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SUMMARY. Agresti (1994, Biometlzcs 50, 494-500) and Norris and Pollock (1996a, Biometlzcs 52, 639- 
649) suggested using methods of finite mixtures to partition the animals in a closed capturerecapture 
experiment into two or more groups with relatively homogeneous capture probabilities. This enabled them 
to fit the models Mh, Mbh (Norris and Pollock), and Mth (Agresti) of Otis et al. (1978, Wildlife Monographs 
62, 1-135). In this article, finite mixture partitions of animals and/or samples are used to give a unified 
linear-logistic framework for fitting all eight models of Otis et al, by maximum likelihood. Likelihood ratio 
tests are available for model comparisons. For many data sets, a simple dichotomy of animals is enough to 
substantially correct for heterogeneity-induced bias in the estimation of population size, although there is 
the option of fitting more than two groups if the data warrant it. 
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1. Introduction 

There is an extensive literature on analyzing the eight closed- 
population capturerecapture models specified in Pollock 
(1974) and Otis et al. (1978). These models allow three possi- 
ble factors to affect the probability of capture: time (probabil- 
ities vary from sample to sample), behavior (a trap response 
of animals to the first capture), and heterogeneity (different 
animals have intrinsically different capture probabilities). 

Maximum likelihood (ML) has been used to fit some of 
the models (Fienherg, 1972; Otis et al., 1978; Cormack, 1989; 
Agresti, 1994; Norris and Pollock, 1995, 1996a), while other 
methods of model fitting in use include the jackknife (Burn- 
ham and Overton, 1978; Pollock and Otto, 1983), moment 
methods based on sample coverage (Chao, Lee, and Jeng, 
1992; Lee and Chao, 1994; Lee, 1996), martingales (Yip, 1989, 
1991; Lloyd and Yip, 1991; Lloyd, 1992; Yip and Fong, 1993), 
and Bayesian methods (Casteldine, 1981; Gazey and Staley, 
1986; Bolfarine, Leite, and Rodrigues, 1992). Model selection 
has been done by various criteria, including discriminant anal- 
ysis (Otis et al., 1978), likelihood ratio tests (LRTs) where 
available, an Akaike information criterion (AIC) (Burnham, 
White, and Anderson, 1995), or bootstrap-based LRTs (Nor- 
ris and Pollock, 1996a). A discussion of these methods and 
model averaging is in Stanley and Burnham (1998). 

A recurring theme has been methods of dealing with hetero- 
geneity of capture among the animals, which causes negative 
bias in estimates of population size (N)  in models assuming 
homogeneity. For the heterogeneous model M h ,  estimators of 
N in wide use are Burnham and Overton's (1978) jackknife 

and Chao et al.'s (1992) moment-based estimator using sam- 
ple coverage. 

Agresti (1994) and Norris and Pollock (1995, 1996a) use fi- 
nite mixtures to allow for heterogeneity. In this article, the a p  
proach of Norris and Pollock is modified and extended to give 
maximum likelihood estimators (MLEs) for all eight models 
in Otis et al. (1978). The models are compared by likelihood 
ratio tests, using either Monte Carlo or nonstandard versions 
where appropriate. The pocket mouse (Perognathzls parvus) 
data set of E. Larsen (Otis et al., 1978) is used to illustrate 
all the model fitting, and other examples are also given. 

The desirability of a unified maximum-likelihood frame- 
work for fitting and comparing all the eight models of Otis 
et al. (1978) has long been recognized and is discussed in, 
e.g., Stanley and Burnham (1998). This article presents such 
a framework. 

2. The Models 

We assume a closed population of unknown size N is sampled 
k times, with independence between animals and across sam- 
ples. At its first capture, an animal is permanently marked to 
make it recognizable on any subsequent captures. The capture 
of the ith animal at  the j th  sample is taken to he a Bernoulli 
trial with probability pij of capture. If D distinct animals 
are caught, the data form a D x k capture matrix with elo 
ment s i j  = 1 if animal i is captured on occasion j ;  otherwise, 
z,j = 0. Row i of the matrix is the capture history of ani- 
mal i. 

