
Physica A 414 (2014) 274–284

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

A new correlation coefficient for bivariate time-series data
Orhan Erdem a,1, Elvan Ceyhan b,2, Yusuf Varli a,∗
a Research Department, Borsa İstanbul, Resitpasa Mahallesi, Tuncay Artun Caddesi, Emirgan, 34467 Istanbul, Turkey
b Department of Mathematics, Koç University, 34450 Sariyer, Istanbul, Turkey
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• We introduce a new correlation coefficient taking the lag difference of data points.
• We investigate the properties of this new correlation coefficient.
• New correlation coefficient captures the cross-independence of two variables over time.
• New coefficient is compared with the Pearson and DCCA coefficients via simulations.
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a b s t r a c t

The correlation in time series has received considerable attention in the literature. Its
use has attained an important role in the social sciences and finance. For example, pair
trading in finance is concerned with the correlation between stock prices, returns, etc.
In general, Pearson’s correlation coefficient is employed in these areas although it has
many underlying assumptions which restrict its use. Here, we introduce a new correlation
coefficient which takes into account the lag difference of data points. We investigate the
properties of this new correlation coefficient. We demonstrate that it is more appropriate
for showing the direction of the covariation of the twovariables over time.We also compare
the performance of the new correlation coefficient with Pearson’s correlation coefficient
and Detrended Cross-Correlation Analysis (DCCA) via simulated examples.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Various financial models (such as pairs trading) are concerned with the correlation between two different time-series
data, e.g., stock prices or returns. Pearson’s product moment correlation coefficient is the most commonly used estimator
in measuring such correlations. However, there are many underlying assumptions (such as stationarity) for the validity of
this coefficient [1].

If a sample set of time-series data is stationary, then the population’s mean, variance, and covariance between any two
different dates can be estimated based on the sample. If a data is nonstationary, then it violates certain assumptions while
estimating these parameters. In general, price series are assumed to be non-stationary, whereas returns are assumed to be
stationary. Thus, using Pearson’s formula for the calculation of correlation between two price series is not appropriate [2].
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Fig. 1. An illustration of directionality detection problem. Note:


Xt points (diamond) are generated as Xt = 11 − t and
Yt points (square) are generated as Yt = t − 1 for t = 1 to11 and Yt = t − 22 for t = 12

to 21
.

Apart from stationarity, there is another drawback about Pearson’s correlation coefficient: it is concerned with the
distance of two variables from their means. Assuming that we are interested in two variables that move in the opposite
direction while at the same time being both above or below their means. If both of the variables are above (or below)
their means, the sum of multiplication of the two variables’ deviations from their means will positively contribute to
the numerator in Pearson’s formula and hence to the correlation coefficient, although the variables move in the opposite
direction. The following example (Fig. 1) may illustrate this problem:

In this example, themeans of both of the variables is 0, and they are above their means between t = 0 and t = 11, below
their means between t = 12 and t = 21. Although the variables are moving in the opposite direction almost all the time,
Pearson’s correlation coefficient, denoted as ρp, is 0.50.

A similar idea holds true when two variables move in the same direction while one of the variables is above its mean
whereas the other variable is below its mean. In this case, the sum of multiplication of the two variables’ deviations from
their means will negatively contribute to the numerator in Pearson’s formula and hence to the correlation coefficient, even
though the variables move in the same direction.

In this article we propose a new correlation coefficient that measures the distance between two subsequent data points
by taking the lag difference into consideration. Although the very first data point is lost, we demonstrate that the new
correlation coefficient better captures the direction of the covariation of the two variables over time.We also propose various
extensions of this coefficient in order to obtain more reasonable and reliable results at the expense of having more complex
formulas.

The paper proceeds as follows: we present preliminaries in Section 2. In Section 3, we introduce the new correlation
coefficient and discuss its properties. We exhibit a series of simulations to show the characteristics of the new correlation
coefficient in Section 4. Furthermore,we conclude ourwork and point to prospective research directions in Section 5. Finally,
we present the matrix forms of correlation coefficients in the Appendix.

