈ Un

such that U ∩ {x, y} is a singleton [137];
2. If |X| ≤ 2ω, then X is Gruenhage iff there is a sequence Un, n ∈ ω, of

open sets such that for any x ̸= y ∈ X, Un ∩{x, y} is a singleton for some
n [139];

3. The perfect image of a Gruenhage space is Gruenhage [137];
4. The continuous image of a compact scattered space satisfying (∗) also sat-

isfies (∗) [118]
5. A countably compact space with (∗) is compact [118];
6. A tree with the interval topology has (∗) iff it is Gruenhage [118].

It is unsolved whether or not C(K)∗ admits a strictly convex dual norm
whenever K is compact and satisfies (∗), or if property (∗) is preserved by
perfect mappings.

6 Stratifiable vs. M1

Ceder [48] defined M1-spaces (resp., M2-spaces) as those regular spaces hav-
ing a σ-closure-preserving base (resp., quasi-base), where B is a quasi-base for
X if whenever x ∈ U , U open, there is some B ∈ B with x ∈ Bo ⊂ B ⊂ U . He
also defined M3-spaces, renamed by Borges as stratifiable spaces; these are
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now known to be the same as M2-spaces. However, whether or not stratifiable
and M1 are the same is still an open question. The best partial result is the
following, due to Mizokami, Shimane, and Kitamura [115]:

Theorem 6.1. A stratifiable space X is M1 if it has the following property:

(δ) Whenever U is dense open in X and x ∈ X \ U , there is a closure-
preserving collection F of closed subsets of X that is a network at x, and
such that F ∩ U = F for every F ∈ F .

Sequential stratifiable spaces satisfy (δ); more generally, so do stratifiable
spaces having the following property which has been called WAP (weak ap-
proximation by points) or weakly Whyburn:

(WAP) If A is not closed, there exists B ⊂ A such that |B \A| = 1.

It is known that a stratifiable space is M1 if each point has a closure-
preserving neighborhood base. In his original paper, Ceder asked if every
M1-space has the property that each closed subset has a closure-preserving
outer base4. This question was unsolved until Mizokami [114] finally gave an
the following (difficult!) affirmative answer.

Theorem 6.2. Every closed subset of an M1-space has a closure-preserving
outer base.

Combining this with previous results, Mizokami obtains the following
corollary.

Corollary 6.3. 1. An adjunction space of M1-spaces is M1;
2. A stratifiable space which is the union of countably many closed M1 sub-

spaces is M1.

The first part of this corollary answers another question of Ceder, while
the second part answers a question I asked in [72].

7 Stratifiability of function spaces

Gartside and Reznichecko [64] proved that the space Ck(X) of continuous
real-valued functions on X with the compact open topology is stratifiable
whenever X is a Polish space. Their proof did not determine whether or not
such Ck(X) wereM1, so for a time there was hope that perhaps Ck(ω

ω) would
be a counterexample solving Ceder’s long-standing problem. First, Tamano
and I [84] obtained the following partial result:

Theorem 7.1. If X is σ-compact Polish, then Ck(X) is a µ-space (and hence
hereditarily M1).

4 An outer base for a subset H of X is a collection U of open supersets of H such that any
open set containing H contains a member of U
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Here, a µ-space is a space that can be embedded in the countable product
of paracompact spaces which are the countable union of closed metrizable
subspaces. It is known that the class of stratifiable µ-spaces is hereditary,
and every member of the class is M1.

Gartside and Feng [62] obtained the following related result:

Theorem 7.2. 1. If X is a compact-covering image of a closed subspace
of the product of a σ-compact Polish space and a compact space, then
Ck(X,M), the space of continuous maps from X into M with the compact-
open topology, is stratifiable for any metric space M ;

2. If X is σ-compact Polish, K is compact and M metric then every point of
Ck(X×K,M) has a closure-preserving local base, and hence this function
space is M1.

However, Tamano [147] later showed that Ck(ω
ω) is not a counterexample

to Ceder’s problem:

Theorem 7.3. If X is Polish, then Ck(X) is M1.

It remains unsolved whether or not Ck(X) is hereditarily M1 or a µ-space
for any Polish X.

Another question asked by Gartside and Reznichenko was whether for
separable metricX, Ck(X) stratifiable impliesX must be complete and hence
Polish. Reznichenko [130] gave an affirmative answer:

Theorem 7.4. For a separable metric space X, Ck(X) is stratifiable iff X
is Polish.

8 Local versions of Mi-spaces

Local versions of M1 and M2 were defined, first by R. Buck [39], who called
them m1-spaces and m2-spaces, respectively, and later by Dow, Martinez,
and Tkachuk [55], who, apparently unaware of Buck’s work, named them
Japanese and weakly Japanese, respectively. That is, a space is m1 (or
Japanese) if each point has a closure-preserving open base; replace “base”
with “quasibase” for the definition of m2 (or weakly Japanese). Here I will
use Buck’s notation.

Interestingly, local analogues of the M2 vs. M1 problem are also unsolved:

Question 8.1. 1. Is every regular m2-space m1?
2. Is the m1 property (closed) hereditary?

Dow, Martinez, and Tkachuk also ask if the answer to the first question
is positive for compact spaces. The following are some of their results about
these properties:
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Theorem 8.2. [55]

1. Every GO-space is m1;
2. A dyadic compact space is m2 iff it is metrizable;
3. Every scattered Corson compact is m1, but there is an Eberlein compact

space which is not m2;
4. The m2 property is not preserved by perfect mappings.

Buck also defines m3-spaces and monotonically Hausdorff spaces, the for-
mer a local property inspired by Ceder’s original definition of M3-spaces,
and the latter a weakening of monotonically normal which he shows to be
equivalent to m3 in Hausdorff spaces. It is also not known if m3 implies m2.
Dow, Martinez, and Tkachuk ask the related question whether monotonically
normal implies m1.

Answering questions in [55] and [151], Feng and Gartside [58] recently
constructed an uncountable compact Hausdorff space K such that the space
Cp(K) is m1, where Cp(X) is the space of continuous real-valued functions on
X with the topology of pointwise convergence. This should be compared with
the well-known result that if Cp(X) is stratifiable, then X must be countable.

9 Quarter-stratifiable spaces

T. Banakh [21] introduced an interesting generalization of semi-stratifiable
spaces which he named quarter-stratifiable. A space (X, τ) is quarter-stratifiable
if there is a function g : ω ×X → τ such that

1. For each n ∈ ω, X =
∪
{g(n, x) : x ∈ X};

2. If x ∈ g(n, xn) for each n ∈ ω, then xn → x.

Further, if there is a weaker metric topology µ on X and a function g as above
with g(n, x) ∈ µ always, then X is said to be metrically quarter-stratifiable.