If there are N animals in the population, we may extend 
the capture matrix with N - D rows of zeros to include the 
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uncaught animals. Using the multinomial assumptions of Otis 
et al. (1978) rather than the Poisson log-linear models of Fien- 
berg (1972), Cormack (1989), and Agresti (1994), the likeli- 
hood for the extended capture matrix X is 

where xh is the number of observed animals with capture 
history h. In the model equations to follow, the term I lhzh!  
is omitted, as it is not relevant to likelihood maximization or 
to model comparisons. The probabilities pij will he modeled 
as either fixed parameters or realizations of random variables. 

2.1 Model Mtbh 
The most general model of Otis et al. (1978) is Mtbh, which 
allows for time, behavior, and heterogeneity effects on the 
probability of capture. We start with model Mtnbnh, ,  a 
fully interactive version of Mtbh. Assume there is a fixed 
number, A, of animal groups, within each of which there is 
homogeneity of capture. Which animals are in which group 
is not known; each animal is assumed to come independently 
from group a with probability a, (a = 1,. . . ,A,  E a,, = 1). 

The probability of capture of animal i a t  sample j ,  pij, is 
assumed to be Bjba, modeled with a linear logistic formulation, 

where p is a constant unknown parameter, rj (for time) 
is a fixed main effect depending on the sample j ,  Pb is a 
fixed behavior main effect (where b = biI = 1 if animal i 
was not caught before sample j; otherwise, b = 2), and qo 
(for heterogeneity) is a (random) animal main effect, where 
a = 1 , .  . . , A  with probabilities TI,. . . , T A ,  respectively. The 
later terms are three two-way interactions and the three-way 

interaction. No parameters (rfl)lz or (rPq)lza are needed, as 
no recaptures can occur in sample 1. To make the parameters 
identifiable, constraints are needed, e.g., either a corner-point 
parameterization or sum-to-zero constraints. Corner-point 
constraints could be defined by setting to zero any parameters 
with j = 1, b = 1, or a = 1. Also, with no parameters for 
recapture a t  sample 1, we set (TP)ZZ = (rPq)2za = 0 for all 
a = l ,  . . . ,  A. 

With these constraints, the numbers of independent 
parameters associated with the terms of logit(OIba) are p, 1; 
r j ,  k-1; Pb, 1; qa, A-1; (rP)jb, k-2; ( v ) j a r  (A-l)(k-1); 
(Pq) bo, A - 1; and (707)) jba, (A - l)(k - 2). These 2Ak - A 
independent parameters together with N and the A - 1 
independent a parameters for group membership give 2Ak 
independent parameters for model Mt xbxhA. 

The observed capture history for animal i has probability 
c&~ a, I$=.:, {e"'~ (1 - ~ ~ ~ ~ ) ~ - ~ ~ i } .  Integrating equation (1) 

3 b 4  
over each animals independent group allocation gives 
likelihood 

This general, fully interactive Mtbh model is labeled 
MtXbXhA. One submodel is the main effects model, Mt+b+h, 
in which only the constant and main effects terms of 
equation (2) are retained. 

Model MtXbXhA and its various submodels are specified 
in Table 1. Only hierarchical models are proposed: If an 
interaction term is present, so are all its associated main 
effects and lower order interactions. Table 1 omits a group 
of models between the fully interactive model MtxbxhA and 
the main effects model Mt+b+hA, these being the partially 
interactive models, which include the three main effects and 
some or all of the two-way interactions but not the three-way 
interaction. 

Table 1 
Mtxbxha and its submodels; 0 = probability of capture and Npar is the number of independent 

parameters; there are also partially interactive models between Mtxbxha and Mt+b+ha 

Model NDar B Logit(0) 
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The main effects models in this article are additive on the 
logit scale. An alternative approach, which can equally well 
be put into this framework, is to model capture probabilities 
with main effects additive on a log scale. These will he referred 
to as proportional models. Lee (1996) uses proportional main 
effects to model ptl in Mtbh via conditional sample coverage. 
Lee and Chao (1994) also make the proportional assumption 
in a model of Mtbh in which catch-effort information is used 
to allow for the time effect. There may be problems in fitting 
the proportional models, i.e., a multiplier to allow for an ex- 
tra factor may take a capture probability estimate above one. 
However, if capture probabilities are below 0.5, the propor- 
tional model and our logistic main effects model give similar 
estimates (Pledger, 1998). 

