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SUMMARY

Capture-mark-recapture data has been extensively used for the study of survival. However, re-
cruitment and population growth rate can be investigated as well. The study of recruitment is
shown to be equivalent to the study of survival in reverse and can be carried out by inverting
capture histories. The natural parameter in this approach-—here called seniority probability— is, at
each occasion, the probability of being previously in the population. An overall likelihood is then
presented that describes the gains and losses to the population by means of survival and seniority
probabilitics. This likelihood can be easily modified for the direct study of population growth rates
between occasions.

1. Introduction

In capture-mark-recapture {CMR) experiments, animals are captured, marked, released, and re-
captured many times by repeated sampling. The result is a set of capture histories, one per observed
animal, informative on survival, recruitment, and the size of the population. The early models of
Leslic {1952) and Darroch (1959), and the fully stochastic models of Jolly (1965) and Seber (1965)
addressed all of those questions. Later, CMR analysis for open populations has turned largely to-
ward the study of survival. The flexibility achieved, stemming from the paper of Cormack (1964),
has significantly contributed to the advancement of population biology by allowing survival to be
(1) compared between populations and groups in the population and (2) tested for the effects of
environmental variables {Lebreton, Pradel, and Clobert, 1993). The biological questions about fe-
cundity and accession to reproduction whether for fundamental or applied purposes would probably
largely bencfit from a similar flexibility in the analysis of recruitment. Unfortunately, the current
general models are not, well sutted to these aims: In the Jolly—Seber model, recruitment and popula-
tion size are modeled by means of discrete estimators, whereas the continuous parameters proposed
by Cormack (1985, 1989) and Crosbie and Manly (1985} are not directly interpretable in biological
terms. The gap has been partially filled by elaborating on survival models in particular situations
such as the recruitment of breeders within the population of origin (Lebreton et al., 1990; Clobert
et al., 1994). In comparison, the approach to the analysis of recruitment we propose (Section 3}
is at once general (undifferentiated recruitment) and specific (survival is not part of the models),
allowing casy examination of questions of fypes (1) and (2), earlier. The simultaneous nse of the
recruitment pararmneters and of survival parameters in a single likelihood leads then to the study of
population growth rates (PGRs} (Section 4). An example illustrates some aspects of the modeling
of recruitment and the ability to directly estimate PGRs (Section 5).

2. Assumptions and Notation

The sampling scheme considered throughout the paper is that of s successive random samples, not
necessarily equally spaced over time. Animals captured are individually marked or noted if already
marked and immediately released or removed. No mark is lost or misread. There is no temporary
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emigration (except possibly random). Animals are further supposed to be identical and uniquely
identifiable and to have independent fates. Finally, for convenience, parameters are considered in
the proofs as time-specific, although the approach proposed is valid more broadly (e.g., for constant
survival and/or capture probabilitics).

The following notation is used throughout.

d = data sct,

h = capture history,

¢; = cvent at time i (0 = noneobservation, 1 = observation),

1 = indicator of right censorship (n equals 1 if the animal was removed, 0 if it was released),
e = index of the earliest observation in h,

{ = index of the last observation in A.

The notation #{conditions} hereafter designates the number of animals that fulfill the conditions.

u; = number of animals observed for the first time at i(#{e = i}),

n; = number of animals observed at i(#{e; = 1}),

1; = number of animals observed for the last time at i(#{{ = i}),

d; = number of animals removed from the population at ¢(#{l = i,n =1}).

“just before” and “just after” used in what follows for the sake of generality can be replaced
with “at” when there are no removals nor introductions.

4; = seniority probability, probability that an animal present just before time i was already
present just after time ¢ — 1,

@; = survival probability, probability that an animal present just after time ¢ will still be present
just before time ¢ + 1,

p; (r;) = capture probability, probability of being captured at time ¢ for an individual present
just before (after) time ¢ (p; and r; differ if some animals are removed),

pi = population growth rate hetween ocecasion ¢ and occasion £ 4 1,

u; = probability of being released for an individual captured at time ¢,

£; = probability of not being scen before time ¢ for an animal present just before time ¢,

x; = probability of not being seen after time 4 for an animal present just after time 1,

N; = expected population size at time 7 (we will distinguish N, the population size just hefore
the sample % is taken, from Nf, the population size just after the releases at time ).