One should notice here that x need not be a member of g(n, x); if this
were required in place of condition (1) in the definition of quarter-stratifiable,
we would have a property equivalent to semi-stratifiable (see, e.g., Theorem
5.8 of [71]). An illuminating example is the Sorgenfrey line: it is not semi-
stratifiable, but g(n, x) = (x − 1/2n, x) witnesses its (metrically) quarter-
stratifiability.

Recall that Moore spaces are semi-stratifiable (see, e.g., [71]), and that
there are Moore spaces that are not submetrizable (see, e.g., [117]); it follows
(as is pointed out in [21]) that there are quarter-stratifiable spaces that are
not metrically so. However, it is apparently not known whether every quarter-
stratifiable space that has a weaker metric topology is metrically quarter-
stratifiable.

The motivation for introducing quarter-stratifiability is the following re-
sult.
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Theorem 9.1. [21] Suppose X is metrically quarter-stratifiable, Y and Z are
spaces, and f : X × Y → Z a function. Then:

1. If Z is a locally convex equiconnected space (in particular, a locally convex
topological vector space) and f is separately continuous, then f is of Baire
class 1;

2. If every closed subset of Z is regular Gδ and f is continuous with respect
to the first variable and Borel measurable of class α with respect to the
second variable, then f is Borel measurable of class α+ 1.

The first result generalizes a result of W. Rudin [132] and the second
generalizes a theorem of Kuratowski [99] and Montgomery [116], who proved
these results for X,Y , and Z metrizable. We list other properties of quarter-
stratifiability proved by Banakh in the following theorem.

Theorem 9.2. [21]

1. X is quarter-stratifiable iff there are open covers Un, n ∈ ω, and functions
sn : Un → X such that x ∈ Un ∈ Un implies s(Un) → x;

2. (Metrically) quarter-stratifiability is preserved by open subspaces, retracts,
and countable products;

3. Paracompact T2 quarter-stratifiable spaces are metrically quarter-stratifiable;
4. Every T2 quarter-stratifiable space has a Gδ-diagonal;
5. If X is quarter-stratifiable, then the density d(X) is not greater than the

Lindelöf degree l(X), and every countably compact or paracompact Čech-
complete subspace is metrizable;

6. Every space with a Gδ-diagonal is homeomorphic to a closed subspace of
a quarter-stratifiable T1-space;

Bennett and Lutzer [29] examined this property in GO-spaces, and proved
that every quarter-stratifiable GO-space is hereditarily metrically quarter-
stratifiable and has a σ-closed-discrete dense subset. They also give an exam-
ple of a separable perfect GO-space with a Gδ-diagonal that is not quarter-
stratifiable.

10 Compact Gδ-sets and c-semistratifiable spaces

All spaces in this section are at least Hausdorff. In 1973, H.W. Martin [107]
introduced the class of c-semistratifiable (CSS) spaces, which, roughly speak-
ing, are spaces in which compact subsets are Gδ in a monotone way. More
precisely, X is c-semistratifiable if for every compact set C, there are open
sets G(C, n), n ∈ ω, satisfying:

1. C =
∩

n∈ω G(C, n);
2. G(C, n+ 1) ⊂ G(C, n) for all n; and
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3. C ⊂ D implies G(C, n) ⊂ G(D,n) for all n.5

More recently, Bennett, Byerly, and Lutzer [25] studied spaces in which
compact sets are Gδ and compared them to c-semistratifiable spaces, obtain-
ing the following results:

Theorem 10.1. 1. A (countably) compact subset of a space X is metrizable
and a Gδ-set in X if X has a δθ-base, a point-countable T1-separating open
cover, or a quasi-Gδ-diagonal;

2. Any compact subset of a space X having a base of countable order must be
Gδ, but this does not hold for countably compact subsets;

3. A submetacompact locally CSS space is CSS;
4. Every compact subset of a space with a point-countable base must be Gδ,

but there is a LOTS with a point-countable base which is not CSS;
5. Every monotonically normal CSS space is hereditarily paracompact;
6. Being CSS and having a Gδ-diagonal are equivalent in GO-spaces to having

a σ-closed-discrete dense subset, but if there is a Souslin line, then they
are not equivalent in the more general class of perfect GO-spaces.

11 Cosmic spaces

It is well-known that the covering dimension dimX, the small inductive di-
mension indX, and the large inductive dimension IndX of a separable metric
space X coincide. Arhangel’skii asked whether they agree in the class of reg-
ular continuous images of separable metric spaces, or cosmic spaces as they
are often called. Cosmic spaces are also characterized as regular spaces which
have a countable network.

For a cosmic space X it is known that indX = IndX, so the question is
whether dim X = indX. G. Delistathis and W. S. Watson [51] claimed to
construct, under the Continuum Hypothesis, a cosmic space X with dim X =
1 and indX > 1. Unfortunately, that construction was incorrect (specifically,
Lemmas 2.2 and 2.3 in their paper were incorrect). However, now an example
with these properties has been constructed by M. Charalambous , in ZFC.

Example 11.1. ([47]) There is a regular continuous image X of a separable
metrizable space such that dim X = 1 and ind X = 2. Furthermore, X is a
countable union of separable metrizable subspaces.

Dow and Hart [52] independently obtained a similar example assuming
Martin’s Axiom for σ-centered partial orders (though they only showed ind
X > 1). These examples also answer a question of S. Oka, who asked if dim

5 Semistratifiable spaces are characterized by the existence of an operator G(C, n) satisfying
these same conditions for all closed sets C.
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X = Ind X for paracompact perfectly normal spaces which are a countable
union of metrizable subspaces.

Incidentally, these examples give new examples of cosmic spaces that are
not µ-spaces, where X is a µ-space if it can be embedded in Πn∈ωYn, where
each Yn is paracompact and a countable union of closed metrizable subspaces.
It is known that the standard dimensions agree for µ-spaces, so the above
examples are not µ-spaces. The first known ZFC example of a cosmic space
which is not µ was given by Tamano [146] in 2001; in 2005, Tamano and
Todorcevic [148] show that certain function spaces are also of this kind.

Theorem 11.2. [148]

1. If Cp(X,R) is a µ-space, then X is a countable union of compact metrizable
subspaces;

2. For a zero-dimensional space X, Cp(X, {0, 1}) is a µ-space if and only if
X is a countable union of compact, metrizable subspaces.

Hence Cp(ω
ω, {0, 1}) is a cosmic space that is not a µ-space; it is apparently

not known whether or not Cp([0, 1],R) is a µ-space.

12 k∗-metrizable spaces

All spaces in this section are assumed to be Hausdorff. In [23], Banakh,
Bogachev, and Kolesnikov introduce and study a new class of generalized
metrizable spaces. They define a space X to be k∗-metrizable if there is a
metric space M , a continuous surjection π : M → X, and a (not necessarily
continuous) function s : X → M such that π◦s = idX and for every compact
subset K of X, s(K) is compact in M . (The map π with these properties is
called subproper.)