Models are fitted by maximizing the log likelihood using 
the EM algorithm for unknown group membership. Details 
are available from the author. Profile likelihood intervals are 
given in this article. The advantages of these over traditional 
confidence intervals are discussed by Cormack (1992), Hirst 
(1994), and other authors. 

2.2 Homogeneous Submodels 
The submodels without heterogeneity, Mu, Mt,  Mb, and 
M,,b, specified in Table 1 are reparameterizations of those 
discussed in Otis et al. (1978) and give the same ML 
estimates. The interactive model Mtnb cannot be fitted due 
to unidentifiable parameters. Otis et al. propose a model 
in which two parameters are arbitrarily set equal, but they 
comment that this is likely to be biologically unrealistic. 
Burnham's power relationship estimator, which is provided 
in the package CAPTURE,.also makes a rather restrictive 
assumption, and a warning is given in Rexstad and Burnham 
(1991, p. 28). Our main effects model is feasible but is similar 
to Burnham's model and has the same potential problems. 

this article may have multimodalities in the likelihood 
function, as discussed in Section 4. 

For Mha,  the capture probability is Ha,  with 

and the likelihood is 

where fl is the number of animals with j captures, and so 
fa = N - D .  With 2A independent parameters and k minimal 
sufficient statistics fl, . . . , fk, we require 2A 5 k for model 
fitting to be possible. We fit a sequence of models with one, 
two, three, or more animal groups (Mh, = Mo. Mhz,  Mh3, 
etc.), comparing them via likelihood ratio tests. 

Model Mth has interactive (Mtxha)  and main effects 
(Mt+ha) versions and also a proportional version if the 
main effects are assumed additive on the log scale. The 
interactive model allows the different animal groups to have 
capture probabilities responding in different ways to the 
different samples, while the main effects and proportional 
models assume similar patterns of response through time. 
For example, lizards may all have low capture probabilities 
on dull days while exhibiting high heterogeneity of capture 
rates on bright days. The interactive model would be more 
suitable here. Agresti (1994) uses a main effects model with 
finite mixtures for a Poisson-based model of Mth. Chm et al. 
(1992), with their moment-based sample coverage method, 
use a proportional assumption for capture probability, i.e., 
pel = piel, where pi is the capture probability for animal i 
and e ,  is a multiplier for sample j. 

7 2 H e t e m o e n m ~ r s  Cwhmndels Previous estimators of N for model MbfL are the generalized - . - - - -. -. - -. . - - -- - - - . . . - - - .* 
Our model MhA is like the multinomial-based Mh of Norris 
and Pollock (1996a) but with one difference. Norris and 
Pollock condition on N ,  then fit a model with an unknown 
number of groups using nonparametric maximum likelihood 
estimation, NPMLE. There is a global maximum to the 
likelihood (Laird, 1978; Lindsay, 1983), and the number 
of groups is selected by finding this maximum. Then N 
is varied to find the overall maximum likelihood. In this 
article, a sequence of models, each with a fixed number 
of animal groups, is fitted without conditioning on N ,  and 
model comoarisons are used to decide the number of animal 

removal estimator of Otis et al. (1978), the jackknife and 
moment-based estimators of Pollock and Otto (1983), the 
sample coverage estimator of Lee and Chao (1994), and the 
mixture models of Norris and Pollock (1995, 1996a). Most 
of these are removal estimators, using data only up until 
the first capture for each animal, but Norris and Pollock 
(1995) use an interactive finite mixture model that includes 
both initial and subsequent capture information in the model. 
With interaction, the groups may respond differently to the 
first capture. For example, one group may have a high 
probability of capture throughout, while another may be 

groups, Often the two procedures lead to the same results, initially timid but become emboldened after the first capture. 

but they differ in that Norris and pollock's procedure selects The interactive Inode' M b ~ h ~  'pecified in matches 

more animal groups because of a higher likelihood, while Nor~is and Pollock's except that we fix the number of animal 

here, a significant increase of likelihood (decrease of residual groupS- The likelihood of equation (3) reduces to 

deviance) is required before another animal group is added L(N, tn], {o} 1 x) 
(see Section 3). Where different numbers of groups are chosen, 

