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SUMMARY

The use of conditional likelihood methods in the analysis of capture data allows the modeling of capture
probabilities in terms of observable characteristics of the captured individuals and the trapping occasions.
The resulting models may then be used to estimate the size of the population. Here the use of conditional
liketihood procedures to construct models for capture probabilities is discussed and illustrated by an
gxample.

{1. Introduction

The recent work of Huggins (1989) introduces a procedure for estimating the size of a closed
population when the capture probabilities are heterogeneous by modeling the capture probabili-
s in terms of observable covariates such as age, sex, weight, trapping history, rainfall, etc.
The modeling is done by constructing a likelihood conditional on the captured individuals to
stimate the associated parameters. The use of observable covariates in capture-recapture
tiperiments has been previously discussed in Pollock, Hines, and Nichols (1984). They
pamined inferences based on the full likelihood, which necessitated the construction of
ttegories of individuals according to the values of the covariates, using the midpoint of the
jutegory as the covariate, and estimating the number of individuals in each category. The
Econstruction of the categories is necessary Lo overcome the problem that the covariates for
“captured individuals are not known. The determination of these categories can be difficult if
:jseveral continuous covariates are involved and the determination of category boundaries may not
e clear. The procedure initially presented in Huggins (1989) avoids these problems by making
:nferences conditional on the captured individuals so that characteristics of uncaptured individu-
fals are not required.

: The basic theory of this approach was presented in Huggins (1989} and here this modeling is
fiscussed in more detail than in Huggins (1989) with particular attention being paid to the more
mactical problem of determining an appropriate model.

- To illustrate these results a data set collected by V. Reid and distributed with the cAPTURE
pogram of Otis et al. (1978) is considered. The data in a form suitable for this purpose are
rproduced in Appendix 1. In a previous discussion of this data set, Otis et al. (1978, p. 32),
wing their techniques, determined that the most suitable model of those available to them was
model AM,, which allows the capture probabilities to vary in response to prior capture.
Accompanying this data set are several covariates on the captured individuals—sex, age, and
weight. The models considered here are described in Section 2 and they are fitted to the data in
fection 3. Tn Section 4 a test is given to determine whether all the variability in the capture
probabilities is explained by the model and this test is applied to the data sets. Finally, in Section
jthe estimation of the population size is examined.
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2. The Conditional Likelihood and the Linear Logistic Model

Let p;,; denote the probability that individual 7 is captured on occasion j, where i = 1,..., N
are the individuals in the population and j = 1,...,¢ are the capture occasions. Here N
denotes the population size.

Briefly, the methods of Huggins (1989), to which the reader is referred for details, construct a
likelihoed conditional on the captured individuals that may be written in terms of

Pi;
1-{1- zu‘)H;:j(l - pi) g

where pf‘j is p;; evaluated when z,;, = 0, with z;; being the indicator of the past capture of
individual {, i.e.,

Yij =

. = { 1, ifindividual ¢ has been captured before J,
g 0, elsewhere.

Then vy, is the probability individual 7 is captured on occasion j given its past capture history
and given it is captured at least once in the course of the experiment.

Now let x;; = 1 if individual / is captured on occasion jand x;; = 0 otherwise, and label the
captured individuals 1, ..., # with the uncaptured individuals being labelled n + 1,..., N.
The conditional likelihood is then proportional to

n ! oy
L= 'H. qu,g;.,fp — )T, (2.1)
el

which depends only on the captured individuals. An equivalent form of this conditional
likelihood is given in Appendix 2.

Various models for the capture probabilities p,;, such as the linear logistic models discussed
below, may be used and associated parameters can be estimated from the conditional likelihood.

