BASE-PARACOMPACTNESS AND BASE-NORMALITY OF GO-SPACES

GARY GRUENHAGE

Abstract. We answer a question of J.E. Porter by proving that every paracompact GO-space is base-paracompact, and we answer questions of K. Yamazaki by providing an example of a countably compact LOTS which is not base-normal. This example is also the first known ZFC example of a normal space which is not base-normal.

1. Introduction

J.E. (Ted) Porter[1] calls a space X base-paracompact if there is a base B for X such that $|B| = w(X)$, and every open cover of X has a locally finite refinement by members of B. K. Yamazaki[1, 2] defined X to be base-normal if there is a base B for X such that $|B| = w(X)$, and any two-element open cover of X has a locally finite refinement by members of B. Yamazaki also observed that a paracompact space is base-paracompact iff it is base-normal.

As noted by Yamazaki, it is easy to see that base-normal spaces are normal, and that for normal spaces, X is base-normal iff there is a base B for X such that $|B| = w(X)$, and any two-element open cover of X has a locally finite refinement by members of B. Yamazaki also observed that a paracompact space is base-paracompact iff it is base-normal.

Recall that a space X is a linearly ordered topological space (LOTS) if there is a linear order on X such that the collection of open intervals with endpoints in X (or $\pm \infty$) is a base for X. X is a generalize ordered (GO) space if X is homeomorphic to a subspace of a LOTS.

Porter showed that every paracompact GO-space of weight \aleph_1 is base-paracompact, and asked if the weight restriction is necessary. Yamazaki[2] asked if GO-spaces are base-normal, and she asked if countably compact normal spaces are base-normal. In this note, we answer these questions by (1) proving that every paracompact GO-space is base-paracompact, and (2) providing an example (in ZFC) of a countably compact LOTS which is not base-normal.

It remains an unsolved problem of Porter whether or not every paracompact space is base-paracompact. In [1], it is noted that some well-known consistent examples of separable normal non-metrizable Moore spaces fail to be base-normal. Our LOTS example provides a ZFC example of a normal space which is not base-normal, answering another question of Yamazaki[1, 2].

2. A non-base-normal LOTS

For each ordinal number α, the cardinal \beth_α is defined as follows (see, e.g., [K]):

(i) $\beth_0 = \aleph_0$;
(ii) \(\bigwedge_{\alpha+1} = 2^{\bigwedge_\alpha} \);
(iii) For a limit ordinal \(\alpha \), \(\bigwedge_\alpha = \sup \{ \bigwedge_\beta : \beta < \alpha \} \).

Example 2.1. Let \(\kappa = \bigwedge_{\omega_1} \) and give \(2^\kappa \) the lexicographic order topology. Let \(X \) be the subspace of \(2^\kappa \) consisting of all “eventually constant” points (i.e., points \(\bar{x} = (x_\alpha)_{\alpha < \kappa} \in 2^\kappa \) such that, for some \(\delta < \kappa \) and \(j = 0, 1 \), \(x_\beta = j \) for all \(\beta > \delta \)). Then \(X \) is a countably compact LOTS which is not base-normal.

Proof. Since \(X \) is dense in \(2^\kappa \) with the lexicographic ordering, it is easy to see that \(X \) with the restricted ordering is a LOTS.

To see that \(X \) is countably compact, suppose \(A = \{ a_\alpha \}_{\alpha \in \omega} \) is a countably infinite subset of \(X \). Since \(2^\kappa \) is compact, there is a limit point \(p \) of \(A \) in \(2^\kappa \). We aim to show that \(p \in X \). We may assume that either \(a_\alpha > p \) for every \(\alpha \in \omega \), or \(a_\alpha < p \) for every \(\alpha \in \omega \). We assume the former, the latter case being analogous. Let \(\alpha_n \) be the least coordinate where \(a_\alpha \) and \(p \) differ, and let \(\sup \{ a_\alpha \}_{\alpha < \kappa} < \alpha < \kappa \). We claim that \(p \) is constant 1 at \(\alpha \) and beyond, hence in \(X \). Suppose on the other hand that \(p(\delta) = 0 \) for some \(\delta \geq \alpha \). Then if \(q \) agrees with \(p \) below \(\delta \), and \(q(\delta) = 1 \), no point of \(A \) is in the interval between \(p \) and \(q \), contradiction. Hence \(X \) is countably compact.

