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What are those βs anyway? – Understanding Design Matrix & Odds ratios 

References 
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Review of the design matrix and logit link 

Link function used to “link” data to the “real” parameters of interest.   

Remember, we are in this class focused on relating our observations back to the demography of 
the populations we study.  Thus, the real parameters of interest are survival, success, recruitment, 
movement, population growth rate, and distribution (occupancy), as well as the nuisance 
parameters (e.g., reporting, recapture, and re-sighting rates) included in the maximum likelihood 
estimators we employ. 

The data include not only the response variable (e.g., success or failure), but the additional 
information we often collect about the individuals or groups that we sample, which may be used to 
quantify important relationships about those demographic parameters, or to explain the 
heterogeneity (i.e., variation) among individuals or groups to obtain better estimates of the 
parameters of interest. 

For example, if I am trying to estimate the survival rate of a heavily harvest population of a game 
species, where there are sex- and age-related differences in natural mortality and harvest, then sex 
and age are important data in my observations and they can be treated as groups, or covariates in 
my analysis, but I definitely want to explore the differences in those rates by linking them to the 
data on sex and age.   

The example from the known fate lecture and lab used group, time, and mass as covariates (data).  
Group and time took on values of 0 or 1, so we refer to them as indicator or dummy variables.  
Covariates such as mass measurements are referred to as continuous variables, and 
measurements or indicators that change over time are referred to as time varying. 

1. Logit link is the most commonly used link function: 
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b. Robust when used in MLE over a relatively wide range of logit values 

c. In the known fate example it is essentially equivalent to using logistic regression. 

2. Logit  

a. Equation that describes the relationship of the data and the estimated parameters (βs) in 
the link function 

b. In MARK this is a linear combination (doesn’t have to be) 

This might include 1 parameter 

 1 1βx  

or several 

1 1 2 2β + βx x , 

2

1 1 2 2 3 3 3 4β + β + β + βx x x x . 

c. Often written in generalized matrix notation as Xβ 

1)  X is the matrix of data (covariates) used to specify the model  

a) May represent indicator variables (0s and 1s) 

b) May be values (as in the time variable or group covariate 
examples) 

c) May be variable (covariate) names 

2) β are the estimated parameters (i.e., the coefficients in the linear combination) 

3) via matrix multiplication: 

2

2

2

2

1 3

1 3 2

1 2 2 3 3 4

1 3 3

1 3 4

1 β

1 β
β β+ β + β + β

1 β

1 β

x x x

x x x
X x x x

x x x

x x x

   
   
    
   
   

  

 

3. Design matrix 

a. The most powerful model building tool in MARK 

b. Used to input the logits 

1) Columns are used to specify the βs to be estimated 

2) Each row is used to specify the linear combination of βs that form the logit for one 
“real” parameter 

c. Example using indicator (dummy) variables – known fate data one group, two time 
periods. 
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Null model (Si  are equal, i.e., estimates a single survival rate): 

 

B1 

S Intercept 

Parm 

1 1:S 

1 2:S 

 

 

 

1

1

1

1

1
X=

1

β=

1
Xβ=

1








 
 
 

  
   

   

, 

So, 

1 1X β = , 

and 

2 1X β=  

Substituting into the link function: 

 
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 
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 

 
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S
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S e
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e

































  
                  
    

. 

d. Model where the Si differ between the times (estimates 2 survival rates): 

B1 
S Intercept 

Parm B2 
S t1 

1 1:S 1 

1 2:S 0 

 

1 2 1 2

1 2 1

1 1
X=

1 0

β=

1 11 1
Xβ=

1 01 0





    

   









 
 
 

 
 
 

       
       

       

, 

So, 
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1 1 2X β=  , 

and 

2 1X β =  

Substituting into the link function: 

 
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


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

  
                   

    

 

e. Example using continuous variables (estimates an intercept and trend across intervals). 

Expanding the example to include three time periods and estimating the change in survival 
as a trend over time.  Consider the one group example again. 
 

