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1. Trees and topological characterizations of the Cantor set and
irrationals

It will be convenient to think of an ordinal number as the set of its predecessors
(as in done in modern set theory). So, 0 is the empty set, 1 = {0}, 2 = {0, 1},
. . . , n = {0, 1, 2, . . . , n− 1}, ω = {0, 1, 2, . . . } and is the set of natural numbers, ω1

is the set of countable ordinals, etc.. Note β < α iff β ∈ α holds for any pair of
ordinals α and β.

A binary relation ≤ on a set X is a partial order if it is reflexive (x ≤ x for all x),
antisymmetric (x ≤ y and y ≤ x implies x = y), and transitive (x ≤ y and y ≤ z
implies x ≤ z). It is a linear order if also for any x, y ∈ X, either x < y, y < x,
or x = y. A linear order is a well-order of X if every nonempty subset of X has a
least element.

A partially ordered set (T,≤) is a tree if for all t ∈ T , the set Pt = {s ∈ T : s < t}
is well-ordered by . The elements of T are called the nodes of T . A maximal linearly
ordered subset of T is called a branch of T .

Recall that any well-ordered set is order-isomorphic to (the predecessors of)
an ordinal. If (T,≤) is a tree, then for any ordinal α, the set Lα = {t ∈ T :
Pt is isomorphic to α} is called the αth level of T . The least α such that Lα = ∅ is
called the height of T .

Example: the Cantor tree. Let T be the set of all finite sequences of 0’s and
1’s (including the empty sequence). We can equivalently describe T as the set of
all functions σ from some natural number n into 2, where here we think of n as the
set {0, 1, 2, . . . , n − 1} and 2 as the set {0, 1}. If σ, τ ∈ T , define σ < τ iff σ is an
initial segment of τ . (E.g., 110 < 1100, 01 < 0111010, etc.) Then (T,≤) is called
the Cantor tree.

If we let BA denote all functions from set A into set B, then 2n denotes the set
of all functions from n = {0, 1, . . . , n− 1} into 2 = {0, 1}. (Note that 20 = 2∅ = ∅.)
Let 2<ω = ∪{2n : n < ω}. Then the set 2<ω, ordered by extension, is another way
to describe the Cantor tree.

Note that the branches of the Cantor tree can be identified with 2ω, the set of
all functions f : ω → 2. Given f ∈ 2ω, {f � n : n < ω} is a branch, and given a
branch b, then ∪b is a function from ω to 2. Note b = {∪b � n : n < ω}.

The Cantor tree (T,≤) is completely described (up to isomorphism) as follows:

(i) The least level L0 of T has exactly one node;
(ii) Each node σ has exactly two successors;
(iii) T has height ω.

Definition of the Cantor “middle thirds” set C. For each finite sequence σ
of 0’s and 1’s (including the empty sequence ∅), we define a closed subinterval Iσ of
[0, 1] as follows. Start by setting I∅ = [0, 1]. Then if Iσ has been defined, let Iσa0 and
Iσa1 be the left and right thirds, respectively, of Iσ. Thus I0 = [0, 1/3], I1 = [2/3, 1],
I00 = [0, 1/9], I01 = [2/9, 1/3], etc. For each n, let Cn = ∪{Iσ : σ has length n}.
So, C0 = [0, 1], C1 = [0, 1/3] ∪ [2/3, 1], etc. Finally, C =

∩
n∈N Cn.

Theorem 1. The Cantor set C as defined above is (as a subspace of the real line R)
compact, metrizable, and has no isolated points. C is an uncountable closed subset
of R with empty interior in R. If B = {Iσ ∩ C : σ ∈ 2<ω}, then B is a countable
base of open and closed (clopen) sets in C such that (B,⊇) is isomorphic to the
Cantor tree.
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Proof. Since C = ∩n∈NCn and each Cn is a finite union of closed sets, then Cn is
closed and thus C is closed. C is compact since it is a closed subset of the compact
space I. C is metrizable since it is a subspace of the metrizable space R.

Claim 1. Iσ ∩ C is clopen.
Let B = {Iσ ∩ C : σ ∈ 2<ω}. For a given σ, Iσ ∩ C is closed since it is the

intersection of two closed subsets. Also, Cn \ Iσ is closed since Cn is a finite union
of disjoint closed intervals one of which is Iσ, so C \ (C ∩ Iσ) = C ∩ (Cn \ Iσ) is
closed, which gives us C ∩ Iσ is open.

Claim 2. B is a base for C, and C has empty interior in R.
Let U be any open set in C and let x ∈ U . There is some ε > 0 such that

(x − ε, x + ε) ∩ C ⊂ U . Pick some n ≥ 1 with 1
3n < ε. Since x ∈ Cn, x ∈ Iσ for

some σ of length n. Notice diamIσ = 1
3n . So x ∈ C ∩ Iσ ⊂ C ∩ (x− ε, x+ ε) ⊂ U .

Now if U were open in R and contained in C, then as above we would have
Iσ ⊂ U ⊂ C for some σ. But the middle third of Iσ is disjoint from C, contradiction.
So C has empty interior in R.

Claim 3. C is uncountable.
For each f : ω → 2, there is exactly one point xf in the intersection of the

branch coded by f , i.e., {xf} =
∩

n<ω If�n ∩ C. Suppose f, g ∈ 2ω and f ̸= g.
Let n be minimal such that f(n) ̸= g(n). Then xf ∈ If�n+1, xg ∈ Ig�n+1, and
If�n+1 ∩ Ig�n+1 = ∅. Hence xf ̸= xg. Thus the map f 7→ xf is one-to-one, and so
C is uncountable (in fact it has the same cardinality as the real line).

Claim 4. C has no isolated points.
Let σ ∈ 2n. If f and g are distinct members of 2ω such that f � n = g � n = σ,

then xf and xg are distinct points in Iσ ∩ C. So every basis element has at least
two points, hence C has no isolated points. �

Remark. A space which has a base of open and closed sets is sometimes called
zero-dimensional, or more precisely, is said to have small inductive dimension zero,
denoted by ind(X) = 0. (There are several concepts of dimension.)

Theorem 2. A space X is homeomorphic to the Cantor set C iff X has a base B
consisting of clopen sets such that (B,⊇) is isomorphic to the Cantor tree and the
intersection of each branch of this tree is a single point.

Proof. Let X be a space with a base B = {Bσ : σ ∈ 2<ω} of clopen sets isomorphic
to the Cantor tree such that the intersection of any branch is a single point. For
each c ∈ C, there is a unique σc ∈ 2ω such that {c} = ∩n∈ωIσc�n. By assumption
∩n∈ωBσ�n contains a single element, say xc. Define h : C → X by c 7→ xc.

Claim 1. h is surjective. Suppose not. Then there exists x ∈ X and σ ∈ 2<ω

such that x ∈ Bσ but x ̸∈ Bσ⌢0 ∪ Bσ⌢1. Then Bσ \ Bσ⌢0 ∪ Bσ⌢1 is an open
neighborhood of x not containing any basis elements, a contradiction. So h is
surjective.

Claim 2. h is injective. Suppose not. Then there exists σ, σ′ ∈ 2ω and x ∈ X
such that σ ̸= σ′ but ∩n∈ωBσ�n = {x} = ∩n∈ωBσ′�n. Let k ∈ ω such that
σ � k = σ′ � k but σ � (k+1) ̸= σ′ � (k+1). Put τ = σ � k. Then x ∈ Bτ⌢0∩Bτ⌢1,
so there exists u ∈ 2<ω such that x ∈ Bu ⊂ Bτ⌢0 ∩Bτ⌢1. Thus τ

⌢0 and τ⌢1 are
initial segments of u a contradiction.
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Now, let Bσ ∈ B. Then h−1(Bσ) = {c ∈ C : σ ≤ σc} = Iσ ∩ C, so h is
continuous. h is bijective, so h(Iσ ∩ C) = Bσ, implying h is open. Thus h is a
homeomorphism. �
Theorem 3. A space X is homeomorphic to C iff X is compact Hausdorff, has no
isolated points, and has a countable base of clopen sets.

Hint. Let Bn, n < ω, be the clopen base. Construct a Cantor tree of clopen sets
such that every node at level n either meets Bn or is disjoint from Bn.

Proof. The forward implication is immediate. So let X be a compact Hausdorff
space with no isolated points and a countable base B = {Bn : n ≥ 1} of clopen
sets. Put A∅ = X. Suppose for some n ≥ 1 that {Aσ : σ ∈ 2n−1} partitions X into
clopen sets. Let σ ∈ 2n−1. If Aσ ∩Bn ̸= ∅ and Aσ \Bn ̸= ∅, put Aσ⌢0 = Aσ ∩Bn

and Aσ⌢1 = Aσ \ Bn. Otherwise, note that Aσ either misses Bn or is contained
in Bn, so the members of any partition of Aσ will too. So, pick x, y ∈ Aσ with
x ̸= y. There is m ≥ 1 such that Bm contains x but not y. Put Aσ⌢0 = Bm and
Aσ⌢1 = Aσ \Bm.

By induction, {Aσ : σ ∈ 2n} partitions X into clopen sets for each n ≥ 1.
Moreover, if n ≥ 1 and σ ∈ 2n, then either Aσ ⊂ Bn or Aσ ∩Bn = ∅.

Let A = {Aσ : σ ∈ 2<ω}. Observe that Aσ ⊃ Aτ ⇐⇒ σ ≤ τ , so (A,⊇) is
isomorphic to the Cantor tree.

Let U ⊂ X be open and x ∈ U . There exists n ≥ 1 such that x ∈ Bn ⊂ U .
{Aσ : σ ∈ 2n} partitions X, so x ∈ Aσ for some σ ∈ 2n. Since Aσ ∩ Bn ̸= ∅,
Aσ ⊂ Bn. Thus, x ∈ Aσ ⊂ Bn ⊂ U implying A is a base. Let f ∈ 2ω. Then
∩n∈ωAf�n ̸= ∅ because Af�n is compact, Af�n ⊃ Af�n+1, and Af�n is closed for all
n ∈ ω.

We claim that ∩n∈ωAf�n contains a single element. Suppose not. Then there
are x, y ∈ ∩n∈ωAf�n with x ̸= y. Moreover, there is n ≥ 1 such that x ∈ Bn and
y ̸∈ Bn. Also, there exist σ, τ ∈ 2n such that x ∈ Aσ and y ∈ Aτ . But Aσ∩Bn ̸= ∅,
so Aσ ⊂ Bn, and y ̸∈ Bn implies Aτ ∩Bn = ∅. Thus Aσ ∩Aτ = ∅, so σ ̸= τ . Thus
f � n = σ ̸= τ = f � n, a contradiction.

By Theorem 2, X is isomorphic to C. �
Corollary 4. The following are homeomorphic to C: C2, Cω, 2ω (where 2 denotes
the two-point discrete space {0, 1}), and any product of the form Πn∈ωFn, where
Fn is finite discrete space with at least two points.

Let ≤ be a linear order on a set X. For a, b ∈ X, let (a, b) = {x ∈ X : a < x < b}.
Also let (−∞, a) = {x ∈ X : x < a} and (b,∞) = {x ∈ X : b < x}. Let
B = {(a, b) : a, b ∈ X} ∪ {(−∞, a) : a ∈ X} ∪ {(b,∞) : b ∈ X}. Then B is a base
for a topology τ on X, and τ is called the order topology on X induced by ≤. A
topological space (X, τ) is called a linearly ordered space if there is a linear order
on X which induces the topology τ .

Theorem 5. Let (T,≤) be the Cantor tree. Let X be the set of all branches of T .
Note that if b is a branch of T , then ∪b ∈ 2ω . Define a linear order ≺ on X as
follows: if b, b′ ∈ X, and n is the least integer such that ∪b(n) ̸= ∪b′(n), then b ≺ b′

iff ∪b(n) = 0 and ∪b′(n) = 1. Then X with the topology induced by this order is
homeomorphic to C.

Hint: Show that 2ω with the topology induced by the lexicographic order is the
same as the usual Tychonoff product topology.
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Theorem 6. The following are continuous images of C:
(i) the unit interval [0, 1];
(ii) the Hilbert cube [0, 1]ω;
(iii) any closed subset of C;
(iv) any compact metric space.

Proof. (i) Define a Cantor tree of closed subintervals of [0, 1] as follows: J∅ = [0, 1],
and if Jσ = [l, r] has been defined for σ ∈ 2n, let Jσ⌢0 and Jσ⌢1 be [l,m] and [m, r]
respectively, where m is the midpoint of [l, r]. Note that each branch of this tree is
a single point, and every point of [0, 1] is the intersection of some branch. The map
that sends the intersection of a branch of the Cantor tree to the intersection of the
corresponding branch of this tree for [0, 1] is easily seen to be continuous and onto.
(Remark. It is not a bijection–it can’t be, else it’d be a homeomorphism–but it is
two-to-one on a countable set and one-to-one otherwise.)

(ii)Let f be a continuous function from C onto [0, 1]. For x⃗ ∈ Cω, let f(x⃗) =
(f(xn))n∈ω ∈ [0, 1]ω. Then f is clearly continuous and onto. Since Cω ∼= C, we are
done with (ii).

(iii) If K is a closed subset of C, it is easily seen that K ×C is compact, has no
isolated points, and has a countable base of clopen sets. Hence K × C is homeo-
morphic to C. The projection onto the first coordinate is a continuous map onto
K.

(iv) Let M be any compact metric space. Then M is homeomorphic to a (com-
pact, hence closed) subset N of the Hilbert cube. Let f : C → Iω be continuous
and onto. Let K = f−1(N). Then K is a closed subset of C, so by (iii) there is
a continuous surjection g : C → K. Then f ◦ g : C → N is continuous and onto.
Since N ∼=M we are done. �

For each n ∈ ω, let ωn denote the set of all functions from n (i.e., from the set
{0, 1, 2, . . . n−1}) into ω, and let ω<ω =

∪
n∈ω ω

n. (In other words, ωn is the set of
all n-length sequences of natural numbers, and ω<ω is the set of all finite sequences
of natural numbers.) If σ, τ ∈ ω<ω, let σ < τ iff σ is an initial segment of τ . Then
(ω<ω, <) is a tree of height ω with one node at the least level (the empty sequence)
and such that every node has a countable infinite number of immediate successors.

Exercise. Let P denote the irrationals (as a subspace of R). Show that P has a
base B of clopen sets such that (B,⊇) is a tree isomorphic to (ω<ω,≤), and such
that the intersection of each branch is a singleton.

Proof. Let q1, q2, ... be an enumeration of the rationals, with q1 = 0. We define
clopen subsets {Bσ : σ ∈ ω<ω} of P such that

(i) B∅ = P;
(ii) For each σ, the collection {Bσ⌢n : n ∈ ω} is a clopen partition of Bσ;
(iii) If σ has length n, then diam(Bσ) ≤ 1/n.

If we do the above, the resulting Bσ’s will form a base which under ⊃ is a tree
isomorphic to (ω<ω,≤). There is one extra thing we need to be concerned about:
how do we know the intersection of each branch is a single point? (It could be
empty.)

To start, of course we set B∅ = P. The collection {(n, n + 1) ∩ P : n ∈ Z} is
a countable clopen partition of P, so we may let {Bn : n ∈ ω} index it. As we
continue, each Bσ will have the form (a, b) ∩ P for some rationals a, b. We want to
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make sure that each rational is included as an endpoint at some stage. Note that
since q1 = 0, q1 is taken care of. We will make sure qn gets taken care of at or
preceding the construction of the nth level of the tree.

So, suppose Bσ has been defined for all σ of length ≤ n. Let σ have length n.
We show how to construct Bσ⌢n for n ∈ ω. We have assumed Bσ = (a, b) ∩ P
for some rationals a, b. Let a0, a1, ... be a decreasing sequence of rationals in (a, b)
converging to a, and b0, b1, ... an increasing sequence of rationals converging to b.
We may assume we make the choice such that a0 < b0, and that the intervals
(a0, b0), (an+1, an), and (bn, bn+1) for n ∈ ω have diameter ≤ 1

n+1 . We may also
assume that if the nth rational qn lies between a and b, then qn is one of the an’s
or bn’s. Note that if qn was not already an endpoint of some chosen interval, then
it will be taken care of at this stage. Finally, let {Bσ⌢n : n ∈ ω} be a listing of
{(a0, b0) ∩ P} ∪ {(an+1, an) ∩ P : n ∈ ω} ∪ {(bn, bn+1) ∩ P : n ∈ ω}.

Clearly the Bσ’s satisfy (i)-(iii) above. We need to see that the intersection of
each branch is a singleton. Note that each branch corresponds to a decreasing
sequence I0 ∩ P, I1 ∩ P, ... where the endpoints of the In’s are rational and the
diameters go to 0. In the whole real line,

∩
n∈ω In is a single point, say x. If x is

irrational, we are done. Suppose x is rational. At some stage, say n, x becomes an
endpoint of one of the intervals. So it is either an endpoint of In, or an endpoint of
some disjoint interval. In either case, x ̸∈

∩
n∈ω In, and so x must be irrational. �

A space X is said to be nowhere-locally-compact if no point of X has a compact
neighborhood.

Theorem 7. The following are equivalent for a space X:

(i) X is homeomorphic to the space of irrationals (as a subspace of the real
line with the usual Euclidean topology);

(ii) X has a base B consisting of clopen sets such that (B,⊇) is isomorphic to
the tree (ω<ω,≤), and the intersection of each branch of this tree is a single
point;

(iii) X is a nowhere-locally-compact complete separable metric space and has a
countable base of clopen sets.

Proof. Suppose X is a topolgical space. (i) =⇒ (ii). Exercise. (ii) =⇒ (iii).
Suppose X has a base B such that (B,⊇) ≃ (ω<ω,≤) and the intersection of each
branch of (B,⊇) is a single point. We show (1) X has a countable base of clopen
sets (implying X is separable), (2) X is nowhere locally compact, and (3) X is
completely metrizable.

(1) ω<ω is countable.
(2) Let B = {Bσ : σ ∈ ω<ω} be an enumeration of B such that Bσ ⊇ Bτ iff

τ extends σ. Note that for each σ ∈ ω<ω, {Bσ⌢j : j ∈ ω} partitions Bσ: Each
Bσ⌢j is contained in Bσ since σ⌢j extends σ. We now show {Bσ⌢j : j ∈ ω} covers
Bσ. Suppose x ∈ Bσ. If i ̸= j ∈ ω then the subsets Bσ⌢i and Bσ⌢j of Bσ are
incomparable under ⊇. Thus Bσ contains more than one point. Let y ∈ Bσ with
y ̸= x. Since B is a basis, there exists B ∈ B with x ∈ B and y /∈ B and there
exists Bτ ⊆ B ∩ Bσ with x ∈ Bτ . Bτ is a proper subset of Bσ containing x, so
τ properly extends σ and x ∈ Bτ�n+1 ∈ {Bσ⌢j : j ∈ ω}. Thus {Bσ⌢j : j ∈ ω}
covers Bσ. Finally, if i ̸= j ∈ ω we have Bσ⌢i ∩Bσ⌢j = ∅. Otherwise there exists
Bτ ⊆ Bσ⌢i ∩Bσ⌢j . Then τ extends both σ⌢i and σ⌢j, which is impossible.
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Now we are ready to show X is nowhere locally compact. Suppose U is a
neighborhood. Then U has nonempty interior. There exists Bσ ⊆ intU ⊆ U . If U
is compact then since Bσ is closed, we have Bσ is compact. But {Bσ⌢j : j ∈ ω} is
an open cover of Bσ with no finite subcover.