2. Preliminaries

Let Pi,t (hereafter Pit for today, Pi,t−s for a lagged time of s units) represents the price of asset i at time t . We will denote
the entire sequence of values {Pi1, Pi2, . . . , PiT } as {Pit}.

The simple return of asset i at time t is defined as:

Rit =
Pit − Pi,t−1

Pi,t−1
. (1)

Similarly log-return is defined as:

rit = log

Pit/Pi,t−1


. (2)

Let {Xt} be a kind of stochastic process; we define the stationarity as follows: a stochastic process {Xt} having a finite mean
and variance is said to be stationary, if for all t and t − s:

E (Xt) = E (Xt−s) = µ (3)

E

(Xt − µ)2


= E


(Xt−s − µ)2


= σ 2 (4)

E [(Xt − µ) (Xt−s − µ)] = E

Xt−j − µ

 
Xt−j−s − µ


= γ(s) (5)

where µ, σ 2, γ(s) are all constants i.e., independent of time [3].
In practice, stock prices may be assumed as non-stationary, whereas simple and log returns may be assumed to be

stationary [2]. Furthermore, conventionally logarithm of stock prices are assumed to follow Geometric Brownian Motion [4]
which means that log-returns are assumed to be normally distributed.
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3. The new correlation coefficient and its properties

Since Pearson’s correlation coefficient, ρP , might have some problems for time-series data, we suggest the following
correlation coefficient as an alternative:

ρO =
αxy

αxαy
(6)

where α2
x = E


(Xt − Xt−1)

2 , α2
y = E


(Yt − Yt−1)

2 and αxy = E [(Xt − Xt−1) (Yt − Yt−1)] .
The new correlation coefficient ρO can then be estimated as:

ρO =
Axy

AxAy
(7)

where A2
x =

1
(T−1)

T
t=2 (Xt − Xt−1)

2 , A2
y =

1
(T−1)

T
t=2 (Yt − Yt−1)

2 and, Axy =
1

(T−1)

T
t=2 (Xt − Xt−1) (Yt − Yt−1) which

are related to the first order autocorrelations of Xt and Yt , respectively [5]. It should also be noticed that αxy is estimated by
Axy and αx, αy by Ax, Ay, respectively. For any two processes {Xt} and {Yt}, it is easy to see that E(A2

x) = α2
x , E(A

2
y) = α2

y , and
E(Axy) = αxy.

If we let Xt = log(P1t) for the first stock price and Yt = log(P2t) for the second stock price, then Eq. (7) can be written as:

ρO =

T
t=2

r1t r2t
T

t=2
r21t

T
t=2

r22t

(8)

where r1t , r2t are defined in Eq. (2).

3.1. Basic properties of the new correlation coefficient

It can be shown that ρO satisfies the inequality |ρO| ≤ 1. Using the Cauchy–Schwarz inequality, one can write that the
random variables (processes) Xt , Yt satisfy:

{E [(Xt − Xt−1) (Yt − Yt−1)]}2 ≤ E

(Xt − Xt−1)

2 E 
(Yt − Yt−1)

2 (9)

with equality holding if and only if one of the variables is almost surely a multiple of the other, that is, P

a (Xt − Xt−1) =

b (Yt − Yt−1)


= 1 for some real a and b, at least one of which is non-zero.
We can rewrite Eq. (9) as:

− 1 ≤
E [(Xt − Xt−1) (Yt − Yt−1)]

E

(Xt − Xt−1)

2 E 
(Yt − Yt−1)

2 = ρO ≤ 1 (10)

since E

(Xt − Xt−1)

2 and E

(Yt − Yt−1)

2 are strictly positive.

3.2. The properties under stationarity

Next, we derive the quantities α2
x , α

2
y , and αxy under the bivariate stationarity assumption for {Xt , Yt}, that is, under the

assumption that:

E (Xt) = E (Xt−s) = µX , (i)
E (Yt) = E (Yt−s) = µY ,

E

(Xt − µX )

2
= E


(Xt−s − µX )

2
= σ 2

X , (ii)

E

(Yt − µY )

2 E 
(Yt−s − µY )

2
= σ 2

Y ,

E [(Xt − µX ) (Xt−s − µX )] = γX (s), (iii)
E [(Yt − µY ) (Yt−s − µY )] = γY (s).