B1 
S Intercept 

Parm B2 
Time 

1 1:S 1 

1 2:S 2 

1 3:S 3 

1 2 1 2

1 2 1 2

1 2 1 2

1 1

X= 1 2

1 3

β=

1 1 1 1

Xβ= 1 2 1 2 2

1 3 1 3 3





   


   


   









 
 
 
  

 
 
 

      
      

         
            

, 

So, 

1 1 2X β=  , 

and 

2 1 2X β = 2  , 

and 

3 1 2X β = 3   

Substituting into the link function: 
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 

 

 

 

 

 

 

 

 

 

 

 

1 2

1 2

1 2

1 2

1 2

1 2

2

2

1 2
2

2 2

2

3 3

2
3

2

exp

1 exp1

exp 2
S

1 exp 21

exp 3

1 1 exp 3

e

e
S

e
S

e
S

e

e

 

 

 

 

 
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 

 


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
















  
                             

  
       

 

f. Example using variable names (estimates an intercept and trend over covariate values) 

Let’s introduce a continuous covariate specified in the data something like mass; using the 
MARK default variable name Var1.   This time, it’s the name that is constant among 

individuals, but the values can differ in the input file.  Consider the one group example 
again: 

B1 
S Intercept 

Parm B2 
Var1 

1 1:S Var1 

1 2:S Var1 

1 3:S Var1 

1 2 1 2

1 2 1 2

1 2 1 2

1 Var1

X= 1 Var1

1 Var1

β=

1 1 1 Var1 Var1

Xβ= 1 2 1 Var1 Var1

1 3 1 Var1 Var1





   


   


   









 
 
 
  

 
 
 

      
      

         
            

, 

So, 

1 1 2X β= Var1  , 

and 

2 1 2X β = Var1  , 

and 

3 1 2X β = Var1   

Substituting into the link function: 



6 of 16 

WILD 7250 - Wildlife Population Analysis 
www.auburn.edu/~grandjb/wildpop 

lect_05.docx 

28Jan16 

 

 

 

 

 

 

 

 

 

 

 

 

1 2

1 2

1 2

1 2

1 2

1 2

Var1
2

Var1
2

1 Var1
2

2 Var1

2

3 Var1

2
Var1

2

exp Var1

1 exp Var11

exp Var1
S

1 exp Var11

exp Var1

1 1 exp Var1

e

e
S

e
S

e
S

e

e

 

 

 

 

 

 

 

 

 

 

 

 





















  
                            

 
      






 

In this case the logits equations are all the same, and MARK substitutes the appropriate 
value for the named variable for each observation (capture history) in the input file. 

g. Example using additive model 

Now building on the examples above, we create an additive model by combining two 
models for time trend in survival and Var1 (time and Var1).  This is called the additive 
model because these effects are added together in the logit, which is another way of 
saying that their affect is constant or independent of the other dependent variables 
(covariates) in the model.  So in this example this model estimates the trend in survival 
over time (β2) that is consistent over all values of Var1 and vice-versa. 

 

B1 
S Intercept 

Parm B2 
Var1 

B3 
Time 

1 1:S Var1 1 

1 2:S Var1 2 

1 3:S Var1 3 

3

1 2 3

1 2 3

3 1 2 3

1 Var1 1

X 1 Var1 2

1 Var1 3

β=

1 Var1 1 1 Var1 1

Xβ= 1 Var1 2 1 Var1 2

1 Var1 3 1 Var1 3







   

   

   









 
 


 
  

 
 
 
  

      
     

  
     
           

, 

So, 

1 1 2 3X β=1 Var1 1    , 

and 

2 1 2 3X β =1 Var1 2    , 

and 
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1 2 31 Var1 3     

Substituting into the link function: 

 

 

 

 

 

 

 

 

 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 Var1 1
1 2 3

1 Var1 1
1 2 3

1 1 Var1 1

1 2 3

2 1 Var1 1

1

3 1 Var1 1

1 Var1 1

exp 1 Var1 1

1 exp 1 Var1 11

exp 1 Var1 1
S

1 exp 1 Va1

1

e

e
S

e
S

e
S

e

e

  