(3) For x, y ∈ X let Lx,y = {i ∈ ω : (∃σ ∈ ωi)(x, y ∈ Bσ)}. Define d : X ×X →
[0,∞) by

d(x, y) =


1/maxLx,y if Lx,y is bounded and maxLx,y > 0

1 if Lx,y is bounded and maxLx,y = 0

0 if Lx,y is unbounded

.

d is a metric: (a) d(x, y) = 0 iff x = y: If x = y then x and y may not be
separated by sets in B, so Lx,y is unbounded, so d(x, y) = 0. Conversely, if x ̸= y
then there exist σ, τ ∈ ω<ω with x ∈ Bσ, y ∈ Bτ , and Bσ ∩ Bτ = ∅. Then x and
y are split at level max(dom(σ), dom(τ)). So Lx,y is bounded. So d(x, y) ̸= 0. (b)
d(x, y) = d(y, x): Trivial. (c) d(x, y) ≤ d(x, z)+d(y, z): This is trivial if d(x, y) = 0,
so suppose d(x, y) = 1/n. Then x and z or y and z are contained in disjoint basis
sets at level n + 1 (say x and z). So there is a max level m ≤ n at which x and z
are together. Thus d(x, y) = 1/n ≤ 1/m = d(x, z) ≤ d(x, z) + d(y, z).

Now we show the topology induced by d coincides with the topology induced
by B (the original topology on X). It is easy to see that B(x, 1/n) = Bτ where
τ ∈ ωn+1 is such that x ∈ Bτ . So metric ball contains a set in B. Conversely,
if ∅ ̸= σ ∈ ω<ω and x ∈ Bσ, then B(x, 1/dom(σ)) = Bσ⌢i ⊆ Bσ (i such that
x ∈ Bσ⌢i ). If σ = ∅ then Bσ = X so any metric ball is conained in it.
d is complete: Suppose (xn) ∈ Xω is a Cauchy sequence w.r.t. d. There exists an

increasing sequence (mn) ∈ ωω such that for each n, k ≥ mn implies d(xmn , xk) <
1/2n+1. The balls B(xmn , 1/2

n), n ∈ ω, are nested (decreasing). Indeed, if n ∈ ω
and x ∈ B(xmn+1 , 1/2

n+1) then we have d(x, xmn) ≤ d(x, xmn+1)+d(xmn , xmn+1) <
1/2n+1 + 1/2n+1 = 1/2n, whence x ∈ B(xmn , 1/2

n). Thus the balls B(xmn , 1/2
n)

correspond to a branch in the tree (B,⊇), which intersects to a point x. Claim x
is the limit of (xn). Well, let ϵ > 0. Let n ∈ N such that 2/2n < ϵ. For k ≥ mn we
have d(x, xk) ≤ d(xmn , x) + d(xmn , xk) < 1/2n + 1/2n+1 < 2/2n < ϵ.

(iii) =⇒ (i). Suppose X is nowhere locally compact, completely metrizable, and
has a countable base B of clopen sets.

Claim: For every nonempty open U ⊆ X and n ∈ N there exists a partition of U
into ω-many nonempty clopen sets, each with diameter less than 1/n. Let U ⊆ X
nonempty open and n ∈ N. Using the fact that X is nowhere locally compact,
Un = {B ∈ B : diam(B) < 1/n and B ⊆ U} is an open cover of U with no finite
subcover. Enumerate Un = {B0, B1, ...}. After throwing away the empty elements
in U∗

n = {Bn \
∪

i<nBi : n ∈ ω}, we have the desired partition.
Using the claim, recursively construct a tree of clopen sets isomorphic to

(ω<ω,≤). Each branch of this tree intersects to at most one point since its nodes
have diameters shrinking to 0. The intersection of each branch is nonempty: create
a Cauchy sequence by selecting a sequence up the branch. It converges by com-
pleteness, to a point which must be in the intersection of the branch. Construct a
homeomorphism between X and the space of irrationals by mapping branches to
branches, as in the proof of Theorem 2. �
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Theorem 8. Let P denote the space of irrationals. Then P is homeomorphic to
P2, Pω, and ωω (where ω is given the discrete topology).

Remark. A subset A of the real line R is said to be analytic if there is a continuous
surjection f : P → A. It is known that every Borel set1 is analytic, every analytic
set is Lebesgue measurable, and that there are analytic sets that are not Borel (a
highly nontrivial result!) and measurable sets that are not analytic. Analytic sets
play a major role in the field of “descriptive set theory”.

2. Topological characterizations of [0, 1] and the rationals

Theorem 9. Suppose (X,<) and (Y,≺) are countable linearly ordered sets with no
first or last point, and both are densely ordered (i.e., between any two points there
is another point). Then there is an order-preserving bijection f : X → Y .

Proof. Let (X,<) = {xn}n∈ω and (Y,≺) = {yn}n∈ω be densely and linearly ordered
sets with no first or last point. Put X0 = {x0} and Y0 = {y0}. Let f0 : X0 → Y0.
Suppose for some n ∈ ω that fn : Xn → Yn is an order-preserving bijection with
{x0, . . . , xn} ⊂ Xn, {y0, . . . , yn} ⊂ Yn, and both Xn and Yn finite.

If xn+1 ∈ Xn, put X
′
n+1 = Xn, Y

′
n+1 = Yn, and f ′n+1 = fn. Otherwise, let

A = {x ∈ Xn : x < xn+1} and B = {x ∈ Xn : xn+1 < x}. If A = Xn, pick
y ∈ Y \ Yn such that y′ ≺ y for all y′ ∈ Yn. If B = Xn, pick y ∈ Y \ Yn such
that y ≺ y′ for all y′ ∈ Yn. Otherwise, let a = maxA and b = minB and pick
y ∈ (fn(a), fn(b)). Set X ′

n+1 = Xn ∪ {xn+1} and Y ′
n+1 = Yn ∪ {y}, and define

f ′n+1 : X ′
n+1 → Y ′

n+1 so that f ′n+1 � Xn = fn and f ′n+1(xn+1) = y.
If yn+1 ∈ Y ′

n+1, put Xn+1 = X ′
n+1, Yn+1 = Y ′

n+1, and fn+1 = f ′n+1. Otherwise,
let A = {y ∈ Y ′

n+1 : y ≺ yn+1} and B = {y ∈ Y ′
n+1 : yn+1 ≺ y}. If A = Y ′

n+1, pick
x ∈ X \X ′

n+1 such that x′ < x for all x′ ∈ X ′
n+1. If B = Y ′

n+1, pick x ∈ X \X ′
n+1

such that x < x′ for all x′ ∈ X ′
n+1. Otherwise, let a = maxA and b = minB and

pick x ∈
(
(f ′n+1)

−1(a), (f ′n+1)
−1(b)

)
.

Finally, set Xn+1 = X ′
n+1 ∪ {x} and Y ′

n+1 = Yn ∪ {yn+1}, and define fn+1 :
Xn+1 → Yn+1 so that fn+1 � X ′

n+1 = f ′n+1 and fn+1(x) = yn+1. Then fn+1 :
Xn+1 → Yn+1 is an order-preserving bijection with {x0, . . . , xn+1} ⊂ Xn+1, {y0, . . . , yn+1} ⊂
Yn+1, and both Xn+1 and Yn+1 finite.

Let f = ∪n∈ωfn. Then f : X → Y is an order-preserving bijection. �

Theorem 10. A linearly ordered space X is connected iff the following hold:

(i) X is densely ordered;
(ii) Every bounded subset of X has a least upper bound.

Proof. Let X be a connected linearly ordered space. Let x, y ∈ X with x ̸= y.
Without loss of generality we may assume that x < y. If (x, y) = ∅, then X =
(−∞, y) ∪ (x,∞), implying X is not connected. It follows that (x, y) ̸= ∅, whence
X is densely ordered.

Now, let A be a bounded set and suppose on the contrary that A has no least
upper bound. Then for all x ∈ A there exists some y ∈ A with x < y. Also, for
each upper bound b of A there exists another upper bound b′ such that b′ < b. Take
U = ∪{(−∞, y) : y ∈ A} and V = ∪{(b,∞) : b is an upper bound of A}. Then

1The collection of Borel sets the smallest collection B of subsets of R containing all open sets,
and closed under the taking of complements, countable intersections, and countable unions.
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X = U ∪ V with U, V open and U ∩ V = ∅, a contradiction. It follows that every
bounded subest of X has a least upper bound.

For the other direction, let X be a linearly ordered non-connected space in which
every bounded subset has a least upper bound. Let U, V ⊂ X be disjoint, nonempty,
and open such that X = U ∪ V . Without loss of generality we may assume there
exists x ∈ U and y ∈ V such that x < y. Put U ′ = (−∞, y)∩U and let b be a least
upper bound of U ′. Note that either b ∈ U ′ or b ∈ V .

If b ∈ U ′, then there exists (a, c) ⊂ X with b ∈ (a, c) ⊂ U ′. Since (b, c) ∩ V = ∅
and (b, c) ∩ U = ∅, it must be the case that (b, c) = ∅. Similarly, if b ∈ V there
exists (a, c) ⊂ X with b ∈ (a, c) ⊂ V . Now (a, b) ∩ U ′ = ∅ and (a, b) ∩ V = ∅, since
b is a least upper bound, so (a, b) = ∅. It follows that X is not densely ordered. �

Theorem 11. Suppose X is a connected linearly ordered space with no first or last
point, and is separable. Then X is order-isormorphic to the real line R with the
usual order.

Proof. Let X be a separable, connected, and linearly ordered space with no first or
last point. Let D be a countable dense subset of X. Observe that D is densely or-
dered and has no first or last point. By Theorem 9, there exists an order-preserving
bijection g : D → Q.

For each x ∈ X put Lx = {d ∈ D : d < x}. Define f : X → R by f(x) =
sup g(Lx). Since g(Lx) is bounded above, sup g(Lx) exists, so f is well-defined.

Let x1, x2 ∈ X with x1 ̸= x2. Without loss of generality, we may assume that
x1 < x2. Since X is densely ordered and D is dense, there exist d1, d2 ∈ D such
that x1 < d1 < d2 < x2. Then sup g(Lx1) ≤ g(d1) < g(d2) ≤ sup g(Lx2), so
f(x1) < f(x2). Thus f is one-to-one and order-preserving.

Let y ∈ R and put L = {q ∈ Q : q < y}. Then g−1(L) ⊂ D is bounded above,
so x = sup g−1(L) ∈ X exists. But Lx = g−1(L), so f(x) = y. It follows that f is
onto. �

Corollary 12. Suppose X is a separable compact connected linearly ordered space.
Then X is homeomorphic to the unit interval [0, 1].

Proof. Suppose X is a separable compact connected linearly ordered space.
First we show X has a first and last point. Well, if X has neither then X ≃ R by

Theorem 11, so that X is not compact, a contradiction. Without loss of generality,
suppose x0 is a first point of X. If X has no last point, then the collection {[x0, x) :
x ∈ X} is an open cover of X, so it has a finite subcover. So there exists x ∈ X
such that [x0, x) = X. But x ∈ X \ [x0, x), a contradiction. So X must have a last
point x1.

Now X \ {x0, x1} has no first or last point (for instance, if it has a first point x2
then (x0, x2) = ∅, contradicting Theorem 10). So by Theorem 11, (x0, x1) ≃ R ≃
(0, 1). So X ≃ [0, 1]. �

Theorem 13. If X is completely regular and |X| < |R|, then X has a base of
clopen sets.

Proof. Since X is completely regular T1, it may be embedded into some product∏
i∈I Ri of real lines (with the product topology). For instance, the the map X →

RC(X) given by x 7→ (f(x))f∈C(X) is an embedding. We therefore may (and do)
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consider X as a subspace of
∏

i∈I Ri. Let

B = {
∩
i∈F

π−1
i [(ci, di)]∩X : F is a finite subset of I and ci < di ∈ Ri\πi[X] for each i ∈ F}.

If F ⊆ I and ci < di ∈ Ri \ πi[X] for each i ∈ F , we have
∩

i∈F π
−1
i [(ci, di)] ∩X =∩

i∈F π
−1
i [[ci, di]] ∩X, so that the sets of B are clopen in X. We now show B is a

basis for X. Suppose U is an open set in X and (xi) ∈ U . We find a clopen subset
of X containing (xi), contained in U . There exists an open U ′ ⊆

∏
i∈I Ri such that

U ′ ∩X = U . There exists a basic product open set
∩

i∈F π
−1
i [U ′

i ] with

(xi) ∈
∩
i∈F

π−1
i [U ′

i ] ⊆ U

(F some finite subset of I, Ui open in Ri). For each i ∈ F there exists ai, bi ∈ Ri

such that xi ∈ (ai, bi) ⊆ U ′
i .

Since |X| < |R|, we have: πi(X) does not contain an interval of reals, for any
i ∈ I. So for any i ∈ I and a < b ∈ Ri there exists r ∈ (a, b) ∩ Ri \ πi(X). In
particular, for each i ∈ F there exist ci < di ∈ (ai, bi)∩Ri \πi(X) with xi ∈ (ci, di).
We have

(xi) ∈
∩
i∈F

π−1
i [(ci, di)]∩X ⊆

∩
i∈F

π−1
i [(ai, bi)]∩X ⊆

∩
i∈F

π−1
i [U ′

i ]∩X ⊆ U ′∩X = U.

�

Theorem 14. Suppose κ is an infinite cardinal. If κ is the least cardinal of a base
for a space X, then for every base B, there is a base C ⊂ B such that |C| = κ.

Hint: For every infinite cardinal κ, the set of all finite subsets of κ also has
cardinality κ. Or, use Theorem 50(i) which says that the union of ≤ κ-many sets
each of cardinality ≤ κ has cardinality ≤ κ.

Proof. Let X be a space and let A and B be bases thereof with |A| = κ.
Fix A ∈ A. Let B(A) = {B ∈ B : B ⊂ A} and let A(A) = {A′ ∈ A : ∃B ∈

B(A) with A′ ⊂ B)}. Since A is open and B is a base, we must have ∪B(A) = A.
Similarly, ∪A(A) = A. Finally, for each A′ ∈ A(A), let B(A′) ∈ B(A) such that
A′ ⊂ B(A′). Put C(A) = {B(A′) : A′ ∈ A(A)}. Since ∪A(A) ⊂ ∪C(A) ⊂ ∪B(A),
we have ∪C(A) = A. Moreover, |C(A)| ≤ κ.

Let C = ∪A∈AC(A). Certainly C ⊂ B is a base. By Theorem 50(i), |C| ≤ κ.
Since κ is the least cardinal of a base for X, |C| = κ. �

Remark. The least cardinal of a base for a space X is called the weight of X
and is denoted by w(X).

Theorem 15. Suppose X is countable, regular, first-countable, and has no isolated
points. Then X is homeomorphic to the rationals Q.

Proof. Let X be a countable, regular and first-countable space with no isolated
points. Observe that X is second-countable, hence metrizable and completely reg-
ular. By Lemmas 13 and 14, X has a countable base B = {Bn : n ∈ ω} of clopen
sets.

Claim 1: X embeds into 2ω.
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For each n ∈ ω, define fn : X → 2 so that fn(Bn) = {0} and fn(X \Bn) = {1}.
Certainly fn is continuous for each n ∈ ω. Put F = {fn : n ∈ ω} and define
eF : X → 2ω by eF (x) = ⟨fn(x)⟩n∈ω. Note that πn ◦ eF = fn for each n ∈ ω, so eF
is continuous.

Let x ∈ X and H ⊂ X closed not containing x. Then there exists n ∈ ω such
that x ∈ Bn ⊂ X \H. It follows that fn(x) = 0 and fn(H) = {1}, so F separates
points from closed sets. Since X is T1, F separates points so eF is one-to-one.

Finally, we show eF is closed. Let H ⊂ X be closed and suppose on the contrary
that eF (H) is not closed. Let y ∈ eF (H) \ eF (H) and x ∈ X \ H such that
eF (x) = y. F separates points from closed sets, so there exists n ∈ ω such that

fn(x) = 0 and fn(H) = {1}. It follows that y ∈
∏n−1

i=1 2 × {0} ×
∏∞

i=n+1 2 and

eF (H) ⊂
∏n−1

i=1 2 × {1} ×
∏∞

i=n+1 2. But this implies y /∈ eF (H), a contradiction.
Thus eF is closed, whence X ∼= eF (X) ⊂ 2ω.

Remark. By Theorem 95 from 1st year topology class, if X is T1 and F sepa-
rates points from closed sets, then eF is a homeomorphic embedding (into Iω, but
clearly the range of this eF is 2ω).

Claim 2: X is homeomorphic to a dense subset of C.
Since 2ω ∼= C, there exists an embedding f : X → C by Claim 1. Observe that

f(X) ⊂ C is compact Hausdorff and has a countable base of clopen sets. Since

f(X) has no isolated points, f(X) does not either. By Theorem 3, there exists a

homeomorphism h : f(X) → C. Since f(X) is dense in f(X), h(f(X)) is dense in C.

Claim 3: Let f ∈ 2ω. Then h : 2ω → 2ω defined by h(g) = f + g is a homeo-
morphism.

Certainly h is a bijection. Let U ⊂ 2ω be a basic open set. Then

U =
∏
i∈F0

{0} ×
∏
i∈F1

{1} ×
∏

i/∈F0∪F1

2,

where F0, F1 ⊂ ω are finite and F0 ∩ F1 = ∅. Thus

h(U) =
∏
i∈F ′

0

{0} ×
∏
i∈F ′′

0

{1} ×
∏
i∈F ′

1

{1} ×
∏
i∈F ′′

1

{0} ×
∏

i/∈F0∪F1

2,

where F ′
j = {i ∈ Fj : f(i) = 0} and F ′′

j = {i ∈ Fj : f(i) = 1} for j = 0, 1. It follows

that h is open. By the same argument h−1 is open, whence h is a homeomorphism.

Claim 4: Let E ⊂ C be the collection of endpoints of all Iσ, where σ ∈ 2<ω (see
the definition of C prior to Theorem 1). Then X is homeomorphic to a subset of
C disjoint from E.

LetX be (densely) embedded in C and let h witness C ∼= 2ω. Pick a ∈ 2ω\{f+g :
f ∈ h(X), g ∈ h(E)}. Put Xa = {f + a : f ∈ h(X)}. Then h(X) ∼= Xa and
h(E) ∩Xa = ∅. It follows that X ∼= h−1(Xa) and E ∩ h−1(Xa) = ∅.

Claim 5: Let D ⊂ C be dense and disjoint from E. Then D is densely ordered
and has no first or last point.