Furthermore, the cross-covariance between {Xt} and {Yt} at lag s [5] is

E [(Xt − µX ) (Yt−s − µY )] = γXY (s). (iv)

Notice that at lag 0 (i.e., s = 0), γX (0) = σ 2
X , γY (0) = σ 2

Y , and γXY (0) = σ 2
XY = Cov (X, Y ) .
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Then,

α2
x = E


(Xt − Xt−1)

2
= E


X2
t − 2XtXt−1 + X2

t−1


= E


X2
t


− 2E [XtXt−1] + E


X2
t−1


= 2E


X2
t


− 2E [XtXt−1]

= 2(σ 2
X + µ2

X ) − 2(γX (1) + µ2
X )

= 2(σ 2
X − γX (1)) (11)

since E

X2
t


= (σ 2

X + µ2
X ) and E [XtXt−1] = γX (1) + µ2

X . Similarly, α2
y = 2 (σ 2

Y − γY (1)).
Furthermore,

αxy = E [(Xt − Xt−1) (Yt − Yt−1)]

= E [XtYt ] − E [XtYt−1] − E [Xt−1Yt ] + E[Xt−1Yt−1]

= 2E[XtYt ] − 2E[XtYt−1]

= 2(γXY (0) + µXµY ) − 2(γXY (1) + µXµY )

= 2(γXY (0) − γXY (1)) (12)

since E[XtYt ] = γXY (0) + µXµY and E[XtYt−1] = γXY (1) + µXµY .
But, γXY (0) = σ 2

XY and σ 2
XY = ρXYσXσY where ρXY = Corr(X, Y ) which equals ρP . Then,

αxy = 2(ρPσXσY − γXY (1)).

Thus, for stationary bivariate time series {Xt , Yt} ,

ρO =
ρPσXσY − γXY (1)

σ 2
X + γX (1)

 
σ 2
Y + γY (1)

 . (13)

Observe that when γX (1) = γY (1) = γXY (1) = 0,

ρO =
ρPσXσY

σXσY
= ρP .

Hence, ρO and ρP agree whenever autocorrelations3 of {Xt} and {Yt} at lag 1 and cross-correlation of {Xt} and {Yt} at lag 1
are all zero. Furthermore, under the bivariate stationarity, ρP ignores the autocorrelations and cross-correlation, whereas
ρO incorporates lag 1 autocorrelations.

If {Xt} and {Yt} are each (univariate) stationary as in Section 2, but {Xt} and {Yt} are independent that is, above (i)–(iii)
hold and (iv) holds with γXY (s) = 0 for all s ≥ 0, then ρP = 0; hence

ρO =
ρPσXσY

(σ 2
X + γX (1))(σ 2

Y + γY (1))
= 0. (14)

If Xt are i.i.d. with E (Xt) = µX , Var(Xt) = σ 2
X and Yt are i.i.d. with E (Yt) = µY , Var(Yt) = σ 2

Y , then

ρO =
ρPσXσY − γXY (1)

σXσY
= ρP −

γXY (1)
σXσY

(15)

since γX (1) = γY (1) = 0 for i.i.d {Xt} and {Yt} .

If {Xt} and {Yt} are both i.i.d. as above and are independent of each other then ρO = ρP = 0, since γXY (1) = 0 for
independent {Xt} and {Yt} .

3 Here, the term of autocorrelation is used based on the definition of Pearson’s correlation coefficient. Since first lagged variable is in the formula of the
new correlation coefficient, we do not prefer to apply the definition of the new correlation coefficient to measure autocorrelation especially at lag 1. For
any i.i.d. Xt , autocorrelation of Xt at lag n ≥ 2 with respect to new correlation coefficient is ρO(n) = 0.
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Therefore, we once again state that ρO and ρP measure related but different things. Specifically, they both measure the
covariation of {Xt} and {Yt} butwith emphasis on different aspects. For example, in a hypothesis testing framework, we have
ρO = ρP = 0 under independence of {Xt} and {Yt}. However, if {Xt} and {Yt} are independent only at lag 0, but dependent
at lag 1 (i.e., γXY (s) ≠ 0 for s = 1), then ρP = 0 but ρO =

−γXY (1)
σXσY

.