- - N! 
Norris and Pollock's NPMLE has less bias, more parameters, ( N  - D)! 
and higher standard errors. With our sequential approach, . -  . - - 

as A increases, the residual deviances and N approach 
the NPMLE stable value, as noted by Aitkin (1996) when 

x { O 1 (  - H l ) H (  - s . ) ~ - ~ "  

fittine such a seauence of models in the case of normal i = L  a=1 

mixtures. Aitkin (1999) in Example 1 selects a two-component 
model, even though the NPMLE has three groups, since the k}N-D 

two models give almost identical estimates. The models in 
(5) 
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where w, is the sample number a t  which animal i is first 
captured and r, is its number of recaptures. The main 
effects model has the same likelihood but omits the 
b x h interaction in the logistic formulation of the capture 
probability. An alternative would be the proportional model, 
with main effects additive on the log scale. The removal 
model, MbhA .T say, is used if either there are no data available 
on recaptures or it is thought undesirable t o  base the animal 
partition into groups on recaptures as well as first captures. 
This model, similar to that in Norris and Pollock (1996a), 
employs only data up to the first capture, and in equation (5), 
the terms in 82,  are omitted. 

2.4 Models with Random Time Effects 

A major problem with the models presented so far is the 
large number of parameters assigned to the time factor. This 
spendthrift approach to the time effect parameters has also 
been noted by Jolly (1982) in the context of open population 
models. Another problem is that model Mtnb is unable to 
be fitted, as it has unidentifiable parameters. Both problems 
are solved if time (as well as heterogeneity) is modeled as a 
random effect 

The most general model is Mt,.buhA, in which the samples 
are partitioned into S groups, s = 1 , .  . . , S, and the animals 
are partitioned into A groups, a = 1 , .  . . , A ,  a two-dimensional 
cross-partition of both rows and columns of the capture 
matrix. Each animal has probability ri, of belonging in animal 
group a, and each sample has probability As of being in sample 
group s (C7ia = 1 and C A, = 1). For animal group a and 
sample group s, the probability of captnre is modeled as 

with b defined as before and with corner-point parameteriza- 
tion constraints of zero parameters if s = 1, b = 1, or 
a = 1. The likelihood is obtained by, first, integrating 
equation (1) over the different animals' group allocations, 
giving equation (3), and then integrating over the different 
samples' allocations into sample group. This gives likelihood 

S S S 
N !  

= ( N  - D)! C A,, . . . C As. C 
s * = 1  sz=1  si=1 

where sj is the allocation of sample j. The 2AS captnre 
probability parameters, together with A - 1 independent n 
parameters, S - 1 independent X parameters, and N ,  give a 
model with 2AS+A+S-1  parameters. If, as tends to happen, 
only two animal groups and two sample groups are needed, 
this means 11 parameters. By contrast, the model with fixed 
time effects and two animal groups has 4k parameters, e.g., 
24 if k = 6. 

The fully interactive model Mtsxbxka has new submodels 

Mt,+b+ha (the main effects model), Mt,.b, Mt,+b, Mt,.h,, 
MtS+hA, and Mt,. There are also partially interactive models 

between Mtsxbxha and Mts+b+ha and a proportional model 
alternative to each main effects model. All are feasible, and 
they usually have fewer parameters than their counterparts 
with fixed time effects. Of particular value is Mtsxb, as Mtxb  
was not feasible. There may well be an interaction between 
the behavior and time effects, with, e.g., more trap shyness on 
a bright day when the traps are clearly visible and less trap 
shyness on dull days when traps are not easily seen. 

2.5 Models with Covariates 

If relevant covariates are available for either the heterogeneity 
(e.g., animal sex, weight) or for the samples (e.g., catch-effort 
or weather variables), these are easily incorporated into this 
framework. For example, suppose there is heterogeneity and 
we have a useful search-effort covariate, say e j ,  measured a t  
the time of each sample. The capture probability could be 
modeled as 

with constraints 71 = yl = 0. Here p + 7, is the intercept for 
group a's logit capture probability versus eJ and a+y, is the 
slope. This model uses finite mixtures to model heterogeneity, 
while the effort variable allows for the time effect. The yael 
term would be omitted for a main effects (parallel lines) 
model. Multiple covariates may also be included, as in Pollock, 
Hines, and Nichols (1984) and Huggins (1989, 1991). 

