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ABSTRACT
We consider a special type of interval catch digraph (ICD) for one-
dimensional data in a randomized setting and propose its use for
testing uniformity. These ICDs are defined with expansion and cen-
trality parameters, hence are called parameterized ICDs (PICDs). We
derive the exact (and asymptotic) distribution of the domination
number of this PICD when its vertices are from a uniform (and non-
uniform) distribution in one dimension for the entire parameter
ranges; thereby determine the parameters for which the asymptotic
distribution is non-degenerate. We use the domination number for
testing uniformity of one-dimensional data, prove its consistency
against certain alternatives, and compare itwith commonly used and
recently proposed tests in literature and also arc density of two ICD
families in terms of size and power. Based on our Monte Carlo sim-
ulations, we demonstrate that PICD domination number has higher
power for certain types of alternatives compared to other tests.
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1. Introduction

Graphs and digraphs for one dimensional points as vertices have been extensively stud-
ied and have far-reaching applications despite their simplicity. In this article, we introduce
an interval catch digraph (ICD) family, provide the distribution of its domination number
for random vertices, and employ the domination number in testing uniformity of one-
dimensional data. Interval graphs and digraphs have applications in many fields such as
chronological ordering of artifacts in archeology, modelling traffic lights in transporta-
tion, food web models in ecology, document localization, classification of RNA structures
and so on (see [1–4]). ICDs were introduced as a special type of interval digraphs and
found applications in various fields (see [5,6] for a characterization and detailed discus-
sion of ICDs). The new digraph family we consider in this article is parameterized by an
expansion parameter and a centrality parameter. We demonstrate that this digraph family
is actually an ICD family, hence it is referred to as parameterized ICD (PICD). A digraph
is a directed graph with vertex set V and arcs (directed edges) each of which is from one
vertex to another based on a binary relation. The pair (p, q) ∈ V × V is an ordered pair
which stands for an arc from vertex p to vertex q in V .
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The PICDs are closely related to the class cover problem (CCP) of [7] which is moti-
vated by applications in statistical classification. To properly describe the CCP prob-
lem, let (�, d) be a metric space with a dissimilarity function d : � × � → R such
that d(a, b) = d(b, a) ≥ d(a, a) = 0 for all a, b ∈ �. Let Xn = {X1,X2, . . . ,Xn} and Ym =
{Y1,Y2, . . . ,Ym} be two sets of i.i.d. �-valued random variables from classes X and Y ,
with class-conditional distributions FX and FY , respectively. We also assume that each Xi
is independent of each Yj and all Xi ∈ Xn and all Yj ∈ Ym are distinct with probability
one, and (Xi,Yj) ∼ FX,Y (i.e. (Xi,Yj) has joint distribution FX,Y with the marginal distri-
butions FX for Xi and FY for Yj). The CCP for a target class refers to finding a collection
of neighbourhoods,N around Xi, denoted N(Xi) ∈ N , such that (i)Xn ⊆ (∪iN(Xi)) and
(ii)Ym ∩ (∪iN(Xi)) = ∅. The neighbourhoodN(Xi) is a subset of�, containing Xi, and is
defined based on the dissimilarity d (between Xi andYm). A collection of neighbourhoods
satisfying both conditions is called a class cover. Clearly, it follows by condition (i) that the
set of all covering regions (i.e. neighbourhoodsN(Xi) around Xi) is a class cover; however,
the goal is to have a class cover forXn that has as few points as possible. Thus, e.g. in statis-
tical learning, the classification will be less complex while most of the relevant information
being kept. Hence, the CCP considered here is aminimum-cardinality class cover. One can
convert the CCP to the graph theoretical problem of finding dominating sets. In particular,
our ICD is the digraph D = (V ,A) with vertex set V = Xn and arc set A such that there
is an arc (Xi,Xj) ∈ A iff Xj ∈ N(Xi). It is easy to see that solving the CCP is equivalent
to finding a minimum domination set of the corresponding PICD, hence cardinality of a
solution to CCP is equal to the domination number of the associated digraph (see [8]). Hence
the tool introduced in this article can be seen as a parameterized extension to the original
CCP problem of [7]. That is, the cardinality of the smallest cover (i.e. the domination num-
ber) is investigated when the cover(ing) regions,N(Xi), depend on two parameters and the
distribution of this cardinality is based on N(Xi) (hence the parameters) and FX,Y .