The motivation for this class of spaces comes from probability; see [23]
for details. Regarding properties of these spaces, an easy observation is that
compact subsets of k∗-metrizable spaces are metrizable. Here are a couple of
alternate characterizations of this class:

Theorem 12.1. The following are equivalent for a Hausdorff space X:

1. X is k∗-metrizable;
2. Every compact subset of X is metrizable, and X has the following property:

there is a metric space M , a continuous surjection π : M → X, and a
(not necessarily continuous) function s : X → M such that π ◦ s = idX
and the image under s of any convergent sequence in X has a convergent
subsequence in M ;

3. There is a metric ρ on X such that (i) each ρ-convergent sequence con-
verges in X, (ii) a ρ-Cauchy sequence converges in X iff it contains a
convergent subsequence in X, and (iii) compact subsets of X are totally
bounded with respect to ρ.
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Spaces with the property given in item 2 are called cs∗-metrizable.
The next characterization is useful in relating k∗-metrizable spaces to other

generalized metrizable spaces. Recall that a collection F of subsets of X is a
k-network for X if, given a compact set K and an open set U containing K,
there is a finite subset F ′ of F withK ⊂ ∪F ′ ⊂ U . Also, F is compact-finite if
every compact set meets only finitely many members of F , and is σ-compact-
finite if it is the union of countably many compact-finite subcollections. An
ℵ-space (resp., ℵ0-space) is a space with a σ-locally-finite (resp., countable)
k-network.

Theorem 12.2. A regular space X is k∗-metrizable iff X has a σ-compact-
finite k-network.

Theorem 12.3. Lasnev spaces (i.e., closed images of metrizable spaces), ℵ0-
spaces, and ℵ-spaces are k∗-metrizable. Furthermore, a regular space is Las-
nev iff it is a k∗-metrizable Fréchet space, and is an ℵ0-space iff it is k∗-
metrizable and cosmic.

The class also has some nice preservation properties.

Theorem 12.4. k∗-metrizable spaces are preserved by arbitrary subspaces,
countable products, box products, subproper (hence perfect) maps, and the
hyperspace of nonempty compact subsets with the Vietoris topology.

See [23] for cardinal characteristics of these spaces, connections to Banach
spaces and spaces of probability measures, a discussion of the related classes
of k-metrizable spaces and cs∗-metrizable spaces, and more.

13 D-spaces

A space X is a D-space if whenever N(x) is a neighborhood of x for each
x ∈ X, there is a closed discrete set D such that X =

∪
x∈D N(x). It is a long-

standing open question whether or not every regular Lindelöf or paracompact
Hausdorff space is a D-space, though there is a recent example, due to D.
Soukup and P. Szeptycki[140], assuming ♢ of a Hausdorff (but not regular)
hereditarily Lindelöf non-D-space. For a fairly recent survey of D-spaces, see
[82].

Many base properties and generalized metric properties imply D. That
semi-stratifiable spaces, hence Moore, semi-metric, stratifiable, and σ-spaces,
are D has long been known ([38]; see also [59]), but in the last decade the
following new results have been obtained:

Theorem 13.1. The following are D-spaces:

1. Spaces having a point-countable base [12];
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2. Strong Σ-spaces (hence paracompact p-spaces, as well as countable prod-
ucts of σ-compact spaces) [42];

3. Spaces having a point-countable weak base [40] [120], and sequential spaces
with a point-countable W-system [40] or point-countable k-network [120];

4. Subspaces of symmetrizable spaces [40];
5. Spaces having a σ-cushioned (mod k) pair-network, hence Σ#-spaces [104];
6. t-metrizable spaces [88];
7. Subspaces of Cp(X), where X is a Lindelöf Σ-space [78];
8. Spaces satisfying Collins-Roscoe conditions (G) or well-ordered (A), lin-

early semistratifiable spaces, and elastic spaces [141];
9. Base-base paracompact (hence totally paracompact) spaces [128] (see also

[125]) and Menger spaces [16];
10. (Weakly) monotonically monolithic spaces [150] [121].

Lin’s result (item 5) simultaneously generalizes semi-stratifiable implies D
and strong Σ implies D. Re item 9, Aurichi’s result about Menger spurred
much activity, in spite of the fact that it could be considered a corollary
of the previously known result that totally paracompact spaces are D. See
Section 20 for more about base-base paracompactness. Re items 8 and 10,
we discuss monotonically monolithic spaces and the Collins-Roscoe condition
(G) in Section 15.

14 Monotone normality and resolvability

A space X is said to be κ-resolvable (resp., almost κ-resolvable) if there is a
pairwise-disjoint (resp., almost disjoint modulo a nowhere-dense set) collec-
tion of κ-many dense subsets. A space is maximally resolvable if and only if
it is κ-resolvable for κ = ∆(X), where ∆(X) the minimum cardinality of a
nonempty open set in X. Metrizable spaces and linearly ordered spaces are
maximally resolvable. Since these two classes are the most important sub-
classes of monotonically normal spaces, it was thus natural to consider the
resolvability of this more general class. Juhasz, Soukup, and Szentmiklossy
showed:

Theorem 14.1. [92]

1. Every crowded monotonically normal space is ω-resolvable, and almost µ-
resolvable for µ = inf{2ω, ω2};

2. Every monotonically normal space of cardinality less than ℵω is maximally
resolvable;

3. If κ is a measurable cardinal, then there is a monotonically normal space
X with ∆(X) = κ which has no ω1-resolvable subspace ;

4. If there is a supercompact cardinal, then it is consistent that there is a
monotonically normal space X with |X| = ∆(X) = ℵω having no ω2-
resolvable subspace.
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Note that the examples of (3) and (4) cannot be maximally resolvable.
Recently, Juhasz and Magigor [90] extended some of these results as follows.

Theorem 14.2. 1. The existence of a monotonically normal space which is
not maximally resolvable is equicontinuous with the existence of a measur-
able cardinal;

2. It is consistent modulo a measurable cardinal that there is a monotonically
normal space X with ∆(X) = ℵω which is not ω1-resolvable.

A question from [92] which is still open is whether every crowded mono-
tonically normal space is almost c-resolvable.

15 Monotonically monolithic and Collins-Roscoe
condition (G)

All spaces in this section are assumed to be regular. Recall that a space
X is κ-monolithic if for any A ⊂ X of cardinality not greater than κ, A
has a network of cardinality not greater than κ, and X is monolithic if it
is κ-monolithic for every cardinal κ. Monotonically monolithic spaces were
recently introduced by V.V. Tkachuk [150], and monotonically κ-monolithic
spaces by O.Alas, Tkachuk, and R. Wilson [1]. A space X is monotonically
monolithic if one can assign to each A ⊂ X a collection N (A) of subsets of
X such that

1. |N (A)| ≤ |A|+ ω;
2. A ⊂ B ⇒ N (A) ⊂ N (B);
3. If {Aα : α < δ} is an increasing collection of subsets of X, and A =∪

α<δ Aα, then N (A) =
∪

α<δ N (Aα);

4. If U is open and x ∈ A ∩ U , then there is N ∈ N (A) with x ∈ N ⊂ U .

The operator N is called a monotonically monolithic operator for X.
Further, for an infinite cardinal κ, X is said to be monotonically κ-

monolithic if N (A) is defined for all sets A with |A| ≤ κ and satisfies the
above conditions.