Here it is supposed that In[ p,; /(1 — p,,)] is a linear function of covariates corresponding both
to characteristics of the individuals and to differences in the environment on the different
trapping occasions. This linear logistic model has been previousty used in Pollock et al. (1984)
and has been extensively used in the statistical literature; see Cox (1970). Asymptotic properties
of the corresponding maximum conditional likelihood estimators of the parameters in linear
logistic models are derived in Huggins (1989); in particular, the estimators are (unconditionally)
asymptotically normal and their variances can be recovered from the matrix of second deriva-
tives of the log-likelihood as usual. From a computational point of view it is usually mos
convenient to maximize the log-likelihood and recover the variances from the resulting Hessian
matrix. Due to the nonstandard form of the conditional probabilities -+, ; appearing in the
conditional likelihood (2.1) it is necessary to use a general-purpose optimisation routine to find
the estimates rather than a standard logistic regression package.

The following models for the data of Appendix 1 are considered with the closest model of Otis
et al. {1978) given in parentheses where appropriate. In some cases these models are a simple
reparameterisation of those of Otis et al. whilst others are of greater complexity.

Model 0. (M)
IH(L)ZBOE j=1,"'st1 j=l""’N'
I—p,-j

This model assumes all the individuals have the same catchability that does not vary with time,
the individual’s prior capture history, or any covariates. The model is a reparameterisation of
model M of Otis et al. (1978).
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Model 1. (M)

Pij . .
ln( J ):BU'FB.E;ZUs J=1,....t i=1,...,N.

1-p,;

This parameterisation allows the capture probabilities to vary only according to an individual’s
apture history and is a reparameterisation of model M, of Otis et al. (1978).

Model 2. (M)

In ( ———pij
Al

)=.80+.6j» j=1,...,¢ i=1,..., N,

where 3, = 0. This model allows the capture probabilities to vary only by time.

MModel 3. (M)

Pij . :
ln( J )=BU+Bj+-8bzij’ J=]s---vt, I:‘I-'"'!N’

L —py;

where again 3, = 0 and B, is the effect of previous capture. This model allows the capture

sobabilities to vary according to time and past behaviour.
Model 4. (special case of M)
Py . . . .
ln(] ! ) =Bo-l-Bsex+ﬁage+3w[xwe1ght(1), j=1,...,1, i=1,...,N,
i
where 8, is the effect of sex, 8, the effect of age, 8B, the effect of one unit of weight, and

weight() the weight of individual i. This model accounts for heterogeneity resulting only from
lifferences in sex, age, and weight. There is no equivalent model of Otis et al. (1978) although
tis model is a restricted version of their model M.

Model 5. (special case of M,,)

prl - -
h‘{l ‘; )=BO+35CK+3agc+ﬁw1Xwe1ght(1)+,6szj,
— b,

jzl,...,f, i=1,....,N.

Here the capture probabilitics depend on the covariates of Model 4 and the individual’s past
‘rapping history. There is no equivalent model of Otis et al. (1978) although this model is a
testricted version of their model M.

Model 6. (special case of M)

Pi; i ]
1"( ) ) = Bo + Buer + Buge + B X weight(i) + 8, + 8,2,
ij

j=1,....¢t, i=1,...,N.

This is Model 5 with probabilities allowed to vary over time. Again this is a special case of the
nodel M,,, of Otis et al. (1978) but is not equivalent to their model.

Model 7. (variant of M,;)

P
m(_L_
1 —

i

)=Bo+ﬁscx+ﬁage+8w[xweight(i)+6,-, j=1,...,¢t, i=1,...,N.
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This model allows some of the variability between individuals to be explained by the observed
covariates but still allows variation due to unobserved characteristics,

3. Model Testing

The first six models above are computationally straightforward and one may construct a
conditional likelihood in the manner of Huggins (1989) to estimate the model parameters. Here
we are interested in the value of the logarithm of the conditional likelihood upon which we base
our model selection techniques. The conditional likelihoods were computed on an IBM-compati-
ble personal computer using the general purpose statistical computing package Gauss. As noted
above, standard logistic regression packages are not suited to this analysis. For the analysis the
three semi-adult individuals were recoded as adult.