3.3. The properties under non-stationarity

In this section, we consider special cases under the bivariate non-stationarity assumption for {Xt , Yt}. We investigate the
properties of the new correlation coefficient in two special cases: namely, Spurious Correlation and Cointegration. Then, we
simulate both the new and Pearson’s correlation coefficients for these cases in Section 4.

Spurious correlation: in this case, Xt and Yt are generated by the independent random walks:

Xt = Xt−1 + εx
t , (16)

Yt = Yt−1 + ε
y
t ,

in which εx
t are i.i.d.(0, σ 2

εx) and ε
y
t are i.i.d.(0, σ 2

εy). In our simulations in Section 4, we draw εx
t and ε

y
t from independent

N(0, 1) populations. As T goes to infinity, the numerator of the new correlation coefficient in (6) goes to zero [6].

αxy = E [(Xt − Xt−1) (Yt − Yt−1)] = E


εx
t

 
ε
y
t


→ 0. (17)

Therefore, the new correlation coefficient also goes to zero.

ρO =
αxy

αxαy
→ 0 a.s. (18)

Cointegration: now we have two cointegrated non-stationary variables which are generated by,

Xt = Xt−1 + εx
t , (19)

Yt = αXt + ε
y
t ,

in which εx
t are i.i.d.(0, σ 2

εx) and ε
y
t are i.i.d.(0, σ 2

εy). As T goes to infinity

ρO =
E [(Xt − Xt−1) (Yt − Yt−1)]

E

(Xt − Xt−1)

2 E 
(Yt − Yt−1)

2 →
1

1 +
2
α2

σ 2
εy

σ 2
εx

(20)

since,

E


εx
t

2
= σ 2

εx as T → ∞,

E


ε
y
t
2

= E


ε
y
t−1

2
= σ 2

εy as T → ∞.

3.4. The properties in general context

Here, we introduce two propositions and show their proofs in general circumstances. The state of the independent
variables and the essential properties of the new correlation coefficient enable us to make two propositions.

Proposition 1. If Xt , Yt are one lag cross-independent4 and also if at least one of Xt and Yt is not divergent,5 then the new
correlation coefficient ρO = 0.

Proof. The numerator of ρO is αxy and equals to:

αxy = E [(Xt − Xt−1) (Yt − Yt−1)] . (21)

Because of the linearity property of the expected value, Eq. (21) becomes as follows:

αxy = E [XtYt ] − E [XtYt−1] − E [Xt−1Yt ] + E [Xt−1Yt−1] . (22)

Since Xt and Yt are one lag cross-independent, the RHS of Eq. (22) turns into:

αxy = E [Xt ] E [Yt ] − E [Xt ] E [Yt−1] − E [Xt−1] E [Yt ] + E [Xt−1] E [Yt−1] . (23)

4 We define one lag cross independence between two variables Xt and Yt , if pairs of {Xt−m, Yt−n} for m, n = 0, 1, are pairwise independent.
5 Here, divergence of a variable Zt is defined when E(Zt ) ≠ E(Zt−1).
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By the non-divergence of Xt , E(Xt) = E(Xt−1). Eq. (23) can be rewritten as:

αxy = E [Xt ] E [Yt ] − E [Xt ] E [Yt−1] − E [Xt ] E [Yt ] + E [Xt ] E [Yt−1] (24)

= 0. (25)

Therefore, αxy = 0, implying ρO = 0. �

This proposition tells us that whenever there is at least one non-divergent variable, one lag cross-independence implies
a zero new correlation coefficient. However, Pearson’s correlation coefficient may not capture the cross-independence. As
such, it may not be zerowhen at least one of the variables is not stationary. The condition of non-divergence is stronger than
the stationarity condition. Not only stationary variables, but also some non-stationary variables such as random walks are
non-divergent. Therefore, the new correlation coefficient is capable of observing the one lag cross-independence between
the variables, even if the variables are non-stationary. Furthermore, the contra-positive of this proposition is also beneficial.
If the new correlation coefficient is not zero, this refers to a violation of the one lag cross-independence condition or two
divergent variables which are non-stationary.