Condition (4) may be rephrased by declaring thatN (A) contains a network
at every point of A.6 L.-X. Peng[121] called a space X weakly monotonically
monolithic if it has an operator satisfying the above conditions but with
condition (4) replaced by

4.′ If A is not closed, then N (A) contains a network at some point x ∈ A \A.

Theorem 15.1. 1. Any space with a point-countable base is monotonically
monolithic [150];

6 A collection F of subsets of a space X is a network at x ∈ X if, given any open
neighborhood U of x, there is some F ∈ Fuu with x ∈ F ⊂ U .
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2. If X is a Lindelöf Σ-space, then Cp(X) is monotonically monolithic [150];7

3. Monotonically monolithic spaces are hereditarily D-spaces [150].
4. Monotonically (κ-)monolithic spaces are preserved by countable products,

subspaces, and closed mappings [150][1].

The first three results served as motivation for introducing the class of
monotonically monolithic spaces, because they generalized simultaneously
the results of A.V. Arhangel’skii and R. Buzyakova [12] that spaces with a
point-countable base are (hereditarily) D, and our result [78] that Cp(X) is
hereditarily D whenever X is a Lindelöf Σ-space. Subsequently, Peng [121]
showed:

Theorem 15.2. Weakly monotonically monolithic spaces are D-spaces.

From this result, many known results about base properties or generalized
metric properties implying D can be recovered–see [121] for details.

In [49], Collins and Roscoe introduced the following condition:

(G) For each x ∈ X, there is assigned a countable collection G(x) of subsets
of X such that, whenever x ∈ U , U open, there is an open V with x ∈ V ⊂ U
such that, whenever y ∈ V , then x ∈ N ⊂ U for some N ∈ G(y).

It is easy to see that any space with a point-countable base satisfies (G),
where G(x) is simply the collection of all members of a point-countable base
which contain x. Indeed, the question whether or not (G) being witnessed by
a collection of open sets (i.e., the property called “open (G)”) is equivalent
to having a point-countable base is a well-known open question.

As mentioned in [74], it is straightforward to check that (G) is equivalent
to the following:

(G′) For each x ∈ X, one can assign a countable collection G(x) of subsets
of X such that, for any A ⊂ X,

∪
a∈A G(a) contains a network at every point

of A.

If we let N (A) =
∪

x∈A G(x), where G(x) satisfies G′, then it is easy
to check that this is a monotonically monolithic operator. So (G) implies
monotonically monolithic. In particular, this means that stratifiable spaces,
which satisfy (G) [50], are monotonically monolithic.

In [83] we proved the following result, which shows a close connection
between the monotonically monolithic property and the Collins-Roscoe con-
dition (G).

Theorem 15.3. A space X is monotonically monolithic (resp., weakly mono-
tonically monolithic) iff one can assign to each finite subset F of X a
countable collection N (F ) of subsets of X such that, for each A ⊂ X,∪

F∈[A]<ω N (F ) contains a network at each point of A (resp., at some point

of A \A, if A is not closed).

7 A space X is a Lindelöf Σ-space if it is the continuous image of closed subspace of the

product of a separable metric space with a compact space, and Cp(X) denotes the space
of continuous real-valued functions on X with the topology of pointwise convergence.
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There is an interesting connection between these properties and certain
classes of compacta. Recall that a compact space X is Corson compact if it
embeds in a Σ-product of real lines, and is Gul’ko compact if Cp(X) is a
Lindelöf Σ-space. Every Gul’ko compact is Corson compact.

Theorem 15.4. [83]

1. Every monotonically ω-monolithic compact space is Corson compact;
2. There is a Corson compact space which is not monotonically ω-monolithic;
3. Every Gul’ko compact space satisfies (G).

Subsequently, Tkachuk obtained a number of other interesting results on
these properties.

Theorem 15.5. 1. If D is an uncountable discrete space, then Cp(βD) is
monotonically monolithic but does not satisfy (G) [152];

2. If X is a Lindelöf Σ-space and nw(X) ≤ ω1 then Cp(X) satisfies (G) [152];
3. Any space X satisfying (G) is cosmic whenever ω1 is a caliber of X [152];
4. For any Tychonoff space X, if Cp(X) is a Lindelöf Σ-space then X satisfies

(G) [152];
5. Property (G) is preserved by closed maps, countable products, and σ-

products [153];
6. X has (G) if X is a Lindelöf Σ-space and has a weakly σ-point-finite

T0-separating family of cozero sets [153];
7. If X is monotonically κ-monolithic and t(X) ≤ κ, then X is monotonically

monolithic [153];
8. If X is perfectly normal, Corson compact, and monotonically (ω-)monolithic,

then X is metrizable [153];
9. There is a Corson compact space satisfying (G) which is not Gul’ko com-

pact [153];
10. A hereditarily Lindelöf space satisfying open (G) has a point-countable base

[153].

Item 1 of Theorem 15.5 shows that (G) and monotonically monolithic are
distinct properties, answering a question I asked in [83], while 15.5(9) answers
another question of mine. Theorem 15.5(2) generalizes the respective result of
Dow, Junnila, and Pelant [54] for compact spaces X. Regarding 15.5(3), the
respective question for monotone monolithity, formulated in [150], remains
open.

16 Monotonically compact and monotonically Lindelöf

All spaces in this section are assumed to be regular. A space X is mono-
tonically Lindelöf (resp., monotonically compact) if to every open cover U
one can assign a countable (resp., finite) open refinement r(U) covering X
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such that r(U) refines r(V) whenever U refines V. Monotonically compact
and monotonically Lindelöf spaces were defined by M. Matveev, and were
first studied in print by Bennett, Lutzer, and Matveev in [36]. One may simi-
larly define other monotonic covering properties, and some of these have been
studied too. Gartside and Moody [63] defined monotonically paracompact as
above with r(U) being a star refinement of U and showed that monotonically
paracompact spaces are exactly the class of protometrizable spaces. Stares
[144] remarks that it is not known if one gets the same class by defining the
property so that r(U) is a locally finite refinement of U .8

It is easily seen that compact metrizable spaces are monotonically compact
and second countable spaces are monotonically Lindelöf.