3. Model Comparison 
A model selection procedure is now needed, and we must dis- 
tinguish two situations depending on whether the regularity 
conditions for a likelihood ratio test (LRT) hold. 

Between two nested models, standard likelihood ratio tests 
are valid provided no extra animal groups or sample groups 
are being introduced as we move from the submodel to the 
supermodel. For example, comparison of models Mk, and 
Mb+hz involves the testing of one parameter, Ho:& = 0. This 
is not a test at the edge of the parameter space, and so it is 
a regular LRT, in this case with null distribution x:. Other 
examples are given in Section 5.1. 

However, if two nested models differ in the number of 
animal groups or sample groups (e.g., Mo versus Mh2), 
parameters a t  the boundary under Ho mean that conditions 
for the standard LRT are not met. We then use a Monte 
Carlo LRT (parametric bootstrap LRT; cf., Manly, 1997). 
Populations are generated using the submodel with estimated 
parameters from the study, and the chosen test statistic 
is calculated for each population. This shows whether the 
observed test statistic is unusual in relation to these generated 
test statistics. Any nested pair of models may be compared 
in this way and also any pair of nonnested models by using 
the method of Williams (1970), as described in Brooks et al. 
(1997). 

A faster alternative for any model comparison that 
introduces a two-group finite mixture is the nonstandard 
LRT given in Self and Liang (1987, Theorem 3, case 5). 
The null distribution of the LRT statistic is a 50:50 mixture 
of zeros and x:, which we label 0:~:. Although conditions 
for the theorem are not met exactly due to a nuisance 
parameter disappearing under Ho, simulations confirmed that 
it is approximately correct for tests of Mo versus Mh, and of 
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Mb versus Mb+h, (Pledger, 1998). A further nonstandard test 
from Self and Liang (1987, Theorem 3, case 6) allows a direct 
test of Mb versus Mbxh2, or Mb versus MtZxb without going 
through the intermediate (possibly unrealistic) main effects 
model. This null distribution is a 50:50 mixture of X: and 
X; variates, labeled x::~:. For example, in testing Mb versus 
Mbxh,. the null hypothesis is Ho: 172 = 0 and (P7))22 = 0. The 
test statistic is the sum of two variates, one log-likelihood ratio 
with a 0 : ~ :  distribution for Mb versus Mb+h, and another 
with X: null distribution for Mb+h, versus Mbxh2. The sum 
is thus the 5050 mixture of X: and X ; .  

The addition of a third, fourth, or higher group is not 
covered by Self and Liang's (1987) theorems. Monte Carlo 
likelihood ratio tests are retained here, e.g., for Mh, versus 
Mhg 

4. Appraisals 

An article with detailed appraisals of these models and 
comparisons with previously available models is in prepara- 
tion. Some preliminary results from Pledger (1998, 1999) are 
given briefly here. 

To investigate accuracy, bias, and precision of N for Mh,, 
we used the same eight settings of parameters as in Norris 
and Pollock (1996a) to simulate Mh, data, with results in 
Table 2. This indicates that, in this region of the sample 
space, going from Mo to Mh, corrects most of the bias in 
N, with diminished returns in moving to Mh,. For the fixed 
models, the root mean square error (RMSE) criterion selects 
model Mo as best, followed by Mh, and Mh,, and for selection 
of the number of groups, a 5% LRT is preferable to the 
NPMLE of Norris and PolloclL With RMSE, high precision is 
outweighing the bias. However, the median absolute deviation 
(MAD) prefers more groups, and NPMLE is preferable to 
the 5% LRT, as this criterion gives more importance to bias 
reduction. 

A check of sensitivity to misspecification of the distribution 
was done by simulating heterogeneous populations with a 
beta distribution of probability of capture and then analyzing 
the data using Mo, Mhz, and Mh,. (Model fitting using the 
beta mixing distribution often fails, as noted by Burnham 
and Overton [1978]. This is a common problem with infinite 
mixtures.) Parameter settings (k, N, and the mean and 
variance of capture probability) were again chosen to match 
Norris and Pollock's (1996a) choices. Details are in Pledger 
(1998, 1999); the results are close to those in Table 2, 
indicating that modeling the different animals' probability of 

capture as a finite mixture distribution is acceptable even 
if the true distribution is an infinite mixture (in this case, 
beta binomial). This is in line with the comment in Lindsay 
(1995, Section 3.1) in comparing discrete and continuous 
mixture models: "My own preference is for the use of discrete 
distributions in cases of doubt.. . . A number of investigations 
have found that misspecifying the latent distribution has very 
little effect on bias, and minimal effect on standard errors 
beyond the necessary correction for overdispersion when 
mixing is present." The twwpoint support is often able to 
provide enough variability to model data from a distribution 
with more support points, even infinitely many. 