Proposition 2. If ρO = 0, then Xt , Yt are not one lag cross-independent or at least one of Xt and Yt is not divergent.

Proof. Suppose for a contradiction that the imposed condition does not hold. So we have that Xt , Yt are one lag cross-
independent, and none of Xt and Yt is not divergent, that is both of Xt and Yt are divergent.

By the derivation of the previous proposition, the one lag cross-independence indicates that:

αxy = E [Xt ] E [Yt ] − E [Xt ] E [Yt−1] − E [Xt−1] E [Yt ] + E [Xt−1] E [Yt−1] . (26)

Furthermore, divergent Xt and Yt mean that:

E(Xt) = E(Xt−1) + α (27)

E(Yt) = E(Yt−1) + β (28)

where α and β are any real number and not equal to zero.
Therefore, Eq. (26) may be rewritten as:

αxy = [E [Xt−1] + α][E [Yt−1] + β] − [E [Xt−1] + α]E [Yt−1] − · · · E [Xt−1] [E [Yt−1] + β] + E [Xt−1] E [Yt−1] (29)

= αβ. (30)

That is to say that the numerator of ρO is not zero (αxy = αβ ≠ 0). Also, the denominator of ρO is positive, so ρO is not zero
which contradicts our imposing statement that says that ρO = 0. �

Here, this proposition is similar to the converse of the previous proposition. We try to figure out what a zero new
correlation coefficient implies. We find that if the new correlation coefficient is zero, then Xt and Yt do not provide the
condition of one lag cross-independence or at least one of the variables is not divergent. Therefore, a zero new correlation
coefficient indicates that the one lag cross-independence condition is violated or that there is a minimum of one non-
divergent variable.

4. Monte Carlo simulations

4.1. Stationary case

Herewe report aMonte Carlo simulation to compare the new correlation coefficient and Pearson’s correlation coefficient
for one of the cases of the stationary variables which is stated in Section 3.2. In our Monte Carlo simulation setup, we form
5000 simulations and for each simulation 5000 data points are generated for both of the variables. We employ the case
of two stationary variables which are both i.i.d. and independent of each other. The results of the simulation are given in
Fig. 2.

As we mention in Section 3.2, both correlation coefficients go to zero because these variables are two i.i.d. stationary
variables and independent of each other. When we compare the two correlation coefficients, we reach that the mean value
of the new correlation coefficient is closer to zero than Pearson’s correlation coefficient. So the new one is faster in reaching
to zero compared to Pearson’s one. Additionally, the standard deviation of the new correlation coefficient is less than the
Pearson’s correlation coefficient. As a result, the new correlation coefficient dominates Pearson’s correlation coefficient in
terms of capturing the independence among the variables.

4.2. Non-stationary cases

In this section, we performMonte Carlo simulations to illustrate some of the properties of the new correlation coefficient
compared to Pearson’s correlation coefficient for various non-stationarity cases.
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Fig. 2. Correlation coefficients in the case of independent stationary variables. Note: the plot in the top left and the histogram in the top right show how
the new correlation coefficient is distributed. The plot and histogram in the bottom are for Pearson’s correlation coefficient.

4.2.1. Two random walks (spuriously correlated)
Here, we take two nonstationary variables, such as two random walks:

Xt = Xt−1 + εx
t , where εx

t ∼ N(0, 1)

Yt = Yt−1 + ε
y
t , where ε

y
t ∼ N(0, 1)

which can be spuriously correlated or not cointegrated, also the distributions εx
t and ε

y
t are independent. Again, we form

5000 simulations and for each simulation 5000 data points are generated for both of the variables Xt and Yt where X0 and
Y0 are given as arbitrary numbers. The results of the simulations are shown in Fig. 3. The differences between the new and
Pearson’s correlation coefficients in the case of spurious correlation can be easily seen by looking at the plots and histograms
of the coefficients.