Theorem 16.1. 1. Monotonically compact Hausdorff spaces are metrizable
[80];

2. Every Lindelöf first countable GO-space is monotonically Lindelöf [79];
3. Compact monotonically Lindelöf spaces are first countable [79];
4. Monotonically Lindelöf spaces having property K9(e.g., separable) are

hereditarily Lindelöf [79];
5. βω and ω∗ are not monotonically Lindelöf [100].
6. There are countable spaces which are not monotonically Lindelöf, and un-

der CH, there is a countable space which is monotonically Lindelöf but not
second countable [101].

Theorem 16.1(1), which shows that the only monotonically compact Haus-
dorff spaces are compact metrizable spaces, answers a question of Matveev,
while 16.1(2) answers some questions in [36]. A.-J. Xu and W.-X. Shi [155]
obtained a kind of converse to 16.1(2) by showing that if X is a monoton-
ically Lindelöf GO-space, then the character of X is ≤ ω1. L.-X. Peng and
H. Li [122] improved 16.1(3) by showing that every compact monotonically
metalindelöf space is first countable.

Popvassilev [127] subsequently defined a space to be monotonically (count-
ably) metacompact if to every (countable) open cover U one can assign a point-
finite open refinement r(U) covering X such that r(U) refines r(V) whenever
U refines V. He proved that the ordinal space ω1 + 1 is not monotonically
countably metacompact. The property was further studied by Bennett, Hart,
and Lutzer [26], who showed:

Theorem 16.2. 1. Every metacompact Moore space is monotonically meta-
compact;

2. A monotonically (countably) metacompact GO-space is hereditarily para-
compact;

8 Recently, S. Popvassilev and T. Chase in as yet unpublished work independently found

examples showing these classes are different, while J.E. Porter proved that protometrizable
spaces do satisfy the locally finite version of monotonic paracompactness.
9 A space X has property K if every uncountable collection of open sets contains an
uncountable subcollection with nonempty intersection.
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3. A GO-space with a σ-closed-discrete dense subset is metrizable if and only
if it is monotonically (countably) metacompact;

4. A compact GO-space is metrizable if and only if it is monotonically (count-
ably) metacompact;

5. There is a non-metrizable LOTS that is monotonically metacompact.

A key lemma used in the argument for item 3 has an erroneous proof
in [26]. This was fixed by Peng and Li [122], who also answered a question
in [26] by showing that a monotonically normal space that is monotonically
countably metacompact (or monotonically metalindelöf) must be hereditarily
paracompact. Recently, T. Chase and I have answered a question mentioned
in [127] and [26] by proving that every compact monotonically countably
metacompact space is metrizable.

17 Montonically countably paracompact (MCP)

All spaces in this section are assumed to be regular. Monotonic versions of
countable paracompactness and countable metacompactness that are quite
different in spirit from the monotonic properties mentioned in the previous
section were introduced independently in [70], [119], and [149]. There10, a
space X is defined to be monotonically countably metacompact (MCM) if
and only if there is an operator U assigning to each n ∈ ω and each closed
set D an open set U(n,D) such that

1. D ⊂ U(n,D);
2. If E ⊂ D, then U(n,E) ⊂ U(n,D); and
3. If {Dn : n ∈ ω} is a decreasing sequence of closed sets with empty inter-

section, then
∩

n∈ω U(n,Dn) = ∅.

X is monotonically countably paracompact (MCP) if U also satisfies

3′. If {Dn : n ∈} is a decreasing sequence of closed sets with empty intersec-
tion, then

∩
n∈ω U(n,Dn) = ∅.

Note that countably compact spaces are trivially MCP. Properties MCM
and MCP should be considered monotonic separation properties, more related
to monotonically normal spaces than the monotonic covering properties we
discussed in the previous section. It turns out that MCM spaces are precisely
the β-spaces [70] and MCP is closely related to the wN (weak Nagata) prop-
erty of Hodel [89], which can be characterized (see [157]) by conditions (1),
(2) and

3′′. If {Dn : n ∈ ω} is a decreasing sequence of closed sets, then
∩

n∈ω U(n,Dn) =∩
n∈ω Dn.

10 The definition given here is not precisely the one given in [70], but was shown to be
equivalent to it in [157].
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Theorem 17.1. 1. For q-spaces (in particular, first countable spaces or lo-
cally compact spaces), MCP is equivalent to wN [70], and hence (see [144])
implies collectionwise Hausdorff, and metrizability if Moore ;

2. Monotonically normal MCM spaces are MCP [70];
3. The Sorgenfrey line is monotonically normal but not MCM [70];
4. Any space with at most one non-isolated point is MCP [70], but there is a

countable regular space which is not MCP [144];
5. X is MCP iff X × [0, 1] is MCP [67];
6. If there is a space X which is MCP but not collectionwise Hausdorff, then

there is a measurable cardinal, and if there are two measurable cardinals,
then there is a non-collectionwise Hausdorff MCP space [68].

18 β and strong β-spaces

Spaces in this section are assumed to be Hausdorff. Y. Yajima [156] intro-
duced the following new class of spaces: A space (X, τ) is called a strong
β-space if there is a function g : X × ω → τ satisfying:

1. x ∈
∩

n∈ω g(x, n);

2. If
∩

n∈ω g(xn, n) is nonempty, then
∩

k∈ω {xn : n ≥ k} is nonempty and
compact.

If the phrase “and compact” is omitted in the conclusion of condition 2, or
equivalently, the conclusion of condition 2 is changed to “then {xn : n ∈ ω}
has a cluster point”, then we have the definition of a β-space. Trivially, count-
ably compact spaces are β-spaces. Recall (see, e.g., [71]) that many classes of
generalized metrizable spaces, e.g.,Σ-spaces, semi-stratifiable spaces, etc., are
β-spaces, and in the previous section we mentioned that the MCM property
is equivalent to being a β-space. Yajima proves the following about strong
β-spaces:

Theorem 18.1. 1. Every semi-stratifiable space, strong Σ-space, and strict
p-space is a strong β-space;

2. The class of strong β-spaces is countably productive, and preserved by per-
fect mappings in both directions;

3. The product of a β-space with a strong β-space is a β-space;
4. Every normal isocompact β-space is a strong β-space;
5. There is a countably compact (hence β ) dense subset of ω∗ which is not

a strong β-space.

The second item gives some important advantages of strong β over β, e.g.,
strong β is countably productive, while it is not known if the product of two
β-spaces has to be a β-space.

See [96] for further conditions on when a β -space is strong β.



24 Contents

Regarding β-spaces, Bennett and Lutzer [29] studied the property in or-
dered spaces and monotonically normal spaces, obtaining the following result.

Theorem 18.2. 1. A GO-space X is metrizable iff X is a β-space and either
has a Gδ-diagonal or is quasi-developable, or X is perfect and hereditarily
a β-space;

2. Every monotonically normal hereditarily β-space is hereditarily paracom-
pact.

They also ask if a compact first-countable LOTS which is hereditarily a
β-space must be metrizable.