For the Models 1-6 tests may be based on the likelihood ratio test or on Akaike’s information
criterion (AIC), given by

AIC = ~2In L(F) + 25,

where In L(B) is the log-likelihood for the model evaluated at the maximum conditional
likelihood estimator § and s is the number of parameters estimated by 3: see Read and Cressic
(1988, §8.3).

For the above models the corresponding maximised conditional log-likelihoods and AIC for
the data set of Appendix 1 are given in Table 1. The use of the AIC would result in the choice of
Model 5, a specijal case of Model M, of Otis et al, (1978).

A more traditional method of comparing two nested models is to compute a likelihood ratio
statistic that is twice the difference in the log likelihoods of the two models. This statistic then
has asymptotically a chi-square distribution whose degrees of freedom is the difference in the
number of parameters between the two models. One can then conduct a sequence of tests
determine the *‘best’” model. The main problem with this approach is that the order in which the
tests are performed could lead to different models being selected as “*best.”” The choice of
procedure for selecting an appropriate model is dependent on one’s personal preference and the
desired degree of control over the modeling process.

The approach taken here, summarised in Table 2, is to initially test Model O separately against
the model invoiving only the past capture history, Model 1, the model involving only a time
effect, Model 2, and a model involving only the covariates, Model 4, The results of these tests
are given in the first columns of Table 2 where it is seen that Model 0 is rejected in favour of
Model 1 or Model 4. The next tests involve comparing Model 1 with Models 3 and 5 and Model
4 with Model 5, and it is seen from Table 2 that there is no reason to reject Model 1 in favour of
Model 3 but both of Models 1 and 4 are rejected in favour of Model 5, which involves the
covariates and the previous capture history. Model 5 is then compared with Model 6 in the final
columns of Table 2 and there is no reason to reject Model 5. Thus Model 5 seems most suitable,

Other tests not reported here confirmed that all the covariates should be in the model. To
complete the modeling process we need to determine whether our model suitably explains the

variation in the capture probabilities or if Model 7 is more appropriate. In Section 4 below we
Table 1
Log-likelihoods and AIC for the Models 1-6 of Section 2
Model 0 1 2 3 4 5 6
Number of 1 2 6 7 4 5 10
parameters
Log-likelihood 157.3 150.4 152.4 148.2 144.9 139.5 137.3

AlC 316.6 304.8 316.8 310.4 297.8 289 294.6
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Table 2
Major testing sequence for fitting the models of Section 2
Test x? d.f. P Test x?  df P Test x:  d.f. P
fvs 1 13.68 1 .0002 tvs5 21.8 3 0001  Svs6 445 5 486
ivs 2 9.8 5 081 1vs3 4.5 5 479
flvsd  24.8 3 .0001 4vs5 10.8 ] .001

The tests in the first column were conducted first, then those in the second column, and finally that in the third. In
ach case the null model is stated first, then the alternative (e.g., 0 vs | is a test of the null hypothesis that Model 0 is the
wrrect model versus the alternative that Model 1 is the correct model. The likelihood ratio statistic { x?), its degrees of
gieedom, and associated P-value arc given for each test.

Table 3
Summary data and capture probabilities for the data of Appendix 1. The stated capture
probabilities are computed at the average weights for each age and sex.

Young Adult Young Adult
Numbecr caught Average weights
females 9 8 9.89 20.5
Males 15 6 12.53 18.5
First capture probability Recapture probability
females 21 .18 46 41
Yales .50 .28 76 .56

mopose a procedure that does not involve computing the estimates of the §, of Model 7 to test if
Ea model explains all the variations in the capture probabilities; based on the results of that test,
\lodel 5 is quite reasonable. The parameter estimates for this model, with estimated standard
utors in parentheses, are 3, = —2.907 (.873), 8., = 916 (.354), 3, = —1.884 (.634),
i, = 159 (.0628), B, = 1.176 {.405).

Some summary data for the individuals in the data set of Appendix 1 are given in Table 3.

i, Testing for Individual Variation

I this section we develop some theory that allows us to determine whether a proposed model
litably explains the variation in the capture probabilities. The major problems are the large
wmber of parameters to be estimated and the small number of observations on each individual,
shich does not allow the use of the usual asymptotic arguments.