Our PICDs are random digraphs (according to the digraph version of classification of
[9]) in which each vertex corresponds to a data point and arcs are defined in terms of some
bivariate relation on the data, and are also related to the class cover catch digraph (CCCD)
introduced by Priebe et al. [10] who derived the exact distribution of its domination num-
ber for uniform data from two classes in R. A CCCD consists of a vertex set in Rd and
arcs (u, v) if v is inside the ball centred at u with a radius based on spatial proximity of
the points. CCCDs were also extended to higher dimensions and were demonstrated to
be a competitive alternative to the existing methods in classification (see [11] and refer-
ences therein) and to be robust to the class imbalance problem [12]. Furthermore, a CLT
result for CCCD based on one-dimensional data is proved [13] and the distribution of the
domination number of CCCDs is also derived for non-uniform data [14].

We investigate the distribution of domination number of the PICDs for data in � = R.
The domination in graphs has been studied extensively in recent decades (see, e.g. [15] and
the references therein and [16]), and domination in digraphs has received comparatively
less attention but is also studied in literature (see, e.g. [17–19]). We provide the exact and
asymptotic distributions of the domination number of PICDs with vertices from uniform
(and non-uniform) one-dimensional distributions. Some special cases and bounds for the
domination number of PICDs are handled first, then the domination number is investi-
gated for uniform data in one interval (in R) and the analysis is generalized to uniform
data in multiple intervals and to non-uniform data in one and multiple intervals.
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We use domination number in testing uniformity of one-dimensional data. Testing
uniformity is important in its own right in numerous fields, e.g. in assessing the quality
of random number generators [20] and in chemical processes [21]. Furthermore, testing
that data come from a particular distribution can be reduced to testing uniformity, hence
uniformity tests are of great importance for goodness-of-fit tests (see [22] and references
therein). Some graph theoretical tools are employed (although not so commonly) in two-
sample testing [23] and in testing uniformity; for example, Jain et al. [24] use minimum
spanning trees and Ceyhan [25] use the arc density of another family of ICDs for this pur-
pose. Moreover, Ceyhan [26] provide the probabilistic investigation of the arc density for
the PICD of this article, but it is not applied for uniformity testing previously. In [14],
the distribution of the domination number of CCCDs is studied when vertices are from
a non-uniform one-dimensional distribution, but the domination number of the PICD
introduced here is not studied previously. To the author’s knowledge domination number
is not used in literature for testing uniformity. We compare the size and power performance
of our test with two well known competitors, namely Kolmogorov–Smirnov (KS) test and
Pearson’s χ2 goodness-of-fit test, and the arc density of PICDs and of another ICD fam-
ily, and also a uniformity test which is based on Too-Lin characterization of the uniform
distribution due to [22], and two entropy-based tests due to [27]. We demonstrate that the
test based on the domination number has higher power for certain types of deviations from
uniformity. Furthermore, this article forms the foundation of the extensions of themethod-
ology to higher dimensions. The domination number has other applications, e.g. in testing
spatial point patterns (see, e.g. [28]) and our results can help make the power compar-
isons possible for a large family of alternative patterns in such a setting. Some trivial proofs
regarding PICDs are omitted, while others are mostly deferred to the Supplementary File.

We define the PICDs and their domination number in Section 2, provide the exact and
asymptotic distributions of the domination number of PICDs for uniformdata in one inter-
val in Section 3, discuss the distribution of the domination number for data from a general
distribution in Section 4. We extend these results to multiple intervals in Section 5, use
domination number in testing uniformity in Section 6, prove consistency of the domi-
nation number tests under certain alternatives in Section 7, and provide discussion and
conclusions in Section 8.