19 Noetherian type

In this section and the two following, we discuss properties defined by a
condition on a base.

Peregudov [123] defines the Noetherian type Nt(X) of a space X to be
the least cardinal κ such that X has a base B such that each member of B
is contained in fewer than κ-many other members of B. D. Milovich [112]
calls such a base B κop-like. So, e.g., Nt(X) = ω iff X has a base B which is
ωop-like, i.e., each member of B is contained in at most finitely many other
members of B. An ωop-like base was called a Noetherian base by Peregudov
and Shapirovskii in [124] and an OIF base (or open-in-finite base) by Bennett
and Lutzer in [27] and by Balogh, Bennett, Burke, Gruenhage, Lutzer, and
Mashburn in [17]. It is easy to see that any metric space or metacompact
Moore space has Noetherian type ω, as does 2κ for any κ. We collect in the
following theorem a number of recent results on this topic.

Theorem 19.1. 1. The Noetherian type of ω∗ is at least the splitting number
s and is consistently less than the additivity of the meager ideal. It can be
ω1, c, c

+, or strictly between ω1 and c [113];
2. Every homogeneous dyadic compactum has Noetherian type ω [112];
3. If X is compact and its weight w(X) is regular, then Nt(X) = Nt(Xn) for

each n ∈ ω if either X is hereditarily normal, or homogeneous, or βω does
not embed in X, or |X| < 2w(X); also Nt(X) = Nt(Xn) if X is compact
homogeneous and GCH holds [97];

4. There are spaces X and Y such that ω = Nt(X×Y ) < min{Nt(X), Nt(Y )}
[97]

19.1(3) and 19.1(4) are related to a still unsolved problem of Balogh, Ben-
nett, et al whether there exists a space X such that Nt(X2) = ω < Nt(X).
It is also not known if there are compact spaces X and Y satisfying the
conditions of 19.1(4).
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I should probably mention a somewhat different notion of Noetherian base.
In an unpublished note, van Douwen called a base B for X Noetherian if ev-
ery increasing sequence of elements of B is finite. In [74] I stated that van
Douwen showed that if κ is a strongly inaccessible cardinal, then κ with the
order topology does not have a Noetherian base. I also stated that Szentmik-
lossy in an unpublished note proved that every regular space of cardinality
less than the first strongly inaccessible cardinal has a Noetherian base. But
Szentmiklossy has since withdrawn his claim, so this is now an open question.

20 Base paracompact

A topological space is totally paracompact [61] if every open base has a lo-
cally finite subcover. This is a strong property–even the space of irrationals
does not satisfy it. J. Porter [129] defined a property which is much weaker
but in the same spirit as follows: a space is base-paracompact if there is a
base of cardinality equal to its weight such that every open cover has a lo-
cally finite refinement by members of the base. All metrizable spaces are
base-paracompact, but it is unknown if every paracompact space is base-
paracompact.

The following notions lie between metrizability and base-paracompactness.
A space is base-base paracompact [128] if it has an open base such that every
subfamily which is still a base contains a locally finite subcover. A space is
base-cover paracompact [125] if it has an open base every subcover of which
contains a locally finite subcover, and is base-family paracompact [126] if it
has an open base every subfamily of which has a subfamily with the same
union, such that the latter subfamily is locally finite at each point of its union.

Totally paracompact spaces are clearly base-base paracompact. It is also
easy to see that base-family paracompactness is hereditary, and that it implies
base-cover paracompactness, which implies base-base paracompactness.

Theorem 20.1. 1. Proto-metrizable spaces (hence metrizable and non-archimedean
spaces) are base-family paracompact [126];

2. A T1-space X is metrizable if and only if X × (ω+1) is base-family para-
compact [126];

3. A paracompact Hausdorff space is locally compact if and only if its product
with every compact space is base-cover paracompact [125];

4. Every base-base paracompact space is a D-space [128];
5. A subspace of the Sorgenfrey line is base-cover paracompact if and only if

it is Fσ [125] (hence the Sorgenfrey line is not base-family paracompact);
6. There is a Nagata space (i.e., first countable and stratifiable) which is

base-family paracompact but not metrizable [126];
7. The sequential fan Sω is totally paracompact but not base-cover paracom-

pact [125].
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It is an open question whether there is a paracompact space which is not
base-base paracompact. It is not even known whether or not every subspace
of the Sorgenfrey line (in particular, the subspace of irrationals) is base-base
paracompact.

21 Sharp base

A base B of a space X is said to be a sharp base if for every injective sequence
(Bi : i < ω) in B with x ∈

∩
i<ω Bi, the family {

∩
i≤n Bi : n < ω} is a base at

x. In my article in the previous book in this series, I mentioned a construction
of C. Good, R. W. Knight and A. M. Mohamad [69] of a pseudocompact non-
compact non-developable space with a sharp base whose product with the
unit interval does not have a sharp base. This example answered questions in
[2] and [15]. Unfortunately, it turned out not to be regular. Subsequently, B.
Bailey and I [18] showed how to modify the construction to obtain a regular
space with the same properties.

Also, Z. Balogh and D. Burke [19] obtained the following results on sharp
bases:

Theorem 21.1. 1. There is a space X with a sharp base and a perfect map-
ping f : X → Y such that Y does not have a sharp base (in fact, Y is not
a p-space);

2. If X has a sharp base, then it has a point-countable sharp base which is
point-finite on the set of isolated points.

The first statement answers a question in [69]; regarding the second state-
ment, it was known that a space with a sharp base has a point-countable
sharp base [15].

22 dis(X) and m(X)

For a space X, dis(X) (resp., m(X)) is the least cardinal such that X can
be covered by κ-many discrete (resp., metrizable) subspaces.

Theorem 22.1. (Gruenhage [81]) Let κ be an infinite cardinal. If X is the
union of κ-many discrete subspaces, then so is any perfect image of X. I.e.,
if f : X → Y is a perfect surjection, then dis(Y ) ≤ dis(X) + ω.

This result generalized a result of Burke and Hansell [41], who proved
it for the case κ = ω. Since any compact Hausdorff space with no isolated
points admits a perfect mapping onto I = [0, 1], and dis(I) = c, we have the
following corollary, which answered a question of Juhasz and van Mill [91]:
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Corollary 22.2. If X is a compact Hausdorff space with no isolated points,
then dis(X) ≥ c.

Bella [24] recently proved the following extension of this corollary.

Theorem 22.3. If X is a Čech complete, compactly rooted space with no
isolated points, then dis(X) ≥ c.

The class of compactly rooted spaces is a class defined by Arhangel’skii
which contains all p-spaces and all perfect preimages of spaces having a Gδ-
diagonal; see [5] for more details. Bella showed that it is consistent that “Čech
complete” cannot be weakened to “Baire” in his theorem, but it is not known
if that is so in ZFC.