In this case, it is expected that the correlation of the two nonstationary variables should be around zero because these
variables are two independent random walks. Pearson’s correlation coefficient on the average is zero, but has extremely
large fluctuations (i.e., it could imply a very strong positive or negative correlation for some of the simulated data sets).
This issue is called as spurious correlation in the literature [7]. However, the new correlation coefficient takes into account
the nonstationarities of the variables, so it provides better results. The values of the simulations of the new correlation
coefficient are more clustered around zero and have a shape more similar to normal distribution. Additionally, when we
take two random walks with drift, we obtain similar results (not presented).

4.2.2. Two cointegrated variables
We take two nonstationary variables as:

Xt = Xt−1 + εx
t , where εx

t ∼ N(0, 1)

Yt = aXt + ε
y
t , where ε

y
t ∼ N(0, 1)

in which {Xt} and {Yt} are cointegrated. For a = 0.1, 0.2, 0.3, . . . , 1, we use the same Monte Carlo simulation setup as in
the previous case (in Section 4.2.1). Fig. 4 shows the box-plot of 5000 simulations for both the new and Pearson’s correlation
coefficients at each value of a. The value of the Pearson’s correlation coefficient is significantly higher than the value of the
new correlation coefficient for each value of a. These differences in Fig. 4 can be explained by the estimations of correlations
and the parameters in these estimations. Actually, both of correlations capture the cointegration but give different values
according to the parameters and a’s. For example, the new correlation coefficient is calculated according to Eq. (20) above,
and it is 0.58 when a = 1.
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Fig. 3. Correlation coefficients in the case of spurious correlation. Note: the plot in the top left and the histogram in the top right show how the new
correlation coefficient is distributed. The plot and histogram in the bottom are for Pearson’s correlation coefficient.
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Fig. 4. Box-plots of correlation coefficients in the case of cointegration. Note: box-plots represent the new and Pearson’s correlation coefficients for
different a values.

4.3. Comparison of new correlation coefficient and DCCA

Correlations based on cross-covariance analysis between bivariate time series have become a trend in Finance and
Economics over recent years. Themain intuition behind the construction of these correlations is the separation of time series
into overlapping boxes of length (scale). Then the correlation analysis is composed of aggregation of the information coming
from separated time scales. One of the such correlations is called detrended cross-correlation DCCA (see Refs. [8,9]). For non-
stationary time series, it is shown that the DCCA coefficient dominates Pearson’s correlation coefficient (see Refs. [10–12]).6
Here we also compare our results with the DCCA values for the two special cases of non-stationary variables.

6 There are also alternative coefficients such as detrendingmoving-average cross-correlation analysis DMCA (see Refs. [13]), but DCCA fits for the analysis
we use in this section.
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Fig. 5. Comparison of new and DCCA correlation coefficients in the case of spurious correlation. Note: the plot in the top left and the histogram in the top
right show how the new correlation coefficient is distributed. The plot and histogram in the bottom are for Pearson’s correlation coefficient.

First, we again take two independent nonstationary variables which are illustrated by two random walks. Similar to
the simulation setup in the previous subsection, we perform 5000 simulations. For each simulation, 5000 data points are
generated for both of the variables. The length of the overlapping boxes calculating the DCCA is chosen as the half of data
points,which is 2500. The results of the simulations are shown in Fig. 5.Whenwe compare the results for the newcorrelation
withDCCA,we reach that both correlation coefficients capture zero correlation in the case of two independent randomwalks.
Moreover, the standard deviation of the DCCA coefficient is found to be 0.28. The results in Ref. [12] also indicate that if there
are two independent random walks, the standard deviation of the DCCA coefficient can take values from 0.08 to 0.40 with
respect to changing length of boxes. However, the new correlation coefficient has standard deviation of 0.014 and five times
less than the smallest standard deviation of DCCA coefficient. Therefore, the new correlation coefficient dominates the DCCA
coefficient in the case of two independent random walks.