Suppose on the contrary that D has a first point, say d. Since D ∩ E = ∅,
we must have d > 0. Thus (−∞, d) is a nonempty open set of C missing D, a
contradiction. By a similar argument, D has no last point.
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Now, let d1, d2 ∈ D with d1 < d2. Then there exists σ ∈ 2<ω such that d1 ∈ Iσ
but d2 ̸∈ Iσ. It follows that (d1, d2) contains the right endpoint of Iσ. Since (d1, d2)
is nonempty, (d1, d2) ∩D ̸= ∅, whence D is densely ordered.

By the above claims, let X be densely embedded in C such that X ∩ E = ∅. By
Theorem 9 there exists an order-preserving bijection f : X → Q, hence X ∼= Q. �

Corollary 16. The following are homeomorphic to the space Q of rationals:

(a) Qn for every positive integer n;
(b) Any countable dense subset of Rn for any 1 ≤ n ≤ ω, or of the Cantor set

C;
(c) Q with the right half-open interval topology.

3. Some metrization theorems

Theorem 17. Let X be a compact Hausdorff space, and suppose there is a countable
collection U of open sets such that, whenever x ̸= y ∈ X, there is some U ∈ U with
x ∈ U and y ̸∈ U . Then X is metrizable.

Hint. Let B = {X \ ∪V : V is a finite subset of U}. Show that B is a countable
base for X.

Proof. Since X is compact Hausdorff, X is regular. Let B = {X \ ∪V : V ⊂
U is finite}. Clearly B is countable.

Let U ⊂ X be open and let x ∈ U . For all y ∈ X \ U , there exists Uy ∈ U
with y ∈ Uy and x /∈ Uy. Observe that the Uy cover X \ U , so there exist finitely

many, say U1, . . . , Un, which cover X \ U . Then x ∈ ∩n
i=1(X \ Ui) ⊂ U . But

∩n
i=1(X \ Ui) = X \ ∩n

i=1Ui ∈ B, so B is a base. It follows that X is second-
countable, hence separable metrizable. �

Definition. A space X is said to have a Gδ-diagonal if the diagonal ∆ =
{(x, x) ∈ X2 : x ∈ X} is a Gδ-set in X

2 (i.e., there are open subsets Un, n ∈ ω, of
X2 such that ∆ =

∩
n∈ω Un).

Theorem 18. A compact Hausdorff space X is metrizable iff X has a Gδ-diagonal.

Proof. Suppose X is compact Hausdorff. (⇒). Suppose X is metrizable. As a
closed subset of a metrizable space X ×X, ∆ is Gδ in X ×X.

(⇐). Assume X has a Gδ diagonal. There exist open subsets Un, n ∈ ω, of
X ×X, such that∆ =

∩
n∈ω Un. We show X is metrizable via Lemma 17. Because

X is compact Hausdorff, X is regular. So for each n ∈ ω and x ∈ X there exists an
open Bn(x) ⊆ X containing x, with Bn(x) × Bn(x) ⊆ Un. For each n ∈ ω let Vn

be a finite subcover of {Bn(x) : x ∈ X}. Let B =
∪

n∈ω Vn. Clearly B is countable.
And if x ̸= y ∈ X then there exists n ∈ ω such that (x, y) /∈ Un. So there exists
B ∈ Vn such that (x, x) ⊆ B ×B ⊆ Un and so y /∈ B. �

Definition. A collectionN of subsets of a spaceX is a network forX if whenever
x ∈ U , where U is open in X, then there is some N ∈ N with x ∈ N ⊂ U .

Theorem 19. If X has a countable network, then so does every continuous image
of X.
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Proof. Suppose X has a countable network {Ni : i ∈ ω} and f : X → Y is a
continuous surjection. Claim {f [Ni] : i ∈ ω} is a (countable) network for Y . Well,
suppose V is open in Y and y ∈ V . We find i ∈ ω such that y ∈ f [Ni] ⊆ V .
Since f is surjective, there exists x ∈ f−1({y}). Since {Ni : i ∈ ω} is a network for
X and f−1(V ) is an open subset of X containing x, there exists i ∈ ω such that
x ∈ Ni ⊆ f−1(V ). Then y = f(x) ∈ f [Ni] ⊆ f [f−1(V )] ⊆ V . �

Theorem 20. The following are equivalent for a T1-space X:

(a) X has a countable network;
(b) X is the continuous image of a separable metric space.

Hint for (a)⇒(b): If N is a countable network for X, show that the topology on
X obtained by taking N ∪{X \N : N ∈ N} as a subbase is a separable metrizable
topology finer (i.e., it has more open sets) than the original topology on X. (Recall
that B is a subbase for a space X if the collection of all intersections of finite subsets
of B is a base for X.)

Proof. Let (X, T ) be a T1-space with a countable network N . Put S = N∪{X \N :
N ∈ N} and B = {∩F : F ⊂ S is finite}. Let TN be the topology on X generated
by B.

Certainly (X, TN ) is second-countable. Let x ∈ X and H ⊂ X closed in (X, TN )
not containing x. Pick U ∈ B such that x ∈ U ⊂ X \ H. Recall that U = ∩F
for some finite F ⊂ S. Since each F ∈ F is clopen, U is clopen. It follows that U
and X \ U are disjoint open sets containing x and H, respectively. Thus (X, TN )
is regular, hence separable metrizable.

Let U ∈ T . Then U = ∪N ′ for some N ′ ⊂ N . Since N ′ ⊂ B, U ∈ TN .
Therefore, f : (X, TN ) → (X, T ) defined by x 7→ x is continuous.

To see the other direction, recall that separable metric spaces are second-countable.
Since any countable base is necessarily a countable network, X has a countable net-
work by Theorem 19. �

Remark. Because of Theorem 20, spaces having a countable network are some-
times called cosmic spaces.

Theorem 21. If X is regular and has a countable network, then X has a Gδ-
diagonal.

Proof. Suppose X is regular and has a countable network N . We show X ×X has
a Gδ diagonal ∆ by showing (X ×X) \∆ is the countable union of closed sets.

Clearly L = {N ×M : N,M ∈ N and N ×M ⊆ (X × X) \ ∆} is countable
collection of closed subsets of X ×X. We claim (X ×X) \∆ =

∪
L. Well, suppose

(x, y) ∈ (X ×X) \∆. Since X ×X is regular there exists a basic open set B1 ×B2

with (x, y) ∈ B1×B2 ⊆ (X×X)\∆. There exists N,M ∈ N such that x ∈ N ⊆ B1

and y ∈M ⊆ B2, so that (x, y) ∈ N ×M ⊆ B1 ×B2 ⊆ (X ×X) \∆. �

Theorem 22. If X is a compact metrizable space, then so is every Hausdorff
continuous image of X.

Proof. Suppose X is compact metrizable and Y is a Hausdorff continuous image of
X. Every compact metrizable space has a countable basis. In particular, X has a
countable network. By Theorem 19, Y has a countable network. As the continuous
image of a compact space, Y is compact. Since Y is also Hausdorff by assumption,
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we have Y is regular. By Theorem 21, Y has a Gδ diagonal. This, together with
the fact that Y is compact Hausdorff, implies Y is metrizable (Theorem 18). �

Recall that a mapping f : X → Y is closed if f(H) is closed in Y whenever H is
closed in X.

Theorem 23. Let f : X → Y be a continuous surjection. Then the following are
equivalent:

(a) f is closed;
(b) Whenever y ∈ Y and U is an open set in X containing f−1(y), there is an

open set V in Y containing y with f−1(V ) ⊂ U ;
(c) For each open set U in X, the set f∗(U) = {y ∈ Y : f−1(y) ⊂ U} is open

in Y .

Proof. Let f : X → Y be a continuous surjection.
(a) ⇒ (b). Suppose y ∈ Y . Let U ⊆ X be an open set containing f−1(y). Then

V = Y \ f [X \ U ] is open in Y containing y. Since V ∩ f [X \ U ] = ∅, we have
f−1[V ] ⊆ U .

(b) ⇒ (c). Let U ⊆ X be open and let y ∈ f∗(U). There exists an open V ⊆ Y
such that y ∈ V and f−1[V ] ⊆ U . So f−1(y′) ⊆ U for all y′ ∈ V . So V ⊆ f∗(U).
So f∗(U) is open.

(c) ⇒ (a). Suppose H ⊆ X is closed and y is a limit point of f [H]. By (c),
f∗(X \H) is open; it clearly misses f [H], so y /∈ f∗(X \H). Hence exists x ∈ H
with f(x) = y. So y ∈ f [H]. This proves f [H] is closed. �

Definition. A continuous surjection f : X → Y is said to be perfect if f is
closed, and f−1(y) is compact for each y ∈ Y .

Theorem 24. The perfect image of a separable metrizable space is separable metriz-
able.

Proof. Let f : X → Y be a perfect surjection, where X is separable metrizable.
Then X has a countable base B. W.l.o.g., we may assume B is closed under finite
unions. Now let C = {f∗(B) : B ∈ B}, where f∗ is as defined in Theorem 23(c). So
C is a countable collection of open sets.

We prove that C is a base for Y . Let y ∈ U , where U is open in Y . Then f−1(y)
is a compact subset of the open set f−1(U). Since B is closed under finite unions,
there is some B ∈ B with f−1(y) ⊂ B ⊂ f−1(U). Then y ∈ f∗(B) ⊂ U . Hence C
is a countable base for Y .

Since a regular space with a countable base is separable and metrizable, it re-
mains to prove that Y is regular. Each point of X is closed, and f is a closed map,
so it follows that each point of Y is closed; so Y is T1. Now suppose y ∈ Y and H
is a closed subset of Y not containing y. Since X is normal, there are disjoint open
sets U and V containing f−1(y) and f−1(H), respectively. Then f∗(U) and f∗(V )
are disjoint open sets containing y and H. Thus Y is regular. �

Remark. By a more complicated argument, the perfect image of any metrizable
space, separable or not, is metrizable.

4. ccc vs. separable

Definition. A space X is said to have the countable chain condition (ccc) if
every pairwise-disjoint collection of open subsets of X is countable.
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The following is an easy observation:

Theorem 25. Every separable space has the ccc.

Let I = [0, 1].

Theorem 26. II is separable.

Proof. Let D be the set of all functions f : I → I of the form

f(t) =


q1 if t ∈ [0, p1)

q2 if t ∈ [p1, p2)
...

qn if t ∈ [pn−1, 1]

,

where pi, qi ∈ Q∩ I, p1 < p2 < · · · < pn−1, and n ∈ ω. Certainly this is a countable
dense subset of II . �

Remark. Let c = |I|. By a similar argument, any product of c (or fewer)
separable spaces is separable.

Let c+ denote the least cardinal greater than c.

Theorem 27. Ic
+

is not separable.

Proof. Suppose on the contrary that Ic
+

is separable and let D be a countable
dense subset thereof. For each α ∈ c+, put Dα = π−1

α

(
[0, 12 )

)
∩D. If α ̸= β ∈ c+,

then π−1
α

(
(12 , 1]

)
∩Dβ ̸= ∅, so Dα ̸= Dβ . It follows that D has at least c+ distinct

subsets, a contradiction. �

Theorem 28. (∆-system lemma) Let F be an uncountable collection of finite sets.
Then there is an uncountable subcollection G of F and a set R such that G1∩G2 = R
for any two distinct G1, G2 ∈ G.

Hint. W.l.o.g., every member of F has the same cardinality k. Induct on k.
Remark. A collection G satisfying the conclusion of Theorem 28 is called a ∆-

system and the set R is called the root of the ∆-system.

Proof. Suppose S is an uncountable collection of finite sets. Since S =
∪

n∈ω{A ∈
S : |A| = n}, there exists n ∈ N and an uncountable S ′ ⊆ S such that |A| = n for

all A ∈ S ′
. We prove the following via induction on n: (*) If S ′ is an uncountable

collection of sets and n ∈ N such that |A| = n for all A ∈ S ′, then there exists an
uncountable S ′′′ ⊆ S ′ and a set r such that A ∩B = r for all A ̸= B ∈ S ′′′.

Well, if n = 1 then all members of S ′ are distinct, so let S ′′′ = S ′ and r = ∅.
Supose k ∈ N and (*) holds whenever n = k. We show (*) holds when n = k+1.

Suppose S ′ is uncountable and |A| = k + 1 for all A ∈ S ′. For each A ∈ S ′,
enumerate A = {A(1), ..., A(k + 1)} and let A≤k = {A(1), ..., A(k)}.

Case 1: {A≤k : A ∈ S ′} is countable. Then there exists an uncountable S ′′′ ⊆ S ′

such that A≤k = B≤k and A(k + 1) ̸= B(k + 1) for all A ̸= B ∈ S ′′′. Let r = A≤k

for some (any) A ∈ S ′′′.
Case 2: {A≤k : A ∈ S ′} is uncountable. Then by the induction hypothesis

there exists an uncountable S ′′ ⊆ S ′ and a set r such that A≤k ∩ B≤k = r for all
A≤k ̸= B≤k ∈ {A≤k : A ∈ S ′′}.
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If {A(k + 1) : A ∈ S ′′} is countable, then there is an uncountable S ′′′ ⊆ S ′′

and x such that A(k + 1) = x for all A ∈ S ′′′; then S ′′′ and r ∪ {x} work. If
{A(k + 1) : A ∈ S ′′} is uncountable, then there is an uncountable S ′′′ ⊆ S ′′ such
that the A(k + 1)’s are distinct as A ranges over S ′′′. Note that A(k + 1) ̸∈ r for
any A ∈ S ′′′. Hence A ∩B = r for any A ̸= B ∈ S ′′′. �

Theorem 29. Let {Xα : α ∈ κ} be a collection of ccc spaces. Then Πα∈κXα has
the ccc iff every finite subproduct has the ccc. (A finite subproduct is a product of
the form Πα∈FXα for some finite subset F of κ. )

Proof. Let X =
∏

α∈κXα. Suppose for some finite F ⊂ κ that XF =
∏

α∈F Xα

does not have the ccc. Then there exists an uncountable collection {Ui : i ∈ Λ} of
pairwise-disjoint basic open subsets of XF . If for each i ∈ Λ, Ui =

∏
α∈F U

i
α with

U i
α open in Xα, then {

∏
α∈F U

i
α×

∏
α∈κ\F Xα : i ∈ Λ} is an uncountable collection

of pairwise-disjoint open subsets X. Thus, X does not have the ccc.
Now, suppose X does not have the ccc. Then there exists an uncountable col-

lection {Ui : i ∈ Λ} of pairwise-disjoint basic open subsets of X. For each i ∈ Λ,
let Fi ⊂ κ be the support of Ui. By Theorem 28, there exists an uncountable
subcollection Λ′ of Λ and R ⊂ κ such that Fi ∩ Fj = R for all distinct i, j ∈ Λ′.
Observe that R ̸= ∅, else the Ui would not be pairwise-disjoint. If i ̸= j ∈ Λ′, there
exists α ∈ R such that πα(Ui)∩πα(Uj) = ∅. It follows that {

∏
α∈R πα(Ui) : i ∈ Λ′}

is an uncountable collection of pairwise-disjoint open subsets of
∏

α∈RXα, whence
not every finite subproduct has the ccc. �

Corollary 30. Ic
+

has the ccc but is not separable.

5. Collectionwise normal

Definition. A collection H of subsets of a space X is said to be discrete in X if
every point of X has a nbhd meeting at most one member of H. A T1-space X is
said to be collectionwise normal(CWN) if, given any discrete collection H of closed
sets, there is a pairwise-disjoint collection {UH : H ∈ H} of open sets with H ⊂ UH

for every H ∈ H.
Example. Let S be the Sorgenfrey line. Let

H = {{p} : p ∈ S2 is on the line y = −x}.
Then H is a discrete collection of closed subsets of S2. Note that there is no
pairwise-disjoint collection of open sets separating the member of H. So S2 is not
collectionwise normal. (We already know it’s not even normal, but not collection-
wise normal is easier to see.)

Lemma 31. If H is a discrete collection of closed sets, then H is pairwise-disjoint,
and ∪H′ is closed for every subcollection H′ of H.

Proof. Suppose H is a discrete collection of closed sets. If two members of H
intersect, then obviously H can’t be discrete. Let H′ ⊆ H, and suppose p ̸∈ ∪H′.
Let U be an open nbhd of p meeting at most one member, say H0, of H. If p ∈ H0,
then H0 ̸∈ H′, so U misses ∪H′. If H0 ∈ H′, then p ̸∈ H0, and then V = U \H0 is
an open nbhd of p missing ∪H′. Thus p is not a limit point of ∪H′, and it follows
that ∪H′ is closed. �

Theorem 32. Every paracompact T2-space is collectionwise normal.
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Proof. Suppose X is paracompact Haudorff. Let H be a discrete collection of closed
subsets of X. For each x ∈ X, let Ux be a neighborhood of x intersecting at most
one member of H. Let U

′

x be an open set containing x whose closure misses

• ∪{H ′ ∈ H : H
′ ̸= H} if H ∈ H such that Ux ∩H ̸= ∅

• ∪H if no such H.

Let V be a locally finite refinement of {Ux ∩ U ′

x : x ∈ X}. Note that the closure of
each member of V meets at most one member of H.

Define, for H ∈ H, WH = X \ cl(∪{V ∈ V : cl(V ) ∩ H = ∅} = X \ ∪{cl(V ) :

V ∈ V, cl(V ) ∩ H = ∅}. WH is an open set containing H. Suppose H
′ ̸= H and

x ∈WH ∩WH′ . Let V ∈ V contain x; then cl(V ) meets at most one member of H.

Therefore, either cl(V ) ∩ H = ∅ or cl(V ) ∩ H ′
= ∅. Therefore, either x ̸∈ WH or

x ̸∈WH′ , a contradiction. So WH ∩WH′ = ∅. �

Corollary 33. Every metrizable space is collectionwise normal.

Example. (Bing’s G) Let A be an uncountable set, and let P(A) be the set of
all subsets of A. For each α ∈ A, define eα : P(A) → {0, 1} by eα(B) = 1 if α ∈ B
and eα(B) = 0 if α ̸∈ B. Let E = {eα : α ∈ A}. Note that E can be considered to
be a subset of 2P(A). Let X be the set 2P(A) with the topology defined by declaring
every point of X \ E to be isolated, while each eα has its usual product nbhds in
2P(A).

Then X is normal but not collectionwise normal.

Hint: For non-collectionwise normal, show that {{eα} : α ∈ A} is a discrete
collection of singleton sets and use the fact that the usual product topology on
2P(A) is ccc.

Proof. We first prove thatX is not collectionwise normal. Note that {{eα} : α ∈ A}
is a discrete collection of singleton sets iff E is a closed set, and its subspace topology
is discrete. If x ̸∈ E, then {x} is an open set missing E; thus E is closed. Now fix
eα ∈ E. Let Uα = {f ∈ X : f({α}) = 1}. Uα is an open set containing {eα} and
missing {eβ} for each β ̸= α. Thus E is discrete.

Now suppose eα ∈ Vα for all α ∈ A, where Vα is open in X. There is an open
set Oα in the product topology of 2P(A) such that eα ∈ Oα ⊂ Vα. The product
topology is ccc, so the collection {Oα : α ∈ A} is not pairwise disjoing, hence
{Vα : α ∈ A} is not pairwise disjoint. So X is not collectionwise normal.

