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Lecture 06 – Multinomials and CMR Models for closed populations 
Readings 

Williams, B.K., J.D. Nichols, and M.J. Conroy. 2002.  Analysis and Management of Animal 
Populations.  Academic Press.  San Diego, California. 

Other resources 

Otis, D. L., K. P. Burnham, G. C. White, and D. R. Anderson. 1978. Statistical inference from capture 
data on closed animal populations. Wildlife Monograph 62. 135pp. 

Pollock, K. H., J. D. Nichols, C. Brownie, and J. E. Hines. 1990. Statistical inference for capture-
recapture experiments. Wildlife Monographs 107. 97pp. 

White, G. C., D. R. Anderson, K. P. Burnham, and D. L. Otis. 1982. Capture-recapture and removal 
methods for sampling closed populations. Los Alamos National Laboratory, Rep. LA-8787-NERP. 
235pp. – Chapter 1, Chapter 8 

 

Multinomial Distribution and Likelihoods 

A fundamental appreciation for the multinomial coefficient, multinomial distribution, and 
multinomial likelihood is of great importance to understanding and analyzing capture-mark-
recapture data.  The multinomial coefficient is an extension of the binomial coefficient with more 
than two possible mutually exclusive outcomes.  As the binomial coefficient was introduced by way 
of coin tossing, the multinomial coefficient is nearly always introduced by way of die tossing.  The 
multinomial coefficient or the number of possible outcomes for die tossing is written: 
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1. Dependency among counts 

One property of multinomial data is that there is a dependency among the counts. For example, 
if a die is thrown and it is not a 1, 2, 3, 4, or 5, then it must be a 6.  Thus in the table below if 
we know any 5 of the variables and the total number of trials (tosses) we know the 6th.  This 
dependency is a characteristic of the binomial coefficient as well.  If we know number of trials 
(n) and the number of heads (y), we then know the number of tails (n - y ). 

Face Number Variable 

1 10 y1 

2 11 y2 

3 13 y3 

4 9 y4 

5 8 y5 

6 9 y6 

TOTAL 60 n 
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We can also write the probability an outcome or seri
from the multinomial in the form of a probability statement: 
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Note that ∑ = 1ip .  Why? 

For example, the probability of rolling a fair die (pi = 1/6) six times (n) 
and turning up each face only once (ni = 1) is written: 
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Another example, the probability of rolling 2 – 2s , 3 – 3s, and 1 – 4 is: 
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3. Likelihood 

ht have expected, the likelihood of the multinomial is of greater interest to us, since 
in ecology we frequently h ermine the model (pi).  The 
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This likelihood has all of the same properties we discussed for the binomial case.  so as you 
might have expected, we are interested in the log-likelihood: 
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The multinomial coefficient like the binomial coefficient can be ignored so what we end up with 
is: 

Table 1. Vertical file.

Tag No. Date 

211 2/1/1991 

211 3/2/1993 

212 2/6/1991 

213 3/1/1993 

214 3/1/1991 

214 2/10/1993

. . 

. 

. 

. 
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As you mig
ave data (n, yi…m) and are seeking to det

likelihood for our example with the die is: 
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4.  Capture histories & multinomials 

 Typically the procedure that is followed in CMR studies is to capture a sampl nim
ifiable, release them, and record either rec

animals or recaptures and observations (resightings) of live animals.  These d ay
ation (i.e., cov

tory ma ix where ch 

al is assigned 
a ‘1’ if encountered (captured) or a ‘0’ if not encountered.  

individuals (y ) characterized by each 

e-sighting rate depending upon the da
nd the assumptions we are willing to make. 

Table 2. Capture histories.

e of a
overies of dead 

als, mark 
them so that they are uniquely ident

ata m  be 
recorded in the form of a “vertical file” that may include ancillary inform
like Table 1. 

 These observations are typically converted to the form of a capture-his
row represents an individual and each column represents a 
sampling occasion.  On each occasion each individu

ariates) 

tr ea

 Occasion 
Ultimately for the closed population estimators discussed in this 
section these are converted to ‘LLLL’ data.  For example, in a live-
release study of with one initial capture and three sampling 
occasions, the capture histories of ten individuals captured and 
released on occasion 1 might look like Table 2. 