From the definition of \(\bigwedge_{\omega_1} \), it is easy to see that for any cardinal \(\lambda < \kappa \), we have \(2^\lambda < \kappa \). Thus \(|X| = \sup \{ 2^\lambda : \lambda < \kappa \} = \kappa \), and it is easy to see that \(X \) also has weight \(\kappa \). Suppose \(B \) is a base of \(X \) of cardinality \(\kappa \). We will prove that \(B \) cannot witness base-normality of \(X \).

Let \(S = \{ \sup(B) : B \in B \} \) (where \(\sup(B) \) is taken in \(2^\kappa \)). Since \(2^\kappa > \kappa \), there is a point \(p \in 2^\kappa \setminus (S \cup X) \).

We aim to show that there is no locally finite refinement by members of \(B \) of the two-element clopen partition \(\{ (-\infty, p) \cap X, (p, \infty) \cap X \} \) of \(X \).

To this end, for each \(\alpha < \omega_1 \), let \(p_\alpha \) be the point (in \(X \)) whose coordinates agree with \(p \) below \(\bigwedge_\alpha \), and then are constant 0. Let \(P = \{ p_\alpha : \alpha < \omega_1 \} \). Note that for any \(B \in B \) with \(B \subset (-\infty, p) \cap X \), we have \(|B \cap P| \leq \omega \) (for otherwise, \(p = \sup(B) \in S \)). A standard application of the pressing down lemma (see, e.g., Lemma II.6.15 of [K]) shows that there is no locally finite cover of the space \(\omega_1 \) of countable ordinals by sets bounded in \(\omega_1 \). Thus we are done once we prove the following claim.

Claim. \(P \) is homeomorphic to \(\omega_1 \).

To see this, define \(\theta : \omega_1 \to P \) by \(\theta(\alpha) = p_\alpha \). It is easy to check that \(\theta \) is continuous and non-decreasing. Hence the fibers of \(\theta \) are countable closed intervals. Then if we let \(C = \{ \min \{ \theta^{-1}(p_\alpha) \} : \alpha < \omega_1 \} \), \(C \) is a closed unbounded subset of \(\omega_1 \), hence homeomorphic to \(\omega_1 \), and \(\theta \mid C \) is a homeomorphism from \(C \) to \(P \). This completes the proof. \(\square \)

Remark. No cover of the space of countable ordinals by bounded open sets is point-countable. In particular, if in the definition of base-normal, “locally finite” were weakened to “\(\sigma \)-locally finite”, the above example would still not satisfy the property. Yamazaki has asked if these two reasonable notions of base-normality are equivalent; this is still unsettled.

3. **Paracompact GO-spaces**

The following theorem answers a question of Porter [P], who proved it for spaces of weight \(\leq \aleph_1 \).
Theorem 3.1. Every paracompact GO-space is base-paracompact.

It will be convenient to first show:

Proposition 3.2. Let X be a paracompact GO-space which is a subspace of a compact LOTS \hat{X}. Then X base-paracompact iff X is base-paracompact with respect to all two-element open covers of the form $\{(-\infty, g) \cap \hat{X}, (g, \infty) \cap \hat{X}\}$, where $g \in \hat{X} \setminus X$.

Proof. Suppose X is as stated, and has a base \mathcal{B} with $|\mathcal{B}| = w(X)$ such that, for any $g \in \hat{X} \setminus X$, there is a locally finite subcollection of \mathcal{B} covering X and refining $\{(-\infty, g), (g, \infty)\}$.

Let D be a dense subset of X which includes all points x such that either $(-\infty, x]$ or $[x, \infty)$ is open. Note that $|D| \leq w(X)$. Let C be the collection of all convex open subsets of X with endpoints in D, and let \mathcal{B}^* be smallest collection containing $\mathcal{B} \cup C$ which is closed under finite intersections. Then $|\mathcal{B}^*| = w(X)$. We will prove that any open cover of X has a locally finite refinement by members of \mathcal{B}^*.

To this end, let U be an open cover of X; since X is paracompact, we may assume U is locally finite. We may also assume each $U \in U$ is convex. To see this, consider a closed shrinking $\{F(U) : U \in U\}$ of U. Let $W(U)$ be the collection of convex components of U that $F(U)$ meets. It is easy to check that $W(U)$ is locally finite. Then $\bigcup \{W(U) : U \in U\}$ is a locally finite cover of X.