We now show that X is normal. Since X \E consists of isolated points, it is not
difficult to see that if any two disjoint subsets of E can be separated by disjoint open
sets, then any two disjoint closed subsets of X can be separated by disjoint open
sets. So let H and K be disjoint subsets of E. Let AH = {α ∈ A : eα ∈ H}. Let
U = {f ∈ X : f(AH) = 1} and V = {f ∈ X : f(AH) = 0}. Then eα ∈ H ⇒ α ∈
AH ⇒ eα(AH) = 1 ⇒ eα ∈ U , and eα ∈ K ⇒ α ̸∈ AH ⇒ eα(AH) = 0 ⇒ eα ∈ V .
So U and V are disjoint open sets containing H and K. �

6. Monotonically normal

Definition. A space X is said to be monotonically normal if to each pair (H,K)
of disjoint closed sets, one can assign an open set U(H,K) such that

(i) H ⊂ U(H,K) ⊂ U(H,K) ⊂ X \K;
(ii) If H ⊂ H ′ and K ⊃ K ′, then U(H,K) ⊂ U(H ′,K ′).
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An operator U(H,K) satisfying conditions (i) and (ii) is called a monotone nor-
mality operator for X.

Theorem 34. Metrizable spaces are monotonically normal.

Proof. Let (X, d) be a metric space. For each x ∈ X and K ⊂ X closed not
containing x, put d(x,K) = inf{d(x, y) : y ∈ K}. Some neighborhood of x
misses K, so d(x,K) > 0. For each pair H,K of disjoint closed subsets of X, let
U(H,K) = ∪x∈HB(x, d(x,K)/2). Since U(H,K) ∩ U(K,H) = ∅, H ⊂ U(H,K) ⊂
cl(U(H,K)) ⊂ X \K. If H ⊂ H

′
and K

′ ⊂ K, with H
′
, K

′
disjoint closed sub-

sets of X, observe ∪x∈HB(x, d(x,K
′
)/2) ⊂ U(H

′
,K

′
). But d(x,K

′
) ≥ d(x,K), so

U(H,K) ⊂ ∪x∈HB(x, d(x,K
′
)/2) ⊂ U(H

′
,K

′
). �

Theorem 35. If X is monotonically normal, then there is a monotone normality
operator U(H,K) for X satisfying U(H,K) ∩ U(K,H) = ∅ for any pair H,K of
disjoint closed sets.

Proof. Assume X is monotonically normal. Let H,K be disjoint closed subsets
of X. By assumption, there exists a monotone normality operator U(·, ·) for X.

Define U
′
(H,K) = U(H,K)\cl(U(K,H)). Clearly, U

′
(·, ·) inherits the properties of

a monotone normality operator from U(·, ·). Furthermore, U
′
(H,K)∩U ′

(K,H) =
[U(H,K) \ cl(U(K,H))] ∩ [U(K,H) \ cl(U(H,K))] = ∅. �
Theorem 36. Monotonically normal spaces are collectionwise normal.

Proof. Let X be a monotonically normal space and let U(·, ·) be the monotone
normality operator guaranteed by lemma 35. Let H be a discrete collection of
closed subsets of X. Note by lemma 31 that H is pairwise-disjoint and ∪H′ is
closed for any subcollection H′ of H.

We want to find a collection U of pairwise-disjoint open sets UH such that UH ⊃
H for each H ∈ H. Put UH = U(H,∪(H \ {H})) for each H ∈ H.

Let K ̸= H ∈ H. Then

UH ∩ UK = U(H,∪(H \ {H})) ∩ U(K,∪(H \ {K}))
⊂ U(H,K) ∩ U(K,H)

= ∅,
so U = {UH : H ∈ H} is the desired collection. �
Theorem 37. TFAE for a T1-space X:

(a) X is monotonically normal
(b) To each x ∈ X and open nbhd U of x, one can assign an open nbhd Ux of

x satisfying:
Ux ∩ Vy ̸= ∅ ⇒ x ∈ V or y ∈ U ;

(c) Same as (b), but with the nbhds U restricted to members of a given base B.

Proof. Suppose X is T1.
(a) ⇒ (b). Singletons in X are closed since X is T1. Let U be a monotone

normality operator satisfying the condition of Theorem 35. For each x ∈ X and
open neighborhood W of x, let Wx = U({x}, X \W ). Then Wx is an open neigh-
borhood of x. Suppose x, y ∈ X, W and V are open neighborhoods of x and
y, respectively, x /∈ V and y /∈ W . Then X \ W ⊇ {y} and {x} ⊆ X \ V . So
Wx ∩ Vy = U({x}, X \W ) ∩ U({y}, X \ V ) ⊆ U({x}, {y}) ∩ U({y}, {x}) = ∅.
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(b) ⇒ (c). Trivial.
(c) ⇒ (a). For disjoint closed H and K, define U(H,K) =

∪
{Ux : x ∈

H and U ∩K = ∅}. For each x ∈ H there exists a (basic) open neighborhood of

x which misses K, so that H ⊆ U(H,K) ⊆ U(H,K). We show U(H,K) ⊆ X \K.
Suppose p ∈ K. Let V be an open set containing p which misses H. We may
assume Vp ⊆ V . If x ∈ H and U ∩K = ∅, then we can have neither x ∈ Vp nor

y ∈ Ux, so Vp ∩ Ux = ∅. So Vp ∩ U(H,K) = ∅, so p /∈ U(H,K). �

Theorem 38. Every subspace of a monotonically normal space is monotonically
normal.

Proof. Let X be a monotonically normal T1-space. For each x ∈ X and each open
neighborhood U ′ of x, let U ′

x be defined as in Theorem 37b. Let Y ⊂ X. For each
open U ⊂ Y , there exists U ′ open in X such that U = U ′ ∩ Y . For each y ∈ Y and
each open neighborhood U of y, put Uy = U ′

y ∩ Y .
Let x, y ∈ Y . If Ux ∩ Vy ̸= ∅, then Y ∩ (U ′

x ∩ V ′
y) ̸= ∅, so U ′

x ∩ V ′
y ̸= ∅. It follows

that x ∈ V ′ or y ∈ U ′. But x ∈ V ′ implies x ∈ V and y ∈ U ′ implies y ∈ U , so
Ux ∩ Vy ̸= ∅ =⇒ x ∈ V or y ∈ U . By the previous theorem, Y is monotonically
normal. �

Theorem 39. Every linearly ordered space is monotonically normal.

Hint: Let ≺ be any well-ordering of the linearly ordered space X. For a < x < b,
define ax to be a if (a, x) = ∅, else let ax be the ≺-least element of (a, x). Define
bx analogously, and let (a, b)x = (ax, bx).

Proof. Let X be linearly ordered by <. We will show X is monotonically normal
by way of Theorem 37. Let B be the base of all open intervals (a, b) with a, b ∈
X ∪ {−∞,∞}. Let ≺ be any well-ordering of X.

For a < x < b, define ax as a if (a, x) = ∅, otherwise let ax be the ≺-least element
of (a, x). Similarly, define bx to be x if (x, b) = ∅, and the ≺-least element of (x, b)
otherwise. Now, let x ∈ (a, b) ∈ B and y ∈ (c, d) ∈ B. Put (a, b)x = (ax, bx) and
(c, d)y = (cy, dy).

Assume (a, b)x ∩ (c, d)y ̸= ∅. W.l.o.g., d ≥ c. Suppose that x /∈ (c, d) and
y ̸∈ (a, b). Then x ≤ c and y ≥ b. Also, (a, b)x ∩ (c, d)y = (ax, bx) ∩ cy, dy) ̸= ∅
implies cy < bx. So we have x ≤ c < cy < bx < b ≤ y. But bx is the ≺-least
element of (x, b), so bx ≺ cy, and cy is the ≺-least element of (c, y), so cy ≺ bx,
contradiction. Thus y ∈ (a, b) or x ∈ (c, d), so X is monotonically normal. �

Remark. M.E. Rudin proved in 2001 that the class of compact Hausdorff mono-
tonically normal spaces is exactly the class of continuous images of compact linearly
ordered spaces. The reverse direction is relatively easy: it’s not hard to show that
the closed image of a monotonically normal space is monotonically normal. But
the forward direction is a deep and very difficult result.

7. Stationary and closed unbounded sets, regular and singular
cardinals

We now discuss paracompactness of ordered spaces, with the eventual goal of
the characterization theorem of section 9. First we consider ordinal spaces. The
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following result is a corollary of a couple of results from first year topology:2 It is
also a special case of Theorem 46.

Theorem 40. The space ω1 of countable ordinals is not paracompact.

Theorem 41. (i) Let C and D be closed (in the order topology) and un-
bounded subsets of ω1. Then C ∩D ̸= ∅;

(ii) Let Cn, n ∈ ω, be closed unbounded subsets of ω1. Then
∩

n∈ω Cn ̸= ∅.

Proof. (i) Since C and D are unbounded, there exists an increasing sequence x0 <
x1 < x2, ... with x2i ∈ C and x2i+1 ∈ D for each i ∈ ω. Then x = supi∈ω xi < ω1 is
a limit point of both C and D. Since C and D are closed, we have x ∈ C ∩D. (ii)
Using the unboundedness of the sets Cn, we construct a strictly increasing sequence
(xi)i∈ω of points in ω1 as follows. Let x0 ∈ C0 and x1 ∈ C1. Let x2 ∈ C0, x3 ∈ C1,
and x4 ∈ C2. Let x5 ∈ C0, x6 ∈ C1,x7 ∈ C2, and x8 ∈ C3. Continue in this
manner. Let x = supi∈ω xi < ω1. Then for each n ∈ ω, (xi)i∈ω has a subsequence
in Cn which limits to x. By closedness of the sets Cn, we have x ∈

∩
n∈ω Cn. �

Remark. By the same argument, the conclusion of both parts of the previous
theorem can be strengthened from “̸= ∅” to “unbounded”. I.e, the intersection of
countably many closed unbounded sets is itself closed unbounded.

Theorem 42. ω1 is not perfectly normal.

Hint. Show that the set H of all limit ordinals is a closed set, and any open
superset of H contains all but countably many points of the space.

Proof. Let H ⊆ ω1 be the set of limit ordinals. If α ∈ ω1\H then α = 0 or α = β+1
for some β ∈ ω1. So α is isolated ({α} = [0, 1) or {α} = (β, α + 1)). Claim any
open superset of H contains all but ω-many points of ω1. Well, let O ⊆ ω1 be open
containing H. Then H ∩ω1 \O = ∅ and ω1 \O is closed, so it can’t be unbounded
and miss H. Thus ω1\O is countable. Let {On : n ∈ ω} be a collection of open sets,
each containing H. For each n ∈ ω there exists αn ∈ ω1 such that On ⊇ [αn, ω1).
Then

∩
n∈ω On ⊇ [α, ω1) where α = supn∈ω αn. So

∩
n∈ω On ̸= H. So H is not Gδ

and hence ω1 is not perfectly normal. �

Theorem 43. Let C be closed unbounded in ω1. Then C is homeomorphic to ω1.

Proof. Let C be a closed unbounded set in ω1. Because C is well-ordered, there is a
least c0 ∈ C. Send c0 to 0. Similarly, there is a least c1 ∈ C\{c0}; send c1 to 1. Now,
if cβ has been defined for all β < α, where α ∈ ω1, put cα = minC \ {cβ : β < α}
and send cα to α.

Let f be the map just constructed. Certainly f is bijective. Let (β, α] ⊂ ω1 be
basic open. We claim that f−1((β, α]) = (cβ , cα]∩C is basic open in C. Note that
if α is a limit ordinal, then cα = minC \ {cβ : β < α} = sup{cβ : β < α} is a limit
of C ∩ (0, cα). If α is not a limit, (cα−1, cα] ∩ C = {cα} = f−1({α}). The claim
follows. �

Theorem 44. Suppose f : ω1 → ω1 (not necessarily continuous). Let C = {α :
∀β < α(f(β) < α)}. Then C is closed unbounded.

2If you had first year topology with me. If not: one can prove that ω1 is countably compact
but not compact, and a countably compact paracompact space must be compact.
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Proof. (C closed?) Suppose α is a limit of C not in C. Suppose β<α. Then

(β, α]∩C ̸= ∅. There is an α
′ ∈ (β, α)∩C. Then f(β)<α′

<α. Therefore α ∈ C, a
contradiction. So C is closed.

(C unbounded?) Let γ ∈ ω1. We need to show there is an α ∈ C such that
α > γ. Pick α0 > γ. Pick α1 > sup{f(β) : β < α0}. Pick α2 > sup{f(β) : β < α1}.
Having already picked αn, pick αn+1 = {f(β) : β < αn}. Let α = sup{αn : n ∈ ω}.
Suppose β < α. Then β < αn for some n, hence f(β) < αn+1 < α. So α ∈ C. �

A subset S of ω1 is said to be stationary in ω1 if S ∩ C ̸= ∅ for every closed
unbounded set C.

Theorem 45. (Pressing Down Lemma) Let S be a stationary set in ω1. If for each
ordinal α in S, α > 0, we choose an ordinal βα < α, then there is some β < ω1

such that β = βα for uncountably many α ∈ S.

Proof. Suppose f : S → ω1 such that f(α)<α, and S ⊆ ω1 is stationary. Suppose
f−1{α} is countable, for each α<ω1. For each α<ω, let Cα be the set of all ordinals
greater than sup f−1{α}. Let C = {γ<ω1 : γ ∈ ∩α<γCα}.

Claim: C is club.
C is closed: Suppose η is a limit of C. Let α<η. There exists γ ∈ C such that

α<γ<η. So γ ∈ Cα, implying η ∈ Cα.
C is unbounded: Note that ∩α<γCα is unbounded for any γ<ω1. Let η<ω1. Let

γ0 = η, γ0<γ1 ∈ ∩α<γ0Cα, γ1<γ2 ∈ ∩α<γ1Cα, and so on. We have η< supi∈ω γi.
supi∈ω γi ∈ C: Let α< supi∈ω γi. There exists i ∈ ω such taht α<γi<γi+1< supi∈ω γi.

Then γi+1 ∈ Cα. So supi∈ω γi ∈ Cα. So C is club. There exists γ ∈ S ∩ C. Since
γ ∈ S, f(γ)<γ. Since γ ∈ C and f(γ)<γ, γ ∈ Cf(γ), a contradiction.

(Alternative Approach)
Let f be pressing down. Suppose |f−1(α)| ≤ ω for all α. Define g : ω1 → ω1

such that for all α, g(α) > sup(∪β≤αf
−1(β)). Let C be as in theorem 44: C =

{α : ∀β < α, g(β) < α}. There is an α ∈ C ∩ S. Let β = f(α). Then β < α, but
g(β) > α, a contradiction to α ∈ C. �

Remark. A slightly souped up version of the first proof shows that there is
β < ω1 such that f−1(β) is not just uncountable but stationary. It is possible
to use this stronger version of the pressing down lemma to show that there is a
collection of ω1-many disjoint stationary sets. The little simpler argument below
shows there is a pair of disjoint stationary sets.

Proposition. There are disjoint stationary sets.

Proof. Suppose not. For every S ⊂ ω1, either S or ω1\S is non stationary, implying
either S or ω1 \ S contains a club. We will show why this is not possible.

Identify ω1 with a subset of [0, 1]. Either [0, 12 ] or [ 12 , 1] contains a club. Wlog,

[ 12 , 1] contains a club. Consider [ 12 ,
3
4 ] and [ 34 , 1]. One of them must contain a club:

Say [ 34 , 1] is nonstationary. Then [0, 12 ]∪ [ 34 , 1] is nonstationary, and [ 12 ,
3
4 ] contains a

club. Similarly, [ 12 ,
5
8 ] or [

5
8 ,

3
4 ] contains a club. Inductively, get I1 ⊇ I2 ⊇ I3 ⊇ · · ·

such that for all n, In contains a club. diam(In) =
1

2n−1 . Therefore ∩In contains a
club, but | ∩ In| = 1. �

Theorem 46. Let S be a stationary subset of ω1. Then S is not paracompact.
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Proof. Let U = {[0, α] ∩ S : α ∈ ω1} be an open cover of S and let V be an open
refinement thereof. Let C be the set of all points α in ω1 that are limit points of
S. Then C is closed unbounded. Let S′ = C ∩ S; it is easily checked that S′ is
stationary.

For each α ∈ S′, there exists V ∈ V and f(α) ∈ S such that f(α) < α and
[f(α), α] ∩ S ⊂ V . By the Pressing Down Lemma, there exists β ∈ S such that
f(α) = β for uncountably many α ∈ S′.

It suffices to show that β is a member of more than finitely many members of
V. To that end, suppose on the contrary that β is a member of only finitely many
members of V, say Vα1 , . . . , Vαn . Let γ ∈ ω1 such that γ > sup∪n

i=1Vαi . Then
there exists δ ∈ S′ such that δ > γ and f(δ) = β. It follows that [β, δ] ∩ S ̸⊂ Vαi

for i = 1, . . . , n. Thus β ∈ Vδ with Vδ ̸= Vαi for all 1 ≤ i ≤ n, a contradiction.
Since β is contained in more than finitely many members of V, V is not point-

finite. It follows that U has no locally-finite open refinite, whence S is not para-
compact. �

Remark. The same proof shows that there is no point-finite or even point-
countable open refinement of U , and hence a stationary set S is not even metacom-
pact or metalindelöf.

Theorem 47. Let C be a closed subset of a linearly ordered space X. Then X \C
is the union of a disjoint collection of convex open sets.

Theorem 48. A subspace S of ω1 is metrizable iff S is paracompact iff S is non-
stationary.

Proof. Let S ⊂ ω1. Metrizability of S implies its paracompactness, and by Theo-
rem 46 paracompactness of S implies S is nonstationary. It remains to prove that
if S is nonstationary, then it is metrizable. If S is nonstationary, there exists a club
C such that C ∩ S = ∅. By Theorem 47, ω1 \ C =

∪
α∈I Mα with the Mα convex

open disjoint. As a countable subspace of a regular space first countable space,
each Mα is regular and second countable. So each Mα is metrizable by a metric dα
with max 1. It is easily checked that the function d given by d(x, y) = dα(x, y) if
x, y ∈ Mα, d(x, y) = 2 if x ∈ Mα and y ∈ Mβ with α ̸= β, is a metric on ω1 \ C
which induces the subspace topology on ω1 \ C. �

Example 49. The space ω1 × (ω1 + 1) is not normal. Hence, the product of a
normal space and a compact Hausdorff space need not be normal.

Hint. Let H = {(α, α) : α < ω1} and K = [0, ω1) × {ω1}. Show H and K are
disjoint closed sets which can’t be separated.

It will be convenient to define an ordinal κ to be a cardinal if there is no function
from an ordinal α < κ onto κ. With this notation, ω and ω1 denote the least infinite
cardinal and least uncountable cardinal, resp. (as well as the least ordinals with
infinitely many and uncountably many predecessors, resp.). A cardinal κ is called
a successor cardinal if there is a cardinal λ < κ such that κ is the least cardinal
greater than λ. In this case, κ is often denoted by λ+. A cardinal κ which is not a
successor cardinal is called a limit cardinal.

