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discussed in more-detail tha";n Huggins i1989) with particular attention being paid to the &re 
practical problem of determining an appropriate model. 

To illustrate these results a data set collected by V. Reid and distributed with the CAPTURE 

program of Otis et al. (1978) is considered. The data in a form suitable for this purpose are 
reproduced in Appendix I .  In a previous discussion of this data set, Otis et al. (1978, p. 32), 
using their techniques, determined that the most suitable model of those available to them was 
model M,, which allows the capture probabilities to vary in response to prior capture. 
Accompanying this data set are several covariates on the captured individuals-sex, age, and 
weight. The models considered here are described in Section 2 and they are fitted to the data in 
Section 3. In Section 4 a test is given to determine whether all the variability in the capture 
prohabilities is explained by the model and this test is applied to the data sets. Finally, in Section 
j the estimation of the population size is examined. 
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SUMMARY 

e use of conditional likelihood methods in the analysis of capturc data allows the modeling of capture 
rbabilities in terms of observable characteristics of the captured individuals and the trapping occasions. 
e resulting models may then be used to estimate the size of the population. Herc the use of conditional 
slihood procedures to construct models for capture probabilities is discussed and illustrated by an 
imple. 

Introduction 

e recent work of Huggins (1989) introduces a procedure for estimating the size of a closed 
pulation when the capture prohabilities are heterogeneous by modeling the capture probabili- 
s in terms of observable covariates such as age, sex, weight, trapping history, rainfall, etc. 
e modeling is done by constructing a likelihood conditional on the captured individuals to 
imate the associated parameters. The use of observable covariates in capture-recapture 
periments has been previously discussed in Pollock, Hines, and Nichols (1984). They 
mined inferences based on the full likelihood, which necessitated the construction of 
egories of individuals according to the values of the covariates, using the midpoint of the 
egory as the covariate, and estimating the number of individuals in each category. The 
nstruction of the categories is necessary to overcome the problem that the covariates for 
Eaptured individuals are not known. The determination of these categories can be difficult if 
/era1 continuous covariates are involved and the determination of category boundaries may not 
clear. The procedure initially presented in Huggins (1989) avoids these problems by making 
erences conditional on the captured individuals so that characteristics of uncaptured individu- 
are not required. 

The basic theory of this approach was presented in Huggins (1989) and here this modeling is 
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I 2. The Conditional Likelihood and the Linear Logistic Model 

Let pi, denote the probability that individual i is captured on occasion j ,  where i = 1, . . . , A 
are the individuals in the population and j = I ,  . . . , t are the capture occasions. Here A 
denotes the population size. 

Briefly, the methods of Huggins (19891, to which the reader is referred for details, construct a 
likelihood conditional on the captured individuals that may be written in terms of 

Pi, 
Yi, = 

1 - (1 - zzJ)n;=, (1  - P;) 

I where pt. is pi, evaluated when zi, = 0 ,  with z ,  being the indicator of the past capture of 
individual i, i.e., 

if individual i has been captured before j ;  

elsewhere. 

Then yij  is the probability individual i is captured on occasion j given its past capture history 
and given it is captured at least once in the course of the experiment. 

Now let xi, = 1 if individual i is captured on occasion j and xi, = 0 otherwise, and label the 
captured individuals 1, . . . , n with the uncaptured individuals being labelled n + 1, . . . , N. 
The conditional likelihood is then proportional to 

which depends only on the captured individuals. An equivalent form of this conditional 
likelihood is given in Appendix 2. 

Various models for the capture probabilities p,,, such as the linear logistic models discussed 
below, may be used and associated parameters can be estimated from the conditional likelihood. 

Here it is supposed that ln[p,, / ( I  - p,,)] is a linear function of covariates corresponding both 
to characteristics of the individuals and to differences in the environment on the different 
trapping occasions. This linear logistic model has been previously used in Pollock et al. (1984 
and has been extensively used in the statistical literature; see Cox (1970). Asymptotic properties 
of the corresponding maximum conditional likelihood estimators of the parameters in linear 
logistic models are derived in Huggins (1989); in particular, the estimators are (unconditionally) 
asymptotically normal and their variances can be recovered from the matrix of second deriva- 
tives of the log-likelihood as usual. From a computational point of view it is usually most 
convenient to maximize the log-likelihood and recover the variances from the resulting Hessian 
matrix. Due to the nonstandard form of the conditional probabilities Y;, appearing in the 
conditional likelihood (2.1) it is necessary to use a general-purpose optimisation routine to find 
the estimates rather than a standard logistic regression package. 