Additionally, we generate two cointegrated variables with the same setting described in the previous subsection. Both
of the correlation coefficients again capture the relationship between the variables depending on the parameters selection.
Kristoufek [12] illustrates that the standard deviation of the DCCA coefficient is in between 0.01 and 0.1 with respect to
changing length of boxes. For the same case, the standard deviation of the new correlation coefficient is 0.01 which is
the same as the smallest standard deviation of the DCCA coefficient. That is, the new correlation coefficient has almost
similar performancewith the DCCA coefficient in the case of cointegration. As a consequence, the new correlation coefficient
captures the two special cases of nonstationaritymentioned above better than the DCCA correlation coefficient does in total.

5. Concluding remarks

Correlation in social sciences, especially in finance, has gained considerable attention recently. Several financial instru-
ments and methods such as pair trading, credit risk applications, etc., focus on the correlation between various pairs of
variables within data sets. One of the measures of inference for the correlation is Pearson’s correlation coefficient, which
requires the following assumptions: normality, linearity, randomness, stationarity and homoscedasticity. Unfortunately,
these assumptions are rarely satisfied for real data. Pearson’s correlation coefficient is not appropriate, if assumptions such
as stationarity do not hold. The pitfalls of Pearson’s correlation coefficient motivated us to introduce a new correlation coef-
ficient which is measured by taking into account the lag difference of data points. We demonstrate that the new correlation
coefficient has better performance in capturing the cross-independence of two variables over time. Additionally, we illus-
trated the key differences between Pearson’s and the new correlation coefficients under a number of cases with Monte
Carlo simulations. The most notable improvements of the new correlation coefficient can be seen in the situation of the two
nonstationary variables which are spuriously correlated. That is, the new correlation coefficient captures independence of
variables more easily than Pearson’s coefficient does. Our simulation study suggests that the new correlation coefficient is
more similar to normal distribution as compared to Pearson’s correlation coefficient in the caseswe consider. As a robustness
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check, we also compare the new correlation coefficient with the DCCA coefficient. The comparison is simulated under two
special cases for the non-stationary variables. According to the simulation results, the new correlation coefficient performs
better than the DCCA coefficient in terms of capturing the independence and cointegration in non-stationary series.

Appendix. Correlation coefficients in the matrix form

An estimator of Pearson’s correlation coefficient ρP is given by

ρP =

T
t=1


Xt − X

 
Yt − Y


(T − 1)sxsy

. (31)

Numerator ofρP in (21) can be written asρP ′ = (X′A)(AY) (32)

where X′
= (X1, X2, . . . , XT ) and Y′

= (Y1, Y2, . . . , YT ), and

A =



1 −
1
T

−
1
T

· · · −
1
T

−
1
T

1 −
1
T

· · · −
1
T

· · · · · ·

· · · · · −
1
T

−
1
T

· · · −
1
T

1 −
1
T


.

Here A is a T × T matrix, and X and Y are T × 1 vectors, with ′ standing for the transpose of a vector or matrix. Notice that

A2
=



1 −
1
T

−
1
T

· · · −
1
T

−
1
T

1 −
1
T

· · · −
1
T

· · · · · ·

· · · · · −
1
T

−
1
T

· · · −
1
T

1 −
1
T


.

Hence, A is also an idempotent matrix. So, the estimate of Pearson’s correlation coefficient in (21) can be written as

ρP =
X′AY

(T − 1)
√
X′AX

√
Y′AY

. (33)

A similar formula can be constructed for our new correlation coefficient. Numerator inρo can be written asρo′ = (T − 1)Axy = (CX)′(CY) = (X′C′)(CY) (34)

where X′
= (X1, X2, . . . , XT ) and Y′

= (Y1, Y2, . . . , YT ), and

C =


−1 1 0 · · 0
0 −1 1 0 · 0
0 0 −1 1 · 0
· · · · · ·

· · · · · ·

0 · · 0 −1 1

 .

Notice that C is a (T − 1) × T matrix, and X and Y are T × 1 vectors. We compute the product which is a (T − 1) × (T − 1)
matrix, as

M = C′
· C =



1 −1 0 · · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · −1 2 −1
0 · · · · 0 −1 1


.
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Hence, we can reformulate the new correlation coefficient as

ρO =
X′MY

(T − 1)
√
X′MX

√
Y′MY

. (35)
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