CH104 Assigned Problems Chapter 13

Section	Problems
13.1	Chang: $3,6,7$. SP: 1
13.2	Chang: $10,17-19,25$. SP: 2
13.3	Chang: $23,26,30-32$. SP: 3,4
13.4	Chang: $34,35,38,42,43,45$. SP: 5
13.5	Chang: $47,48,52,55,56,60$
13.6	Chang: $61,62,64,65,68$. SP: 6

CH104 Supplementary Problems: Chapter 13

Data and equations:
$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{0}-\mathrm{kt}$

$$
1 /[\mathrm{A}]=1 /[\mathrm{A}]_{0}+\mathrm{kt}
$$

$\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}$

$$
\mathrm{t}_{1 / 2}=1 /\left(\mathrm{k}[\mathrm{~A}]_{0}\right)
$$

$\mathrm{k}=\mathrm{Ae} \mathrm{e}^{(-\mathrm{Ea} / \mathrm{RT})}$

$$
\ln \mathrm{k}=\left(-\mathrm{E}_{\mathrm{a}} / \mathrm{R}\right)(1 / \mathrm{T})+\ln \mathrm{A}
$$

$\ln \left(\mathrm{k}_{1} / \mathrm{k}_{2}\right)=\mathrm{E}_{\mathrm{a}} / \mathrm{R}\left(1 / \mathrm{T}_{2}-1 / \mathrm{T}_{1}\right)$

1. For the reaction $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$, write the rate of appearance of $\mathrm{H}_{2} \mathrm{O}$ and O_{2} in terms of the rate of disappearance of $\mathrm{H}_{2} \mathrm{O}_{2}$.
2. The reaction

$$
2 \mathrm{~A}+3 \mathrm{~B} \rightarrow \mathrm{C}+4 \mathrm{D}
$$

was studied at $30^{\circ} \mathrm{C}$. The initial rate was measured as a function of initial concentrations of reactants, and the following results were obtained:

$[\mathrm{A}]_{\underline{0}}(\mathrm{M})$	$\underline{\mathrm{B}}]_{\underline{0}}(\mathrm{M})$	$\underline{\text { Rate }(\mathrm{M} / \mathrm{s})}$
0.10	0.10	2.42×10^{-3}
0.20	0.20	1.92×10^{-2}
0.20	0.60	1.73×10^{-1}
0.20	0.10	4.84×10^{-3}

Write the rate law for this reaction and find the rate constant.
3. The dimerization of butadiene was studied at 500 K :

$$
2 \mathrm{C}_{4} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow \mathrm{C}_{8} \mathrm{H}_{12}(\mathrm{~g})
$$

A graph of $1 /\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]$ versus t gave a straight line with a slope of $1.4 \times 10^{-2} / \mathrm{M} \mathrm{s}$, and a graph of $\ln \left[\mathrm{C}_{4} \mathrm{H}_{6}\right]$ versus t gave a curved line. What was the rate constant? Write the rate law for this reaction. If the initial concentration of $\mathrm{C}_{4} \mathrm{H}_{6}$ was 5.00 M , how long would it take for the
concentration of $\mathrm{C}_{4} \mathrm{H}_{6}$ to fall to 0.01 M ? For the same initial concentration, what would the concentration of $\mathrm{C}_{4} \mathrm{H}_{6}$ be after 6 minutes?
4. The first-order rate constant for the reaction $\mathrm{A} \rightarrow \mathrm{C}$ is $2.12 / \mathrm{s}$. Calculate the half-life of the reaction if the starting concentration of A is 2.0 M .
5. For a reaction $\mathrm{R} \rightarrow \mathrm{P}$, the rate constants were measured at several different temperatures. A graph of $\ln \mathrm{k}$ versus $1 / \mathrm{T}$ gave a straight line with a slope of $-1.2 \times 10^{4} \mathrm{~K}$. What is the activation energy of the reaction in $\mathrm{kJ} / \mathrm{mol}$? The rate constant at $20.0^{\circ} \mathrm{C}$ was found to be 2.0 x $10^{-5} / \mathrm{s}$. What will the rate constant be at $60.0^{\circ} \mathrm{C}$? What is the frequency factor, A ?
6. Write the overall reactions and rate laws that correspond to the following reaction mechanisms. Identify any intermediates or catalysts.
(a)

$$
\begin{array}{lc}
2 \mathrm{~A}+\mathrm{B} & \mathrm{D} \\
\mathrm{D}+\mathrm{B} & \mathrm{E}+\mathrm{F} \\
\mathrm{~F} \rightarrow \mathrm{G} &
\end{array}
$$

(fast equilibrium)
(b) $\mathrm{A}+\mathrm{B} \quad \mathrm{C}$
(fast equilibrium)

$$
\mathrm{C}+\mathrm{D} \quad \mathrm{~F}
$$

(fast equilibrium)

$$
\mathrm{F} \rightarrow \mathrm{G}+\mathrm{D}
$$

(slow)