3. The Recruitment Analysis
The idea here is to condition on the time of the last observation and to read the capture histories
backward. This induces a simple “duality” relationship between survival and recruitment models
in. which the natural counterpart of the survival probability is the probability of being in the
population earlier than the present date. This is the seniority probability of Section 2 and the
inverse of the dilution rate in Jolly (1965, p. 234). For instance, with s = 6, the capture history
(110100 can be read: The animal was last caught at occasion 4; it was not recruited between occasion
4 and 3, was not captured at 3, was not recruited between 3 and 2, was captured at 2, and was
not seen earlier than 2. Thus, condifional on the last capture ot 4, its associated probability is
~4(1 — r4)y3rafs. Now, if we write the capture history backward, that is, as 001010, the associated
probability, conditional on the first capture at 3, would be ¢4{1 — pa)apsxs. One can observe a
formal correspondence between the two expressions.

More generally, the probability of the generic capture history b = €1,...,¢s in the recruitment
analysis is

{ t—1
o= { 11 YTl - e

=41 i=e

where & = (1 — ) + (1 —ri—1)&—1, 1 = 2,...,5 {£1 = 1), whereas in the survival analysis, it is

I—1 !
i (1o 11 0

f==e41

where x; = (1 — &) + ¢{l — pivi)xiy1, ¢t = 1,....8 — 1 {xs = 1). Reversing kA amounts to
renumbering the occasions from the last one (change of index § = s—i+1). The second expression,
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b applied to the reverse of h, can then easily be shown to be formally equivalent to the first with
g D1, 02, ..., ¢s—1 corresponding, respectively, t0 ¥s, Ys—1,...,y2 and pa,p3, ..., ps corresponding,
k- respectively, to ro_(,7s_2,...,r1. The recruitrent analysis of a data sct d is thus identical to the

survival analysis of its dual {reverse) data set d’.

In practice, carrying out a survival analysis of the reverse data set to study recruttment will
work with all models nested in the model—denoted (i4q, Tt4q ) by analogy with the survival models
notation (Lebreton et al., 1992} —where seniority and capture probabilities vary over time inde-
pendently in g groups. This includes, among others, models with parameters common to several
groups and models with parameters constant over time or functions of an external variable. Two
important limitations of the approach are trap and age (counted from markiong time) dependence,
which obviously depend on the direction of time.

4. The Overall or PGR Analysis in the Time-Specific Context

We reason here conditionally on the total numbcer captured. The estimation of recruitment and
survival parameters is then based on the multinowmial distribution of the ever secn animals among
the potential capture histories (independent and identical individuals).

Moreover, relations among population sizes at different occasions follow from conditional bi-
nomial distributions that result from the hypotheses of Section 2. Thus, the expected number of
animals present both just after ¢ and just before ¢ + 1 is, from the survival point of view, N{"(;S.l-
and, from the recruitment point of view, N-it;.1"f'i+l- Hence,

N, .
+1 @
= TJ:L = —?~ (1)
N Yi41

13

N and Nz-+ differ if some animals are removed: Ni+ =NT{1-pi)+ N7 pips = N {1 -pi(1 — i)
so that

Nipa :pg,i _ bl —pi(1 — )
N Q'N,:_ Vit

z

Finally, for the same reason, the probability of being missed at occasion 4 for an animal present in
the population just after ¢ is 1 —r; = (1 — p;)/(1 — p; (1 — p;)). Consequently,

1—pia .
Si—11 "‘-121"%5(61:1-
1—pq(1 _IH—I)& )

= (1—7)+%

The probability of each capture history A conditional on the total number captured can now
be reached as the ratio of the expected number of animalg, my,, with this capture history to the
expected total number of animals captured.