2. A parameterized random interval catch digraph family

Let N : � → ℘(�) be a map where ℘(�) represents the power set of �. Then the prox-
imity map N(·) associates with each point x ∈ � a proximity region N(x) ⊆ �. For B ⊆ �,
the �1-region is the image of the map �1(·,N) : ℘(�) → ℘(�) that associates the region
�1(B,N) := {z ∈ � : B ⊆ N(z)} with the set B. For a point x ∈ �, for convenience, we
denote �1({x},N) as �1(x,N). Notice that while the proximity region is defined for one
point, a �1-region can be defined for a set of points. The PICD has the vertex set V = Xn
and arc setA defined by (Xi,Xj) ∈ A iff Xj ∈ N(Xi).

Although the above definition of the proximity region does not require multiple classes,
in this article, we will define proximity regions in a two-class setting based on relative allo-
cation of points from one class (say X ) with respect to points from the other class (say
Y). We now get more specific and restrict our attention to � = R and define N explicitly.
Let Ym consist of m distinct points from class Y and Y(i) be the ith order statistic (i.e. ith
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smallest value) of Ym for i = 1, 2, . . . ,m with the additional notation for i ∈ {0,m + 1} as
−∞ =: Y(0) < Y(1) < · · · < Y(m) < Y(m+1) := ∞.

Then Y(i) values partition R into (m + 1) intervals which is called the intervalization
of R by Ym. Let also that Ii := (Y(i),Y(i+1)) for i ∈ {0, 1, 2, . . . ,m} and Mc,i := Y(i) +
c(Y(i+1) − Y(i)) (i.e. Mc,i ∈ Ii such that c × 100 % of length of Ii is to the left of Mc,i).
We define the parameterized proximity region with the expansion parameter r ≥ 1 and
centrality parameter c ∈ [0, 1] for two one-dimensional data sets,Xn andYm, from classes
X and Y , respectively, as follows (see also Figure 1). For x ∈ Ii with i ∈ {1, 2, . . . ,m − 1}
(i.e. for x in the middle intervals)

N(x, r, c) =
{(

Y(i), min
(
Y(i+1),Y(i) + r

(
x − Y(i)

)))
if x ∈ (Y(i),Mc,i),(

max
(
Y(i),Y(i+1) − r

(
Y(i+1) − x

))
,Y(i+1)

)
if x ∈ (

Mc,i,Y(i+1)
)
.

(1)

Additionally, for x ∈ Ii with i ∈ {0,m} (i.e. for x in the end intervals)

N(x, r, c) =
{(

Y(1) − r
(
Y(1) − x

)
,Y(1)

)
if x < Y(1),(

Y(m),Y(m) + r
(
x − Y(m)

))
if x > Y(m).

(2)

Notice that for i ∈ {0,m}, the proximity region does not have a centrality param-
eter c. For x ∈ Ym, we define N(x, r, c) = {x} for all r ≥ 1 and c ∈ [0, 1]. If x =
Mc,i, then in Equation (1), we arbitrarily assign N(x, r, c) to be one of the defining
intervals. For c = 0, we have (Mc,i,Y(i+1)) = Ii and for c = 1, we have (Y(i),Mc,i) =
Ii. So, we set N(x, r, 0) := (max(Y(i),Y(i+1) − r(Y(i+1) − x)),Y(i+1)) and N(x, r, 1) :=
(Y(i), min(Y(i+1),Y(i) + r(x − Y(i)))). For r>1, we have x ∈ N(x, r, c) for all x ∈ Ii. Fur-
thermore, limr→∞ N(x, r, c) = Ii for all x ∈ Ii, so we define N(x,∞, c) = Ii for all
such x.