So it remains to show that a locally finite cover \mathcal{U} by convex open sets has a locally finite refinement by members of \mathcal{B}^*. Let $\{H(U) : U \in U\}$ be a closed shrinking of \mathcal{U}. For each $U \in U$, let $l_U = \inf(H(U))$ and $r_U = \inf(U)$ (where the inf's are taken in \hat{X}); obviously, $l_U \leq l_U$. Define $r_U \leq r_U$ analogously.

Claim. There is a locally finite subcollection $\mathcal{B}^*(U)$ of \mathcal{B}^* such that $H(U) \subset \bigcup \mathcal{B}^*(U) \subset U$.

First note that if we prove the claim, we are done, for then $\bigcup \{\mathcal{B}^*(U) : U \in U\}$ is a locally finite refinement of \mathcal{U} by members of \mathcal{B}^*.

We proceed to prove the claim. If $(l_U, l_U) \cap X \neq \emptyset$, then there is some $d_U \in D$ with $l_U < d_U < l_U$. In this case, let $\mathcal{B}^+_U(U) = \{(d_U, \infty)\}$. If $(l_U, l_U) \cap X = \emptyset$, and $l_U \in X$, then let $r_U \in D$; in this case, let $\mathcal{B}^+_U(U) = \{l_U, \infty\}$. Finally, if $(l_U, l_U) \cap X = \emptyset$, and $l_U \not\in X$, then let $\mathcal{B}^+_U(U)$ be a locally finite cover of $(l_U, \infty) \cap X$ by members of \mathcal{B}. In all cases, $\mathcal{B}^+_U(U)$ is a locally finite subcollection of \mathcal{B}^* covering $H(U)$ and contained in (l_U, ∞). Define $\mathcal{B}^+_U(U)$ analogously, and let

$$\mathcal{B}^*(U) = \{B_t \cap B_r : B_t \in \mathcal{B}^+_U(U), B_r \in \mathcal{B}^+_U(U)\}.$$

It is easy to see that $\mathcal{B}^*(U)$ satisfies the desired conditions. □

Proof of Theorem 3.1. Let X be a paracompact GO-space. Then X may be viewed as a dense subspace of a compact LOTS \hat{X} [L]. We may also assume that if $a, b \in \hat{X}$ and b is the immediate successor (or predecessor) of a, then either a or b is in X (since we can modify \hat{X} if necessary by collapsing to a point any such pair where neither a nor b is in X). Then it is easy to see that $w(\hat{X}) = w(X)$ for such \hat{X}.

Let $\kappa = w(X)$. Then there is a subset D of \hat{X} of cardinality κ such that the collection of all open intervals with endpoints in $D \cup \pm\infty$ is a base for \hat{X}. Note that this implies that if $a, b \in \hat{X}$ and b is the immediate successor of a, then $a, b \in D$. Let $D = \{d_\alpha : \alpha < \kappa\}$.
For $\alpha < \kappa$, inductively construct collections \mathcal{I}_α of closed intervals of \hat{X} with disjoint interiors satisfying the following conditions:

(i) $\mathcal{I}_0 = \{\hat{X}\}$.

(ii) Given \mathcal{I}_α, for each non-degenerate $I \in \mathcal{I}_\alpha$, let I_0, I_1 be two closed subintervals of I with disjoint interiors whose union is I, with the following stipulation: (*) If d_α is in I, then d_α is an endpoint of I_0 or I_1.

Let $I_{\alpha+1} = \{I_j : I \in \mathcal{I}_\alpha, j \in \{0,1\}\}$.

(iii) Suppose \mathcal{I}_β has been defined for all $\beta < \alpha$, α a limit ordinal. For each $x \in \hat{X} \cap \bigcap_{\beta < \alpha} (\cup \mathcal{I}_\beta)$ such that x is not an endpoint of any member of $\bigcup_{\beta < \alpha} \mathcal{I}_\beta$, choose the unique member $I^x_\beta = [l^x_\beta, r^x_\beta] \in \mathcal{I}_\beta$ with $x \in I^x_\beta$. Let $r^x_\alpha = \inf \{r^x_\beta : \beta < \alpha\}$ and define l^x_α analogously. Then let \mathcal{I}_α be the collection of all intervals of the form $[l^x_\alpha, r^x_\alpha]$ such that $l^x_\alpha \neq r^x_\alpha$.