 For individuals in a population sampled on 3 occasions 8 (=2m  = 
23) possible capture histories.  The next table demonstrates how 
these observations can be summarized by the number of 

Tag No. 1 2 3 

211 0 0 1 

212 0 0 1 

213 0 1 0 

214 1 0 0 

215 1 0 1 

216 1 1 0 

217 1 1 1 

218 0 0 1 

i

possible capture history. 
 
These data can be used to estimate a 
number of useful parameters such as 
population size, survival, r
a

 

Table 3. Summarized 
histories. 

yi History 
Capture 

ta 
  1 1  0 0

2 1

 

iN y−

 0 1 

1 02 1 

1 1 1 1 

3 0 0 1 

1 0 1 0 

0 0 1 1 
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0 0 0 
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5. How does all of this relate back to Multinomials and Likelihoods? 
 

Remember the table from the example of the roll of the die. 
 

Face Number (yi) 

1 10 

2 11 

3 13 

4 9 

5 8 

6 9 

TOTAL 60 

 
The likelihood for such a data set could be constructed as: 

 

( )ln( )data probability⋅∑  

 

In CMR studies, each capture history is a possible outcome, analogous to one face of the die 
(ni).  Our data consist of the number of times each capture history appears (yi).   

yi 

Capture 
History 

3 0 0 1

Each encounter has an associated probability (pi).  For example, the capture history  
[1 0 1] could be interpreted as: 

Pr{Given release at time 1, not recaptured on occasion 2, 
and captured on occasion 3} 

or 

Pr{R1|(1-p1)•(1-p2)•(p3)}, 

Thus, we could construct the likelihood for our data of m capture histories of the form: 

( )
1

ln( )
m

i
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6. Dependency in the multinomial distribution: 
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Because of the numerical dependencies in the multinomial distribution some values necessary 
for estimating parameters can be determined by subtraction. 

How many individuals were never recaptured? 
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Closed Population Recapture Models 

CMR techniques have been used to estimate the size of human populations since the mid-1600s. 
First used in ecology by C.G.J. Petersen to estimate abundance of a fish population in 1896.  First 
used in wildlife science by Lincoln to estimate the abundance of ducks using band-return data in 
1930.  

The fundamental principle is simple and requires only two sampling occasions.  First, a sample of 
animals (size M - marked) captured from and then marked and released back into the population of 
interest (size N).  Then, another sample of individuals is captured (size C - captured) and the 
number of individuals marked in C is counted (R - recaptured).  

If the second sample was random, the proportion of marked individuals in the second sample 
reflects the proportion marked in the entire population. Thus, the estimator is based on the 
proportion:  

R
C

M
N

=
ˆ

 

Therefore, the Lincoln-Petersen estimator for N is:  

R
CMN =ˆ  

However, this intuitive estimator tends to be biased and can overestimate population size, especially 
with small samples.  Seber (1982) recommended a different form of the estimator, which is 
unbiased if (M + C) > N and nearly unbiased if R > 7:  
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Think of the classical ball and urn model of Feller (1950).  This model is quite different from what is 
often encountered in the real world in that: 

a. Capture probabilities often vary  
(i.e., animals rarely assort randomly after the first capture). 

b. Closure either demographic or geographic is rarely complete  
1) Demographic closure—no births or deaths  
2) Geographic closure—no emigration or immigration 

A large number of researchers and statisticians have contributed to the refinement of these 
estimators.  Otis et al. (1978) provide an extensive treatment of the use of CMR data.  His work 
dealt mainly with examining the sources of variation in capture probabilities.  White et al. (1982) is 
another excellent source of information regarding the analysis of CMR data.   

The object of these treatises was the estimation of population size, and a fundamental 
assumption of the approach was population closure.  As such survival or recruitment rates were 
considered nuisance parameters and of little interest.   