E.g., ω1, ω2, ω3, . . . are successor cardinals, while ω and ωω = sup{ωn : n < ω}
are limit cardinals.
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Let λ be a limit ordinal. We define the cofinality of λ, denoted cf(λ), to be the
least cardinal κ such that there is a function f : κ→ λ such that {f(α) : α < κ} is
unbounded in λ.

Example. If λ is any countable limit ordinal, then cf(λ) = ω. Also, cf(ωω) = ω.

An infinite cardinal κ is said to be regular if cf(κ) = κ. Otherwise, κ is called
singular.

Clearly, ωω is singular. It is not difficult to see from the fact that a countable
union of countable sets is countable that cf(ω1) = ω1, hence ω1 is a regular cardinal.

Theorem 50. (i) If κ is any infinite cardinal, then the union of ≤ κ-many
sets, each of cardinality ≤ κ, has cardinality ≤ κ;

(ii) If κ is a successor cardinal, then κ is regular;
(iii) For any limit ordinal λ, cf(λ) is a regular cardinal.

Proof of (i). This is essentially equivalent to κ = |κ× κ|. Suppose it is true for
all cardinals less than κ. Define a well-order ≺ on κ× κ as follows. Let (α, β) and
(γ, δ) be distinct points in κ×κ. Define (α, β) ≺ (γ, δ) iff max{α, β} < max{γ, δ},
or max{α, β} = max{γ, δ} and (α, β) is less than (γ, δ) in the lexicographic order.
It is not difficult to check that this is a well-ordering. Let (γ, δ) ∈ κ×κ and suppose
max{γ, δ} = µ. The set of predecessors of (γ, δ) has cardinality at most |µ×µ| = |µ|
by the induction hypothesis, which is less than κ. But κ is the only ordinal such
that the cardinality of every predecessor is less than κ while the cardinality of the
whole set is not. Hence |κ× κ| = κ.

Now to complete the proof of (i), for each α < κ let |Aα| ≤ κ. Let fα : κ →
Aα be onto. Then F : κ × κ →

∪
α<κAα by F (α, β) = fα(β) is onto. Hence

|
∪

α<κAα| ≤ |κ× κ| ≤ κ.

Proof of (ii). Supppose κ = λ+, but that µ = cf(κ) < κ. Note that µ ≤ λ. Let
f : µ → κ be unbounded in κ. Then {f(α) : α < µ} is a collection of ≤ λ-many
sets each of cardinality ≤ λ, so its union has cardinality ≤ λ. But its union is κ,
contradiction.

Proof of (iii). Suppose µ = cf(λ) is not regular. Then ν = cf(µ) < µ. Let
f : ν → µ be cofinal and nondecreasing, and g : µ → λ cofinal and nondecreasing.
It is easy to check that g ◦ f : ν → λ is cofinal, so cf(λ) ≤ ν, contradiction. �
Theorem 51. The following are equivalent for an infinite cardinal κ:

(i) κ is regular;
(ii) For any A ⊂ κ, if |A| < κ, then sup(A) < κ;
(iii) The union of < κ-many sets, each of cardinality < κ, has cardinality < κ.

Proof. Let κ be an infinite cardinal. To see (i) implies (ii), suppose A ⊂ κ with
|A| < κ. Let λ = |A| and enumerate A = {αγ : γ < λ}. Define f : λ → κ by
γ 7→ αγ . Then supA = supγ<λ f(γ) < κ.

For (ii) implies (iii), suppose |Aγ | < κ for γ < λ < κ. Without loss of generality,
we may assume Aγ ⊂ κ for each γ < λ and that the Aγ are pairwise-disjoint. By
(ii), supAγ < κ for each γ < λ. Then supγ<λ(supAγ) < κ, so

|∪γ<λAγ | ≤ |sup
γ<λ

(supAγ)| ≤ sup
γ<λ

(supAγ) < κ.

To see (iii) implies (i), suppose λ < κ and let f : λ → κ. For γ < λ, define
Aγ = f(γ) (i.e., Aγ = {α : α < f(γ)}). Then | ∪γ<λ Aγ | < κ, implying f is
bounded in κ. �
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Closed unbounded and stationary sets are defined for any uncountable regular
cardinal κ in the same way they were defined for ω1, and the analogues of Theorems
41, 44, and the Pressing Down Lemma hold by similar arguments.

Theorem 52. Let κ be an uncountable regular cardinal.

(i) If C is a collection of < κ-many closed unbounded subsets of κ, then ∩C is
closed unbounded;

(ii) If f : κ→ κ is a function, then the set C = {α < κ : ∀β < α(f(β) < α)} is
closed unbounded;

(iii) If S ⊂ κ is stationary, and to each α ∈ S with α > 0 we choose βα < α,
then there is some β < κ such that βα = β for κ-many α ∈ S.

Theorem 53. Let S be a stationary subset of a regular cardinal κ. Then S is not
paracompact.

Proof. Suppose κ is regular and S ⊆ κ is stationary. Let U = {[0, α] ∩ S : α ∈ S},
and suppose V is a locally finite open refinement of U . For each α ∈ S there exists
βα < α such that [βα, α] ∩ S ⊆ Vα ∈ V. By Theorem 52(iii) there exists β with
βα = β for κ-many α ∈ S. On the other hand, only finitely many members of V
contain β. There exists α ∈ S such that βα = β and α > sup

∪
{V ∈ V : β ∈ V }.

But there exists V ′ ∈ V such that [β, α] ⊆ V ′, contradicting α > sup
∪
{V ∈ V :

β ∈ V }. �

8. Characterization of compact and paracompact linearly ordered
spaces

Theorem 54. A linearly ordered space X is compact iff every subset of X has a
least upper bound and a greatest lower bound.

Proof. First, let X be a compact linearly ordered space. Suppose on the contrary
that there exists some Y ⊂ X without a least upper bound. Put U = {(−∞, y) :
y ∈ Y } and V = {(x,∞) : x ∈ X, ∀y ∈ Y (y < x)}. Certainly U ∪V is an open cover
of X, so there exist finite subcollections U ′ and V ′ of U and V, respectively, such
that U ′ ∪ V ′ covers X.

If Y ̸= ∅, U ′ ̸= ∅ so we may assume U ′ = {(−∞, y1), . . . , (−∞, yn)} with y1 <
· · · < yn. It follows that Y ⊂ (−∞, yn) implying yn /∈ Y , a contradiction. On the
other hand, if Y = ∅ we may assume V ′ = {(x1,∞), . . . , (xm,∞)} with x1 < · · · <
xm. Then X ⊂ (x1,∞) so x1 /∈ X, a contradiction. It follows that every Y ⊂ X
must have a least upper bound and, by a similar argument, a greatest lower bound.

Now, let X be a linearly ordered space in which every subset has a least upper
bound and a greatest lower bound. Observe that X has a least element, say 0, and
a greatest element, say 1.

Let U be an open cover of X and let A be the collection of all x ∈ X such that
[0, x] can be covered by finitely many members of U . Put a = supA. We claim
that a ∈ A and a = 1.

If a /∈ A, there exists U ∈ U such that (x, a] ⊂ U and x ∈ A. But this means
[0, a] can be covered by finitely many members of U , so we must have a ∈ A.

Suppose on the contrary that a < 1. If a has no immediate successor, there
exists U ∈ U such that (a, y] ⊂ U for some y > a. But this means [0, y] can be
covered by finitely many members of U , so a must have an immediate successor, say
b. But some member of U must contain b, so [0, b] can be covered by finitely many
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members of U , contradicting the definition of a. It follows that a = 1, whence X is
compact. �
Theorem 55. Every linearly ordered space X is a dense subset of a compact linearly
ordered space X̂.

Hint. Given X, call a subset A of X left-closed if A is closed, and a ∈ A and
b < a implies b ∈ A. For example, for each x ∈ X, the set {a ∈ X : a ≤ x} is

left-closed. (Other left-closed sets are often called “gaps”.) Let X̂ be all left-closed

sets, ordered by ⊆. Include the empty set in X̂ iff X has no least element.

Proof. Let X̂ = ({A ⊆ X : A is left-closed},⊆). By theorem 54, it suffices to show

every subet of X̂ has a lub and glb. Let A ⊂ X̂.
Claim: cl(∪A) is the lub of A.

Clearly cl(∪A) is an upper bound of A. cl(∪A) ∈ X̂. b < a ∈ cl(∪A) =⇒ b <

a
′ ∈ A for some A ∈ A =⇒ b ∈ A =⇒ b ∈ cl(∪A). So cl(∪A) is left-closed.
Let B ( cl(∪A) be left-closed. We show that B is not an upper bound of

A. Suppose it were. Then B ⊃ A for every A ∈ A. But B is closed, so then
B ⊃ cl(∪A), contradiction.

Claim: ∩A is glb of A.
∩A is closed. If b < a ∈ ∩A then b < a ∈ A for all A ∈ A, so b ∈ A for all A ∈ A

and b ∈ ∩A. So A ∈ X̂. Clearly ∩A is a lb for A. If ∩A is a proper subset of a
left-closed set B, then there exists b ∈ B with ∩A < b. If B were a lower bound for
A, then b ∈ B ⊂ A for every A ∈ A, whence b ∈ ∩A, contradiction.

Claim: X is dense in X̂.
Let (A,B) ⊆ X̂ be nonempty. There is C ∈ X̂ such that A ⊂ C ⊂ B. There

exists x ∈ C with A < x such that A ⊂ {a ∈ X : a ≤ x} ⊂ C ⊂ B. �

Let U be a collection of sets, and let U, V ∈ U . A finite linked chain in U from
U to V is a sequence U1, U2, . . . , Un of members of U such that U1 = U , Un = V ,
and Ui ∩Ui+1 ̸= ∅ for any i = 1, 2, . . . , n− 1. U is said to be connected if there is a
finite linked chain in U between any two members of U .

The next result has nothing to do with ordered spaces, but is good to know.

Theorem 56. A space X is connected iff every cover of X by nonempty open sets
is connected.

Proof. (⇒). Suppose X is connected and U is an open cover of X. Let U ∈ U and
let

U(U) = {V ∈ U : there is a finite linked chain between Uand V }.
Claim that O =

∪
U(U) is connected. Clearly O is open. We show it is also

closed. Suppose x is a limit point of O. Since U is an open cover, there exists
Ux ∈ U such that x ∈ Ux. Then Ux ∩ O ̸= ∅, so there exists V ∈ U(U) such that
Ux∩V ̸= ∅. Thus we may extend a finite linked chain between U and V to a finite
linked chain between U and Ux, so that x ∈ Ux ⊆ O. This completes the proof
that O is closed. Since X is connected and O is clopen, we must have O = X.
Let U1, U2 ∈ U . There exist V1, V2 ∈ U(U) (note that U(U) covers X) such that
V1∩U1 ̸= ∅ ̸= V2∩U2. Extend chains between V1 and U , and V2 and U , to a chain
between U1 and U2.

(⇐). If U and V are nonempty disjoint clopen sets with U ∪ V = X, then
U = {U, V } is an open cover of X which is not connected. �
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Theorem 57. A linearly ordered space X is paracompact iff X does not contain
a closed subspace homeomorphic to a stationary subset of a regular uncountable
cardinal.

Hint: For the “if” direction, first show that it suffices to construct a locally finite
open refinement of U on ∪U , where U is a connected collection of open intervals.

9. Suslin lines, Suslin trees, and Aronszajn trees

Lemma 58. The following are equivalent for a space X:

(a) X is hereditarily Lindelöf;
(b) Every open subspace of X is Lindelöf;
(c) For any collection U of open subsets of X, there is a countable V ⊂ U such

that ∪V = ∪U ;
(d) There is no subset {xα : α < ω1} of X with the property that, for each

α < ω1, xα ̸∈ {xβ : β > α}.

Proof. Clearly a =⇒ b =⇒ c =⇒ a.
To see ¬d =⇒ ¬c, let {xa : α < ω1} ⊂ X such that xα /∈ {xβ : β > α} for all

α ∈ ω1. Then for each α ∈ ω1 there exists an open neighborhood Uα of xα such
that Uα ∩ {xβ : β > α} = ∅. Take U = {Uα : α < ω1}. If V ⊂ U is countable, ∪V
may contain only countably many members of {xα : α < ω1}, so ∪V ≠ ∪U .

To see ¬c =⇒ ¬d, let U be a collection of open subsets of X such that ∪V ̸= ∪U
for all countable V ⊂ U . Pick U0 ∈ U and x0 ∈ U0. Let 0 < α < ω1 and suppose
Uβ ∈ U and xβ ∈ Uβ have been defined for all β < α. Since ∪{Uβ : β < α} is a
proper subset of ∪U , there exists Uα ∈ U such that Uα \ ∪{Uβ : β < α} ≠ ∅. Pick
xα ∈ Uα \ ∪{Uβ : β < α} and observe that for each β < α, Uβ is a neighborhood
of xβ not containing xα. It follows that {xα : α < ω1} is a subset of X such that

xα /∈ {xβ : β > α} for all α ∈ ω1. �

Remark. A set {xα : α < ω1} satisfying the conditions of Lemma 58(d) is said to
be right-separated in type ω1. Left-separated in type ω1 is defined analogously, and
the analogous result is that a space is hereditarily separable iff it does not contain
a subspace which is left-separated in type ω1.

Theorem 59. Suppose X is a ccc linearly ordered space. Then X is hereditarily
Lindelöf.

Hint: Since open subspaces of ccc linearly ordered spaces are also ccc linearly
ordered, it suffices to show X is Lindelöf. Let U be an open cover of X. Define
x ∼ y iff [x, y] is covered by some countable subcollection of U . Show that each
equivalence class E is open and is covered by some countable subcollection of U .

A linearly ordered space X is a Suslin line if X is ccc, connected, has no first or
last point, and is not homeomorphic to the real line. By Theorem 11, a Suslin line
cannot be separable.

Theorem 60. If there is a ccc nonseparable linearly ordered space, then:

(i) there is one which is densely ordered and such that no nonempty open in-
terval is separable;

(ii) there is a Suslin line.
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Proof of (i). Let X be a ccc nonseparable linearly ordered space. Define x ∼ y
iff the interval from x to y is separable. Note that equivalence classes are convex.
We claim that the set S = {[x] : x ∈ X} of equivalence classes with the natural
order, denoted by ≺, satisfies the desired conditions.

It follows easily that S is ccc because X is. To see that S is densely ordered,
suppose ([x], [y]) is empty. Then (x, y) is separable and [x] = [y], contradiction.

To complete the proof, we need to show that S has no separable open intervals.
First we show that every equivalence class [x] is separable. It follows from the
ccc of X that cf([x]) is countable, and similarly so is the coinitiality of [x]. Let
us assume [x] has a greatest point but no least point; other cases can be handled
similarly. Let y0, y1, ... be a decreasing sequence of points of [x] which is coinitial
in [x]. Then [x] =

∪
n∈ω(yn, z], where z is the greatest point of [x]. Since each

(yn, z) is separable, so is [x]. Now suppose ([x], [y]) is separable, say with dense set
D = {[zi] : i ∈ ω}. For each i, let Ei be a dense (in X) subset of [zi]. It follows
that (x, y) ∩ [

∪
i∈ω Ei] is dense in (x, y), hence [x] = [y], contradiction.

Proof of (ii). Let X be a ccc nonseparable linearly ordered space. By (i), we
may also assume X is densely ordered and that no nonempty open interval in X is
separable. Let X̂ be the compactification of X as in Theorem 55.

We claim that X̂ is densely ordered. Suppose not. Let a, b ∈ X̂ with (a, b) = ∅.
If a ∈ X̂ \X and b ∈ X, then (−∞, a) ∩X is a left-closed subset of X. Note that
in X, every neighborhood of b contains an interval (c, b], where c < b. But then
c ∈ (−∞, a) and since X is densely ordered, (c, b) ∩ (−∞, a) ̸= ∅. So b is a limit
point of (−∞, a), a contradiction to it being left closed.

If a, b ∈ X̂ \X, then (−∞, a)∩X = (−∞, b)∩X, so these subsets are identified

with the same element of X̂, forcing a = b. If a ∈ X and b ∈ X̂ \ X, then

(−∞, a] ∩X = (−∞, b) ∩X, giving a = b as above. So X̂ is densely ordered.

By Theorem 54, every subset of X̂ has a least upper bound. Because X̂ is densely
ordered and every bounded subset of X̂ has a least upper bound, X̂ is connected
by Theorem 10. Throw out the first and last points of X̂ to get a space X ′ that is
connected, ccc, and has a subspace that is not separable. It follows that X ′ is not
homeomorphic to R and is thus a Suslin line. �

Remark. Sometimes a Suslin line is defined to be a nonseparable ccc linearly
ordered space. By Theorem 60, this is equivalent to our definition (in the sense
that one exists iff the other exists).

Theorem 61. If T is a tree of height ω, and every level of T is finite, then T has
an infinite branch.

Proof. Let T be a tree of height ω such that Lα is finite for each α < ω. For each
t ∈ T , put St = {s ∈ T : t < s}. Since T has height ω, there must be infinitely
many nodes in T .

Pick b0 ∈ L0 so that Sb0 is infinite. This is possible since L0 is finite. Suppose
for some n ∈ ω that b0 < · · · < bn have been defined so that bi ∈ Li and Sbn is
infinite. Pick bn+1 ∈ Sbn ∩ Ln+1 such that Sbn+1 is infinite. This is possible since
Sbn ∩ Ln+1 is finite.

Certainly b = {bn : n ∈ ω} is an infinite branch of T . �
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An Aronszajn tree is a tree of height ω1 such that every branch and every level
is countable. A Suslin tree is a tree of height ω1 such that every branch and every
antichain is countable. Note that every Suslin tree is Aronszajn.

Theorem 62. There is an Aronszajn tree.

Proof. We construct the tree T by induction, along with a function θ : T → Q
which is increasing in the sense that x < y ∈ T ⇒ θ(x) < θ(y). This function will
guarantee that there are no branches all the way through the tree, and will also tell
us some things about the structure of T (see the remark after this proof).

For each α < ω1, we let Tα denote the set of nodes of T of height < α. To start,
let Tω = ω<ω. Let θ(∅) = 0. The first level L1 of Tω, i.e., the set of immediate
successors of ∅, is countably infinite, so we can let θ � L1 be a bijection from L1

to the positive rationals. Given t ∈ L1 with θ(t) = qt, let θ send the immediate
successors of t one-to-one and onto the set of rationals > qt. And so on.