my = N: &Cpﬁ He P, (h.),
where
i—1 (-1 _
= {Hd)t}{ [ e —pt }Pt(l — ) ()
i=e i=e+1

(Ps(h) is the usual probability of A in the survival model except that the removal process is
modeled.) By noting that

e—1

[[ e pitt~p)
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my, can be written

-1
I—IG}t e—1
mi = Ni &5 {Hp ‘1 pi) ](‘}{H“v }{H(I“Pz(luz))}(lﬂz)ﬂ(ﬂm)lﬂ
H’ﬁ i=e i=1
=2

The sum M of the my,'s over all observable capture histories can be conveniently calculated as the
sum of the expected number of animals seen for the first time at each occasion,

i—1

B EIE R TIE R
jwrz& i pt—j\’l 2517_ i i
i=1 | H"fj
j=2

The conditional probability of h, Py(h).= mp /M is therefore

Pg(h)—ge{ H }{Hm (1—pa)'™ ‘*}{Hm}{nm }{l lm(lm))}

i=e+1 {

i=1
(1= ) (axn) /Z&{H%lmlﬂg))}{ H »}pz-.

=1 J=i+l

The likelihood L for a set §} of observed animals w s the product of the conditional probabilities
of all individual capture histories.

L =[] Psrtw)) = [T Potr)®t.
w h

In terms of the w;'s, n;'s, v;'s, and d;’s
T 1 i ¥ 1 T 1

< Z ug g ;- E vi—ng E v
L{g,p, 7o) = H(Ei“) (’n‘m ) (pﬁf”) {(1 o J ((/)1-“ ) (,,,,,;uidi)
i=1
2w
vy —d;
=

: [il - Hi)d‘} {(1 —pi{l - M))j}:
5 i—1 K
/(ZEi{Hqu(l*PJ(l—ﬂj))}{ 1T 'Y_;}pi)” : (2)
=1 j=1 F=i+1

5. Example

The previous results are now applied to the classical example of a population of female black-kneed
capsids (Jolly, 1965). A set of sufficient statistics for the Cormack -Jolly—Seber model (Cormack,
1964; Jolly, 1965; Seber, 1965) comprises the numbers released at each oceasion (s; in Jolly's
notation) and the numbers among those released at j that are next recaptured at ¢ (ny; in Jolly’s
notation}. The same quantities from the dual data set are, respectively, the immbers captured at
each occasion {n; in Jolly’s notation) and the numbers among those captured at j that were last
released at ¢ (again the n;;'s). The goodness-of-fit. test based on those quantities (Burnham et al.,
1987) (and incomplete as such because the individual capture histories for this data set are not
available) leads to acceptance of model (v, 7¢) (x%(44) = 50.49, P = 0.77) as a starting point for
recruitment analysis.

Estimates of the proportions of new recruits (and their confidence intervals) are then obtained
numerically using the program SURGE (Pradel and Lebreton, 1991) under different models {Table
1). Time dependency and constancy over time were considered for seniority and capture proba-
bilities and, for the seniority probabilities only, two types of trends over time: logistic linear and
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logistic quadratic lincar. The best model was selected on the basis of minimum Akaike information
criterion. All this is standard methodology in survival analysis {(Lebreton et al., 1992). The con-
stancy of capture probabilities was accepted (likelihood ratio test [LRT] between models (e, r¢)
and {v,7): x2(10) = 7.32, P = 0.70), but the constancy of v was then strongly rejected (LRT
between (v;,r) and (v, 7):x%(11) = 186.98, P < 107%}. A model with a trend in -y of the form
logit{y) = @ + bT (Clobert and Lebreton, 1985) yielded an apparently significant positive slope
(b = 0.274, 0, = 0.026), that is, emergences and immigration declined; however, this specific form
of variation over time was insufficient to model the time dependence in v {LRT between (v, r) and
(Yo, 7): X7(10) = 41.44, P < 1074}, The second-order trend was not accepted either {LRT be-
tween (71, 7) and (Yo por4era, 7 X2 (9) = 32.66, P < 1073). Table 2 gives the maximum likelihood
estimates of the . parameters under the best model {y,7).