  

  

  

  

  

  

  

  



 

 

 

 

 

 

  
 

   
 

    
   
    
    

 
  

 

 

 

2 3

1 2 3

1 2 3

r1 1

exp 1 Var1 1

1 exp 1 Var1 1

 

  

  

 
 
 
 
 
 
 

  
    

 

 

h. Example using interaction 

Further building on the examples above, we add an interaction term that estimates the 
change in the trend in survival over time to change across the values of Var1.  We do this 
by adding another estimated parameter.  Within that column in the design matrix we place 
the product of Var1 and the value of time.  We can do this using the product function in 

the design matrix (See the Design Matrix Functions in the MARK help file for more on the 
product function and information on additional functions for use in the design matrix), and 
the product can be specified in several different ways: 

B1 
S Intercept 

Parm B2 
Var1 

B3 
Time 

B4 
Var1*Time 

1 1:S Var1 1 product(col2,col3) 

1 2:S Var1 2 product(col2,col3) 

1 3:S Var1 3 product(col2,col3) 

Or 

B1 
S Intercept 

Parm B2 
Var1 

B3 
Time 

B4 
Var1*Time 

1 1:S Var1 1 product(Var1,col3) 

1 2:S Var1 2 product(Var1,col3) 

1 3:S Var1 3 product(Var1,col3) 

Or 

B1 
S Intercept 

Parm B2 
Var1 

B3 
Time 

B4 
Var1*Time 

1 1:S Var1 1 product(Var1,1) 

1 2:S Var1 2 product(Var1,2) 

1 3:S Var1 3 product(Var1,3) 

The result is the same: 
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1

2

3

4

1

2

3

4

1 2 3 4

1 2 3 4

1 2 3 4

1 Var1 1 Var1

X 1 Var1 2 2Var1

1 Var1 3 3Var1

β=

1 Var1 1 Var1

Xβ= 1 Var1 2 2Var1

1 Var1 3 3Var1

Var1 Var1

Var1 2 2Var1

Var1 3 3Var1

















   

   

   

 
 


 
  

 
 
 
 
 
 

 
   
   
   
    

 

   


   

   





, 

So, 

1 1 2 3 4X β=1 Var1 1 1Var1      , 

and 

2 1 2 3 4X β =1 Var1 2 2Var1      , 

and 

3 1 2 3 4X β 1 Var1 3 3Var1        

Substituting into the link function: 

 

 

 

 

 

 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 Var1 1 1Var1
1 2

1 Var1 1 1Var1

1 1 Var1 2 2Var1

2 1 Var1 2 2Var1

3 1 Var1 3 3Var1

1 Var1 3 3Var1

exp 1 Var1 1

1

S
1

1

e

e
S

e
S

e
S

e

e

   

   

   

   

   

   

    

  

  

  

  

  

  
 

 
 

 
 

   
   
    

 
  

 

 

 

 

 

 

3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1Var1

1 exp 1 Var1 1 1Var1

exp 1 Var1 2 2Var1

1 exp 1 Var1 2 2Var1

exp 1 Var1 3 3Var1

1 exp 1 Var1 3 3Var1



   

   

   

   

   

 
 

    
   
 
    
 

   
     

 

With any of the above Design Matrices, the deviance, likelihood, number of estimated 
parameters, estimates of the βi, and AICc are the same.  

i. Interactions among indicator variables 

Interactions between indicator polychotomous parameters (more than two possibilities) 
require each column used in specifying the polychotomous parameter to be multiplied by 
the columns specifying the other parameter(s). 
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For example consider and examples similar to the KM2 example with two groups and only 
4 time periods 

The default design matrix for two groups (S(g)) is 
 

B1 
S Int 

Parm B2 
S g1 

1 1:S 1 

1 2:S 1 

1 3:S 1 

1 4:S 1 

1 5:S 0 

1 6:S 0 

1 7:S 0 

1 8:S 0 

The default design matrix for the model for S(t), survival different among times, but not 
between groups 

B1 
S Int 

B2 
S t1 

Parm B3 
S t2 

B4 
S t3 

1 1 1:S 0 0 

1 0 2:S 1 0 

1 0 3:S 0 1 

1 0 4:S 0 0 

1 1 5:S 0 0 

1 0 6:S 1 0 

1 0 7:S 0 1 

1 0 8:S 0 0 

The additive model with group and time effects (S(t+g) (i.e., there is a difference in 
survival between groups, but it is constant over time). 