From here on, we denote θ(t) by qt.
Next we define Tω+ω as follows. For each s ∈ Tω and q ∈ Q with q > qs, choose

a branch b(s, q) of Tω with s ∈ b(s, q) and q = sup{qt : t ∈ b(s, q)}. This is possible
by the construction of θ on Tω. Now let {T (s, q)) : s ∈ Tω, q > qs} be a collection
of copies of ω<ω disjoint from each other and from Tω; we’ll put T (s, q) above the
nodes of b(s, q). Let Tω+ω = Tω ∪

∪
s∈Tω,q>qs

T (s, q)). Give the copies of ω<ω their

usual order, and if x ∈ Tω and y ∈ T (s, q), define x < y ⇐⇒ x ∈ b(s, q). To help
see the picture, note that if ∅s,q is the copy in T (s, q) of the empty node of ω<ω,
then the set of predecessors of ∅s,q in Tω+ω is precisely b(s, q). So ∅s,q stands at the
top of bs,q at level ω, and T (s, q) extends above it. Define θ(∅s,q) = q, and extend
θ to T (s, q) level by level similar to the way it was defined on Tω.

Now suppose α is a limit ordinal > ω + ω, and Tβ and θ � Tβ has been defined
for all limit ordinals β < α such that the following holds:

(∗) If γ < δ < β, s is in the γth level of Tβ , and q ∈ Q is such that q > qs, then
there is a successor t of s in the δth level of Tβ with qt = q.

It is easily checked that (∗) holds for Tω and Tω+ω.
If α is a limit of limit ordinals, we simply let Tα =

∪
β<α Tβ and θ � Tα =∪

β<α θ � Tβ . It is easy to check that (∗) holds with β = α.
It remains to construct Tα for the limit ordinal α when there is a maximal limit

ordinal β < α, so α = β + ω. The construction in this case is similar to the
construction of Tω+ω from Tω, First we show that for each s ∈ Tβ and q > qs,
there is a branch b(s, q) of Tβ which meets every level of Tβ below β and such
that q = sup{qt : t ∈ b(s, q)}. Let γ0, γ1, ... be an increasing sequence of ordinals
with supremum β, such that γ0 is the level of s0 = s. Let q0 < q1 < ... be a
sequence of rationals with q0 = qs and q = sup{qn : n ∈ ω}. By (∗), there is a
successor s1 of s0 at level γ1 with qs1 = q1, then a successor s2 of s1 at level γ2
with qs2 = q2, etc.. Let b(s, q) be the branch determined by the sequence s0, s1, ....
Let {T (s, q)) : s ∈ Tβ , q > qs} be a collection of copies of ω<ω disjoint from each
other and from Tβ and let Tα = Tβ ∪

∪
s∈Tβ ,q>qs

T (s, q). Define the order on Tα
and extend θ to Tα in the same way this was done for Tω+ω vis-à-vis Tω.

This defines Tα for all α < ω1. Let T =
∪

α<ω1
Tα and for each t ∈ T let

θ(t) = qt ∈ Q be as defined in the construction. Then it is immediate from the
construction that T has height ω1, every level of T is countable, and as noted earlier,
since s < t⇒ qs < qt there are no uncountable branches. �
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Remark. Let θ(t) = qt be as in the above proof, and for each q ∈ Q let
Aq = {t ∈ T : qt = q}. Note that each Aq is an antichain of T , so T =

∪
q∈QAq is

the union of countably many antichains, at least one of which must be uncountable.
So this tree is definitely not Suslin. Indeed, any Aronszajn tree which is the union
of countably many antichains is called a special Aronszajn tree. It is consistent
with the axioms of set theory not only that there are no Suslin trees, but that every
Aronszajn tree is special (e.g., this holds under the axiom MA(ω1) discussed in the
next section).

Theorem 62 shows that the natural analogue of Theorem 61 for trees of height
ω1 is false: every level can be countable yet there is no branch going all the way to
the top of the tree. (If, however, you require every level to be finite, then there is
such a branch.)

Theorem 63. If there is a Suslin line, then there is a Suslin tree.

Proof. Let X be a Suslin line. Define separable closed subsets Cα, α < ω1, of X as
follows. Let C0 = ∅. If α is a limit ordinal and Cβ has been defined for all β < α,

let Cα =
∪

β<α Cβ . If α = γ + 1 and Cγ has been defined, let Lγ be the collection

of convex components of X \ Cγ . For each I ∈ Lγ , choose a countable sequence of
points converging to each endpoint of I. Let C ′

γ be the collection of these chosen

points for all I ∈ Lγ . Then let Cα = Cγ ∪ C ′
γ . Since the the closure of the union of

countably many separable sets is separable, and C ′
γ is countable, we see that each

Cα is separable.
Now let Lα be the set of all convex components of X\Cα, and let T =

∪
α<ω1

Lα.
We claim that T ordered by ⊇ is a Suslin tree. Let I ∈ T . Then there is a unique

α such that I is a convex component of X \Cα. Since the Cα’s get bigger with α, if
I ⊂ J ∈ T , then J is a convex component of X \Cβ for some β < α. Furthermore,
for each β < α there is a unique such J , call it Jβ . Then {Jβ : β < α} is the set
of predecessors of I and has order type α, so I is a member of level α of T . Since
each Cα is separable, X \Cα ̸= ∅, so T has a node at every level α < ω1, and hence
T has height ω1.

Let Lα denote the αth level of T . Suppose I ∈ Lα, J ∈ Lβ , α ≤ β, and I and
J are incomparable. There is a unique J ′ ∈ Lα with J ⊆ J ′. Since I and J are
incomparable, I ̸= J ′, but this means that I ∩ J ′ = ∅, and so I ∩ J = ∅. Thus an
antichain in T corresponds to a pairwise-disjoint collection of open sets, so every
antichain of T is countable.

Note that by construction, each I in T has at least two immediate successors. We
need to show that T has no uncountable chain. We show something more general:
if T is a tree with no uncountable antichains, and each node of T has at least two
immediate successors, then T has no uncountable chain. Suppose it did. Then
there is a chain {tα : α < ω1} with tα ∈ Lα. Let sα be an immediate successor
of tα which is not equal to tα+1. It is easy to check that {sα : α < ω1} is an
uncountable antichain, contradiction. �
Theorem 64. If there is a Suslin tree, then there is a Suslin line.

Hint. Let T be a Suslin tree, and let ≺ be an arbitrary linear order on T . Let
X be the set of all branches of T . For any branch b, let b(α) be the member of b
in level α of the tree. Given b1, b2 ∈ X, let α be minimal such that b1(α) ̸= b2(α),
and then define b1 < b2 iff b1(α) ≺ b2(α). Show that X with this order is ccc and
nonseparable.
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Proof. Let T be a Suslin tree and let ≺ be some linear order on T . Let X be the
set of all branches of T . For each b ∈ X let b(α) be the member of b at level α
of the tree. Given b1 ̸= b2 ∈ X let α be least such that b1(α) ̸= b2(α) and define
b1 < b2 iff b1(α) ≺ b2(α). Then clearly < linearly orders X.

Claim 1. X is ccc. Let U = {(ai, bi) : i ∈ I} be a collection of nonempty
pairwise disjoint open intervals in X. For each i ∈ I let ci ∈ (ai, bi), then let α be
minimal such that ci(α) ̸= ai(α), bi(α) and let ti = ci(α + 1). Then {ti : i ∈ I}
is an antichain in T : if i ̸= j ∈ I and c is branch containing ti and tj then
c ∈ (ai, bi) ∩ (aj , bj), a contradiction. So I is countable by the ccc in T .

Claim 2. X is nonseparable. Let C ⊆ X be countable. Let κ = sup{height(b) :
b ∈ C} + 1. Then there exists t ∈ T at level κ and three branches a < b < c ∈ X,
each containing t. Then a(α) = b(α) for each α < κ so any d ∈ C lies on the same
side of a and b, hence d /∈ (a, b). So (a, b) is a nonempty open set missing C, so C
is not dense in X. �

Theorem 65. If S is a Suslin line, then S2 does not have the ccc.

Hint. Let T =
∪

α<ω1
Lα be as in the hint for Theorem 63. For each α, choose

Iα ∈ Lα. There are disjoint I0α, I
1
α ∈ Lα+1 contained in Iα. Show that {I0α × I1α :

α < ω1} is pairwise-disjoint.

Proof. Let S be a Suslin line and let T = ∪α<ω1Lα be as in the hint for Theorem
63. For each α, pick Iα ∈ Lα and let I0α, I

1
α ∈ Lα+1 be disjoint subsets of Iα.

Let α, β ∈ ω1 with α < β. Certainly Iβ has to miss either I0α or I1α. Thus
either I0β misses I0α or I1β misses I1α, so (I0α × I1α) ∩ (I0β × I1β) = ∅. It follows that

{I0α × I1α : α < ω1} is a pairwise-disjoint collection. �

Theorem 66. If there is a Suslin line, there is one such that no nondegenerate
interval is separable. Such a Suslin line is the union of ω1-many nowhere-dense
sets.

Hint for the second part: study the hint for Theorem 63.

Proof. If there is a Suslin line, then by Theorem 60(i), there is a densely ordered
ccc linearly ordered space X such that no nonempty open interval is separable. In
the proof of 60(ii), a Suslin line Y is constructed from such a linearly ordered space
such that X is dense in in Y . It follows that Y has no nonempty separable open
intervals either. Now let C = {Cα : α < ω1} be the strictly increasing sequence
of separable closed subsets of Y as constructed in the proof of Theorem 63. For
each α < ω1, Cα is closed so if it failed to be nowhere dense, it would contain an
open interval of Y , and this interval would be separable because Cα is. This is a
contradiction, so Cα is nowhere dense.

We claim that Y =
∪

α<ω1
Cα. Suppose otherwise, and let p ∈ Y \

∪
α<ω1

Cα.
Then for each α, p ̸∈ Cα, so there is a convex component Iα of Y \Cα containing p.
In the proof of Theorem 63, it was shown that any pair I, J of convex components of
a pair of Cα’s is either disjoint or comparable. So {Iα : α < ω1} is an uncountable
chain in the Suslin tree constructed there, which is a contradiction. Thus Y is a
Suslin line which is the union of ω1-many nowhere dense sets. �
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10. Martin’s Axiom

Like the Continuum Hypothesis (CH) , Martin’s Axiom (MA) is an axiom of set
theory that is known to be consistent with and independent of the usual Zermelo-
Frankel axioms together with the Axiom of Choice (abbreviated ZFC). Martin’s
Axiom has had many applications in certain parts of general topology and real
analysis. It’s most powerful when conjuncted with the negation of the Continuum
Hypothesis. Roughly speaking, assuming MA+¬CH, one can bump up to ω1 or
higher some results that are true in ZFC for ω. For example, in ZFC you know how
to prove that the real line is not the union of countably many nowhere dense sets.
Assuming MA+¬CH, R is not the union of ω1-many nowhere dense sets. We’ll also
see that MA+¬CH kills Suslin lines.

Understanding and using MA takes some practise, but with a little experience
you will get the idea.

Let (P,≤) be a partially ordered set. We say D ⊂ P is dense in P if for any
p ∈ P , there is q ≤ p with q ∈ D. A subset G of P is called a filter in P if

(i) For each p, q ∈ G, there is r ∈ G with r ≤ p and r ≤ q;
(ii) For each p ∈ G, if p ≤ q then q ∈ G.

For example, letX be any set, and let P(X)\{∅} be the collection of all nonempty
subsets of X. For p, q ∈ P(X) \ {∅}, define p ≤ q iff p ⊂ q. Then G is a filter on
P(X) \ {∅} iff G is a filter of subsets of X in the usual sense ((i) and (ii) tell you
G is closed under finite intersections and under supersets).

We say that two elements p, q of P are comparable if p ≤ q or q ≤ p, compati-
ble(abbreviated p ̸⊥ q) if there is r ∈ P with r ≤ p and r ≤ q, and incompatible
(abbreviated p ⊥ q) if they are not compatible.

In the above example of P(X)\{∅}, p and q are comparable iff one is a subset of
the other, compatible iff they have nonempty intersection, and thus incompatible
iff they are disjoint.

An antichain in P is a subset A of P such that every two elements of A are
incompatible. We say that (P,≤) has the ccc if every antichain is countable, or
equivalently, every uncountable subset of P has a pair of compatible elements.

Note that P(X) \ {∅} will not have the ccc if X is uncountable. But now let X
be a topological space, and let O(X) be the collection of all nonempty open sets,
and define p ≤ q iff p ⊂ q. Then the partial order O(X) has the ccc iff the space
X has the ccc. Note that a subset D of O(X) is dense in this partial order iff D is
a collection of nonempty open sets such that every nonempty open set contains a
member of D. (Such a collection D is sometimes called a π-base for the space X.)

Finally, we now define Martin’s Axiom(MA): Let κ be a cardinal. MA(κ) is the
following statement: Whenever (P,≤) is a ccc partial order, and D is a family of
≤ κ-many dense sets, then there is a filter G in P such that G ∩D ̸= ∅ for every
D ∈ D.
MA is the statement that MA(κ) holds for every κ < 2ω.

Theorem 67. MA(ω) is true, and hence the Continuum Hypothesis (CH) implies
MA.

Proof. Let D0, D1, ... be countably many dense subsets of a partial order P . Choose
d0 ∈ D0. Since D1 is dense, there is d1 ∈ D1 with d1 ≤ d0. Similarly, there is
d2 ∈ D2 with d2 ≤ d1, and so on. Let F = {p ∈ P : ∃n ∈ ω with dn ≤ p}. It is
easy to check that F is a filter in P . By construction, F ∩Dn ̸= ∅ for all n. �
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Theorem 68. Assume MA(κ). Let X be a compact Hausdorff ccc space. If U is
a collection of ≤ κ-many dense open sets, then ∩U ̸= ∅.

Hint: Use the partial order O(X) defined above.

Proof. Let U be a collection of ≤ κ-many dense open sets in the compact Hausdorff
ccc-space X. Let O(X) be the collection of nonempty open subsets of X, ordered
by ⊆. Note that incompatible elements of O(X) are disjoint, so since X has the
ccc, so does O(X).

For each U ∈ U , let DU = {V ∈ O(X) : V ⊂ U}. Since X is regular, it is easy to
check that each DU is dense in the partial order O(X). By MA(κ), there is a filter
G in O(X) which meets each DU . Let gU ∈ G ∩DU . Since G is a filter, whenever
U1, ..., Un are in U , there is h ∈ O(X) with h ⊆ gUi for each i = 1, 2, ..., n. It follows
that {gU : U ∈ U} has the f.i.p., and so does {gU : U ∈ U}. Since X is compact,∩

U∈U gU ̸= ∅. Since gU ∈ DU , gU ⊂ U , and so ∩U ≠ ∅. �

The topological statement in Theorem 68 is actually equivalent to MA(κ). So
Martin’s Axiom is equivalent to the statement that no compact Hausdorff ccc space
is the union of fewer than 2ω-many nowhere-dense sets. In particular, MA implies
that the real line is not the union of fewer than 2ω-many nowhere-dense sets. One
can also show thatMA implies the real line is not the union of fewer than 2ω-many
Lebesgue measure zero sets.

Corollary 69. MA(2ω) is false.

Proof. Let X = [0, 1], and for each x ∈ [0, 1], let Ux = X \ {x}. Then U = {Ux :
x ∈ [0, 1] is a collection of 2ω-many dense open subsets of the interval, and of course
∩U = ∅. �

Corollary 70. Assume MA(ω1). Then there are no Suslin lines.

Proof. By Theorem 66, if there is a Suslin line, then there is a Suslin line X which is
a union of ω1-many nowhere dense sets, say {Aα : α < ω1}. Then {X \Aα : α < ω1

is s collection of ω1-many dense open sets with empty intersection. �

We will soon see other ways (e.g., via Theorem 73) to show that Corollary 70 is
true.

Lemma 71. Assume MA(ω1). Suppose X is ccc and {Uα : α < ω1} is a collection
of nonempty open subsets of X. Then there is an uncountable subset A of ω1 such
that {Uα : α ∈ A} has the f.i.p..

Hint. First show that there is α0 < ω1 such that ∀α > α0∪
β>α

Uβ =
∪

β>α0

Uβ .

Then apply MA with P = {O ∈ O(X) : O ⊂
∪

β>α Uα0}.

Proof. Suppose MA(ω1), X is a ccc space, and {Uα : α < ω1} is an uncountable
collection of (distinct) nonempty open subsets of X.

We claim that there exists α0 < ω1 such that
∪

β>α0
Uβ ⊆

∪
β>α Uβ for each

α > α0. If not, there exists α0 > 0 such that
∪

β>0 Uβ \
∪

β>α0
Uβ ̸= ∅. If δ < ω1

and αγ has been defined for all γ < δ, pick αδ = supγ<δ αγ if δ is a limit, and
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pick αδ > αδ−1 such that
∪

β>αδ−1
Uβ \

∪
β>αδ

Uβ ̸= ∅ if δ is a successor. Then

{
∪

β>αδ
Uβ \

∪
β>αδ+1

Uβ : δ < ω1} violates the ccc in X.

Let P = {O ∈ O(X) : O ⊆
∪

β>α0
Uβ}. For each α > α0 let Dα = {O ∈ P :

(∃β > α)(O ⊆ Uβ)}. Then Dα is dense in P: Let O ∈ P. Then O ⊆
∪

β>α0
Uβ ⊆∪

β>α Uβ so there exists β > α such that O ∩ Uβ ̸= ∅. Then O ∩ Uβ ∈ Dα and
O ∩ Uβ ⊆ O as desired.

Note that X is ccc implies O(X) is ccc implies P is ccc. By MA(ω1) there exists
a filter G on P such that G ∩ Dα ̸= ∅ for all α > α0. Since G is closed upward,
for each α > α0 there exists β > α such that Uβ ∈ G. Let γ0 > α0 + 1 such
that Uγ0 ∈ G. If δ < ω1 and an increasing sequence (γβ)β<δ has been defined
so that Uγβ

∈ G for each β < δ, let γα > supβ<δ γβ such that Uγδ
∈ G. Then

{Uγδ
: δ < ω1} is an uncountable subcollection of {Uα : α < ω1} with the finite

intersection property. �

A space X is said to have property K if every uncountable collection U of
nonempty open sets contains an uncountable subcollection V such that V1 ∩V2 ̸= ∅
for every V1, V2 ∈ V.

Theorem 72. Assume MA(ω1). Then every ccc space has property K.

Proof. Immediate from Lemma 71. �

Theorem 73. Assume MA(ω1). If X and Y are ccc, so is X × Y . Hence any
product of ccc spaces is ccc.

Proof. Suppose X,Y have the ccc and {Uα : α ∈ Λ} is an uncountable collection
of pairwise disjoint nonempty open subsets of X × Y . Assume the Uα’s are basic;
Uα = Vα ×Wα. By Theorem 72 since X has the ccc, X has property K. There
exists an uncountable A ⊆ Λ such that {Vα : α ∈ A} is linked. Then {Wα : α ∈ A}
is uncountable so by Theorem 72 there exists an uncountable B ⊆ A such that
{Wβ : β ∈ B} is linked. Let β ̸= γ ∈ B. Then Uβ∩Uγ = (Vβ×Wβ)∩(Vγ×Wγ) ̸= ∅
since Vβ ∩ Vγ ̸= ∅ and Wβ ∩Wγ ̸= ∅. Contradiction. The theorem now follows
from the ∆-system Lemma (see Theorem 29). �

Lemma 74. (a)A regular Lindelöf space X is hereditarily Lindelöf iff X is perfectly
normal.