Table 1
Analysis of recrutbment of female black-kneed capsid. The multinomial models of capture—recapture
are designated by the structure put on the parameters; for instance, Yoo, Means linear frend
on the seniority probabilities fon a logit scale), capture rate constant. Then, follow the number of
identifiable parameters, the relative deviance of the model (as given by program SURGE), and the
Akaike information criterion (AIC) for comparison between models (AIC = deviance + 2 * #par).

Model # par Deviance AIC
Ve Tr 23 4896.11 4942.11
YT 13 4903.43 4929.43
YT 2 5090.41 5094.41
Ya+bTs T 3 4944 87 4950.87
Tat+b+eT2, T 4 4936.09 4944.09

Table 2

Estimates of seniority probabilities v for o population of female dluck-kneed capsids when
r is constant. Confidence intervals are based on the normal asymplotic distribution of the
estimators; they cannot be computed for parameters estimated on o boundary. vy is not estimable.

95% Confidence interval

i i Lower Upper
3 0.794 ) 0.584 0.514
T4 0.666 0.529 0.779
5 0.544 0.443 0.641
6 (.855 0.663 0.947
7 0.789 0.638 0.885
8 0.858 0.714 0.936
9 1.000 —
10 0.918 0.725 0.979
11 0.850 0.672 0.940
12 0.824 0.663 0.918
13 0.955 0.502 0.998

For the simultaneous study of recruitment and death processes, likelihood {2) was maximized
using a quasi-Newton algorithm (implemented in language Gauss). The likelihood was successively
treated as a function of the ¢ and + parameters constrained within [0,1] by a logistic transform
and as a function of the ¢ and p parameters (substituting v from (1}} with the ¢'s constrained
again within [0,1] by a logistic transform and the p’s forced to remain positive by a logarithmic
transform. This second set of conditions is, in fact, less strict, as it allows values of v {(computable
from ¢ and p using (1)) greater than 1. As a consequence, the minimum reached differed slightly
in the two cases (Tables 3a and 3b). Also, convergence was difficult to achieve in the second case.
The control over convergence and over the reasonableness of the estimates was thus weaker with p
as a fundamental parameter.

For both types of analyses, with no constraint applied and time-dependent parameters, the
estimates were exactly those of Jolly {1965}
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Table 3
Mazimum likelihood estimates and 95% confidence intervals for a population of female
black-kneed capsids under the overall model: numerical optimization of (a) L{¢, p. v, 1)
and (b) L(p, p, p. p} where L s the logarithmic likelihood. Confidence intervals
are based on the normal asymptotic distribution of the estimators; they cannot be
computed for parameters estimated on a boundary. p; (case {a)) and %; (case (b))
are computed, respectively, as c;S,/—h_H and é;_ 1/ pi—y for the sake of comparison.”

{a) ¢ and v parametrization

2 & Pi ¥ fi 175
1 0.65 (044 0.82)

2 10D (NA) 0.28 (0.15-0.47) 0.98 (0.94-0.99)  1.49
3 087 (057-097) 022 (0.17-0.28) 067 (0.25-092)  0.97 (0.93-099)  1.26
4 056 (045-0.68)  0.22(0.16.0.20)  0.69 {0.46-0.86) 097 (0.03-0.98) .98
5 084 (065-0.93)  0.23(0.17-030) 057 (0.39-073)  0.97 (0.94-0.99) 6.9
6 079 (0.62 0.90) 024 (0.19-0.30)  0.89 (0.43 0.99)  0.99 (0.96-1.00)  0.91
7 0.65(0.53-0.75)  0.31{0.25 0.33)  0.87 (0.59-097) 097 (0.94-0.99)  0.76
8 0.99 (0.00--1.00) 0.27 {0.23-0.33) 0.80 (0.65-0.90) 0.99 (0.96-1.00) 0.99
9 0.69(052-082)  0.27(0.22-0.33)  1.00 (NA) 0.98 (0.950.99)  0.77
10 088 (0.54-098)  0.27(0.21 0.34) 090 (0.69-0.98)  0.99 (0.05-1.00}  1.06
1 077 (047-0.93)  0.24(0.18 0.31) 083 (0.65-0.93) 098 (0.93 0.99)  0.92
12 0.26 (0.18-0.35)  0.84 (0.63-0.94)  1.00 (NA)