B1 

S Int 

B2 

S g1 

B3 

S t1 

Parm B4 

S t2 

B5 

S t3 

1 1 1 1:S 0 0 

1 1 0 2:S 1 0 

1 1 0 3:S 0 1 

1 1 0 4:S 0 0 

1 0 1 5:S 0 0 

1 0 0 6:S 1 0 

1 0 0 7:S 0 1 

1 0 0 8:S 0 0 

Finally, the model with effects of group and time that vary among time periods (S(t*g) is: 
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B1 
S Int 

B2 
S g1 

B2 
S t1 

B3 
S t2 

Parm B4 
S t3 

B5 
S g1*t1 

B6 
S g1*t2 

B7 
S g1*t3 

1 1 1 0 1:S 0 1 0 0 

1 1 0 1 2:S 0 0 1 0 

1 1 0 0 3:S 1 0 0 1 

1 1 0 0 4:S 0 0 0 0 

1 0 1 0 5:S 0 0 0 0 

1 0 0 1 6:S 0 0 0 0 

1 0 0 0 7:S 1 0 0 0 

1 0 0 0 8:S 0 0 0 0 

Odds ratios 

The coefficients in the logit (βi) are interpretable as natural log of the odds ratios.  The odds of 
success (survival) are the ratio of the probability of success to the probability of failure, or  

(1 )

i

i

S

S
. 

The odds ratio between groups 1 and 2 is then 

1 1

2 2

/(1 )

/(1 )

S S

S S




. 

4. Indicator variables 

Let’s use a simple example of known fate data where 50 individuals were under observation for 
2 time periods using telemetry without staggered entry and without censoring.  In this 
example, let 40 individuals survive (fate – 1) the first time period, and 30 survive the second 
time period. 

 Time period 

Fate 1 2 

1 (survived) 40 30 

0 (died) 10 10 

Total 50 40 

Survival for period 1 is 40/50 = 0.80, and survival in period 2 is 30/40 = 0.75. 

The odds of surviving period 1 are 40/10 = 0.80/0.20 = 4/1 (ln(4.0) = 1.3863), and the 
odds of surviving period 2 are 30/10= 0.75/0.25=3/1 (ln(3.0) = 1.0986).  The change in 
odds ratio of survival for the two time period is: 

𝑆1
(1 − 𝑆1)
⁄

𝑆2
(1 − 𝑆2)
⁄

=
40

10⁄

30
10⁄

=
4

3
= 1.33 
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 1 2 1 2 0.287682       . 

Confirming what we illustrated above 𝑒𝛽2 = 𝑒0.287682 = 1.33.  Thus, we could have drawn the same 

conclusion from examination of the parameters estimated in program MARK.  Individuals were 1.33 
times as likely to survive period 1 as they were to have survived period 2.   

5. Intercept coding 

The reason MARK uses intercept coding in the default design matrix is to allow for the 
interpretation of the odds ratios among the logits used in estimating the real parameters of 
interest.   