Juhasz and Szentmiklossy [94] improved Corollary 22.2 with the following
result:

Theorem 22.4. If X is compact Hausdorff with no isolated points, and
χ(x,X) ≥ κ for all x ∈ X, then dis(X) ≥ 2κ.

Let ∆(X) denote the least cardinal of a nonempty open set in X. By the
well-known Čech-Pospǐsil theorem, ifX is compact Hausdorff with no isolated
points, and χ(x,X) ≥ κ for all x ∈ X, then ∆(X) ≥ 2κ. This led Juhasz and
Szentmiklossy to ask:

Question 22.5. [94] Is dis(X) ≥ ∆(X) for any compact Hausdorff space X?

This question is still open. We mention here some partial results of S.
Spadaro. Call a space ω1-expandable if every closed discrete set D expands
to an open collection {Ud : d ∈ D} such that, for each x ∈ X, we have
|{d ∈ D : x ∈ Ud}| ≤ ω1.

Theorem 22.6. 1. dis(X) ≥ ∆(X) if X is Baire and ω1-expandable, and
either developable or a regular σ-space; in particular, dis(X) ≥ ∆(X) for
any Baire metrizable space [142];

2. There is a regular Baire σ-space X with dis(X) < ∆(X) [142];
3. It is consistent that there is a normal Moore Baire space X with dis(X) <

∆(X) [142];
4. For a compact Hausdorff space X, dis(X) ≥ ∆(X) if X is polyadic, or

Gul’ko compact, or homogeneous, or hereditarily collectionwise-normal, or
hereditarily normal and 2κ < 2κ

+

for all κ. [143]

That dis(X) ≥ ∆(X) for any Baire metrizable space seems to be new even
for completely metrizable spaces.

The analogue of Theorem 22.1 for m(X) is open:

Question 22.7. Let κ be an infinite cardinal. If X is the union of κ-many
metrizable subspaces, is the same true of any perfect image of X? What if
X is compact?
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This question for the case κ = ω for compact X is due to A. Szymanski,
and even that is still open, i.e., if a compact Hausdorff space X is a countable
union of metrizable subspaces, is the same true for any continuous image of
X? I showed [76] that the conclusion holds if either X is a finite union of
metrizable subspaces, or if X is the union of countably many metrizable
subspaces that are Gδ-sets in their closures.

Regarding compacta of finite metrizability number, it is an old result of
Michael and Rudin that a compact space which is union of two metrizable
subspaces must be Eberlein compact. Juhasz, Szentmiklossy, and Szymanski
[95] obtained the following interesting extension of this result:

Theorem 22.8. Let X be a compact Hausdorff space with m(X) < ω. Then:

1. X is Eberlein compact iff X is hereditarily σ-metacompact;
2. X is uniform Eberlein compact iff X is hereditarily uniformly σ-metacompact;
3. X is Corson compact iff X is hereditarily metalindelöf.

It seems not to be known if these results are sharp. In particular, the
authors ask:

Question 22.9. Is there a hereditarily metalindelöf (resp., hereditarily σ-
metacompact) compact Hausdorff space X with m(X) = ω which is not
Corson compact (resp., Eberlein compact)?

23 Generalized metrizable spaces and topological
algebra

In this section we mention some results in topological algebra concerning
generalized metrizable spaces. Recall that semitopological group (resp., a
paratopological group) G is a group (G, ◦) with a topology such that the map
◦ : G × G 7→ G is separately (resp., jointly) continuous. A paratopological
group in which the inverse operation is continuous is a topological group.

Burke and Arhangel’skii [11] discussed the regular Gδ-diagonal property
in the setting of semitopological and paratopological groups, obtaining the
following:

Theorem 23.1. 1. Every Hausdorff first-countable Abelian paratopological
group has a regular Gδ-diagonal;

2. Every Tychonoff separable semitopological group with countable pseudochar-
acter has a weaker separable metric topology;

3. Every Tychonoff semitopological group with a countable π-base is sub-
metrizable;

4. There is a countable Tychonoff (therefore, Lindelöf and normal) paratopo-
logical group G with a countable π-base which is not first countable (there-
fore, not metrizable), and not Fréchet-Urysohn;
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Subsequently, C. Liu [105] and, independently, Arhangel’skii and Bella [10]
showed that the “Abelian” assumption in the first result is superfluous. The
fourth result should be compared to the result that a topological group with
a countable π-base must be metrizable.

Some related results were recently obtained by F. Lin and Liu [103]:

Theorem 23.2. 1. Every regular first-countable Abelian paratopological group
is submetrizable;

2. There is a Hausdorff paratopological gro5up with countable pseudocharacter
which is not submetrizable;

3. There is a nonmetrizable separable Moore paratopological group.

The first result answers a question in [11], though it is not known if the
Abelian assumption is necessary. The other two results answer questions of
Arhangel’skii and Tkacenko [14]. The third result was obtained independently
by P.Y. Li, L. Mou, and S.Z. Wang [102]. We also mention here that Liu and
S. Lin [106] proved that every first countable paratopological group which is
a β-space is developable.

Arhangel’skii published a series of papers on remainders, both in the topo-
logical group setting and in general spaces. The theme is to determine what
having a “nice” remainder in a compactification implies about the group or
space. Here is a small sample of his results on topological groups. Recall that
the paracompact (Lindelöf) p-spaces are precisely the perfect pre-images of
(separable) metrizable spaces.

Theorem 23.3. Let G be a topological group. Then:

1. G is Lindelöf at ∞ (i.e., the remainder of every, or equivalently one, com-
pactification is Lindelöf) iff G is a paracompact p-space [5];

2. G has a paracompact p-space remainder implies G is a paracompact p-
space; if in addition G is not locally compact, then both G and its remainder
are Lindelöf p-spaces; [5];

3. If G is not locally compact and has a remainder with a Gδ-diagonal or a
point-countable base, then G and its remainder are separable metrizable
spaces [6].

See the papers [4, 5, 6, 7, 8, 9] for many more results on this theme.
A pretty result for arbitrary spaces is that if a metrizable space X has a
remainder with a Gδ-diagonal, then both X and its remainder are separable
metrizable spaces.

Banakh and Zdomskyy have obtained some interesting results on Mω-
groups and MKω-groups. Here, a topological group G is Mω (resp., MKω)
if there is a countable collectionK of closed metrizable (resp., compact metriz-
able) subspaces such that U is open in G iff U ∩ K is open in K for each
K ∈ K.