; We are concerned first with testing H,: 8, = --- = §, = 0 without having to estimate the
ad an obvious candidate for such a test is the score test of Rao (1973, §6e.3), which one could
wpe to have a chi-square distribution with # degrees of freedom. Unfortunately, standard
%ymptotic arguments are not available to prove this result and the score test is ad hoc at best.
fote that the number of parameters increases as the population size increases and one has only a
“nite number of observations on each individual, which clearly precludes asymptotic arguments

mless one allows the number of trapping occasions to increase to infinity. Here it is assumed
?_:hat the covariates associated with individual i are independently and identically distributed so
‘fat the asymptotic arguments of Huggins (1989) may be used.

. Denote by 8 the vector of parameters, apart from the §,, associated with the model, and
tiefine, where @ is the vector of the 8,,

o) = LB o

i
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where I[(C;) = 1 if individual i is captured in the course of the experiment and /(C;} =1
otherwise, and L{8, #) is the conditional likelihood.
Further let

'duf(ﬂ’ ‘9{)
df,

!
Then E{v,(8, 6] = 0 and E[v(8, #)*] = E[a/B, 0,)]
We base our test on the statistic

7 [u6.0)" - a(8,0)]
(52,0480 - a@.0)]

which, under our assumptions that the individual covariates z, are independently and identically
distributed and the #; are identically zero, will be asymptotically normally distributed. To see
this note that the v (B 8, - a, (B f,) are 1ndependently and identically distributed when @, is at
its true value. Hence N~ 12 Zl [v, (_3 ) —a A8, 8] will be asymptotically standard normal
Further, under H,, A has been shown in Huggins (1989) to be asymptotically normal so that the
usual Taylor series arguments show that N~ ¥ V[v(8,0)* — a,(8,0)] is asymptotically
normal 38 well, Under Ho a consistent estimate of the variance of a single term is
N=UE g8, 07 — a8, )1, which gives the above test.

When applied to the data of Appendix 1 using Mcdel 5, the value of the test statistic was 1.44,
which gives a P-value of .1505, as our test is two-sided. By comparison, when the test is
applied to the same data using Model O the resulting statistic is 3.12, a P-value of .0017; and
when applied using Model 1, that selected by Otis et al. (1978), the resulting statistic is 2.434, 2
P-value of .014. This is a result quite different from that of Otis et al. (1978). However, in our
terms their test is testing Model 1 against Model 3 and our P-value of .479 is in agreement with
the value of .43 obtained using their test. The increased power of the test presented here is due
to the more general alternative.

ai(ﬁ’ ‘91') =

172

5. Estimating the Population Size

The population size may be estimated by a direct application of the methods of Huggins (1989).

Having used a conditional likelihood to select a model and estimate the associated parameters, if

this model does not include separate parameters for each individual, the methods of Huggins

(1989) are directly applicable to estimate the population size and obtain confidence intervals.
Let

I
pi(8) =1~ I (1 -pj).
=
where B is the vector of parameters associated with the model. Then p,(8) is the probability that

individual i is captured at least once in the course of the trapping experiment. An unbiased
estimate of the population size # is

~ -1
N(B ) = Z pi(B) .
and an estimate of the variance of N’(B) is

2(8) = 3. p(8) 1 - pi(B)].

i=1
When 8 is estimated from the data by ﬁ we use N(ﬁ) to estimate N and if the model does not
include the 6, of Section 4 we may take N(B) to be asymptotically normally distributed with
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ean N and variance s2(8) + DI™'D, where I is the matrix of second derivatives (i.e., the

essian} of the conditional log-likelihood evaluated at ﬁ, and D is the vector
dN(8) noo o o2 dpi(B)
dﬁ X = Z pl(B) dB .
g =1 g
71 a2 ’ * 2 ¢ *
= Zpi(ﬁ) Z (1 *Pfj) IT _(1 ‘Pu)'
i=1 J=1 k=1,k+j