The PICDhas the vertex setXn and arc setA defined by (Xi,Xj) ∈ A iffXj ∈ N(Xi, r, c).
We denote such PICDs as Dn,m(FX,Y , r, c). The randomness of the PICD lies in the fact
that the vertices are randomly generated from the distribution FX and proximity regions

Figure 1. Illustrations of the construction of the parameterized proximity region, N(x, r, c) with c ∈
(0, 1/2) for Y2 = {y1, y2} with y1 = 0 and y2 = 10 (hence Mc = 10c) and x ∈ (0,Mc) (top) and x ∈
(Mc , 10) (bottom).
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are random depending on FX,Y , but arcs (Xi,Xj) are deterministic functions of the random
variableXj and the random setN(Xi). Notice that althoughN depends onYm, we omitYm
for brevity in notation of proximity region N(x, r, c).

2.1. Relation of PICDswith other graph families

Interval graphs are a special type of intersection graphs, which have emerged from a
problem in genetics called Benzer problem (see [4] for details) and they have been exten-
sively studied in graph theory since their introduction [2,29]. On the other hand, interval
digraphs have recently gained attention after their introduction in [30] (see, e.g. [31]). LetV
be a set ofn index points in some arbitrary space; for simplicity takeV = {1, 2, . . . , n}. Con-
sider a set of ‘source’ intervals Sv and a set of ‘target’ intervalsTv inR associatedwith v ∈ V .
The family of ordered pairs of these intervals (Sv,Uv)v∈V such that Uv ∈ Sv for each v is
called a nest representation [6]. The digraph D = (V ,A) is called an interval nest digraph,
if there exists a nest representation with the index set V such that (i, j) ∈ A iff Si ∩ Uj �= ∅.
Interval catch digraphs (ICDs) are interval nest digraphs with each Tv containing just one
element [6]. In fact, for catch digraphs the nest representation constitutes a family of sets
with points (or pointed sets) (Sv, pv)v∈V where each set Sv is associated with a base point
pv ∈ Sv. ThenD = (V ,A) is a catch digraph with (i, j) ∈ A iff pj ∈ Si. Such a catch digraph
is called an interval catch digraph, if there is a totally ordered set (T,≤) such that D is the
catch digraph of a family of pointed intervals in T. Here, I ⊂ T is an interval if, for all
x, y, z ∈ T, x ≤ y ≤ z and x, z ∈ I imply that y ∈ I. For finite ICDs, T can always be taken
as the real line (see, e.g. [5] who also provides a characterization of ICDs).

The PICDs are closely related to the proximity graphs of [32] and might be consid-
ered as one-dimensional versions of proportional-edge proximity catch digraphs of [28].
Furthermore, when r = 2 and c = 1/2 (i.e.Mc,i = (Y(i) + Y(i+1))/2) we have N(x, r, c) =
B(x, r(x)) where B(x, r(x)) is the ball centred at x with radius r(x) = d(x,Ym) =
miny∈Ym d(x, y). The region N(x, 2, 1/2) corresponds to the proximity region which gives
rise to the CCCD of [10]. Note also that, N(x, r, c) can be viewed as a homothetic trans-
formation (enlargement) with r ≥ 1 applied on a translation of the region N(x, 1, c).
Furthermore, this transformation is also an affine similarity transformation. Since (R,≤)

is a total order, by the characterization theorem of [33], our random digraph is clearly
an interval catch digraph, since there exists a total order ‘≤ ’ on Xn ⊂ R such that for
x < y < z ∈ Xn, (x, z) ∈ A implies (x, y) ∈ A and (z, x) ∈ A implies (z, y) ∈ A. Our ICD
is based on two parameters, so we call it parameterized interval catch digraph (PICD).

2.2. Domination number of PICDs

In a digraph D = (V ,A) of order |V| = n, a vertex u dominates itself and all vertices of
the form {v : (u, v) ∈ A}. A dominating set, SD, for the digraph D is a subset of V such
that each vertex v ∈ V is dominated by a vertex in SD. A minimum dominating set, S∗

D, is
a dominating set of minimum cardinality; and the domination number, denoted γ (D), is
defined as γ (D) := |S∗

D|, where | · | stands for set cardinality [34]. Chartrand et al. [35]
distinguish domination in digraphs as out- and in-domination and provide definitions for
out- and in-domination numbers for digraphs. Domination in this article refers to the out-
domination in PICDs. If a minimum dominating set consists of only one vertex, we call
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that vertex a dominating vertex. Clearly, the vertex set V itself is always a dominating set,
so we have γ (D) ≤ n in general, and 1 ≤ γ (D) < n for non-trivial digraphs.