Consider two design matrices for the known fate Black Duck example S(t): 

B1 

S Int 

B2 

S t1 

B3 

S t2 

B4 

S t3 

Parm B5 

S t4 

B6 

S t5 

B7 

S t6 

B8 

S t7 

1 1 0 0 1:S 0 0 0 0 

1 0 1 0 2:S 0 0 0 0 

1 0 0 1 3:S 0 0 0 0 

1 0 0 0 4:S 1 0 0 0 

1 0 0 0 5:S 0 1 0 0 

1 0 0 0 6:S 0 0 1 0 

1 0 0 0 7:S 0 0 0 1 

1 0 0 0 8:S 0 0 0 0 

and 

B1 

S t1 

B2 

S t2 

B3 

S t3 

Parm B4 

S t4 

B5 

S t5 

B6 

S t6 

B7 

S t7 

B8 

S t8 

1 0 0 1:S 0 0 0 0 0 

0 1 0 2:S 0 0 0 0 0 

0 0 1 3:S 0 0 0 0 0 

0 0 0 4:S 1 0 0 0 0 

0 0 0 5:S 0 1 0 0 0 

0 0 0 6:S 0 0 1 0 0 

0 0 0 7:S 0 0 0 1 0 

0 0 0 8:S 0 0 0 0 1 

The estimates of the real parameters are identical as are the deviance, likelihood, and AICc.  
However, the estimated parameters in the upper (intercept coded) matrix are interpretable as 
log odds of effect sizes from the identity matrix below are log odds of success (survival).  This 
concept is easily extended to groups within the data. 

6. Continuous dependent covariates  

Given, that we are dealing with linear logit equations in most cases, the βi associated with 
continuous dependent variables are interpreted as changes in the log odds ratio per unit 
change in the value of the variable while holding all other variables constant. 

Using the black duck example again, consider the model S(min<0).  In this model, as 
described in the input file and the Conroy et al. manuscript, min<0 is the number of days 
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below freezing during each of the intervals between occasions.  These were entered as group 
covariates in the design matrix.  Thus the design matrix and the associated logits are: 
 

B1 
S Intercept Parm 

B4 
S min<0 Logit 

1 1:S 4 
1 24   

1 2:S 6 
1 26   

1 3:S 7 
1 27   

1 4:S 7 
1 27   

1 5:S 7 
1 27   

1 6:S 6 
1 26   

1 7:S 5 
1 25   

1 8:S 5 
1 25   

The estimates of the βi were: 

Estimated  
Parameter Estimate 

β1 6.449301 

β2 -0.60846 

Thus we can calculate the logits and the real parameters of interest as: 

min<0 Logit Survival 

Odds 

ratio 

3 4.623909 0.990281  

4 4.015445 0.982285 0.544186 

5 3.406981 0.967922 0.544186 

6 2.798517 0.942596 0.544186 

7 2.190052 0.899353 0.544186 

8 1.581588 0.829429 0.544186 
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Our interpretation should be that the odds of survival each week are 0.54 ( 0.60846e ) times 

lower for each additional (one) day below freezing during that week.   

7. Multivariable models 

a. Additive models 

When more than one variable is included in the model the interpretation of the odds must 
include the differences in the distributions of the values for each variable.  Consider the 
Black Duck example again, and the model S(min0+age), where age = 1 for juveniles and 
age = 0 for adults.  The design matrix and the logits are: 

B1 

S Intercept Parm 

B2 

S min<0 

B3 

S age Logit 

1 1:S 4 age 
1 2 34 age     

1 2:S 6 age 
1 2 36 age     

1 3:S 7 age 
1 2 37 age     

1 4:S 7 age 
1 2 37 age     

1 5:S 7 age 
1 2 37 age     

1 6:S 6 age 
1 2 36 age     

1 7:S 5 age 
1 2 35 age     

1 8:S 5 age 
1 2 35 age     

From the results, the estimated parameters: 

Index Label βi 
ie


 

1 Intercept 6.524526 681.66 

2 min<0 -0.61223 0.54 

3 age -0.16131 0.85 

We can calculate the expected survival rates using the link function and the odd ratios 
between the groups as above 

 0.82
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Age = 0 

 
Age = 1 

Odds ratio  

between  
ages min<0 Logit Survival 

Odds of  
survival 

 
Logit Survival 

Odds of  
survival 

3 4.6878 0.9909 108.62 
 

4.5265 0.9893 92.44 0.85 

4 4.0756 0.9833 58.89 
 

3.9143 0.9804 50.11 0.85 

5 3.4634 0.9696 31.92 
 

3.3021 0.9645 27.17 0.85 

6 2.8511 0.9454 17.31 
 

2.6898 0.9364 14.73 0.85 

7 2.2389 0.9037 9.38 
 

2.0776 0.8887 7.99 0.85 

8 1.6267 0.8357 5.09 
 

1.4654 0.8124 4.33 0.85 

Graphing these results we see that the logits are parallel, but the graphs of survival are not 
despite the fact that the odds ratios remain constant.  Thus, when comparing survival 
rates for models with more than one variable the values of the parameters at 
which the relationships are evaluated must be specified explicitly. 