2. Significant advances of closed models in recent years: 
a. Can be used to examine removal or live-release data. 
b. With more than two sampling occasions, the assumption of constant recapture 

probability over time can be tested. 
c. Development of MLEs 
d. Heterogeneity of recapture probability can be examined. (i.e., models where 

capture probability varies among individuals) 
e. Heterogeneity models (i.e., comparisons of groups) 
f. Individuals covariates via link functions 
g. Mixture models – used to model unidentified sources of heterogeneity 

3. Lincoln-Peterson Estimator 

Despite the weaknesses of this simple estimator it forms the basis for virtually all of the CMR 
methods.   

a. Key assumptions: 
b. Population is closed – demographically and geographically 
c. Marks are not missed or lost. 
d. Capture probabilities are equal among individuals. 
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e. Probability distribution 
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N population size m2 number marked animals caught 
 in second period 

n1 number caught and marked 
in first period 

p1 probability of capture  
in first period 

n2 number caught  
in second period 

p2 probability of capture  
during second period 

L-P is positively (+) biased and magnitude of bias is inversely related to the sample size. 

f. Assumptions 
1) Closure – trapping mortality further positively biases the estimate of N 
2) Capture probability  

a) Can differ between occasions 
b) Should be equal among individuals 

c) trap happy – negatively biases N̂  

d) trap shy – positively biases N̂  

e) Tags lost or missed – positively biases N̂  

4. K-sample Capture-Recapture Models 

These models differ from the Lincoln-Peterson estimator and Seber’s estimator in that they 
involve more than two sampling occasions 

a. Sampling scheme/Data structure 
1) Assumptions 

a) Closure – demographic and geographic 
b) Tags are not lost or missed 
c) Capture probabilities are appropriately modeled (the model is correct) 

2) Data structure 
b. The data consist of capture histories identical to those used in the open models for 

recovery and recapture data. An encounter history is developed for each uniquely-
marked individual consisting of 1s (encounter) or 0s (not encountered) for each 
potential capture occasion (survey, trapping event, etc.) 

5. Modeling approach 

These data follow a multinomial distribution: 
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where ni and pi are the number of observations and probability of each capture history.  Also, 
like the open population models, closed populations can be constrained to reduce the number 
of parameters that are estimated.  Additionally, constraints can produce models that estimate 
the probability of capture for unmarked (pc) and marked animals (pr).  Thus reducing the total 
number of parameters estimate from the full 2K in the general model.  

Eight models possible in K-Sample Recapture Models. 

Model 
Name Sources of capture probability variation Estimated  

parameters 

M0 Constant capture probability. N,p 

Mt Temporal variation  
N, pi 

(i = 1…K) 

Mb Behavioral response (trap-happy or trap shy) N, pc, pi 

Mh Individual heterogeneity 
N, pi 

(i = 1…N) 

Mtb Temporal and behavioral 
N, pci, pri 
(i = 1…K) 

Mbh 
Behavioral response and individual  

heterogeneity 
N, pci, pri 

(i = 1…N) 

Mth 
Temporal variation and individual  

heterogeneity 

N, pij 

(i = 1…K) 
(j = 1…N) 

Mtbh 
Temporal variation, behavioral response 

 and individual heterogeneity 

N, pcij, prji 
(i = 1…K) 
(j = 1…N) 

 

Only the first 3 models, M0,
 Mt, and Mb, can be directly estimated via the likelihood.  For the 

other 5 models, alternative assumptions and constraints are required.  For the model Mtb, an 
MLE can be derived by assuming a relationship between the time-specific capture and recapture 
probabilities.  For models Mh, Mbh, and Mth, the estimates can be derived under the assumption 
that capture probabilities these are random samples of size N from an underlying distribution of 
probabilities, or by using the concept of coverage.  However, the finite mixture models 
described by Pledger (2000) present a better approach based on random effects. 

Table 14.1 from Williams et al. 2002 

Capture Probability 
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 history 
M0

 Mt Mb 

111 p3 p1 p2 p3 pc p2
r 

110 p2(1-p) p1 p2(1-p3) pc pr(1-pr) 

101 p2(1-p) p1(1-p2)p3 pc pr(1-pr) 

100 p(1-p)2 p1(1-p2 )(1-p3) pc (1-pr)2 

011 p2(1-p) (1-p1)p2 p3 (1-pc)pc pr 

010 p(1-p)2 (1-p1)p2(1-p3) (1-pc)pc(1-pr) 

001 p(1-p)2 (1-p1)(1-p2)p3 (1-pc)2 pc 

000 (1-p)3 (1-p1)(1-p2)(1-p3) (1-pc)3 

6. Estimating population size 
a. Constant capture probability – Model M0 

Because all of the capture probabilities are constrained to be equal, the probability distribution 
reduces to: 

( ) ..
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where n. is the total number of captures and MK+1 is the total number of unmarked animals 
captured.  

b. Temporal variation in capture probability – Model Mt 

This model can be thought of as an extension of the Lincoln-Peterson index with the benefit of 
the additional information from multiple sampling occasions.  The number of estimated 
parameters (N, p1…pK) is equal to K+1, one more than the number of sampling occasions.  The 
probability distribution of this model is: 
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Note that when K = 2, it can be shown that this is the Lincoln-Peterson estimator.   

The population size can be estimated by maximizing with respect to N, or using: 
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Darroch (1958), which setts the probability of not being caught during the study equal to the 
product of the probability of not being caught during each respective sampling period. 

c. Behavioral trap response – Model Mb 

This model describes a change in capture probability after the first encounter with an animal.  
Typical notation is probability of capture for unmarked individuals - pc and marked animals - pr.  
This behavioral response can be positive (trap-happy), or negative (trap-shy).  Thus, the model 
estimates only three parameters N, pc, pr. 

The probability function for this model is: 
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∑=
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jmm. , 

the number of recaptures during the study, and mj is the number of marked animals caught on 
occasion j.  Also, if Mj is the total number of marked animals in the population at j then 

∑
=

=
K

i
jMM

2
. , 

the total number of animals available for recapture, and MK+1 is the total number of animals 
marked in the study. 

The probability of initial capture is the total number of first captures divided by the total 
number of first captures possible: 
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and the probability of recapture is  

= , 

the number of recaptures divided by the number available for recapture.  This model is 
equivalent to estimation under a removal (harvest) model. 

d. Heterogeneity among individuals – Model Mh 
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This model is truly different conceptually from other models in that capture probabilities do not 
vary temporally or based on behavior, but each individual is assumed to have a unique capture 
probability.  Conceptually, this model is parameterized as a random sample of capture 
probabilities (p1…pN) from some underlying distribution F(p).  Given a cell probability, πj, which 
is basically the average probability that an individual is captured j times: 
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The model is described based on fj, the number of animals caught on j occasions: 
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These models are not MLEs.  Thus, it is not possible to use AIC or LRTs for model selection.  
Nonparametric MLEs for this model have been proposed by Norris and Pollock (1995, 1996).  
Pledger’s (2000) mixture models are MLEs based on a finite number of groups with unique 
capture probabilities.  The MLE models proposed by Huggins (1989, 1991) and Alho (1990) 
estimate capture probabilities using the familiar logit functions of individual covariates: 
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These approaches do not include N in the likelihood and estimates of abundance are based on 
the Horvitz and Thompson (1952) estimator, which is the sum of the inverse of the probability 
of capture at least once during the study across individuals: 
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e. Combined models of capture probability 

It is possible to cast models that include 2 or all 3 of the sources of variation described above.  
These models require additional constraints and assumptions, and Pledger (2000) used mixture 
models that are MLEs to describe the models Mtb, Mbh, Mth, and Mtbh. 

7. Testing model assumptions 
a. Closure 

All 8 of the above models assume no change in N during the study.  Two general approaches 
have been proposed for testing  

1) The null hypothesis test in program CAPTURE (Otis et al. 1978) compares the 
pij (probability of capture for individual i at time j) for all individuals captured 



12 of 14 
WILD 7250 - Analysis of Wildlife Populations 
www.auburn.edu/~grandjb/wildpop 

lect_06.doc 
 

more than twice.  The alternative hypothesis suggests that prior to first and 
subsequent to last capture some individuals had pij = 0, suggesting that they 
were recruited to the population sometime after the first or before the last 
capture period.   

2) Pollock et al. (1974) suggested 4 hypothesis tests about time specific variation 
in the pij:  
a) No mortality and no recruitment. 
b) Mortality, but no recruitment 
c) Recruitment, but no mortality, and 
d) Recruitment and mortality. 

Stanley and Burnham (1999) used this approach to test for overall population closure 
which basically compares a model of complete closure to a model for an open population.  
They present a series of contingency tables that decompose closure violations into the 
sources of violations (i.e., recruitment or losses), which correspond to the 4 tests 
described by Pollock et al. (1974 above). 

b. Tag loss 

Population estimates are biased high by tag loss.  The exceptions are model Mb and Mbh since 
they do not rely on information on recaptures.  Otherwise tag loss has been investigated with 
double-tagging studies. 

8. Model selection 

It is useful to choose models that balance the precision of estimates delivered by models with 
fewer parameters against the potential bias of more general models.  Thus, we are seeking to 
select the simplest model that fits our data.  However, many of the 8 models mentioned above 
are not based on likelihoods; it is not possible to base model selection on AIC (but see Pledger 
2000).  Otis et al. (1978) and Rexstad and Burnham (1991) describe an applicable approach 
based on goodness of fit and between-model tests. 

a. Goodness of fit 

The multinomial distributions can be used to calculate expected values that are compared to 
the observed values as we saw in the bootstrap GOF and RELEASE GOF for the CJS models.  
Program CAPTURE, which will run under MARK, computes these tests for 4 of the models – Mb, 
Mt, Mh, and Mtb.  We will discuss goodness of fit along with open models in the next lecture. 

b. Between model tests 

Where MLEs can be computed for the models likelihood ratio tests can be used compare nested 
models (e.g., Mb and Mtb).   These tests are conditional on the more general (i.e., 
parameterized) model fitting the data and ask whether the less general model adequately 
represents the data.  CAPTURE compares models M0 versus Mb and Mt and Mh and Mh versus 
Mbh. 

c. Discriminant Analysis 

Because AIC is not available for model selection, CAPTURE uses discriminant function analysis 
to compare models based on test statistics and probabilities. 
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Stanley and Burnham (1998) describe a marginally improved approach that incorporates linear 
and multinomial discriminant functions.  They also describe a method to incorporate model 
averaging. 

Again the mixture models of Pledger (2000) are capable of emulating all 8 of the closed-
populations models and several other variants in a likelihood framework that allows not only the 
use of AIC for model selection, but model averaging as well. 

9. Study design suggestions: 
a. Minimize violation of model assumptions 

1) Closure 
a) Keep it short to maintain closure and minimize gains and losses. 
b) Timing is everything – e.g., avoid periods of seasonal movements or 

dispersal 

c) Trap mortality biases N̂  

If substantial use removal models (behavioral response) 

2) Use individual marks – methods really don’t work with “batch marks.” 
b. Precision of estimates 

1) High capture probabilities increase precision and reduce bias. 
2) Increasing occasions (> 5) increases precision 
3) Parsimonious models increase precision 
4) Behavioral response – problematic to “closure” 

a) Pre-baiting – can minimize effects 
b) Minimize trapping deaths – extreme behavioral response 
c) Minimize handling time to reduce trap shyness 

5) Heterogeneity 
a) Stratify by important covariates (location, age, sex, etc.) 
b) Covariates – use Huggins model 
c) Distribution of trapping effort 

(1) Trapping density v. home range 
(2) Spatial arrangement 

What we won’t cover about closed models but you should know about 

1. Density Estimation with Capture-Recapture 
a. Grids 
b. Nested-grids 
c. Trap webs 

2. Removal methods 

3. Change in ratio methods 

Discussion 
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