Let

F
(
Rd

)
:= {FX,Y on Rd with (X,Y) ∼ FX,Y , and random

variables X and Y do not collide}.

That is, if Xn and Ym are two samples from FX and FY , respectively, with (X,Y) ∼ FX,Y
and the marginal distributions of X and Y are FX and FY , respectively. Furthermore,
‘no collision of X and Y ’ condition is equivalent to P(Xi = Yj) = 0 for all i = 1, . . . , n
and j = 1, . . . ,m. Notice that if FX,Y continuous, then FX,Y ∈ F(Rd) follows. Further-
more, if the probability distributions FX and FY respectively have probability measures
MX and MY which are non-atomic, then the associated joint distribution would be in
F(Rd) as well. If MY contains an atom, Yj points might collide, but without loss of
generality we can assume that there are m distinct Y points. We restrict our attention
to one dimensional data (i.e. d = 1), so we consider the random digraph for which Xn
and Ym are samples from FX and FY , respectively, with the joint distribution of X, Y
being FX,Y ∈ F(R). We focus on the random variable γ (Dn,m(FX,Y , r, c)), the domina-
tion number of the digraph Dn,m(FX,Y , r, c). To make the notation simpler, we will use
γn,m(FX,Y , r, c) instead of γ (Dn,m(FX,Y , r, c)). For n ≥ 1 and m ≥ 1, it is immediate to see
that 1 ≤ γn,m(FX,Y , r, c) ≤ n.

LetX[i] := Xn ∩ Ii, andY[i] := {Y(i),Y(i+1)} for i = 0, 1, 2, . . . ,m. This yields a discon-
nected digraph with subdigraphs each of which might be null or itself disconnected. Let
D[i] be the component ofDn,m(FX,Y , r, c) induced byX[i] for i = 0, 1, 2, . . . ,m, ni := |X[i]|
(provided that ni > 0), and Fi be the density FX restricted to Ii (note that Ii is also ran-
dom here), and γ[i](Fi, r, c) be the domination number ofD[i]. Let also thatMc,i ∈ Ii be the
internal point that divides the interval Ii in ratios c/(1 − c) (i.e. length of the subinterval to
the left ofMc,i is c × 100 % of the length of Ii). Then γn,m(FX,Y , r, c) = ∑m

i=0 γ[i](Fi, r, c).
A summary of results in this article is as follows:

• In the middle intervals (i.e. for i = 1, 2, . . . ,m − 1), we show that γ[i](Fi, r, c) − 1 has a
Bernoulli distribution with the parameter depending on FX,Y . In the end intervals (i.e.
i ∈ {0,m}) where the domination number γ[i](Fi, r, c) is I(ni > 0).

• Conditional onYm (i.e.Ym is given), randomness in the digraph (hence in the domina-
tion number) stem from FX . So if Ym is given, we write the corresponding domination
number as γn,m(FX , r, c). In this case, we modify our notations as Dn,m(F, r, c) and
γn,m(F, r, c) for the PICD and the associated domination number, where F = FX .
(i) Then we show that γn,2(F, r, c) is scale invariant for Y2 = {a, b}, F = U(a, b) with

−∞ < a < b < ∞, whereU(a, b) stands for uniform distribution on (a, b), hence
(without loss of generality) we can consider U(0, 1).

(ii) We find the exact (and hence the asymptotic) distribution of γn,2(U , r, c) for r ≥
1, c ∈ [0, 1] (which is the most general case for these parameters).

(iii) We extend the result in (ii) by considering the general non-uniform F satisfying
mild regularity conditions, thereby find the asymptotic distribution of γn,2(F, r, c).
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(iv) Finally, we provide the more general form (in terms of n and m) of γn,m(F, r, c)
by considering general m (i.e. m>2) and find the asymptotic distribution of
γn,m(F, r, c).

