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Lecture 7 – Models for open populations:  Tag recovery and CJS models, 
Goodness-of-fit 
Resources 

Chapter 5 in  Goodness of fit in E. Cooch and G.C. White (eds.), Program MARK: A gentle 
introduction. http://www.phidot.org/software/mark/docs/book/ 
26 September 2007. 

Pollock, K.H, Nichols, J.D., Brownie, C. & Hines, J.E. (1990) Statistical inference for capture-
recapture experiments. Wildlife Monographs, 107, 1-97 

Pollock, K. H., J. D. Nichols, C. Brownie, and J. E. Hines.  1990.  Statistical inference for 
capture-recapture experiments.  Wildlife Monographs 107. 

Seber, G. A. F. 1982. The estimation of animal abundance and related parameters, 2nd ed. 
Macmillan, New York, NY. 

Chapter 8 in White, G. C., Anderson, D.R., Burnham, K.P., and Otis. D.L. 1982. Capture-
recapture and removal methods for sampling closed populations. Los Alamos National 
Laboratory, Rep. LA-8787-NERP. 235pp.  

m-arrays  

CMR data are often displayed in the form of an m-array.  The m-array is a very concise way to 
display the data as it relates to the capture histories and the multinomial likelihoods.  However 
capture histories can no be constructed from an m-array. 

Each row represents a cohort of marked individuals released on occasion i.  This number includes 
those initially marked at other times and released again at time i. The columns indicate the 
sampling occasions 2 through m.  The values in the array indicate the number of individuals 
released at i, R(i), and next encountered at time j.  The total on the right is the number of 
individuals released at R(i) that were seen again. 

  Occasion  

Occasion R(i) j= 2 3 4 5 6 7 8 9 10 1

m

i
i

j
=
∑  

1 51 12 2 8 7 4 3 2 1 4 43 

2 49  7 9 1 4 2 1 2 1 27 

3 50   5 7 4 5 7 1 2 31 

4 51    5 10 5 3 7 3 33 

5 49     10 7 3 2 5 27 

6 50      6 4 5 7 22 

7 50       8 6 1 15 

8 49        11 4 15 

9 52         4 4 
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Both band recoveries (dead animals) and recapture/re-sighting data are frequently summarized in 
this format.  Live releases are treated as newly marked animals in year i + 1. 

Remember that each cell in the m-array has an associated probability, and each row has its own 
multinomial distribution.  It is the simultaneous solution of all of the likelihoods that makes this 
analysis so useful. 

Band recovery models 

Models are systems of postulates, data, and inferences presented as a mathematical description of 
an entity or state of affairs (Merriam-Webster).  In the context of survival analysis we can think of 
models are the linkage (via likelihood theory) between the data and an equation or set of 
assumptions. 

There is a large class of models for the analysis of bird banding and fish tagging data.  These are 

open population models and are generally employed to estimate survival rates based on markers 
returned from harvested animals.  Although there is an assumption that recoveries occurring during 
a short window of time, it has been demonstrated that these models are relatively robust to 
violations of this assumption.  The figure above illustrates the relationships among the estimated 
parameters, the timeline of studies and the construction of capture histories for a single release of 
individuals in a tag recovery study. 

1. Constants 

Ri - number of animals marked in year i. 

2. Random Variables 

mij - number of bands or tags reported in year j from releases in year i.  The m-array of recoveries. 

3. Parameters of interest (pij) 

Sj - conditional probability of surviving in period j (the interval between recovery periods), given the 
animal is alive at the beginning of year j. 

rj -  conditional probability of being reported in year j, given the animal died in year j. This 
parameter is referred to as the recovery probability fi in some publications. 
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4. Cell probabilities  

It is useful to think of the random variables, mij, in terms of the cell probabilities and expected 
number of recoveries.  This information will be applied later in assessing goodness of fit.   

The expected values can be computed by multiplying the cell probabilities in each row (cohort) 
by the number of releases (Ri).  Here we examine the 15 cell probabilities for the saturated 
model in a study with 5 releases and 5 sampling (encounter) occasions. 

5. Saturated, Global, or General Model. 

Cell Probabilities for tag recovery(pij) 

Occasion   

1 2 3 4 5 Not recovered 

(1-S1) r1 S1(1-S2)r2 S1S2(1-S3)r3 S1S2S3(1-S4)r4 S1S2S3S4(1-S5)r5 1-Σ((p1j) 

 (1-S6)r6 S6(1-S7)r7 S6S7(1-S8)r8 S6S7S8(1-S9)r9 1-Σ((p2j) 

  (1-S10)r10 S10(1-S11)r11 S10S11(1-S12)r12 1-Σ((p3j) 

  (1-S13)r13 S13(1-S14)r14 1-Σ((p4j) 

  (1-S15)r15 1-Σ((p5j) 

 

Expected tag recoveries(E(mij))) 

 Occasion  

Released 1 2 3 4 5 Not 
recovered 

R1 R1(1-S1)r1 R1S1(1-S2)r2 R1S1S2(1-S3)r3 R1S1S2S3(1-S4)r4 R1S1S2S3S4(1-S5)r5 R1-Σ(E(m1J)) 

R2  R2(1-S6)r6 R2S6(1-S7)r7 R2S6S7(1-S8)r8 R2S6S7S8(1-S9)r9 R2-Σ(E(m2J)) 

R3   R3(1-S10)r10 R3S10(1-S11)r11 R3S10S11(1-S12)r12 R3-Σ(E(m3J)) 

R4   R4(1-S13)r13 R4S13(1-S14)r14 R4-Σ(E(m4J)) 

R5   R5(1-S15)r15 R5-Σ(E(m5J)) 

 

NOTE:  This model has as many parameters as cells, and while it is important 
conceptually and for testing goodness-of-fit it is generally of little biological interest.  It has 
deviance = 0 and is the model which best fits the data, but it also has the maximum 
number of parameters. 

6. Model {St, rt} the subscript t indicates that parameters vary over time. 

Cell Probabilities for tag recovery(pij) 

Occasion   

1 2 3 4 5 Not recovered 

(1-S1) r1 S1(1-S2)r2 S1S2(1-S3)r3 S1S2S3(1-S4)r4 S1S2S3S4(1-S5)r5 1-Σ(p1j) 

 (1-S2)r2 S2(1-S3)r3 S2S3(1-S4)r4 S2S3S4(1-S5)r5 1-Σ(p2j) 

  (1-S3)r3 S3(1-S4)r4 S2S3S4(1-S5)r5 1-Σ(p3j) 
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   (1-S4)r4 S4(1-S5)r5 1-Σ(p4j) 

     (1-S5)r5 1-Σ(p5j) 

 

Expected tag recoveries(E(mij)) 

 Occasion  

Released 1 2 3 4 5 Not recovered 

R1 R1(1-S1)r1 R1S1(1-S2)r2 R1S1S2(1-S3)r3 R1S1S2S3(1-S4)r4 R1S1S2S3S4(1-S5)r5 R1-Σ(E(m1j)) 

R2  R2(1-S2)r2 R2S2(1-S3)r3 R2S2S3(1-S4)r4 R2S2S3S4(1-S5)r5 R2-Σ(E(m2j)) 

R3   R3(1-S3)r3 R3S3(1-S4)r4 R3S3S4(1-S5)r5 R3-Σ(E(m3j)) 

R4    R4(1-S4)r4 R4S4(1-S5)r5 R4-Σ(E(m4j)) 

R5     R5(1-S5)r5 R5-Σ(E(m5j)) 

7. Model {S., rt} survival constant; recoveries vary among years 

Cell Probabilities for tag recovery(pij) 

Occasion   

1 2 3 4 5 Not recovered 

(1- S1) r1 S1(1-S1)r2 S1S1(1-S1)r3 S1S1S1(1-S1)r4 S1S1S1S1(1-S1)r5 1-Σ(p1j) 

 (1-S1)r2 S1(1-S1)r3 S1S1(1-S1)r4 S1S1S1(1-S1)r5 1-Σ(p2j) 

  (1-S1)r3 S1(1-S1)r4 S1S1S1(1-S1)r5 1-Σ(p3j) 

   (1-S1)r4 S1(1-S1)r5 1-Σ(p4j) 

     (1-S1)r5 1-Σ(p5j) 

 

Expected tag recoveries(E(mij)) 

 Occasion  

Released 1 2 3 4 5 Not recovered 

R1 R1(1-S1)r1 R1S1(1-S1)r2 R1S1S1(1-S1)r3 R1S1S1S1(1-S1)r4 R1S1S1S1S1(1-S1)r5 R1-Σ(E(m1j)) 

R2  R2(1-S1)r2 R2S1(1-S1)r3 R2S1S1(1-S1)r4 R2S1S1S1(1-S1)r5 R2-Σ(E(m2j)) 

R3   R3(1-S1)r3 R3S1(1-S1)r4 R3S1S1(1-S1)r5 R3-Σ(E(m3j)) 

R4    R4(1-S1)r4 R4S1(1-S1)r5 R4-Σ(E(m4j)) 

R5     R5(1-S1)r5 R5-Σ(E(m5j)) 

8. Model {S., r.} survival and recovery constant 

Cell Probabilities for tag recovery(pij) 

Occasion   

1 2 3 4 5 Not recovered 

(1- S1) r1 S1(1-S1)r1 S1S1(1-S1)r1 S1S1S1(1-S1)r1 S1S1S1S1(1-S1)r1 1-Σ(p1j) 
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 (1-S1)r1 S1(1-S1)r1 S1S1(1-S1)r1 S1S1S1(1-S1)r1 1-Σ(p2j) 

  (1-S1)r1 S1(1-S1)r1 S1S1S1(1-S1)r1 1-Σ(p3j) 

  (1-S1)r1 S1(1-S1)r1 1-Σ(p4j) 

    (1-S1)r1 1-Σ(p5j) 

 

Expected tag recoveries(E(mij)) 

 Occasion  

Released 1 2 3 4 5 Not recovered 

R1 R1(1-S1)r1 R1S1(1-S1)r1 R1S1S1(1-S1)r1 R1S1S1S1(1-S1)r1 R1S1S1S1S1(1-S1)r1 R1-Σ(E(m1j)) 

R2  R1(1-S1)r1 R1S1(1-S1)r1 R1S1S1(1-S1)r1 R1S1S1S1(1-S1)r1 R2-Σ(E(m2j)) 

RI  R1(1-S1)r1 R1S1(1-S1)r1 R1S1S1(1-S1)r1 R3-Σ(E(m3j)) 

R4  R1(1-S1)r1 R1S1(1-S1)r1 R4-Σ(E(m4j)) 

R5  R1(1-S1)r1 R5-Σ(E(m5j)) 

9. Model {S., r3} survival constant and recovery different in year 3 

Cell Probabilities for tag recovery(pij) 

Occasion   

1 2 3 4 5 Not recovered 

(1- S1) r1 S1(1-S1)r1 S1S1(1-S1)r3 S1S1S1(1-S1)r1 S1S1S1S1(1-S1)r1 1-Σ(p1j) 

 (1-S1)r1 S1(1-S1)r3 S1S1(1-S1)r1 S1S1S1(1-S1)r1 1-Σ(p2j) 

  (1-S1)r3 S1(1-S1)r1 S1S1S1(1-S1)r1 1-Σ(p3j) 

  (1-S1)r1 S1(1-S1)r1 1-Σ(p4j) 

    (1-S1)r1 1-Σ(p5j) 

Specifying tag recovery models using PIMs in MARK 

Like m-arrays, in PIMs the columns correspond to occasions and rows correspond to cohorts 
(releases).  In MARK each parameter gets an index number; parameters that are constrained to be 
equal are given the same index number.   

For example the cell probabilities for the Model: {S.r.} are: 

Cell Probabilities for tag recovery(pij) 

1 2 3 4 5 

(1- S1) r1 S1(1-S1)r1 S1S1(1-S1)r1 S1S1S1(1-S1)r1 S1S1S1S1(1-S1)r1

 (1-S1)r1 S1(1-S1)r1 S1S1(1-S1)r1 S1S1S1(1-S1)r1 

 (1-S1)r1 S1(1-S1)r1 S1S1S1(1-S1)r1 

  (1-S1)r1 S1(1-S1)r1 

   (1-S1)r1 
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Since all of the S's and all of the r's  are constrained to be equal, only two parameters are estimated 
and the corresponding PIMs are: 

Survival Probabilities  Reporting Probabilities 

1 1 1 1 1   2 2 2 2 2 

 1 1 1 1    2 2 2 2 

  1 1 1     2 2 2 

   1 1      2 2 

    1       2 

 

Similarly the cell probabilities for the Model:  {Str.} are: 

Cell Probabilities for tag recovery(pij) 

Occasion 

1 2 3 4 5 

(1-S1) r1 S1(1-S2)r1 S1S2(1-S3)r1 S1S2S3(1-S4)r1 S1S2S3S4(1-S5)r1 

 (1-S2)r1 S2(1-S3)r1 S2S3(1-S4)r1 S2S3S4(1-S5)r1 

 (1-S3)r1 S3(1-S4)r1 S2S3S4(1-S5)r1 

 (1-S4)r1 S4(1-S5)r1 

   (1-S5)r1 

 

The S's are year specific (n = 5) and all of the r's are constrained to be equal, so a total of six 
parameters are estimated: 

Survival Probabilities  Reporting Probabilities 

1 2 3 4 5   6 6 6 6 6 

 2 3 4 5 6 6 6 6 

 3 4 5 6 6 6 

  4 5 6 6 

  5 6 

 

The cell probabilities for an age specific Model: {Sj Ss Sa r}  where animals are marked as young with 
different survival probabilities for each of three age classes (juvenile, subadult, and adult) and a 
single recovery probability are: 

Cell Probabilities for tag recovery(pij) 

Occasion 
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(1-Sj)r Sj(1-Ss)r SjSs(1-Sa)r SjS2Sa(1-Sa)r SjS2SaSa(1-Sa)r 

 (1-Sj)r Sj(1-Ss)r SjSs(1-Sa)r SjS2Sa(1-Sa)r 

 (1-Sj)r Sj(1-Ss)r SjSs(1-Sa)r 

 (1-Sj)r Sj(1-Ss)r 

 (1-Sj)r 

 

The corresponding PIMs are: 

Survival Probabilities  Reporting Probabilities 

1 2 3 3 3   4 4 4 4 4 

 1 2 3 3 4 4 4 4 

 1 2 3 4 4 4 

  1 2 4 4 

  1 4 

 

The cell probabilities for Strt, the SATURATED MODEL, are: 

Cell Probabilities for tag recovery(pij) 

Occasion 

(1-S1)r1 S1(1-S2)r2 S1S2(1-S3)r3 S1S2S3(1-S4)r4 S1S2S3S4(1-S5)r5 

 (1-S6)r6 S6(1-S7)r7 S6S7(1-S8)r8 S6S7S8(1-S9)r9 

 (1-S10)r10 S10(1-S11)r11 S10S11(1-S12)r12 

  (1-S13)r13 S13(1-S14)r14 

  (1-S15)r15 

 

The corresponding PIMs are: 

Survival Probabilities  Reporting Probabilities 

1 2 3 4 5 16 17 18 19 20 

 6 7 8 9 21 22 23 24 

  10 11 12 25 26 27 

  13 14 28 29 

  15  30 

Multiple Groups 

Multiple groups can represent any number of situations.  In the recent monograph on the Northern 
Spotted Owl, models considering 100 identifiable groups were identified.   The most common use 
of groups occurs when parallel studies are conducted on (1) males and females, (2) different study 
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areas, or (3) animals experimentally subjected to different treatments.   For example White et al. 
present data taken from Brownie et al.: 146) for male and female mallards in m-array form: 

MALES  FEMALES 

  Occasion (j)    Occasion (j) 

Ri  1 2 3 4 5  Ri  1 2 3 4 5 

2583  91 89 24 18 16  1478  40 31 8 11 2 

3075   141 45 52 50  1525   72 20 15 7 

1195    27 31 21  319    8 7 3 

3418     156 92  1805     63 27

3100      113  1400      39

With 2 groups a much larger array of models becomes obvious.  At the extremes are models {S., r.} 
with constant survival across groups and over time and {Sg*t, rg*t} where both S and r are time-
specific.  An important concept to grasp at this point is that it is crucial to develop a suitable family 
of models a priori and not to run all possible models.  This strategy is often referred to as data-
dredging which often leads to "over-fitting" and the "detection" of spurious effects. 

Unequal time intervals 

When time intervals are unequal, CMR analysis handles data in much the same way we use DSRs 
to calculate nest success.  Thus, you specify the relative length of the intervals t and interval 
survival rates are calculated based on , that is the survival rate (e.g., annual) raised to the 
power of the length of the interval. 

it
iS

For example if there was no fishery in year three of a fish tagging study, the cell probabilities would 
become. 

Cell probabilities 

1 2 3-4 5 

(1-S1)r S1(1-S2)r S1S2S3(1-S4)r S1S2S3S4(1-S5)r 

 (1-S2)r S2S3(1-S4)r S2S3S4(1-S5)r 

  (1-S4)r S4(1-S5)r 

   (1-S5)r 

Identifiability 

Some parameters cannot be "identified," i.e., a unique solution cannot be achieved.  This is 
somewhat analogous to attempting to solve for a regression model with only one observation  
(n = 1).   

1. Lack of identifiability is a common problem among models where r varies by year or age unless 
more than one cohort is marked. 

2. Another common problem in the Model: {St rt} is the lack of identifiability in the last term in 
each row of the m-array (in red): 

(1-S1)r1 S1(1-S2)r2 S1S2(1-S3)r3 S1S2S3(1-S4)r4 S1S2S3S4(1-S5)r5 

 (1-S2)r2 S2(1-S3)r3 S2S3(1-S4)r4 S2S3S4(1-S5)r5 
lect_07.doc 
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  (1-S3)r3 S3(1-S4)r4 S3S4(1-S5)r5 

  (1-S4)r4 S4(1-S5)r5 

  (1-S5)r5 

Because the terms S5 and r5 do not appear separately anywhere else in the matrix only (1-S5)r5 
they can be estimated. 

3. Identifiability also becomes an issue in several other situations: 

a. When K can not be determined by numerical methods: 

b. When parameter estimates ( Ŝ or r̂ ) lie on or near 0 or 1 (the boundary). 

c. When data are sparse.  This problem arises when the recoveries or encounters are not 
sufficient to fill all of the cells in the m-array, thus all of the terms in the likelihood are not 
estimable. 

Cormack-Jolly-Seber models 

These models are similar to the band/tag recovery models with a few important differences.  
Animals are captured, given a unique mark, and released.  On subsequent occasions marked and 
unmarked animals are captured.  Marked animals are recorded and released.  Unmarked animals 
are marked and released.  Accidental deaths on capture are allowed and recorded.  The general 
Jolly-Seber model allows year specific estimates of apparent survival, capture probability, 
population size, and number of individuals entering the population.  While population size and the 
number of new individuals can be estimated they are subject to substantial bias due to 
heterogeneity and other issues.  

The Cormack-Jolly-Seber model is a restricted model that estimates time-specific apparent survival 
rates and recapture probabilities.  An important issue is that only apparent survival (i.e., 1 – 
(mortality + emigration)) is estimated, thus apparent survival < the true survival rate.  Thus studies 
are restricted to a specific locality. 

MARK example data set (dipper.dbf) 

1. Constants 

Ri – The number of animals released in year i is known and included the number of previously 
marked animals recaptured and re-released in year i. 

2. Random variables 

mij – As before, these are the data, the matrix of first recaptures of individuals released in year 
i; and recaptured in year j. 

Recaptures can be encounters of any type including recapture, re-sighting, or otherwise 
detecting the presence and status of marked individuals. 

3. Parameters 

Φj – Conditional probability of apparent survival in interval j, given alive at the beginning of the 
interval j  

pj – Conditional probability of capture or recapture at time j, given alive at the beginning of the 
interval j  

K – the number of estimable parameters in the model. 

lect_07.doc 
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4. Capture histories and m-arrays 

The encounter data are summarized in a capture-history or encounter-history matrix.  Using 1 
to represent and encounter and 0 not encountered on occasion j, typical encounter histories for 
5 occasions might look like: 

{11111} - released on occasion 1 and encountered on every sampling occasion 

{10101} - released on occasion 1 and encountered on occasions 3 and 5. 

{10000} - released on occasion 1 and never seen again 

{00101} - first released on occasion 3 and seen again on the 5th occasion. 

 
The formulation of the m-array is slightly different since the Ri include the number of re-
releases and the mij include only the first capture of each individual.  Thus each individual 
appears only once in each row of the m-array.  For example consider the following m-array for 
a simulated study with 2000 new released on each occasion: 

i Ri 1 2 3 4 

1 2000 30 70 114 43

2 2030  80 97 55

3 2150   167 46

4 2378    72

5. Expectations 

The cell expectations are likewise different because they must incorporate the probability of 
survival with no recapture.  Take for example the capture history:   

{10101}, 

representing an individual released at time 1 and encountered again at time 3 and time 5,  the 
relationship between this encounter history and the estimable parameters can be represented 
by: 

1 → 0 → 1 → 0 → 1 

 Φ1  Φ2  Φ3  Φ4  

  p2  p3  p4  p5 

 

The probability of observing this encounter history is thus: 

Φ1(1-p2)Φ2p3Φ3(1-p4)Φ4p5 

A more complicated example occurs when an animal is not encountered on the last occasion, 
because the last term must include the probability that the animal died before the last 
occasion.  For example the probability of : 

{11110} 

is 

Φ1p2Φ2p3Φ3p4Φ4(1-p5)+(1-Φ3). 

When used to develop the expected values for the m-array, we see additional differences.  For 
example given them-array: 



WILD 7250 - Analysis of Wildlife Populations 11 of 16 
www. auburn.edu/~grandjb/wildpop 

      

i Ri 2 3 4 5 

1 R1 m12 m13 m14 m15 

2 R2  m23 m24 m25 

3 R3   m34 m35 

4 R4    m45 

For example m23 includes animals released (initially) or re-released on occasion 2 and captured 
on occasion 3 (i.e., capture histories {111...} and {011...}).  Thus, 

E(m23) = R2Φ2p3 

Likewise, the capture histories {11010} and {010100} contribute to m24.  Thus  

E(m24) = R2Φ2(1-p3)Φ3p4. 

Thus, it should be fairly obvious that capture histories can be used to construct the m-array, 
but the m-array can not be used to reconstruct the capture history matrix. 

6. Model specification 

The basic CJS model is model {Φt pt} (similar to {St rt}), but models may be constructed using 
PIMs and Design Matrix in MARK similar to the methods used for tag-recovery models.  Like 
band-recovery models, the likelihoods are based on the multinomial distribution and 
constructed similarly. 

GOODNESS OF FIT (GOF) 

1. What is goodness of fit (GOF) and why do I care? 

There is an underlying assumption that the data fit the saturated or most general model, which 
can be interpreted to mean that the following more specific assumptions are met: 

a. Every marked animal present in the population at time i has the same probability of 
recapture (pi ) 

b. Every marked animal in the population immediately after time i has the same probability of 
surviving to time i+1. 

c. Marks are not lost or missed. 

d. All samples are instantaneous, relative to the interval between occasion i and i+1, and 
each release is made immediately after the sample. 

Generally assume that 3 & 4 are met even though we know that some marks are lost over time 
and we know that sampling and releases are not instantaneous.  It is 1 & 2 that we are 
concerned with in testing GOF. 

Example from genetics and general biology labs. 

2. Calculating ĉ  - three approaches 

Remember the limited discussion of  when we covered QAICc?  c  attempts to estimate the 
degree of lack of fit (aka extra-binomial variation (EBV) or overdispersion) in the data.  GOF 
testing is a form of contingency table analysis, which addresses the question:  Do the 
frequencies of individuals exhibiting particular encounter histories (mij) match those expected 
under general model; given the number released on each occasion? The degree of 

ĉ ˆ
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overdispersion is estimated by the parameter , which can also be thought of as a variance 
inflation factor. 

ĉ

A naïve approximation of c  is based on contingency tables is: ˆ
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Recall from the early discussion AIC and the quasi-likelihood (QAICc): 
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Thus, the model deviance, is divided by c . Thus, if >1, then the contribution to the QAIC 
value from the model deviance will decline, and the relative penalty for parameters will 
increase. Thus, as  increases, QAICc increasingly favors models with fewer parameters. 

ˆ ĉ

ĉ

a. Model deviance divided by model degrees of freedom. 

df
ln(c θ)(2ˆ L−

=  

Assumes that the deviance is distributed as χ2 , But the deviance is not always distributed 
as χ2.  This estimate is always biased high. 

b. Use Pearson GOF χ2 statistic divided by the model df  (less subject to bias) but unavailable 
for all models (sparse data sets and models with covariates). Often used to determine 
where LOF is occurring. 

c. Bootstrap approach – theoretically robust, only an estimate of ĉ .   

Uses parametric Monte-Carlo methods to approximate the expected distribution of either 
the deviance or deviance  (as in a.) based only on the multinomial distribution.  The 
observed value of either the deviance or  is then compared to the resulting distribution 
to determine the probability of a greater value than observed.  If this probability is low, 
then it is likely that overdispersion exists in the data.  A new value of  is then calculated 
by either dividing either the original deviance or the original  by the mean of the 
simulated values. 

ĉ
ĉ

ĉ
ĉ

This estimate is biased low, with the bias increasing as the number of occasions increases 
and the apparent survival rate increases for the Cormack-Jolly-Seber data type. 

d. Median ĉ - PREFERRED METHOD 

This approach also is based on simulating data, this time with a range deviance  values.  
Logistic regression is then used to estimate the median  of the distribution.  The range of 

 values to simulate (lower and upper bounds, and the total number of points based on 
these bounds) and the number of simulations for each of the specified values are specified 
by the user.  A small set of values over a wide range should be used to generate the 
resulting deviance s.  The logistic regression analysis is performed by MARK as a known 
fate model.  Output consists of the estimated value of  and a SE derived from the logistic 
regression analysis.  

ĉ
ĉ

ĉ

ĉ

ĉ

The median chat is biased high.  However, it has a much smaller standard deviation than 
the chat estimated by RELEASE.  Thus median is closer to truth than the RELEASE chat. ĉ
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e. Program RELEASE GOF 

RELEASE – also available as stand-alone program for survival analysis, but only runs 
certain specialized models for experimental projects. 

Generates 3 standard tests 

1) TEST 1 

Omnibus test for the comparison of groups.  NOT used for GOF.  Possible to do much 
more sophisticated tests in MARK.  

2) TEST 2 - Directly test assumptions 1 (above). 

Assumption – all marked animals in the population have the same chances of being 
captured at any given time.   

Examples of violations:  animals of a particular age or size are more (or less) likely 
to be captured than animals of a different age or size, animals captured at occasion i 
are more (or less) likely to be captured later, animals temporarily leave study area, 
animals always exist in pairs or schools.  For estimation of survival in open 
populations, marked animals have the same probability of recapture.  For estimation 
of population size (abundance), both marked and unmarked animals must have the 
same probability of capture.  

3) TEST 3 – Directly tests assumption 2 (above). 

Assumption – among the marked individuals in the population, all animals have the 
same probability of surviving, regardless of when they were marked.    

Examples of violations:  individuals caught at early dates are more (or less) prone 
to mortality during a given period than individuals caught later,  individual marked as 
offspring at (i -1) will be older or larger at occasion (i ). 

To run RELEASE from within MARK, simply pull down the ‘Tests’ menu, and select 
‘Program RELEASE GOF’ (only available with ‘Recaptures’ data type).  Results will be 
output into a Notepad window.   

4) Output: 
a) Information concerning recent updates to RELEASE, program limits 
b) Listing of capture histories, summary tabulation as an m-array 
c) TEST 3 and TEST 2 results for each group (respectively) 
d) Summary statistics. 
e) TEST2 – “of those marked animals not seen at (i +1), but known to be alive at 

(i +1), does when they were next seen (i +2, i +3…) depend on whether or not 
they were seen at (i )?”.  

f) TEST2.C – examines capture heterogeneity usually pooling results in a 2x2 
matrix. 

sensitive to short-term capture effects, or non-random temporary emigration.   

highlights failure of the homogeneity assumption (assumption a), among 
animals and between occasions.   

basic assumption of “equal catchability” of marked animals. 

 When seen again? 
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Seen at i i+1 i+2 i+3 

No n n n 

Yes n n n 

g) TEST 3 –assumption that all marked animals alive at (i ) have the same 
probability of surviving to (i +1). 

h) TEST 3 – “of those individuals seen at occasion (i ), how many were ever seen 
again, and when?”.  

i) TEST3.SR: 
 

seen before i seen again not seen again 

Yes n n 

No n n 

 

does the probability that an individual, known to be alive at occasion i, is ever 
seen again depend on whether it was marked at or before occasion i?  

If there is only a single release cohort, then “seen before i ?” becomes “seen 
before i , excluding initial release?”.   

TEST3.SR: Presented for TEST 3 in the version of RELEASE bundled with MARK.  

TEST3.Sm:  ”among those animals seen again, does WHEN they were seen 
depend on whether they were marked on or before occasion (i )?”.  

 When seen again? 

seen before i i+1 i+2 i+3 

No n n n 

Yes n n n 

TEST 3 deals with “survival heterogeneity” 

Although not the preferred method, the combined χ2 statistics from TEST 2 and 
TEST 3 divided by the degrees of freedom are an approximation of , the 
variance inflation factor used in QAICc. 

ĉ

5) When the general model is rejected  

Determine whether the mode is appropriate.  Often straight forward: 

a) examine the detailed TEST 2 and TEST 3 contingency tables 

 “Systematic” rejection (or bias) in the individual tables?   

Particular cell (or cells) in one of the test tables is consistently over- or under-
populated (i.e. below or above the predicted value). 

b) Example for CJS (recapture) data 
(1) TEST2 (recapture rates) is OK 
(2) TEST3 (survival rates) is rejected.   Next examine each of the TEST3 tables 

for each cohort. 
lect_07.doc 
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(3) TEST3.Sm is accepted. 
(4) TEST3.SR is rejected 
(5) TEST3.SR – of those individuals seen either on or before occasion i, what 

proportion were ever seen again?  

If rejected, then there is a difference in “survival” among individuals, 
depending on whether or not they were seen for the first time either on or 
before occasion i. However, TEST3.Sm only looks at individuals who WERE 
seen again. Among these individuals, when they were seen again does not 
depend on whether or not they were seen for the first time at occasion i.   

(6) Examine each individual TEST3.SR table 
(a “+” indicates more individuals than expected) 
(a “-” indicates fewer individuals than expected) 
 

TEST3.SR 

Seen at i Seen again Not seen again 

Seen before + - 

Not seen before - + 

 

In this example the pattern seems to be present in the majority (e.g., 8/10) 
of the tables. What does this suggest?  

Among individuals seen for the first time at occasion i, more are never seen 
again than expected (i.e., newly marked individuals were consistently less 
likely than previously marked individuals to ever be seen again). 

Interpretation? 

If individuals were marked as juveniles then this could reflect lower survival 
rates for newly marked juveniles. 

Marking effect  

Presence of transients (migratory individuals)  

Heterogeneity in capture rates 

6) What can you do if you do reject CJS? 

If the individual TEST2 or TEST3 results seem to show systematic deviations among 
occasions the CJS assumptions are not met and a different starting model is indicated 
(e.g., the age-structured model). 

Use analogous GOF tests for the new starting model.  

RELEASE only tests the CJS model 

RELEASE can be used for other models, under some conditions (see MARKBOOK or 
AFS monograph) 

f. Extra-binomial variation  

If the deviations in the contingency tables are not “consistent” among batches  

No clear “explanation” (biological or otherwise) for the violation of TEST2 or TEST3. 
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Remember that the conceptual basis of all models is “data = structure + residual 
variation”.  

Suggests that there is more residual variation than expected  

Excess variation shows up in the model GOF. 

1))(ln(2ˆ >
−

=
df

Lc θ
 

Remember though that in general, as increases your model selection is more 
conservative, and favor reduced parameter models.  

ĉ

g. When is ĉ  too big? 

If the model fits perfectly, then c <ˆ  1. What if =2, or =10?  ĉ ĉ

 “Rule of thumb”,  <ĉ  3.0 is ok (see Lebreton et al. 1992 - pp. 84-85).  

Considerations  

1) Ok to adjust for lack of fit simply by using ĉ . 
2) Large ĉ  (>2) warrants careful examination of the model structure.   

If the problem is due to structure problems in the general model: 
a) Examine TEST 2 and TEST 3 results. 
b) Consider a different general model. 

3) If not a structural problem 
a) Ok to adjust for lack of fit simply by using ĉ . 
b) Make the parameter estimates as robust and valid as possible.  
c) Blindly doing so may obscure important insights concerning your data.  
d) If model structure is correct and ĉ  is >>3, data may not be adequate for 

analysis. 
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