The following models for the data of Appendix 1 are considered with the closest model of Otis 
et al. (1978) given in parentheses where appropriate. In some cases these models are a simple 
reparameterisation of those of Otis et al. whilst others are of greater complexity. 

Model 0. (M,) 

This model assumes all the individuals have the same catchability that does not vary with time. 
the individual's prior capture history, or any covariates. The model is a reparameterisation of 
model Mo of Otis et al. (1978). 
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b . N I  ere N 

struct a This parameterisation allows the capture probabilities to vary only according to an individual's 
apture history and is a reparameterisation of model M, of Otis et al. (1978). 

Model 2. ( M , )  

ture of 
rhere p, = 0. This model allows the capture probabilities to vary only by time. 

1 
Model 3. (M,,) 

= B o + P j + P b z i j ,  j I . .  I ,  i =  1, . . . ,  N, 

itional 
where P,,, is the effect of sex. Pa,, the effect of age, p,, the effect of one unit of weight, and 
weight(i) the weight of individual 1 .  This model accounts for heterogeneity resulting only from 
differences in sex, age, and weight. There is no equivalent model of Otis et al. (1978) although 
this model is a restricted version of their model M,. 

be1 the 1.. , N. 

erent I~ode l  5. (special case of Mb,) 
1984) 

= $ + PsCx + Bag, + P,, x weight(;) + P,z,,, 
inear 

where again P, = 0 and 6, is the effect of previous capture. This model allows the capture 
pobabilities to vary according to time and past behaviour. 

Model 4. (special case of M,) 

eriva- 1 
jHere the capture probabilities depend on the covariates of Model 4 and the individual's past 
!tapping history. There is no equivalent model of Otis et al. (1978) although this model is a 

the "stricted version of their model M,,. 

]O find Model 6 .  (special case of M,,,) 

1 This is Model 5 with probabilities allowed to vary over time. Again this is a special case of the 
j model M,,, of Otis et al. (1978) but is not equivalent to their model. 
I 

I Model 7. (variant of Mb,) 
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This model allows some of the variability between individuals to be explained by the observed 
covariates but still allows variation due to unobserved characteristics. 

3. Model Testing 

The first six models above are computationally straightforward and one may construct a 
conditional likelihood in the manner of Huggins (1989) to estimate the model parameters. Here 
we are interested in the value of the logarithm of the conditional likelihood upon which we base 
our model selection techniques. The conditional likelihoods were computed on an IBM-compati- 
ble personal computer using the general purpose statistical computing package Gauss. As noted 
above, standard logistic regression packages are not suited to this analysis. For the analysis the 
three semi-adult individuals were recoded as adult. 

For the Models 1-6 tests may be based on the likelihood ratio test or on Akaike's information 
criterion (AIC), given by 

AIC = -21" ~ ( 6 )  + 2 3 ,  

where In ~ ( 6  is the log-likelihood for the model evaluated at the maximum conditional 
likelihood estimator 6 a n d  s is the number of parameters estimated by 6; see Read and Cressie 
(1988, 58.3). 

For the above models the corresponding maximised conditional log-likelihoods and AIC for 
the data set of Appendix I are given in Table I .  The use of the AIC would result in the choice of 
Model 5, a special case of Model Mbh of Otis et 81. (1978). 

A more traditional method of comparing two nested models is to compute a likelihood ratio 
statistic that is twice the difference in the log likelihoods of the two models. This statistic then 
has asymptotically a chi-square distribution whose degrees of freedom is the difference in the 
number of parameters between the two models. One can then conduct a sequcnce of tests to 
determine the "best" model. The main problem with this approach is that the order in which the 
tests are performed could lead to different models being selected as "best." The choice ot 
procedure for selecting an appropriate model is dependent on one's personal preference and the 
desired degree of control over the modeling process. 