(b) If X is compact Hausdorff, then X is first-countable iff every point of X
is a Gδ-set. Consequently, compact Hausdorff perfectly normal spaces are first-
countable.

Proof of (a). Let (X, T ) be a regular Lindelöf space and suppose X is hereditarily
Lindelöf. Certainly X is normal. Let H ⊂ X be closed and for each x ∈ X \ H
let Ux ∈ T such that x ∈ Ux ⊂ Ux ⊂ X \ H. Since X \ H is Lindelöf, there
exist x0, x1, . . . ∈ X such that {Uxi : i ∈ ω} covers X \ H. It follows that H =
∩i∈ωX \ Uxi .

Now suppose X is perfectly normal. Let U ⊂ T be uncountable and put H =
X \ (∪U). Let {Vi : i ∈ ω} ⊂ T such that H = ∩i∈ωVi. Observe that each X \ Vi is
closed, hence Lindelöf. For each i ∈ ω, let Vi ⊂ U be a countable cover of X \ Vi.
Put V = ∪i∈ωVi. Then V ⊂ U is countable with ∪V = ∪U , whence X is hereditarily
Lindelöf. �
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Proof of (b). Let (X, T ) be a compact Hausdorff space and suppose X is first-
countable. Let x ∈ X and let {Ui : i ∈ ω} be a local base at x. If y ∈ X \ {x} there
must exist some i ∈ ω such that y /∈ Ui, so {x} = ∩i∈ωUi.

Now suppose every point of X is Gδ. Let x ∈ X and {Vi : i ∈ ω} ⊂ T with
{x} = ∩i∈ωVi. Put U0 = V0. If n ∈ ω and Un has been defined, let Un+1 ∈ T
such that x ∈ Un+1 ⊂ Un+1 ⊂ Un ∩ Vn+1. Then U0 ⊃ U1 ⊃ U1 ⊃ . . . and {x} =
∩i∈ωUi = ∩i∈ωU i. Let U be an open neighborhood of x. Since X \ U is compact
and covered by {X \ U i : i ∈ ω}, there exists k ∈ ω such that X \ U ⊂ X \ Uk. It
follows that Uk ⊂ U , whence {Ui : i ∈ ω} is a local base at x. �

Theorem 75. Assume MA(ω1). If X is a compact Hausdorff hereditarily Lindelöf
space, then X is hereditarily separable.

Hint. Suppose not. Then there are points xα, α < ω1, in X such that xα ̸∈
{xβ : β < α}. Let Y = {xα : α < ω1}. It follows from first-countability that every

point of Y is in {xβ : β < α} for some α < ω1. Use compactness of Y and Lemma
71 applied to Y to get a contradiction.

Proof. Assume MA(ω1). Suppose X is compact Hausdorff hereditarily Lindelof
but not hereditarily separable. Then there exists a subspace S of X which is not
separable. Then S is not separable: Suppose {xn : n ∈ ω} is dense in S. By
Theorem 74 parts (a) and (b) X is first countable. For each n ∈ ω let {Un

i : i ∈ ω}
be a local base at xn. For each n, i ∈ ω there exists sni ∈ S∩Un

i . Then {sni : n, i ∈ ω}
is countable and dense in S.

(i) There are points xα ∈ S, α < ω1, such that xα /∈ clS{xβ : β < α} =

{xβ : β < α}: Let x0 ∈ S. Assuming α < ω1 and xβ , β < α, have been chosen

appropriately, {xβ : β < α} is countable and thus there exists xα ∈ S \ clS{xβ :
β < α}.

Let Y = {xα : α < ω1}. (ii) For each y ∈ Y there exists α < ω1 such that

y ∈ {xβ : β < α}: If y ∈ Y then, letting {Un : n ∈ ω} be a local base at y and

xαn ∈ Un for each n, we have y ∈ {xβ : β < supn∈ω αn}.
Y is compact Hausdorff and therefore Y is regular, so by (i) for each α < ω1

there exists an open Uα ⊆ Y such that xα ∈ Uα ⊆ Uα ⊆ Y \ {xβ : β < α}. Note
that Y is ccc since it is hereditarily Lindelof. By Lemma 71 there exists a cofinal
subset A of ω1 such that {Uα : α ∈ A} has the finite intersection property. Then
{Uα : α ∈ A} has the finite intersection property. Since Y is compact we have∩

α∈A Uα ̸= ∅. This contradicts (ii), as a point in this intersection cannot be in

{xβ : β < α} for any α < ω1. �

The next lemma, and a couple later results, require a poset consisting of ordered
pairs. We include the proof of this one, since it is a prototype of many Martin’s
Axiom arguments.

Theorem 76. Assume MA(κ). Let {Uα : α < κ} be a collection of dense open
subsets of the real line R. Then there is a dense Gδ-set G such that G ⊂

∩
α<κ Uα.

Proof. Let B be a countable base for R. Let P be all pairs of the form (C⃗, F ), where

C⃗ is a finite sequence ⟨C0, C1, . . . , Cn⟩ of members of B, and F is a finite subset of

κ. For (C⃗ ′, F ′), (C⃗, F ) ∈ P , define (C⃗ ′, F ′) ≤ (C⃗, F ) iff C⃗ ′ extends C⃗, F ′ ⊇ F , and
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for each i ∈ dom(C⃗ ′) \ dom(C⃗), we have

Ci ⊂
∩
α∈F

Uα

.
Claim 1. (P,≤) is a partially ordered set.

We need to prove transitivity. Suppose (C⃗ ′′, F ′′) ≤ (C⃗ ′, F ′) ≤ (C⃗, F ). Then

C⃗ ′′ extends C⃗ ′ extends C⃗ and F ′′ ⊇ F ′ ⊇ F , so C⃗ ′′ extends C⃗ and F ′′ ⊃ F . If

i ∈ dom(C⃗)′′ \ dom(C⃗), then either i ∈ dom(C⃗ ′′) \ dom(C⃗ ′) in which case Ci ⊂∩
α∈F ′ Uα ⊂

∩
α∈F Uα, or i ∈ dom(C⃗ ′) \ dom(C⃗) in which case Ci ⊂

∩
α∈F Uα.

Thus (C⃗ ′′, F ′′) ≤ (C⃗, F ).

Claim 2. (P,≤) has the ccc.

Suppose (C⃗α, Fα) is in P for each α < ω1. We need to show that there is α ̸= β

such that (C⃗α, Fα) and (C⃗β , Fβ) are compatible. Since B is countable, so is the

collection of finite sequences from B, so there are α ̸= β such that C⃗α = C⃗β = C⃗.

Then it is easy to see that (C⃗, Fα ∪ Fβ) is less than or equal to both (C⃗α, Fα) and

(C⃗β , Fβ), and hence they are compatible.

Now we define some dense sets. For each B ∈ B and k ∈ ω, let

DB,k = {(C⃗, F ) ∈ P : ∃i > k(Ci ⊂ B)}.

Remark: The DB,k’s serve two purposes. One, they will make sure that the generic
filter G contains elements whose first coördinate is a sequence of arbitrarily long
length, and thus G will determine an infinite sequence < CG

0 , C
G
1 , · · · > of members

of B. Two, they make sure that
∪

i>n C
G
i is dense in R for each n. (We’ll argue

this later.)
Also, for each α ∈ κ, let

Eα = {(C⃗, F ) ∈ P : α ∈ F}.

The Eα’s will make sure that, for each α, there is some n so that
∪

i>n Ci ⊂ Uα.

Let us show that the DB,k’s and the Eα’s are indeed dense in P . Let (C⃗, F ) ∈ P .

Then (C⃗, F ∪ {α}) ≤ (C⃗, F ), so Eα is dense. Now fix B ∈ B and k ∈ ω. Suppose

C⃗ =< C0, C1, ..., Cn >. Let m > max{n, k} and choose Ci for i = n + 1, ...,m
such that Ci ⊂

∩
α∈F Uα, and also Cm ⊂ B ∩

∩
α∈F Uα. This is possible since∩

α∈F Uα is dense open. Let C⃗ ′ =< C0, C1, . . . , Cm >. Then (C⃗ ′, F ) ∈ DB,k and

(C⃗ ′, F ) ≤ (C⃗, F ). So DB,k is dense.
Let G be a filter in P meeting all Eα’s, α < κ, and all DB,k’s, B ∈ B and k ∈ ω.

Claim 3. If (C⃗, F ) and (C⃗ ′, F ′) are in G, then the sequence C⃗ extends C⃗ ′ or

vice-versa; i.e., if i ∈ dom(C⃗)∩dom(C⃗ ′), then Ci = C ′
i. Well, if (C⃗, F ) and (C⃗ ′, F ′)

are in G, then there is some (C⃗ ′′, F ′′) in G such that (C⃗ ′′, F ′′) is less than or equal

to both (C⃗, F ) and (C⃗ ′, F ′), and hence the sequence C⃗ ′′ extends both C⃗ and C⃗ ′.
The claim follows.

Now, since G meets all DB,k’s, there are arbitrarily long sequences appearing as

first coördinates of members of G, so we can define an infinite sequence C⃗G =<

CG
0 , C

G
1 , · · · > of members of B by defining CG

i to be the ith term of C⃗ for some
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(C⃗, F ) ∈ G such that i ∈ dom(C⃗). It follows from Claim 3 that it doesn’t matter
which member of G we use to define CG

i . Note that

C⃗G =
∪

{C⃗ : ∃F ((C⃗, F ) ∈ G)},

where C⃗ is viewed as a set of ordered pairs.

Claim 4. For each n ∈ ω,
∪

i>n C
G
i is dense in R. If (C⃗, F ) ∈ G∩DB,n, then we

have Ci ⊂ B for some i > n. It follows that every basic open set B ∈ B contains
CG

i for some i > n, from which it easily follows that
∪

i>n C
G
i is dense in R.

Claim 5. For each α < κ, there is some n ∈ ω such that
∪

i>n C
G
i ⊂ Uα. Fix

α < κ, and let (C⃗, F ) ∈ G∩Eα. Then α ∈ F . Let C⃗ =< C0, C1, . . . , Cn >. Suppose

i > n, and let (C⃗ ′, F ′) ∈ G such that i ∈ dom(C⃗ ′). There is some (C⃗ ′′, F ′′) ∈ G

with (C⃗ ′′, F ′′) less than or equal to both (C⃗ ′, F ′) and (C⃗, F ). Then CG
i = C ′′

i and

C ′′
i ⊂ Uα because (C⃗ ′′, F ′′) ≤ (C⃗, F ) and α ∈ F .

Finally, from Claims 4 and 5, it follows that
∩

n∈ω(
∪

i>n C
G
i ) is a dense Gδ subset

of R which is contained in
∩

α<κ Uα. �

A subset X of R is said to be first category in R if X is contained in the union
of countably many nowhere-dense subsets of R. Since the closure of a nowhere-
dense set is nowhere-dense, it is equivalent to say that X is first category iff the
complement of X contains a dense Gδ-set. (Some texts call sets of first category
meager, and their complements comeager. )

Theorem 77. Assume MA. Then the union of < 2ω-many first category subsets
of R is first category. In particular, any subset of R of cardinality < 2ω is first
category.

Proof. Assume MA, and let F be a collection of < 2ω-many first category subsets
of R. Let κ = |F|. For each F ∈ F , let N (F) be a countable collection of nowhere-
dense sets covering F . Since the closure of a nowhere-dense set is nowhere-dense,
we may assume each member of N (F) is closed. Let

U = {R \N : N ∈ N (F) for some F ∈ F}.

Then U is a collection of κ-many dense open sets. By Lemma 76, there is a dense
Gδ-set G ⊂ ∩U . Then R \ G is the union of countably many nowhere dense sets
and contains ∪F . Hence ∪F is first category. �

Remark. It is also true that assuming MA, the union of < 2ω-many Lebesgue
measure zero subsets of R has measure zero, and, in particular, any subset of R of
cardinality < 2ω has measure zero.

11. Q-sets, and normal vs. collectionwise normal

Example. Let A be a subset of the real line R. Let X(A) be the space whose
set is

(A× {0}) ∪ {(q, r) : q, r ∈ Q, r > 0}.
That is, X(A) consists of the points on the x-axis corresponding to a ∈ A, together
with all points in the upper half-plane with rational coördinates.
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Let the points in the upper half-plane be isolated, and for each a ∈ A and n > 0,
let a basic neighborhood of (a, 0) be

D(a, n) = {(a, 0)} ∪ {(q, r) : q, r ∈ Q and
√
(q − a)2 + (r − 1/n)2 < 1/n}.

That is, D(a, n) consists of the point (a, 0) together with all points with rational
coördinates in the interior of a disk of radius 1/n tangent to the x-axis at (a, 0).

Note that A× {0} is closed in X(A), and discrete as a subspace. It follows that
the collection of singletons {{(a, 0)} : a ∈ A} is a discrete collection of closed sets,
and hence the union of any subcollection, i.e., B × {0} for any B ⊂ A, is closed in
X(A).

Theorem 78. Let A ⊂ R, and let X(A) be as defined above. Then:

(a) If A = R, then X(A) is not normal;
(b) If A is uncountable, then X(A) is not collectionwise normal;
(c) If every subset of A is a Gδ-set in A, then X(A) is normal.

Hint for (c): Recall when working with Bing’s G, we noted that to prove normal-
ity for a space consisting of a closed discrete set plus isolated points, we need only
show that any subset of the closed discrete set, and its complement in the closed
discrete set, can be put into disjoint open sets.

Proof. (a) Let H = Q × {0} and K = P × {0}. Then H and K are closed and
disjoint. Suppose U and V are open and disjoint with H ⊆ U and K ⊆ V . For
each p ∈ P there exists np ∈ N such that D(p, np) ⊆ V . For each n ∈ N let
An = {p ∈ P : np = p}. Then

∪
n∈NAn = P. Since P is a Baire space there exists

n ∈ N such that An is dense in some interval (a, b) of R. Let q ∈ (a, b)∩Q and (pi)
an increasing sequence of irrationals in (a, b)∩An converging to q. Then any basic
neighborhood of (q, 0) must meet a basic open neighborhood D(pi, n) for some i.
So U ∩ V ̸= ∅.

(b) H = {{(a, 0)} : a ∈ A} is a discrete collection of closed sets. Suppose
U = {UH : H ∈ H} is a disjoint collection of open sets separating H. Then we may
identify each UH with a unique (qH , rH) ∈ UH where qH , rH ∈ Q. Contradiction.

(c) Let A ⊂ R such that every subset of A is Gδ in A. Let H ⊂ A and put
K = A \ H. Let {Hn : n ∈ ω} witness H is Fσ. For each n ∈ ω, set Un =
∪{D(x, 1) : x ∈ Hn}.

Certainly H × {0} ⊂ ∪n∈ωUn. Fix n ∈ ω and let y ∈ K. Let (a, b) ⊂ R be an
interval containing y and missing Hn and pick k ∈ N such that D(y, k)∩ (D(a, 1)∪
D(b, 1)) = ∅. If x ∈ Hn, then x ≤ a or x ≥ b, so D(y, k) ∩D(x, 1) = ∅ as well. It
follows that (y, 0) /∈ Un, so Un ∩ (K × {0}) = ∅ for each n ∈ ω.

Similarly, there is a collection {Vn : n ∈ ω} of open sets such that K × {0} ⊂
∪n∈ωVn and V n ∩ (H × {0}) = ∅ for all n ∈ ω. By Lemma 7500.45, H × {0} and
K × {0} may be separated, so X(A) is normal. �

Remark. Lemma 7500.45 says: Suppose H and K are disjoint subsets of a
space X. If H can be covered by countably many open sets whose closures miss K,
and K can be covered by countably many open sets whose closures miss H, then
H and K can be separated by disjoint open sets.

An uncountable subset A of R whose every subset is Gδ in A is called a Q-set.

Theorem 79. If 2ω < 2ω1 , then there are no Q-sets.
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Hint: How many Gδ-sets can there be in a space with a countable base?

Proof. Suppose A is an uncountable subspace of reals and 2ω < 2ω1 . Then A is has
a countable basis {Bn : n ∈ ω}. Define f : τA → 2ω by

f(U)(n) =

{
1 if Bn ⊆ U

0 else
.

Suppose U ̸= V ∈ τA. Then {n ∈ ω : Bn ⊆ U} ̸= {n ∈ ω : Bn ⊆ V }. Wlog assume
n ∈ {n ∈ ω : Bn ⊆ U} \ {n ∈ ω : Bn ⊆ V }. Then f(U)(n) = 1 ̸= 0 = f(V )(n), so
f(U) ̸= f(V ). So f is an injection.

Let Gδ be the family of Gδ-subsets of A. For each G ∈ Gδ choose a sequence of
open sets (UG

n ) ∈ τωA such that G =
∩

n∈ω U
G
n . Clearly the mapping G 7→ (f(UG

n ))
is an injection from Gδ into (2ω)ω.

We have |Gδ| ≤ (2ω)ω = 2ω < 2ω1 ≤ |P(A)|, so not every subset of A is Gδ. �

Theorem 80. Let κ be an uncountable cardinal, and assume MA(κ). Then every
subset of R of cardinality κ is a Q-set.

Proof. Let A ⊂ R have cardinality κ, where κ < c, and let B ⊂ A. Let C be a
countable base for A. The plan is to use MA(κ) to show that there is a sequence
⟨C0, C1, . . . ⟩ of members of C such that every x ∈ B is in infinitely many Ci’s,
while every y ∈ A \ B is in only finitely many Ci’s. If we do this, then note that
B =

∩
n∈ω(

∪
i>n Ci), and hence B is a Gδ-set in the space A.

To this end, let P be all pairs of the form (C⃗, F ), where C⃗ is a finite se-
quence ⟨C0, C1, . . . , Cn⟩ of members of C, and F is a finite subset of A \ B. For

(C⃗ ′, F ′), (C⃗, F ) ∈ P , define (C⃗ ′, F ′) ≤ (C⃗, F ) iff C⃗ ′ extends C⃗, F ′ ⊇ F , and for

each i ∈ dom(C⃗ ′) \ dom(C⃗), we have Ci ∩ F = ∅.
That (P,≤) is a partially ordered set, and has the ccc, follows in the same way

as in the proof of Theorem 76.
Now we define some dense sets. For each b ∈ B and k ∈ ω, let

Db,k = {(C⃗, F ) ∈ P : ∃i > k(b ∈ Ci)}.
Also, for each a ∈ A \B, let

Ea = {(C⃗, F ) ∈ P : a ∈ F}.
That these sets are dense in P follows easily as in the proof of Theorem 76.