 

b. Models including interactions 

When interactions are estimated in the model even more care must be taken with the 
interpretation and here’s why.  Consider the Black Duck example again, and the model 
S(min0*age), where age = 1 for juveniles and age = 0 for adults.  The design matrix and 
the logits are: 

B1 
S Intercept Parm 

B2 
S min<0 

B3 
S age 

B4 
S (min<0)*age 

 
Logit 

1 1:S 4 age product(col2,age)  
1 2 3 44 4age age       

1 2:S 6 age product(col2,age)  
1 2 3 46 6age age       

0.75

0.80

0.85

0.90

0.95

1.00

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

3 4 5 6 7 8

L
o
g
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Logit Age = 0

Logit Age = 1

Survival Age = 0

Survival Age = 1
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1 3:S 7 age product(col2,age)  
1 2 3 47 7age age       

1 4:S 7 age product(col2,age)  
1 2 3 47 7age age       

1 5:S 7 age product(col2,age)  
1 2 3 47 7age age       

1 6:S 6 age product(col2,age)  
1 2 3 46 6age age       

1 7:S 5 age product(col2,age)  
1 2 3 45 5age age       

1 8:S 5 age product(col2,age)  
1 2 3 45 5age age       

From the results, the estimated parameters: 
 

Index Label Estimate SE LCI UCI 

1 Intercept 7.807711 2.676031 2.562691 13.05273 

2 min<0 -0.80948 0.405348 -1.60396 -0.015 

3 age -3.14809 3.736018 -10.4707 4.174501 

4 min<0*age 0.469423 0.582702 -0.67267 1.61152 

We can calculate the expected survival rates using the link function and the odd ratios 
between the groups as above 

 Age = 0  Age = 1   

min<0 Logit Survival 
Odds of  

survival 
 Logit Survival 

Odds of 

survival 

 Odds  

between  

ages 

 

3 5.3793 0.9954 216.86  3.6394 0.9744 38.07 0.18  

4 4.5698 0.9897 96.52  3.2994 0.9644 27.10 0.28  

5 3.7603 0.9773 42.96  2.9593 0.9507 19.29 0.48  

6 2.9508 0.9503 19.12  2.6193 0.9321 13.73 0.72  

7 2.1414 0.8949 8.51  2.2792 0.9071 9.77 1.15  

8 1.3319 0.7912 3.79  1.9392 0.8743 6.95 1.84  

Graphing these results we see that the logits are NOT parallel (i.e., they have different 
slopes).  Thus, the odds ratio between age groups is not constant.  Thus, it is even more 
important, when comparing survival rates for models with more than one 
variable and interactions, that the values of the parameters at which the 
relationships are evaluated are specified explicitly. 
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 Age = 0  Age = 1 

   Odds    Odds 

min<0 Logit Survival Survival min<0  Logit Survival 

 

Survival Age min<0 

3 5.3793 0.9954 216.86   3.6394 0.9744 38.07 0.18  

4 4.5698 0.9897 96.52 0.45  3.2994 0.9644 27.10 0.28 0.71 

5 3.7603 0.9773 42.96 0.45  2.9593 0.9507 19.29 0.45 0.71 

6 2.9508 0.9503 19.12 0.45  2.6193 0.9321 13.73 0.72 0.71 

7 2.1414 0.8949 8.51 0.45  2.2792 0.9071 9.77 1.15 0.71 

8 1.3319 0.7912 3.79 0.45  1.9392 0.8743 6.95 1.84 0.71 
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