The power to detect a time effect (Mt versus Mo) is higher 
than the power to detect a similar coefficient of variation of 
capture probabilities between animals (Mh, versus Mu). This 
asymmetry is intrinsic to capture-recapture studies because 
of the oblong capture matrix, i.e., there is more information 
available per sample than per animal. 

With a fixed number of animal groups, there may be 
multimodality in the likelihood function. Brooks et al. (1997) 
found it useful to obtain profile likelihoods plotted against 
the mixing probability (TI) when detecting multimodality in 
mixture models with two components. Using this, we found 
in the 1600 simulated Mh, populations only 23 cases where 
model Mh, had multimodality. All of these were detected 
in our standard modeling routine, which checked the next 
model in the sequence, Mh,, and compared it with the Mh, 
fit. Details are in Pledger (1998, 1999), but overall it seems 
that multimodality of the Mh, likelihood is fairly rare, even 
with data generated from more than two support points, and 
may be dealt with by a routine check of a higher model. 

5. Examples  

5.1 Example 1: Pocket Mice 

E. Larsen (as reported in Otis et al., 1978) conducted a 
capture-recapture study on pocket mice (Pemgnathus parvus) 
for seven consecutive nights in Curlew Valley, Utah, capturing 
55 distinct animals. Table 3 shows the results of fitting all 
the models to the pocket mouse data. Model Mtn b n  h, is not 
considered as a valid option: with fi at  its lower bound of 
55 and 4 of the 26 capture probability estimates (not shown) 
also at their boundaries, the data are not able to support this 
model. However, Mtzxbnhz is available as an alternative. 

Using a fonvard selection procedure, from model Mo, the 
first step is to Mh, (p < 0.0001 with a nonstandard 0 : ~ :  
likelihood ratio test). The other options were Mb (p = 0.0036, 

Table 2 
Mean accuncy of N over the z3 = 8 parameter settings of No- and Pollock 
(1996a): k = (10,20), N = (50, loo), three equiprobable groups with capture 

probabilities (0.1,0.2,0.3) or (0.1,0.3,0.5); 200 simulations per setting 

Accuracy Fixed model Selected model 

measure Mo Mhz Mh? NPMLE 5% LRT 

Mean bias -5.28 -1.27 -0.36 -0.05 -1.62 
Standard deviation 2.54 5.94 6.81 7.60 6.12 
Root mean square error 5.91 6.21 6.85 7.64 6.39 
Median absolute deviation 5.20 3.58 3.46 3.25 3.74 
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Table 3 
Pocket mouse models and N estimates 

Number of Residual 
Model parameters deviancea N 

Mo 2 185.4 55.9 

Mttha 10 
Mtx h, 16 
M t , t h 2  6 
Mt2xh,  7 

Mb+h2 5 
Mbxhz 6 

Mt+b+h% 11 
Mtxbxh2 28 
Mt2+b+hZ 7 
Mt2xbxhz 11 

" NE, not estimable. 

a standard X: test), ~ t ;  (p = 0.0142 with the nonstandard 
test on o:~:) ,  or Mt (p = 0.0227, a standard Xi test). 

From Mh,, there is no need to introduce another animal 
group, as the residual deviance for Mh, is the same as for Mh,. 
Mh, was tested against all the Mth and Mbh models. We select 
a move to Mt,+h2 (P = 0.0041, 0 :~: ) .  Other options checked 
were Mtzxhz (p = 0.0202, x::x~), Mt+hl (p = 0.0060, x i ) ,  
Mtxhz (P = 0.0107, ~ : 2 ) ,  %+hi (p = 0.2394, x:), 01 Mbxhz 
(p = 0.0578, x;). 