Let G be a filter in P meeting all Ea’s, a ∈ A \ B, and all Db,k’s, b ∈ B and
k ∈ ω. Since G meets all Db,k’s, there are arbitrarily long sequences appearing as
first coordinates of members of G, so we can define an infinite sequence

C⃗G =< CG
0 , C

G
1 , · · · > of members of C by defining CG

i to be the ith term of C⃗ for

some (C⃗, F ) ∈ G such that i ∈ dom(C⃗). Note that

C⃗G =
∪

{C⃗ : ∃F ((C⃗, F ) ∈ G)},

where C⃗ is viewed as a set of ordered pairs.
Fix b ∈ B. Since G meets Db,k for each k ∈ ω, it follows that b ∈ CG

i for

infinitely many i. Now fix a ∈ A \ B. There is some (C⃗, F ) ∈ G ∩ Ea. Then

a ∈ F . Let C⃗ =< C0, C1, . . . , Cn >. Suppose i > n, and let (C⃗ ′, F ′) ∈ G such that

i ∈ dom(C⃗ ′). There is some (C⃗ ′′, F ′′) ∈ G with (C⃗ ′′, F ′′) less than or equal to both

(C⃗ ′, F ′) and (C⃗, F ). Then CG
i = C ′′

i and a ̸∈ C ′′
i because (C⃗ ′′, F ′′) ≤ (C⃗, F ) and
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a ∈ F . It follows that a ̸∈
∪

i>n C
G
i , and hence a is in only finitely many terms of

C⃗G. Now the result follows as indicated in the first paragraph. �

Corollary 81. Assume MA(ω1). Then there is a Q-set, and hence there is a
normal first-countable separable non-collectionwise normal space.

Corollary 82. Assume MA. Then 2κ = 2ω for every infinite cardinal κ < 2ω.

Proof. Assume MA, and let κ < 2ω be an infinite cardinal. There is a subset A of
the real line of cardinality κ. By MA and the previous theorem, every subset of A
is Gδ in A. There is a countable base for A and every open subset of A is a union
of members of this base, so there are no more than 2ω-many open sets in A. Each
Gδ-set is by definition a countable intersection of open sets, so there are no more
than (2ω)ω = 2ω×ω = 2ω many Gδ-sets in A. So the cardinality of the power set of
A, which is 2κ, is no more than 2ω. And of course it is at least that, so 2κ = 2ω. �

Remark. Bob Heath showed that if there is a normal first-countable separable
non-collectionwise normal space, then there is a Q-set. So, by 78(c), the existence
of such a space is equivalent to the existence of a Q-set.

Lemma 83. Let X be a separable space, and let D be a closed discrete subset of
X. If 2|D| > 2ω, then X is not normal.

Proof. Let X be a normal space, let D ⊂ X be closed discrete, and let G ⊂ X be
dense. For H ⊂ D, let UH and VH be disjoint open sets containing H and D \H,
respectively. Define f : P(D) → P(G) by f(H) = UH ∩G.

Let H,K ⊂ D with H ̸= K. Without loss of generality, we may assume H \K
is nonempty. Then G ∩ (UH ∩ VK) is a nonempty subset of f(H) missing f(K), so
f(H) ̸= f(K). Since f is one-to-one, 2|D| ≤ 2|G|.

This proves a more general version of the lemma. Apply this with G a countable
dense set to obtain the lemma as stated. �

Remark. Since 22
ω

> 2ω, Lemma 83 gives another way to show Theorem 78(a),
the square of the Sorgenfrey line is not normal, and the like.

Corollary 84. If 2ω < 2ω1 , then every normal separable space is collectionwise
normal.

Hint. In a normal space, any countable discrete collection of closed sets can be
separated by disjoint open sets.

Proof. Suppose 2ω < 2ω1 and let X be a normal, separable space. Let H be a
discrete collection of closed sets in X. For each H ∈ H, choose xH ∈ H and put
D = {xH : H ∈ H}. Then D is closed discrete, so 2|D| ≤ 2ω, implying |D| ≤ ω and
|H| ≤ ω.

Enumerate H = {Hi : i ∈ ω}. For each i ∈ ω, observe that Hi and (∪H) \ Hi

are disjoint closed sets. Since X is normal, for each i ∈ ω there exist disjoint open
sets Ui and Vi containing Hi and (∪H) \ Hi, respectively. For each i ∈ ω, put
Wi = Ui ∩ (∩j<iVj). Certainly Hi ⊂Wi for each i ∈ ω. Moreover, if i < j ∈ ω then
Wi ∩Wj = ∅ since Wi ⊂ Ui and Wj ⊂ Vi. �



40 MH 7550: SET THEORETIC TOPOLOGY

12. Almost disjoint families

A collection A of infinite subsets of ω is said to be almost-disjoint if the inter-
section of any two distinct members of A is finite. By a standard Zorn’s Lemma
argument, every almost-disjoint family A is contained in a maximal almost-disjoint
family A′.

Theorem 85. There is an almost-disjoint family of subsets of ω of cardinality 2ω.

Proof. Clearly it suffices to show that there is an almost-disjoint family of subsets
of some countable set, such as Q, of cardinality 2ω. For each x ∈ R, let Sx be the
terms of a sequence of rationals converging to x. Then x ≠ y ⇒ Sx ∩ Sy is finite ,
so {Sx : x ∈ R} is an almost-disjoint family of subsets of Q of cardinality 2ω. �

It is easy to check that any finite partition of ω into infinite sets is a maximal
almost-disjoint family, but ...

Lemma 86. No countably infinite almost-disjoint family of subsets of ω is maximal.

Proof. Suppose {An : n ∈ ω} is an almost-disjoint family of subsets of ω. We will
prove that it cannot be maximal.

First let’s note that each finite union
∪

i≤nAi has infinite complement, for oth-
erwise An+1 would have to intersect some Ai, i ≤ n, in an infinite set. Now for
each n choose xn ∈ ω \ ({xi : i < n} ∪

∪
i≤nAi). Let X = {xn : n ∈ ω}. Then X is

infinite but X ∩An is finite for each n. Hence {An : n ∈ ω} is not maximal. �
Theorem 87. Assume MA. Then every infinite maximal almost-disjoint family
of subsets of ω has cardinality 2ω.

Proof. Let A = {Aα : α < κ} be an almost-disjoint family (of infinite subsets of ω)
of cardinality κ, where ω ≤ κ < 2ω. Let P be all pairs of the form (x⃗, F ), where
x⃗ = ⟨x0, x1, . . . , xn⟩ is a finite sequence of members of ω and F is a finite subset of
κ. For (x⃗′, F ′) and (x⃗, F ) in P , define (x⃗′, F ′) ≤ (x⃗, F ) if and only if x⃗′ extends x⃗,
F ′ ⊃ F , and for each i ∈ dom(x⃗′) \ dom(x⃗) we have xi /∈ ∪α∈FAα.

To see that (P,≤) is a poset we need to show transitivity. Suppose (x⃗′′, F ′′) ≤
(x⃗′, F ′) ≤ (x⃗, F ). Then x⃗′′ extends x⃗′ extends x⃗ and F ′′ ⊃ F ′ ⊃ F , so x⃗′′ extends x⃗
and F ′′ ⊃ F . If i ∈ dom(x⃗′′) \ dom(x⃗), then either i ∈ dom(x⃗′′) \ dom(x⃗′) in which
case xi /∈ ∪α∈FAα since xi /∈ ∪α∈F ′Aα and F ⊂ F ′, or i ∈ dom(x⃗′) \ dom(x⃗) in
which case xi /∈ ∪α∈FAα. Thus (x⃗

′′, F ′′) ≤ (x⃗, F ).
To see that (P,≤) has the ccc, suppose (x⃗α, Fα) ∈ P for each α < ω1. There

are only countably many finite sequences in ω, so there exist α ̸= β < ω1 with
x⃗α = x⃗β = x⃗. Certainly (x⃗, Fα ∪ Fβ) ≤ (x⃗α, Fα) and (x⃗, Fα ∪ Fβ) ≤ (x⃗β , Fβ), so
(x⃗α, Fα) and (x⃗β , Fβ) are compatible.

For each k ∈ ω, put Dk = {(x⃗, F ) ∈ P : |{xi : i ∈ dom(x⃗)}| > k}. For
each α < κ, put Eα = {(x⃗, F ) ∈ P : α ∈ F}. Let (x⃗, F ) ∈ P . Then (x⃗, F ∪
{α}) ≤ (x⃗, F ), so Eα is dense in P for each α < κ. Fix k ∈ ω and suppose
x⃗ = ⟨x0, x1, . . . , xn⟩. Take {xn+1, . . . , xn+k+1} ⊂ ω \ (∪α∈FAα ∪ {xi : i ∈ dom(x⃗)})
so that xi ̸= xj whenever n + 1 ≤ i < j ≤ n + k + 1. This is possible since any
finite subcollection of A must leave infinitely many members of ω uncovered. Put
x⃗′ = ⟨x0, . . . , xn, xn+1, . . . , xn+k+1⟩. Then (x⃗′, F ) ∈ Dk and (x⃗′, F ) ≤ (x⃗, F ), so Dk

is dense in P .
Let G be a filter in P meeting Eα and Dk for each α < κ and each k ∈ ω. If

(x⃗, F ), (x⃗′, F ′) ∈ G then there exists (x⃗′′, F ′′) ∈ G less than or equal to both of



MH 7550: SET THEORETIC TOPOLOGY 41

them, whence x⃗′′ extends both x⃗′ and x⃗. It follows that x⃗′ extends x⃗, or vise-versa.
Let x⃗G = ⟨xG0 , xG1 , . . .⟩, where xGi is the ith term of x⃗ for some (x⃗, F ) ∈ G with
i ∈ dom(x⃗). Put A = {xGi : i ∈ ω}. Since G meets every Dk, we know |A| = ω.

Finally, fix α < κ and let (x⃗, F ) ∈ G ∩ Eα, so α ∈ F . Let x⃗ = ⟨x0, x1, . . . , xn⟩.
Suppose i > n and let (x⃗′, F ′) ∈ G such that i ∈ dom(x⃗′). Take (x⃗′′, F ′′) ∈ G less
than or equal to both (x⃗′, F ′) and (x⃗, F ). Then xGi = x′′i /∈ Aα, so |A∩Aα| < ω. It
follows that A ∪ {A} is an almost-disjoint family, hence A is not maximal. �

Example. Let A be an almost-disjoint family of subsets of ω. Define a space
ψ(A) as follows. The underlying set for ψ(A) is ω∪{xA : A ∈ A}, where {xA : A ∈
A} is a set of distinct points not in ω. Define the topology by declaring the points
of ω to be isolated, and the nth member of a local base at xA to be

b(xA, n) = {xA} ∪ (A \ n).

.

Theorem 88. ψ(A) is a locally compact Hausdorff space, and {xA : A ∈ A} is a
closed discrete subset of ψ(A). Thus, if A is infinite, then ψ(A) is not countably
compact.

Proof. Consider the basic open nbhd b(xA, 0) = {xA} ∪A of xA. Since every open
set U containing xA contains b(xA, n) for some n, U therefore contains all but at
most finitely many points of b(xA, 0). Thus b(xA, 0) is compact. Since all points
other than the xA’s are isolated, we have that ψ(A) is locally compact.

To see Hausdorff, suppose A ̸= B ∈ A. Then A ∩ B is finite, so there is some
n ∈ ω such that b(xA, n) ∩ b(xB , n) = ∅. Since all “non-xA’s” are isolated, it easily
follows that ψ(A) is Hausdorff. (Remark. This is the only place in the proof where
“almost-disjoint” is needed.)

Let D = {xA : A ∈ A}. Every point outside of D is isolated, so D is closed.
Also, b(xA, 0) ∩D = {xA}, so D is discrete. Thus D is closed discrete. �

A space X is said to be pseudocompact if every continuous f : X → R has
bounded range.

Theorem 89. Every countably compact space is pseudocompact.

Proof. Let X be countably compact, and suppose f : X → R is continuous. Then
f(X) is a countably compact subset of R. But countable compactness and com-
pactness are equivalent in metric spaces, so f(X) is compact, hence bounded. Thus
X is pseudocompact. �

Theorem 90. If A is an infinite maximal almost-disjoint family of subsets of ω,
then ψ(A) is pseudocompact (but not countably compact).

Proof. Let A be an infinite MAD family of infinite subsets of ω. Let f : ψ(A) → R
be continuous and suppose on the contrary that f has unbounded range. Without
loss of generality, we may assume there exists an increasing sequence (xn)n∈ω in ω
such that (f(xn))n∈ω is increasing and unbounded. Let X = {xi : i ∈ ω}. Since A
is MAD, there exists A ∈ A with |X ∩A| = ω. Let (an)n∈ω be the order-preserving
indexing of A. Then (an)n∈ω → xA but (f(an))n∈ω ̸→ f(xA), a contradiction. �
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13. CH contstruction of a compact S-space

An S-space is a regular hereditarily separable space which is not hereditarily
Lindelöf; an L-space is a regular hereditarily Lindelöf space which is not hereditarily
separable. By Theorem 75, assuming MA(ω1) there are no compact L-spaces.
MA(ω1) also implies there are no compact S-spaces. On the other hand, a Suslin
line (compactified by adding a first and last point) is a compact L-space. In this
section, we show how the Continuum Hypothesis (CH) can be used to construct a
compact S-space.3

Throughout this section, 2ω = ω1 is assumed. Let R = {xα : α < ω1}, where
Q = {xn : n < ω}.

Lemma 91. Let
A = {C ⊂ R : |C| = ω and |C| > ω}.

It is possible to enumerate A as {Aα : ω ≤ α < ω1} such that:

(∗) ∀α ≥ ω(Aα ⊂ {xβ : β < α}).

Proof. By CH, A has cardinality ω1, so we can let {A′
α : α < ω1} be a listing of

A in type ω1. Let Aω = A′
α where α is least such that A′

α ⊂ {xn : n < ω}; since
{xn : n < ω} is the rationals, there will always be such an A′

α; indeed, there are
ω1-many α such that A′

α ⊂ {xn : n < ω}.
Now suppose Aβ has been defined for each β < α, where α < ω1. Let Aα = A′

δ,
where δ is least such that A′

δ ⊂ {xβ : β < α} and A′
δ ̸= Aβ for any β < α. This

defines Aα for all α < ω1.
Clearly (∗) holds by construction; it remains to prove that {Aα : ω ≤ α < ω1}

= A, which will be the case if for every γ < ω1, there is some α < ω1 such
that Aα = A′

γ . To this end, fix γ < ω1. There will be some ρ < ω1 such that
A′

γ ⊂ {xβ : β < ρ}. Then at any step α ≥ ρ, Aα = A′
γ if γ is least such that A′

γ

has not already been chosen. Since the induction goes on for ω1 many steps and
there are only countably many ordinals µ < γ, A′

γ must get chosen at some stage.
Hence {Aα : ω ≤ α < ω1} = A. �

Let X = R, and for each α ≤ ω1 let Xα = {xβ : β < α}. Let A be indexed as
in Lemma 91. We inductively define a topology τα on Xα. Let τω be the discrete
topology on Xω. Note that Aω ⊂ Xω. Choose a sequence n0 < n1 < ... such that
xni

→ xω in the Euclidean topology and such that xni
∈ Aω if xω ∈ Aω. Let

Bω = {{xni}i≥k ∪ {xω} : k ∈ ω},
and let τω+1 be the topology on Xω+1 generated by τω ∪ Bω. Note that τω+1 is
locally compact Hausdorff, has a countable base of clopen sets, and every subset of
Xω+1 which is open in the Euclidean topology of Xω+1 is open in τω+1 (in short,
τω+1 is finer than the Euclidean topology). Also, xω ∈ Aω in τω+1 if this is true in
R.

Lemma 92. Suppose α < ω1 and for all β < α we have defined a toplogy τβ on
Xβ satisfying:

3The results in these notes related to S-and L-spaces were proven by the late 1970’s. In the early
1980’s, S. Todorcevic proved that under the Proper Forcing Axiom PFA (an axiom stronger than
MA(ω1), there are no S-spaces. Whether or not there are L-spaces in ZFC remained unsettled

until 2006 when J. Moore surprised everyone by constructing an L-space without assuming any
special axioms of set theory.
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(i) (Xβ , τβ) is a locally compact Hausdorff space with a countable base of clopen
sets, and τβ is finer than the Euclidean topology on Xβ;

(ii) γ < β ⇒ τγ ⊆ τβ and τγ = τβ � Xγ(= {U ∩Xγ : U ∈ τβ});
(iii) If γ < δ < β and xδ is in the Euclidean closure of Aγ , then xδ ∈ clτδ+1

(Aγ).

Then there is a topology τα on Xα satisfying conditions (i)–(iii), and hence this
defines τα for all ω ≤ α < ω1.

Proof. For limit α, let τα be the topology generated by
∪

β<α τβ . It is straightfor-

ward to check that conditions (i)-(iii) hold with β = α.
If α is a successor, say α = β+1, then Xα = Xβ ∪{xβ}, and the task is to define

a nbhd base Bβ at xβ so that the topology generated by τβ ∪ Bβ satisfies (i)–(iii).
If α is a successor, say α = β + 1, then Xα = Xβ ∪ {xβ}. Enumerate {γ <

α : xβ ∈ Ag} as {γi : i ∈ ω}. Let x0,0 ∈ B(xβ , 1) ∩ Aγ0 and let C0 = {x0,0}.
(Here B(x, ϵ) is the ball about x of radius ϵ with respect to the Euclidean distance
d.) If Ci and xj,i has been defined for i ≤ n and j ≤ i, for each j ≤ n + 1 let
xj,n+1 ∈ B(xβ , 1/2

n+1) ∩Aγj . Then let Cn+1 = Cn ∪ {xj,n+1 : j ≤ n+ 1}.
Let C = {xj,n : n ∈ ω and j ≤ n}. Every ball about xβ contains xj,n for all

sufficiently large n, and hence contains all but finitely many members of C. So
C = {ci : i ∈ ω} is a sequence which converges to xβ is the Euclidean topology.
Let Ki be a compact open set in Xβ containing ci and of diameter ≤ 1

i+1 ; this is
possible since the topology of Xβ is a locally compact 0-dimensional topology finer
than the Euclidean topology. Then let sets Uβ,m = {xβ} ∪

∪
i≥mKi for m ∈ ω be

a local base Bβ at xβ in Xα.
Let τα be the topology on Xα generated by τβ ∪ Bβ . �

Theorem 93. Let Xα and τα, α < ω1, be as in Lemma 92. Let τω1
be the topology

on X = R generated by
∪

ω≤α<ω1
τα. Then (R, τω1) is locally compact Hausdorff,

hereditarily separable, and non-Lindelöf, hence its one-point compactification is a
compact S-space.

Proof. That (R, τω1) is locally compact Hausdorff follows from 92 (i) and (ii). Cer-
tainly {Xα : α < ω1} is an open cover with no countable subcover, so (R, τω1) is
not Lindelöf.

Let Y ⊂ R be uncountable and let D be a countable dense (in the Euclidean
topology) subset thereof. Since |D| > ω—with D the Euclidean closure—there
exists γ < ω1 such that D = Aγ . Let δ ∈ (γ, ω1). By 92 (iii),

xδ ∈ Aγ = Y =⇒ xδ ∈ clτδ1(Aδ) =⇒ xδ ∈ clτω1
(Aγ).

It follows that |Y \ clτω1
(Aγ)| ≤ ω, so D ∪ (Y \ clτω1

(Aγ)) is a countable dense (in

τω1) subset of Y . Thus, (R, τω1) is hereditarily separable. �


