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Lecture 03 – Kaplan-Meier and Known Fate Analyses 
Readings:   

Pollock, K. H., S. R. Winterstein, C. M. Bunck, and P. D. Curtis.  1989. Survival analysis in 
telemetry studies: the staggered entry design.  Journal of Wildlife Management 
53:7-15.

Other resources:  

1. Kaplan-Meier and similar known-fate methods 

Bunck, C. M., and K. H. Pollock.  1993.  Estimating survival in radio-tagged birds.  
Pages 51-63.  In J. D. Lebreton and P. M. North (eds.) Marked individuals 
in the study of bird populations.  Birkhauser Verlag/Basel, Switzerland. 

Cox, D. R. and D. Oakes.  1984.  Analysis of survival data. Chapman and Hall, 
New York, N. Y. 201 pp. 

Pollock, K. H., S. R. Winterstein, and M. J. Conroy.  1989. Estimation and analysis 
of survival distributions for radio-tagged animals.  Biometrics.  45:99-109. 

Sauer, J. R., and B. K. Williams.  1989.  Generalized procedures for testing 
hypotheses about survival or recovery rates.  Journal Wildlife 
Management 53:137-142. 

White et al.  
http://www.cnr.colostate.edu/~gwhite/mark/mark.htm  
(see documentation section) 
http://www.cnr.colostate.edu/class_info/fw663/Mark.html  

Hosmer, D.W. and Lemeshow, S. 2000.  Applied logistic regression.  2nd Ed. 
John Wiley & Sons, Inc.  New York. 

Kaplan Meier (Product Limit) Procedure 
1. Developed in the late 50's for use in medicine and engineering 

2. First suggested for wildlife survival studies in mid- to late-80's by Pollock (1984) 
and Pollock et. al (1989). 

3. Early approaches assumed that survival of every animal was independent (i.e., 
constant survival probability over all animals and periods) 

4. Used when relocation is certain or unrelated to mortality 
a. Radio-tagged animals  
b. Plants or sessile creatures 

Terms and definitions 

http://www.cnr.colostate.edu/%7Egwhite/mark/mark.htm
http://www.cnr.colostate.edu/class_info/fw663/Mark.html
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Interval survival rates – the proportion of animals surviving some discrete 
period of time 

Product-limit – refers to the fact that survival rate during any interval can be 
calculated as the product of the survival rates during shorter intermediate 
intervals.  Thus the survival rate for the interval can never be greater than the 
lowest estimate of survival during any intermediate period. 

Survival function – equation describing the probability of an animal in 
population surviving t units of time from the beginning of a study. 

At-risk – having some probability of detectable mortality.  Thus, in radio-
telemetry studies, transmitter failure or emigration beyond the study area 
boundaries is grounds for removal from the at-risk group 

Right censor – to remove an animal from the at-risk group for some reason 
unrelated to mortality 

Staggered Entry — the addition of additional subjects to the at risk group 
during the course of the study. 

Study design 

1. Individuals marked or uniquely identifiable 

2. Subjects can be relocated without failure (except when censoring) 

3. All individuals relocated at the end of each survival interval (e.g., at each aj) 

4. Assumptions  
a. Animals in the population of interest have been sampled randomly – sex, 

age, location, etc. 
b. Survival times are independent for different animals 
c. Time of death is known exactly 
d. Capturing, marking, and observing does not influence survival (but may 

condition to eliminate potential effects) 
e. Censoring is random (i.e., unrelated to fate – either survival or mortality) 

1) May be useful to assume that marker failure is zero (e.g. studies of 
emigration time) 

f. Identification of time origin is crucial 
1) in medical and engineering studies – treatment time 
2) in wildlife studies – may be no natural origin time (e.g., season or 

other) may be crucial for example studies in winter may have a 
different survival rate that studies in summer;  survival rates may vary 
greatly after the start of a hunting season or other event 

g. Staggered entry assumes that newly tagged animals have the same 
survival function as previously tagged 
1) condition data 
2) assumptions can be modeled 
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Basic K-M calculations 

a1, a2, … ag – discrete time points when deaths (failures) occur 
(alternatively use regular sampling periods e.g. days, weeks, etc.) 

r1, r2, … rg – number of animals at risk at these time points 

d1, d2, … dg – number of deaths at these time points 
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is a short way of writing the product of the survival rates in all m intervals. 

Censoring and staggered entry 

1. When individuals are right censored, the number in the at risk group ri is reduced 
at time ai.  

2. Likewise when individuals are entered into the at risk sample the value  ri  is 
increased at time.  Alternatively, newly marked individuals can be "conditioned" 
to allow for marking or handling effects by delaying their addition to the at risk 
group for some predetermined time period. 

Estimating standard deviation and SE 
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The standard deviation and the SE =  )ˆvar(S . 

Confidence intervals 

Approximate 95%:  ))ˆ(var(96.1ˆ SS ±
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Table 3-2  from Pollock et al. 1989: Bobwhite survival in fall of 1986 

Week No. 
risk 

No. 
deaths Si Survival No. 

censored
No. 

added Var(S) LCL UCL 

1 7 0 1.0000 1.0000 1 0 0.0000 1.0000 1.0000 

2 6 0 1.0000 1.0000 0 5 0.0000 1.0000 1.0000 

3 11 1 0.9091 0.9091 0 0 0.0826 0.7471 1.0711 

4 10 0 1.0000 0.9091 0 6 0.0867 0.7392 1.0790 

5 16 1 0.9375 0.8523 0 0 0.0819 0.6918 1.0128 

6 15 0 1.0000 0.8523 0 0 0.0846 0.6865 1.0180 

7 15 1 0.9333 0.7955 0 0 0.0929 0.6134 0.9775 

8 14 0 1.0000 0.7955 0 0 0.0961 0.6070 0.9839 

9 14 3 0.7857 0.6250 0 0 0.1023 0.4245 0.8255 

Total  6  0.6250 1 11    
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Known Fate Models 
Known fate models use MLE for Kaplan-Meier-like problems.  Basically, these are 
binomial probability models used to describe data that meet the assumption that 
subjects can be relocated and fate determined without failure.  In other words the 
probability associated with recapture or recovery is assumed to be 1.0 and thus is not 
estimated.  However, there is much greater flexibility in model selection and the 
procedure is based on MLE. 

We estimated the survival rate (probability) of an animal via Kaplan-Meier method by, 

∏
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where di  was the number dying and ri was the number at risk during i  th interval of some 
longer time period t.   

If we think of this estimator in a slightly different fashion: 
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where yi is the number surviving and ni is the number at risk, it should be fairly that the 
likelihood for this equation is: 
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where θ is the survival model for the m periods, ni is the number of individuals at risk during 
each period, yi is the number surviving each period and Si is the MLE of survival during each 
period.   

This also can be written as the product of the probability of the individual observations: 
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or the sum of the log-likelihoods. 
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where Sij is the probability of individual i surviving the jth interval. 
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Link functions and covariates 
Link functions are used to examine the effects of covariates on survival. In effect, they 
provide the linkage between observations (data) and the survival estimate.  These covariates 
may be discrete or continuous.  For example we could examine the effect of week, age, or 
weight on weekly survival rates. 

Recall that the likelihood for the n individuals over the m weeks in our known fate analysis 
was 
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In order to estimate the survival rate as a function of some variable (e.g., age or weight) 
MARK uses a link function.  Frequently this is done by way of the logit link: 
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where X1i is the first covariate (data) in the ith interval.  Other functions could be used, but the 
logit is the most familiar and is the equivalent of logistic regression.  Since the data in the link 
can be coded to represent time periods or other discrete groups (more on how we do this 
later), we can drop the product of the likelihoods and substituting the logit link into the 
likelihood: 
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(ignoring the binomial coefficient), thus the log-likelihood is: 
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where n is the number of individuals in the sample.   

Obviously, more than one covariate can be included and the linear equation extended.  When 
the link function is employed, the βs are the estimated parameters; like the survival rates can 
be estimated for each occasion or constrained to be equal where appropriate using the data.  
The survival rates or real parameters of interest are calculated from the βs as in equation 1 
above.   

This concept has application to every estimator we will examine.  The important 
concept here is that the survival probabilities are replaced by the link function 
submodel of the covariate(s).  Conceivably every animal has a different survival 
probability that is related to the value of the covariates Xij . 

Example 

Consider this survival data set for a fictitious critter.  Let’s say it’s a radio-marked mouse.  All 
of the mice are captured and radio-marked on the same night, and weights are determined 
once, at the time of capture.  These mice are classified as belonging to two discrete groups 
(e.g., gender).  At the end of the first time period (0), #5 is discovered to have died.  By the 
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end of the second period mouse #4 also is dead. 
 

Obs 
Individual 

(i) 

Fate  
(Survived)

(yi) 
Time
(x1i) 

Group
(x1i) 

Mass  
at capture (g) 

(x3i) 
1 1 1 0 0 26 
2 2 1 0 0 28 
3 3 1 0 1 25 
4 4 1 0 1 22 
5 5 0 0 1 20 
6 1 1 1 0 26 
7 2 1 1 0 28 
8 3 1 1 1 25 
9 4 0 1 1 22 

Model 1: Survival rates vary between times 
Let, β0 equal the survival rate of individuals in group 0 during time 0; let β1 equal the 
difference in survival between time periods 0 and 1.  Thus, for the individual 1 in time  
period 1: 
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In the table below the column labeled β0+x1iβ1 is the linear equation, this linear equation is 

called the logit, for this model, S  is from equation 1, and ln(L) is from equation 2.  The 
Σln(L) for the observations is -8.62 based on initial values for β

ˆ
i = 0.5. 

Obs 
Individual 

(i) 

Fate  
(Survived)

(yi) 
Time
(x1i) β0+x1iβ1 Ŝ  ln(L) 

1 1 1 0 0.50 0.378 -0.97 
2 2 1 0 0.50 0.378 -0.97 
3 3 1 0 0.50 0.378 -0.97 
4 4 1 0 0.50 0.378 -0.97 
5 5 0 0 0.50 0.378 -0.47 
6 1 1 1 1.00 0.269 -1.31 
7 2 1 1 1.00 0.269 -1.31 
8 3 1 1 1.00 0.269 -1.31 
9 4 0 1 1.00 0.269 -0.31 
     Σ -8.62 

Using the solver, we find the MLE for β0= -1.39 and β1 = 0.29 as in the table below.  Note 

that because of the model specification the  are equal for all individuals in each time period. Ŝ
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Obs 
Individual 

(i) 

Fate  
(Survived)

(yi) 
Time
(x1i) β0+x1iβ1 Ŝ  ln(L) 

1 1 1 0 1.39 0.800 -0.22 
2 2 1 0 1.39 0.800 -0.22 
3 3 1 0 1.39 0.800 -0.22 
4 4 1 0 1.39 0.800 -0.22 
5 5 0 0 1.39 0.800 -1.61 
6 1 1 1 1.10 0.750 -0.29 
7 2 1 1 1.10 0.750 -0.29 
8 3 1 1 1.10 0.750 -0.29 
9 4 0 1 1.10 0.750 -1.39 
     Σ -4.75 

Model 2:  Survival varies by group and time. 
Let, β0 equal the survival rate of individuals in group 0 during time 0 ignoring the effect of 
mass on survival.  Let β1 equal the difference in survival between time periods 0 and 1; let β2 
equal the difference in survival between groups 0 and 1.  Thus, it follows from Equation 1 that 
for individual 1: 
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In the table below the column labeled β0+x1iβ1+x2iβ2 is the linear equation for this model,  
is from equation 1, and ln(L) is from equation 2.  The Σln(L) for the observations is -9.42 
based on initial values for β

Ŝ

i = 0.5. 

 

Obs 
Individual 

(i) 

Fate  
(Survived)

(yi) 
Time
(x1i) 

Group
(x2i) β0+x1iβ1+x2iβ2 Ŝ  ln(L) 

1 1 1 0 0 0.50 0.378 -0.97 
2 2 1 0 0 0.50 0.378 -0.97 
3 3 1 0 1 1.00 0.269 -1.31 
4 4 1 0 1 1.00 0.269 -1.31 
5 5 0 0 1 1.00 0.269 -0.31 
6 1 1 1 0 1.00 0.269 -1.31 
7 2 1 1 0 1.00 0.269 -1.31 
8 3 1 1 1 1.50 0.182 -1.70 
9 4 0 1 1 1.50 0.182 -0.20 
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      Σ -9.42

Using the solver, we find and ln(L) is maximized when β0 = -16.12, β1 =0.6932 , and β2 = 

15.43.  Note that because of the model specification the  are equal within groups and time 
periods. 
 

Ŝ

Obs 
Individual 

(i) 

Fate  
(Survived)

(yi) 
Time
(x1i) 

Group
(x2i) β0+x1iβ1+x2iβ2 Ŝ  ln(L)

1 1 1 0 0 16.12 1.000 0.00 
2 2 1 0 0 16.12 1.000 0.00 
3 3 1 0 0 16.12 0.667 -0.41 
4 4 1 0 1 0.69 0.667 -0.41 
5 5 0 0 1 0.69 0.667 -1.10 
6 1 1 1 0 15.43 1.000 0.00 
7 2 1 1 0 15.43 1.000 0.00 
8 3 1 1 0 0.00 0.500 -0.69 
9 4 0 1 1 0.00 0.500 -0.69 
      Σ -3.30

Model 3: all survival probabilities equal (null). 
Let, β0 equal the survival rate of all individuals.  Thus, for each individual: 
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In the table below the column labeled β0 is the logit for this model,  is from equation 1, and 
ln(L) is from equation 2.  The Σln(L) for the observations is based on the MLE for β

Ŝ
0 (-1.25). 

Obs 
Individual 

(i) 

Fate  
(Survived)

(yi) 
Time
(x1i) 

Group
(x2i) β0 Ŝ  ln(L) Obs 

1 1 1 0 0 0.5 1.25 0.778 -0.25 
2 2 1 0 0 0.5 1.25 0.778 -0.25 
3 3 1 0 1 0.5 1.25 0.778 -0.25 
4 4 1 0 1 0.5 1.25 0.778 -0.25 
5 5 0 0 1 0.5 1.25 0.778 -1.50 
6 1 1 1 0 0.5 1.25 0.778 -0.25 
7 2 1 1 0 0.5 1.25 0.778 -0.25 
8 3 1 1 1 0.5 1.25 0.778 -0.25 
9 4 0 1 1 0.5 1.25 0.778 -1.50 

      Σ -4.77 
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Model Selection 
 

Model  
name K ln(L) AICc ΔAICc L(θ) wi

St 2 -4.75 15.50 3.39 0.18 0.15

St+g 3 -3.30 17.40 5.29 0.07 0.06

S. 1 -4.77 12.11 0.00 1.00 0.80

    Σ 1.00

 

  