The approach taken here, summarised in Table 2, is to initially test Model 0 separately against 
the model involving only the past capture history, Model I ,  the model involving only a time 
effect, Model 2, and a model involving only the covariates, Model 4. The results of these tests 
are given in the first columns of Table 2 where it is seen that Model 0 is rejected in favour of 
Model 1 or Model 4. The next tests involve comparing Model 1 with Models 3 and 5 and Model 
4 with Model 5 ,  and it is seen from Table 2 that there is no reason to reject Model 1 in favour of 
Model 3 but both of Models I and 4 are rejected in favour of Model 5, which involves the 
covariates and the previous capture history. Model 5 is then compared with Model 6 in the final 
columns of Table 2 and there is no reason to reject Model 5 .  Thus Model 5 seems most suitable. 

Other tests not reported here confirmed that all the covariates should be in the model. To 
complete the modeling process we need to determine whether our model suitably explains the 
variation in the capture probabilities or if Model 7 is more appropriate. In Section 4 below we 

Table 1 
LOP-likelihoods and AIC for the Models 1-6 o f  Section 2 

Model 0 I 2 3 4 5 6 - ~ ~~~ - ~- -~ - p~ - 

Number of 1 2 6 7 4 5 10 
parameters 

Lox-likelihod 157.3 150.4 152.4 148.2 144.9 139.5 137.3 
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Table 2 
Major testing sequencefor fitting the models of Section 2 

Tcst y Z  d.f. P Test X' d . f  P 
~ -- 

Test X' d f .  P 
dm 1 13.68 1 ,0002 I vs5 2 1 . 8  3 .0001 5 vs 6 4 . 4 5  5 .486  
Ovs2 9 . 8  5 .OX1 1 vs 3 4 . 5  5 4 7 9  

2 4 . 8  3 ,0001 4 vs 5 10.8 1 ,001 

The tests in the first column were conducted first. then thosc in the second column, and finally that in the third. In 
the null model is stated first, rhcn the alternative (e .g. ,  0 vs I is a rest olthe null hypothesis that Model 0 is the 
ode1 versus the alternative that Model I is the correct model. Thc likelihoud ratio statistic (x'), its degrees of 
and associated P-value are givcn Tor each test. 

Table 3 
Summary data and capture probabilitiesfor the data of Appendix I .  The stated capture 

probabilities are computed at the average weights for each age andsex. 

Young 
~ ~- - ~ 

Adult Young 
~~ ~~ 

Adult 
Number caught Average weights 

9 8 9 . 8 9  20.5 
15 6 12.53 18.5 

r Females 
f I ilales First capture prohability Recapture probability 

.21 . I 8  . 4 6  .41 
S O  .28  . 7 6  . 5 6  

propose a procedure that does not involve computing the estimates of the 0, of Model 7 to test if 
amodel explains all the variations in the capture probabilities; based on the results of that test. 
Model 5 is quite reasonable. The parameter estimates for this model, with estimated standard 
trrors in parentheses, are 6, = - 2.907 (.873), PhCx = ,916 (.354), Pa,, = - 1.884 (.634), 
n,, = ,159 ( . o m ) ,  0, = 1.176 ( ~ 0 5 ) .  

Some summary data for the individuals in the data set of Appendix 1 are given in Table 3. 

14. Testing fo r  Individual Variation 
, ,  

' l n  this section we develop some theory that allows us to determine whether a proposed model I, , f ;,ultabIy explains the variation in the capture probabilities. The major problems are the large 
I laumber of parameters to be estimated and the small number of observations on each individual, 
/ ~ ! d ,  ,+ r h  does not allow the use of the usual asymptotic arguments. 

: 1 )  We are concerned first with testing H,: 8 ,  = . . . = 0, = 0 without having to estimate the 0 
I iind an obvious candidate for such a test is the score test of Rao (1973, 56e.3), which one could 

:lope to have a chi-square distribution with n degrees of freedom. Unfortunately, standard 
, 'symptotic arguments are not available to prove this result and the score test is ad hoc at best. 
: i rote that the number of parameters increases as the population size increases and one has only a 
: inite number of observations on each individual, which clearly precludes asymptotic arguments 

mless one allows the number of trapping occasions to increase to infinity. Here it is assumed 
hat the covariates associated with individual i are independently and identically distributed so 

ha t  the asymptotic arguments of Huggins (1989) may be used. 
Denote by 0 the vector of parameters, apart from the ti, associated with the model, and 

lefine, where 0 is the vector of the O,, 
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where I(C,) = I if individual i is captured in the course of the experiment and I(C,) = 0 
otherwise, and L(B, 0 )  is the conditional likelihood. 