Let $\mathcal{I} = \bigcup_{\alpha < \kappa} \mathcal{I}_\alpha$, and let E be the set of all endpoints of members of \mathcal{I}. Note that $|\mathcal{I}_\alpha| \leq \kappa$ for each α. For limit α, this follows immediately from $\omega(X) \leq \kappa$ and the fact that all $I \in \mathcal{I}_\alpha$ are non-degenerate. For successor α, it follows from the limit case and that each $I \in \mathcal{I}_\beta$ is split into at most two pieces in the construction of $\mathcal{I}_{\beta+1}$. Hence $|\mathcal{I}| = \kappa = |E|$.

Let \mathcal{B} be the collection of all convex open sets in X formed by intersecting with X an open interval in \hat{X} with endpoints in $E \cup \{\pm \infty\}$. Then $|\mathcal{B}| = \kappa$. We will show that, for any $g \in \hat{X} \setminus X$, the two-element open cover $\{(-\infty, g) \cap X, (g, \infty) \cap X\}$ of X has a locally finite refinement by members of \mathcal{B}. By Proposition 3.2, this will complete the proof.

If $g \in E$, then $(-\infty, g) \cap X$ and $(g, \infty) \cap X$ are already in \mathcal{B}, so we may assume $g \notin E$. Let $\delta = \sup \{\alpha < \kappa : \exists I \in \mathcal{I}_\alpha (g \in I)\}$. For $\alpha < \delta$, let $I_\alpha = [l_\alpha, r_\alpha]$ be the (unique) member of \mathcal{I}_α containing g. Then $l_\alpha < g < r_\alpha$, and it follows from the construction that δ is a limit ordinal, and that the map $\alpha \mapsto I_\alpha$ is continuous and non-decreasing, $\alpha \mapsto r_\alpha$ is continuous and non-increasing, and $\sup \{l_\alpha\}_{\alpha < \delta} = g = \inf \{r_\alpha\}_{\alpha < \delta}$. In the case $\delta = \kappa$, the last claim follows from the use of D in the construction. If $\bigcap_{\alpha < \kappa} [l_\alpha, r_\alpha] = [l, r]$ were non-degenerate, then either $(l, r) \neq \emptyset$ and so there would be some $d_\alpha \in D$ with $l < d_\alpha < r$, or both l and r would be in D. In any case, (*) of condition (ii) of the construction would be violated.

Case 1. $\text{cof}(\delta) = \omega$. In this case, let $\{\gamma_\alpha\}_{\alpha < \omega}$ be a sequence cofinal in δ such that $l_{\gamma_0} < l_{\gamma_1} < \ldots$. Then $\{(-\infty, l_{\gamma_0}) \cap X, (l_{\gamma_0}, l_{\gamma_1}) \cap X, (l_{\gamma_1}, l_{\gamma_2}) \cap X, \ldots\}$ is a locally finite subcollection of \mathcal{B} contained in and covering $(-\infty, g) \cap X$. Similarly there is another such subcollection contained in and covering $(g, \infty) \cap X$. This completes the proof in Case 1.

Case 2. $\text{cof}(\delta) > \omega$. Let $\nu = \text{cof}(\delta)$. For each $\alpha < \nu$, define γ_α to be the least $\gamma < \delta$ such that $\gamma \geq \sup \{\gamma_\beta : \beta < \alpha\}$ and $l_\gamma \notin \{l_\beta : \beta < \delta\}$. Then the map $\alpha \mapsto I_{\gamma_\alpha}$ is a continuous embedding of ν into $\{I_\beta : \beta < \delta\}$, and the image of this embedding is closed and cofinal in $(-\infty, g) \cap X$. Since X is paracompact, X does not contain a closed subset homeomorphic to a stationary subset of the regular uncountable cardinal ν. Hence there is a club subset C of ν such that $l_{\gamma_\alpha} \notin X$ for every $\alpha \in C$. For each $c \in C$, let c^+ be the successor of c in C. Then $\{(-\infty, l_{\min(C)}) \cap X\} \cup \{(l_c, l_{c^+}) \cap X : c \in C\}$ is a clopen partition of $(-\infty, g) \cap X$ by members of \mathcal{B}. There is a similar clopen partition of $(g, \infty) \cap X$. It follows that \mathcal{B} witnesses base-paracompactness of X with respect to such two-element covers, and that completes our proof. \(\square\)
References

Dept. of Mathematics and Statistics, Auburn University, Auburn, AL 36849

E-mail address: garyg@auburn.edu