Section	Problems
12.1-12.4	Chang: 2-6, 8, 10-12. SP: 1-3
12.5	Chang: 13-15, 19, 22, 24. SP: 4, 5
12.6	Chang: 26, 29-31, 33
12.7	Chang: 34, 37, 38, 40, 44. SP: 6
12.8	Chang: 45, 52, 58-60, 63, 67, 71, 76, 77. SP: 7-11
12.9	Chang: 82-84, 86, 91-93. SP: 12, 13

CH104 Assigned Problems Chapter 12

CH104 Supplementary Problems: Chapter 12

Read the sections, do the assigned problems from Chang, and make sure you understand the concepts. Then attempt the problems below <u>without referring to the book</u>, except as noted. Use a periodic table when necessary.

Data and equations:

$c = k\mathbf{P}$		$\Delta T_{f} = K_{f}m$
$P_1 = X_1 P_1^{\circ}$	$\Delta P = X_2 P_1^{\circ}$	$\Delta T_{b} = K_{b}m$
$\pi = MRT$		Tables 12.2 and 12.3 may be used as needed.

List the types of intermolecular forces that exist between molecules of:

 (a) KCl in CCl₄
 (b) Br₂ in CH₃CH₂CH₃
 (c) IBr in CCl₄
 (d) Cl₂ in H₂O
 (e) NaI in H₂O

2. Arrange the following in order of increasing solubility in H_2O : CO_2 , $MgCl_2$, CH_3CH_2OH , CS_2 .

3. Arrange the following in order of increasing solubility in CCl₄: Br₂, KBr, IBr, CBr₄.

4. A solution is made by dissolving 25.0 g of NaCl in enough water to make 1.00 L of solution. The density of the resulting solution is 1.0 g/cm^3 . Calculate the mass percent, molarity, molality, and mole fraction of NaCl.

5. An aqueous antifreeze solution is 40.0% ethylene glycol ($C_2H_6O_2$) by mass. The density of the solution is 1.05 g/cm³. Calculate the molality, molarity, and mole fraction of the ethylene glycol.

6. Calculate the solubility of O₂ in water at a partial pressure of 120 mm Hg at 25 °C. The Henry's Law constant for O₂ at 25 °C is 1.3×10^{-3} mol/L atm.

7. A solution is prepared by mixing 50.0 g of glucose ($C_6H_{11}O_6$) with 600.0 g of water. What is the vapor pressure of this solution at 25 °C? (At 25 °C the vapor pressure of pure water is 23.8 mm Hg.)

8. A solution is prepared by mixing 1.0 mol of methanol (CH₃OH) and 1.0 mol of propanol (CH₃CH₂CH₂OH). What is the total vapor pressure above this solution at 40 °C? What is the composition of the vapor at 40 °C (in mole fractions of CH₃OH and CH₃CH₂CH₂OH)? At 40 °C the vapor pressures of pure methanol and pure propanol are 303 mm Hg and 44.6 mm Hg, respectively.

9. When 2.60 g of a substance that contains only indium and chlorine is dissolved in 50.0 g of tin (IV) chloride, the normal boiling point of the tin(IV) chloride is raised from 114.1 °C to 116.3 °C. If $K_b = 9.43$ °C/*m* for SnCl₄, what are the molar mass and molecular formula of the solute?

10. A solution is prepared by dissolving 24 g of sucrose $(C_{12}H_{22}O_{11})$ in 175 g of water. Calculate the boiling point, freezing point, and osmotic pressure at 25 °C of this solution. Sucrose is a nonelectrolyte and the density of the solution is 1.1 g/mL.

11. An organic compound was analyzed and found to contain 40.0% C, 53.3% O, and 6.71% H. 10.0 g of the compound was added to enough water to make 100.0 mL of solution, and the osmotic pressure of the solution was found to be 13.6 atm at 25 °C. What are the empirical and molecular formulas of the organic compound?

12. Place the following solutions in order of increasing freezing-point depression:

- (a) 1.0 m NaCl in water
- (b) $1.3 m \text{ MgCl}_2$ in water
- (c) 1.5 m glucose in water
- (d) 1.0 m FeCl₃ in water

13. A 1.00 g sample of each of the following compounds is dissolved separately in 25.0 g of water. The freezing-point depressions for the solutions are shown below:

Co(NH ₂ CH ₂ CH ₂ NH ₂) ₂ Cl ₃	0.52 °C
Co(NH ₂ CH ₂ CH ₂ NH ₂) ₃ Cl ₃	0.87 °C

What are the experimental values of *i* for the two compounds?