13 0.95 {0.45 1.00)

(b} ¢ and p parametrization

i & Di P £ ¥
1 0.65 (0.41 0.83)

2 1.00{NA) 0.28 (0.16 0.46)  1.50 (0.84-2.70)  0.98 (0.94 0.99)

3 0.87 (4.61-0.97} 0.22 {0.16-0.29) 1.26 {0.88-1.82) 0.97 {0.93-.99) 0.66
4 056 (045 0.67) 022 (0.16-0.20) 099 {0.69 1.41)  0.97 (0.93-0.98)  0.69
5 0.84 (4.65-0.93) 0.23 (0.17-0.30) 0.94 {0.69-1.29) 0.97 (0.94 0.99} 0.57
6 0.79 (0.63-0.89) 0.24 (0.19-0.30) 0.91 {0.70-1.18) 0.99 {0.96 -1.00) 0.89
7 0.65(0.540.75  0.31{0.25-0.38)  0.82 (0.64-1.05)  0.97 (0.94-0.99)  0.87
8 0.98(0.00-1.00)  0.27{021-0.33)  0.96 (0 77-1.20)  0.99 (0.96-1.00)  0.79
9 069 (052-081)  0.27{0.22-0.33)  0.76 (0.58-1.01)  0.98 (0.95 0.99)  1.02
10 0.88 (0.51-0.98) 0.27 (0.20-0.34) 1.06 (0.79-1.43) 0.99 (0.95-1.00) 0.91
il 0.77 (0.49—{].92) 0.24 {0.18-0.31) 1L92 (U 66--1.29) 0.98 (0.93-0.99) .83
12 0.26 (0.19 0.34) 1.00 (NA) 0.5
13 T

2 NA, not availablc.

6. Discussion

The approach proposed is an atlempt to introduce more flexibility in the analysis of CMR data
beyond the study of survival. The interest of the present parametrization as compared to those of
Jolly {1965) or Cormack {1989) lies in the possibility of manipulating directly and, hence, testing
against variables, such quantities as fecundity rates and population growth rates. This may ne-
cessitate replacing the seniority probabilities in likelihood expression (2); for instance, to directly
study fecundity rates f;, one may substitute 1/(1+ f;) for - (population without immigration).
Section 5 has demonstrated that, in practice, recruitment, in the form of seniority probabilities,
can be estimated and tested for trend and that PGRs can be estimated as well. The possibility to
actually test those two types of parameters against variables and among groups is also clearly at
hand (although numerical problems may have to be solved).

There is currently no specialized software for the global approach, and this is a transitory reason
for using the partial analyses for which SURGE {Pradel and Lebreton, 1991} and similar software
can be used. Another more fundamental reason is that the conditioning in the partial analyses
protects against structural bias; overlooking age specificity in survival, for example, could affect
recruitment estimates. Therefore, if one is intercsted in recruitment and has limited information
on survival, or if the bumval structure is complex, it might be better to use the recruitment-only
approach.
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RESUME
LLes données de captire-marquage—recapture ont été trés largement utilisées pour étudier la survie.
Elles peuvent cependant aussi servir & 'étude du recrutement et du taux de croissance des popu-
lations. On montre ici que 'étude du recrutement est équivalent & une étude de survie menée sur
les histoires de capture renversées. Le parametre naturel dans cette approche -appelé probabilité
d’ancienncté est, & chaque occasion, la probabilité d’avoir préalablement appartenu a la popula-
tion. Une vraisemblance générale cst ensuite donnée dans laguelle gains et pertes de la population
sont décrits A 'aide des probabilités de survic et d’ancienneté. Cette vraisemblance pent facilernent
&tre modifiée pour faire apparaitre le taux de croissance de la population d’une occasion sur lautre.
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