Further let 

Then E[u,(B, O,)] = 0 and E[ui(@, 0J21 = E[ai(B, @ill 
We base our test on the statistic 

which, under our assumptions that the individual covariates z, are independently and identically 
distributed and the Bi are identically zero, will be asymptotically normally distributed. To see 
this note that the u,(B, 8i)2 - a (p ,  Bi) are independently and identically distributed when 0, is at 
its true value. Hence N ' f 2  C V [ ~ ~ ( @ ,  0,)' - ai(P, Bi)] will be asymptotically standard normal. 
Further, under H,, b has been shown in Huggins (1989) to he asymptotically normal so that the 
usual Taylor series arguments show that N-'l2 x7[ui (B,  012 - ai(B. O)] is asymptotically 
normal as well. Under Ho a consistent estimate of the variance of a single term is 
N '  ~ y [ u ~ ( b , 0 ) ~  - ai(B,0)l2, which gives the above test. 

When applied to the data of Appendix 1 using Model 5 ,  the value of the test statistic was 1.44, 
which gives a P-value of ,1505, as our test is two-sided. By comparison, when the test is 
applied to the same data using Model 0 the resulting statistic is 3.12, a P-value of .0017; and 
when applied using Model 1, that selected by Otis et al. (1978), the resulting statistic is 2.434, a 
P-value of ,014. This is a result quite different from that of Otis et al. (1978). However, in our 
terms their test is testing Model 1 against Model 3 and our P-value of ,479 is in agreement with 
the value of .43 obtained using their test. The increased power of the test presented here is due 
to the more general alternative. 

5. Estimating the Population Size 

The population size may be estimated by a direct application of the methods of Huggins (1989). 
Having used a conditional likelihood to select a model and estimate the associated parameters, if 
this model does not include separate parameters for each individual, the methods of Huggins 
(1989) are directly applicable to estimate the population size and obtain confidence intervals. 

Let 

where fl is the vector of parameters associated with the model. Then pi@) is the probability that 
individual i is captured at least once in the course of the trapping experiment. An unbiased 
estimate of the population size n is 

and an estimate of the variance of N((P) is 

When P is estimated from the data by B we use N(B) to estimate N a n d  if the model does not 
include the 8, of Section 4 we may take ~ ( 6 )  to he asymptotically normally distributed wlth 
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an N and variance s2& + 6 f 1 b ,  where i is the matrix of second derivatives (i.e., the 
essian) of the conditional log-likelihood evaluated at b,  and D is the vector 

Note that both I and D can be obtained numerically on many computer packages. For the data 
t of Appendix 1 the population size was estimated according to Model 5 to be 47.144 with an 
mated standard error of 7.18. Most of the variance in this estimate was due to the variation in 
imating the parameters associated with the model. The corresponding estimate of Otis et al. 
78) for this data set was 41 with an estimated standard error of 3.0518. Our Model I is 

see issentially equivalent to that fitted by Otis et al. and for this model our methods gave an estimate 
is at ]lithe population size as 42.26 with a standard error of 3.75. 
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APPENDIX 1 

I 
Captures 'of peromyscus maniculatus coNected by V. Reid at East Stuart Gulch, Colorado. 

The columns represent the sex (m or 0, the ages (y: young, sa: semi-adult, a: adult), 
I 
i 

the weights in grams, and the capture histories of 38 individuals over 6 trapping occasions 
I (I: cantured, 0: not cantwed). 
! 

i m y 

I f y l 5 1 O O 1 l 1 f  
m y 1 5 1 1 0 0 1 1 f  
m y 
m y 1 3 1 1 1 1 I l y  

ith - 

1 2 1 1 1 1 I I m y 1 3 O I 1 O I O  
y 5 O I O l O 1  
a 2 0 0 1 O O O 1  

1 5 1 1 0 1 I I m y 1 2 O I O O 1 1  
6 0 0 1 0 0 0  

- -- - -~ - - 
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The conditional likelihood given in Section 2 is the formulation of Huggins (1989), which may br 
expressed in an equivalent form as follows. If individual i has not been captured before occasion j then il 
is easily shown that 

so that for an individual captured for the first time on occasion k ,  

All individuals appearing in the conditional likelihood of Section 2 must have been captured at such a k 
and thus the conditional likelihood of Section 2 is equivalent to 
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