We stay with model Mtz+hz. Neither MtZXh2 (p = 0.2542, 
x:) nor Mez+b+h2 (p = 0.4795, x:) offered a substantially 
better fit to the data. Our chosen model MtZ+h2 has N = 
62.2 with a 95% profile likelihood interval of 156,731. (Assum- 
ing N = 62, 200 bootstrapped samples of 62 capture hist* 
ries show a coverage of 94.5%.) The corresponding fixed-time 
model Mt+h2 is very similar, with N = 61.6 and 95% profile 
likelihood interval 157,731. In both models, the grouping puts 
most mice in a low capture group, with a few having high 
probability of capture. 

It is interesting that after heterogeneity is allowed for, the 
next most useful factor to include is the time effect. If het- 
erogeneity is not allowed for, behavior appears more impor- 
tant than time. This kind of effect is common in stepwise 
regression. Our model choice differs from that of the CAP- 
TURE package, which uses discriminant analysis to select 
model Mtbh or Mbh. 

5.2 Example 2: Cottontail Rabbzts 

Edwards and Eberhardt (1967) did a capture-recapture study 
on a penned population of 135 wild cottontail rabbits, with 

k = 18 samples. Otis et al. (1978) reported high heterogeneity 
and low capture rates, making estimates unreliable. 

Residual deviances are 375.59 for Ma, 361.62 for Mhz, and 
361.42 for Mha, with no change for Mh4. Mh, is chosen over 
Mo (p = 0.0001 on o:x:, with similar results from a Monte 
Carlo test), but the test statistic of 361.62 - 361.42 = 0.2 is 
not large enough to choose Mh, (p = 0.09 with a Monte Carlo 
test using 100 simulated populations). 

The N estimates and 95% profile likelihood intervals are 
96.3 [88,107] for Mo, 135.5 [104,347] for Mh,, and 156.6 
[105,575720] for Mh,. Using 200 bootstrapped samples of 135 
capture histories, the 95% coverages of the intervals are 12.5% 
for MQ, 93.5% for Mhz, m d  93.0% for Mh8, showing good 
coverage for the heterogeneous models. 

The choice of model Mh, is gratifying, as N = 135.5, very 
close to the known value of 135. However, between Mh, and 
Mh,, N is sensitive to a small change in residual deviance; 
this sensitivity has not been found with other data sets. Also, 
the high upper bounds of the profile likelihood intervals for 
the heterogeneous models warn of extreme unreliability of the 
N estimates. Overall, it would he better to pool the samples, 
say, in groups of 3-6 samples with reasonably high capture 
probabilities. 

5.3 Ezarn.de 3: Reid's Deer Mice 

Otis et al. (1978) discuss V. Reid's data set of deer mouse 
captures. There are 38 individuals caught over six trapping 
occasions, and the age group, sex, and weight of each animal is 
given. The CAPTURE model selection procedure chose Mb a s  
the most suitable model. Huggins (1991) fitted his conditional 
likelihood models to these data (conditioning on the captured 
animals), incorporating heterogeneity by using age, sex, and 
weight covariates, as 

where sex and age are included as factors each a t  two levels 
(the three semiadults being recorded as adults) and weight 
is included as a continuous covariate with coefficient f iwt .  

Huggins' method selects Mbh, using the AIC. This gives 
N = 47.1. 

Our finite mixture method, without using any covariates, 
chooses Mb+p,, (5% significance level), giving N = 45.6. There 
is agreement of model choice and similarity of N using the 
two very different modeling methods. For situations in which 
useful heterogeneity covariates may not be available, finite 
mixtures may be able to provide a good alternative model. 

6. Discussion 

The option of modeling animals and/or samples as having 
random effects on the probability of capture has made 
available maximum likelihood estimates for a wide range of 
models. For unity, a linear logistic framework was chosen 
for the probabilities of capture. Either Monte Carlo or 
nonstandard likelihood ratio tests provide methods of model 
comparison to select the number of groups and the most 
appropriate model(s). 

The finite-mixture linear-logistic models blend seamlessly 
with the covariate models in capture-recapture. Covariates, 
if available, are an alternative to finite mixtures for modeling 
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time effects, heterogeneity, or both. There is no barrier 
to a hybrid approach, modeling time with covariates and 
heterogeneity with finite mixtures, or vice versa. 

These models could equally well have used the Norris and 
Pollock (1995, 1996a) NPMLE approach, in which the number 
of animal and/or sample groups is chosen by maximum 
likelihood within a model. The method proposed here, with 
different models for different numbers of groups, has the 
disadvantage of possible multimodality in the likelihood 
surface but the advantage of more parsimony in the number 
of parameters. 

The behavior effect has been modeled at two levels, one for 
a first capture and the other for recapture. However, other 
choices could be specified. Pollock (1975) gives a general 
model in which capture probability depends on previous 
capture history, and Cormack (1989) suggests a limited 
memory model, in which the animal exhibits only temporary 
trapresponse behavior. 

Model selection by LRT often chooses only two groups, 
which can give an acceptable compromise in reducing bias 
in N while not inflating standard errors too much. This 
does not imply that we believe there really are two groups 
of animals; the grouping is essentially an artefact to allow 
for heterogeneity and thus correct for the bias in N. This 
unreliability of grouping is implicit in Lindsay (1995, Section 
1.4.2): "It is not uncommon that the goodnessof-fit of a 
mixture model to a data set does not change very much if we 
switch from a continuous latent distribution to a discrete one, 
or whether the discrete distribution has two components or 
four components." While estimates of N from finite mixture 
models are useful, estimates of a and 0 parameters have high 
variance, as the likelihood surface is flat in those directions. 
The use of the a and 0 estimates, e.g., to estimate a coefficient 
of variation of capture probabilities, is not recommended. (If, 
however, there is some reason to believe the animal groupings 
are valid, posterior probabilities of group membership may 
be found for each animal after estimating the parameters 
[Pledger, 19981. These might be compared with unused c e  

variates like sex to see how well they match. Similarly, 
posterior allocation of samples to sample groups could be 
compared with search effort or weather records.) 

A desirable future tool would be a modified AIC to en- 
able us to compare any two models. The traditional AIC 
is not correct for finite mixture models, as it relies on re- 
gularity conditions essentially the same as those for LRTs 
(Titterington, Smith, and Makov, 1985). This is being inves- 
tigated. 

These mixture models will be applied to open populations, 
modeling heterogeneity in capture rates and/or survival rates. 
They have immediate application to the robust design models 
of Pollock (1982) and Kendall, Pollock, and Brownie (1995), 
and their use in simple sampling scheme models like the Jolly- 
Seher is being investigated. The crosspartitions may have 
applications in latent class models and in random treatment 
and block models in experimental design. 

Model uncertainty may he allowed for, as in Norris and 
Pollock (1996b), or by model averaging (Buckland, Burnham, 
and Augustin, 1997). Stanley and Burnham (1998) say: "We 
suspect that for the closed models of Otis et al. (1978), 
estimation and model selection need to be placed in a unified 

likelihood framework.. . . In such a framework, information- 
theoretic approaches to model selection could be employed 
and could be used to supply data-specific weights for model 
averaging.. . ." The results of this article could be applied in 
this way. 
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RESUME 

Agresti (1994, Biometncs 50, 494-500) et Norris et Pollock 
(1996, Biometrics 52, 639-649) ont sugghre d'utiliser des m& 
thodes de  melanges finis pour partitionner les animaux, dans 
une experience de capture-recapture au sein d'une population 
fermb, en deux groupes, ou plus, de probabilite de capture 
relativement homogknes. Cela leur a permis d'ajuster les 
modkles Mh, Mbh (Norris et Pollock) et Mth (Agresti) de Otis 
et al. (1978, Wildlife Monographs 62, 1-135). Dans cet article, 
des partitions en melange fini d'animaux et/ou d'khantillons 
sont utilisees Dour donner un cadre unifib loeisti~ue-linkaire 
afin d'ajuster i'int6gralit6 des huit modkles de &is i t  al. par la 
m4thode du maximum de vraisemblance. Des tests de rapport 
de vraisemblance sont disponibles pour la cornparaison de 
modhles. Pour de nombreux jeux de donnhes, une simple 
dichotomie des animaux est suffisante pour corriger de fason 
substantielle le biais introduit par I'hht6rog6n6it6 de capture 
sur I'estimateur de I'effectif de la population, quoiqu'on ait 
l'option d'ajuster plus de deux groupes si les donnees le 
permettent. 
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