Recall that a space is punctiform if it has no non-degenerate compact con-
nected subspaces, and that a punctiform σ-compact space is 0-dimensional.
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Also, the compact scatteredness rank of a space is the least upper bound of
the Cantor-Bendixon ranks of its scattered compact subspaces. A space X
has countable cs∗-character if for each x ∈ X , there is a countable family N
of subsets of X such that, for each neighborhood U of x and each sequence
A in X \ {x} converging to x, there is N ∈ N such that N ⊂ U and N ∩ A
is infinite. Finally, let (2ω)∞ denote the space whose topology is determined
by an increasing sequence of Cantor sets, the nth one nowhere dense in the
(n+ 1)st; define R∞ similarly.

Theorem 23.4. (Banakh [20]) The topology of a nonmetrizable punctiform
Mω-group is completely determined by its density and compact scatteredness
rank; if separable and uncountable, it is homeomorphic to (2ω)∞ (and hence
is 0-dimensional and MKω).

Theorem 23.5. (Banakh and Zdomskyy [22])

1. A topological group G is an Mω-group iff G is sequential and has countable
cs∗-character;

2. Every nonmetrizable Mω-group G contains an open MKω-subgroup H,
and hence is homeomorphic to the product H ×D for some discrete space
D;

3. Each nonmetrizable sequential k∗-metrizable (see section 12) locally convex
space is homeomorphic to R∞ or R∞ × [0, 1]ω.

These results were used in [86] to show that if X is a 0-dimensional non-
locally compact Polish space whose derived set is compact, then Ck(X, {0, 1})
is homeomorphic to (2ω)∞ .

Finally, in the following theorem, we list some results in topological algebra
involving stratifiability.

Theorem 23.6. 1. Monotonically normal topological vector spaces are strat-
ifiable (Shkarin [135]);

2. The free locally convex space of a stratifiable space is stratifiable (Sipacheva
[136]);

3. Suppose G is a topological group and H a locally compact metrizable sub-
group. If the quotient space G/H is stratifiable (resp., semi-stratifiable,
k-semi-stratifiable, a σ-space), then so is G (R. Shen and S. Lin [134]).

Item 3 answered a question of Arhangel’skii and V. V. Uspenskij in the
affirmative.

24 Domain representability

A partial order (P,≤) is called a directed complete partial order (dcpo) if
every directed subset of P has a supremum in P . For a, b ∈ P , call a ≪ b if
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whenever D ⊂ P is directed and b ≤ sup D, then a ≤ d for some d ∈ D. P
is said to be continuous if every set of the form {b : b ≪ a} is directed and
has a as its supremum. A continuous dcpo P is called a domain, and if also
every bounded subset of P has a supremum, then it is called a Scott domain.
The topology on P generated by sets of the form {b : a ≪ b} is called the
Scott topology. A space X is called domain representable (resp., Scott domain
representable) if there is a domain (resp., Scott domain) P such that X is
homeomorphic to the subspace of maximal elements of P (which is always
nonempty by Zorn’s lemma).

Domain representability is a kind of completeness property. Domain rep-
resentable spaces are Baire, and every locally compact Hausdorff space and
every Čech complete Moore space, hence every completely metrizable space,
is domain representable. See the survey of Martin, Mislove, and Reed [110]
for these and other results known at that time, as well as their motivation in
theoretical computer science.

Now we recall the definition of the strong Choquet game Ch(X). To start,
Player E chooses a pair (x0, U0), where U0 is open and x0 ∈ U0. Player NE
then chooses an open V0 with x0 ∈ V0 ⊂ U0. E responds with (x1, U1) where
U1 ⊂ V0 is open and x1 ∈ U1. NE then plays an open V1 with x1 ∈ V1 ⊂ U1,
and so on. NE wins if

∩
n∈ω Vn ̸= ∅. For a metrizable space X , it is well-

known that X is completely metrizable iff NE has a winning strategy in
Ch(X).

Theorem 24.1. (Martin [109])

1. If X is domain representable, then NE has a winning strategy in Ch(X);
2. If X is a Scott domain-representable Moore space, then X is Moore com-

plete (= Čech complete for completely regular spaces);
3. If X is metrizable, then X is domain representable iff X is completely

metrizable.

Kopperman, Kunzi, and Waszkiewicz [98] subsequently showed that any
completely metrizable space is Scott domain representable, hence for metriz-
able spaces, domain representability is equivalent to Scott domain repre-
sentability. However, Bennett and Lutzer showed that this equivalence does
not carry over to Moore spaces:

Theorem 24.2. 1. A Gδ subspace of a domain representable space is domain
representable [31];

2. There is a Scott domain representable Moore space with a closed (hence
Gδ) subspace which is not Scott domain representable [32].

Since compact Hausdorff spaces are domain representable, the first part
of the above theorem shows that all Čech complete spaces are domain repre-
sentable. For metrizable spaces, as seen in Martin’s theorem above, domain
representability is equivalent to Čech completeness. The situation is again
different in Moore spaces, however.
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Theorem 24.3. 11 (Bennett, Lutzer, Reed [37]) The following are equivalent
for a Moore space X:

1. X is domain representable
2. NE has a winning strategy in the strong Choquet game;
3. NE has a stationary winning strategy in the strong Choquet game;
4. X is subcompact;
5. X is Rudin complete.

Subcompactness is one of the so-called Amsterdam completeness properties–
see [35] for more information about such properties. Since Rudin completeness
is strictly weaker than Moore completeness or Čech completeness, this shows
that in Moore spaces, Čech completeness is strictly stronger than domain
representability. What about Scott domain representability? As noted above,
Martin showed that every Scott domain representable Moore space is Moore
complete, hence Čech complete if completely regular. Martin also asked if the
reverse were true, as it is in the class of metrizable spaces. However, Bennett,
Lutzer, and Reed [37] showed that this is not the case in Moore spaces by
giving examples of completely regular Čech complete Moore spaces that are
either separable or metacompact but not Scott domain representable. They
also showed that the statement that every countably paracompact separable
Čech complete Moore space is Scott domain representable is consistent with
and independent of ZFC. At this time, there seems to be no known satisfac-
tory characterization of Scott domain representability in the class of Moore
spaces [34].

Finally, we mention two more results of Bennett and Lutzer on this topic.

Theorem 24.4. [33]

1. Any regular subcompact space is domain representable;
2. If X is regular and has a Gδ-diagonal, then X is domain representable if

NE has a stationary winning strategy in the strong Choquet game.

The second result can be used to show that spaces such as the Sorgenfrey
line, Michael line, and others are domain representable. It is apparently not
known if the word “stationary” can be omitted in this result. Concerning
the first result, it seems not to be known whether or not subcompactness
is equivalent to domain representability. Recently, Fleissner and Yengulalp
[60] proved that, for completely regular X, Cp(X) is subcompact iff Cp(X)
is domain representable iff X is discrete.

Acknowledgements. The author wishes to thank T. Banakh, D. Lutzer,
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11 While this theorem is stated for Moore spaces, the authors show that all conditions

except the last are equivalent in the more general category of spaces having a base of
countable order.
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