Note that both I and D can be obtained numerically on many computer packages. For the data
it of Appendix 1 the population size was estimated according to Model 5 to be 47.144 with an
stimated standard error of 7.18. Most of the variance in this estimate was due to the variation in
stimating the parameters associated with the model, The corresponding estimate of Otis et al.
1978) for this data set was 41 with an estimated standard error of 3.0518. Our Model | is
msentially equivalent to that fitted by Otis et al, and for this model our methods gave an estimate
If the population size as 42.26 with a standard error of 3.75.
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! Risums
i
?;‘.'cmploi des méthodes de vraisemblance conditionnelle dans Panalyse des données de capture permet la
‘nodélisation des probabilités de capturc en termes de caractéristiques observables des individus capturés et
jies occasions de pidgeage. Les modéles résultants peuvent alors étre utilisés pour estimer I'effectif de la
ppulation. Ici, 'emploi des procédures de vraisemblance conditionnelle pour construire des modéles de
pebabilité de capture est discuté et illustré par un exemple.
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APPENDIX 1
Captures of peromyscus maniculatus colfected by V. Reid at East Stuart Gulch, Colorado.
The columns represent the sex (m or 1), the ages (y: young, sa: semi-adult, a: adult),
the weights in grams, and the capture histories of 38 individuals over 6 trapping occasions
(1: captured, 0. not captured).

m y 12 i 1 1 1 1 1 m y 13 0 | i 0 | 0
o y 13 1 0 0 i 1 i f y 5 0 ! 0 1 0O !
m y 15 1 1 & 0 1 i f a 20 0 1 o 0 0 1
m y 15 1 10 1 1 ! m vy 12 0 i 0 0 1 1
m y 13 1 1 1 1 i i t y 6 0 0 ! 0 0 0
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ArpPENDIX 1 —Continued
m a 21 1 1 0 1 1 1 f a 22 0 0 1 1 1 |
m Yy 11 1 1 1 1 1 0 f ¥ 10 0 0 1 0 i 1
m sa 15 1 1 1 0 0 1 f y 14 0 0 1 1 | 1
m y 14 1 1 1 l 1 1 f a 19 0 0 1 0 0 0
m y 13 { l 0 1 | 1 f a 2 0 0 0 1 ¢ 9
f a 22 1 | 1 0 1 1 m sa 16 0 0 0 i 1 1
m y 14 1 1 1 1 1 1 f ¥ 11 0 0 0 1 1 0
m y 11 1 ] 1 1 1 0| m y 4 0 0 0 0 1 0
f ¥ 10 I 0 0 1 0 0 f y 11 0 0 0 0 1 0
f a 23 0 1 0 0 1 0 m a 24 0 0 0 0 1
f y 7 0 1 1 0 0 | m y 9 0 6 o 0 0 1
m ¥ 8 0 1 0 ¢ 0 1 m sa 16 0 0 0 0 0 1
m a 19 0 1 0 I 0 1 f 2 19 0 0 0 0 o 1

APPENDIX 2

The condittonal likelihood given in Section 2 is the formulation of Huggins (1989), which may be
expressed in an equivalent form as follows. If individual / has not been captured before occasion | theni
is easily shown that

(- p)t -1, (0 - p5)]
110 ,(1 = pji)
so that for an individual captured for the first time on oceasion X,

: (1 7pij)[1 - H;=j+1(1 719?;)]19.'/:
BRI Oy 1| LRSIy 9

) L—x)
x II P:‘fu"’(l‘!’u): "
k41

(l - ‘7.-;) =

.

. Uoxy Ko
H Y ”(] - 'Ylj) C = H
j=

i=1

J=r 1 - n;:I(l _Pf') .

All individuals appearing in the conditional likelihood of Section 2 must have been captured at such a & §

and thus the conditional likelihood of Section 2 is equivalent to

(1-x,)

n pra(l — py;
H H J( ! !) kY
i=1j=1 1 =1I1_,(1 = p)
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