• Domination number is employed as a test statistic for testing uniformity of one-
dimensional data, is consistent and exhibits a good performance for certain types of
alternatives.

2.3. Special cases for the distribution of γn,m(FX,Y , r, c)

We study the simpler random variable γ[i](Fi, r, c) first. The following lemma follows
trivially.

Lemma 2.1: For i ∈ {0,m}, we have γ[i](Fi, r, c) = I(ni > 0) for all r ≥ 1. For i =
1, 2, 3, . . . , (m − 1), if ni = 1, then γ[i](Fi, r, c) = 1.

Let �1(B, r, c) be the �1-region for set B associated with the proximity map N(·, r, c).

Lemma 2.2: The �1-region for X[i] in Ii with r ≥ 1 and c ∈ [0, 1] is

�1
(X[i], r, c

) =
(
max

(X[i]
) + Y(i)(r − 1)
r

,Mc,i

]⋃[
Mc,i,

min
(X[i]

) + Y(i+1)(r − 1)
r

)

with the understanding that the intervals (a, b), (a, b], and [a, b) are empty if a ≥ b.

Notice that if X[i] ∩ �1(X[i], r, c) �= ∅, we have γ[i](Fi, r, c) = 1, hence the name �1-
region and the notation �1(·). For i = 1, 2, 3, . . . , (m − 1) and ni > 1, we prove that
γ[i](Fi, r, c) = 1 or 2 with distribution dependent probabilities. Hence, to find the dis-
tribution of γ[i](Fi, r, c), it suffices to find the probability of γ[i](Fi, r, c) is 1 or 2. For
computational convenience, we employ the latter in our calculations henceforth anddenote
it as p(Fi, r, c) := P(γ[i](Fi, r, c) = 2) = P(X[i] ∩ �1(X[i], r, c) = ∅).

Furthermore, let BER(p) and BIN(n′, p), respectively, denote the Bernoulli and Bino-
mial distributions where p is the probability of success with p ∈ [0, 1] and n′ > 0 is the
number of trials.

Lemma 2.3: For i = 1, 2, 3, . . . , (m − 1), let the support of Fi have positive Lebesgue
measure. Then for ni > 1, r ∈ (1,∞), and c ∈ (0, 1), we have γ[i](Fi, r, c) − 1 ∼
BER(p(Fi, r, c)). Furthermore, γ1,2(Fi, r, c) = 1 for all r ≥ 1 and c ∈ [0, 1]; γ[i](Fi, r, 0) =
γ[i](Fi, r, 1) = 1 for all ni ≥ 1 and r ≥ 1; and γ[i](Fi,∞, c) = 1 for all ni ≥ 1 and c ∈ [0, 1].

The probability p(Fi, r, c) depends on the distribution FX,Y and the interval�1(X[i], r, c),
which, if known, will make the computation of p(Fi, r, c) possible. We can bound the dom-
ination number with some crude bounds in this general case (see the Supplementary File).

Based on Proposition S2.2, we have P(γ[i](Fi, 1, c) = 1) = P(X[i] ⊂ (Y(i),Mc,i)) +
P(X[i] ⊂ (Mc,i,Y(i+1))) and P(γ[i](Fi, 1, c) = 2) = P(X[i] ∩ (Y(i),Mc,i) �= ∅,X[i] ∩ (Mc,i,
Y(i+1)) �= ∅).

Remark 2.4: Restrictions on the Joint and Marginal Distributions for the Rest of the Article:
The only restriction we imposed on FX,Y thus far was that P(X = Y) = 0 and collisions
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were not allowed (i.e. P(Xi = Yj) = 0 for all i = 1, . . . , n and j = 1, . . . ,m). Note that Xn
and Ym need not be independent of each other; collisions would be avoided if X has a
continuous distribution. But in generalX andY can both be continuous, discrete ormixed.
Although we define in this very general setting, in the rest of the article we will condition
on a realization of Ym. Henceforth for brevity in notation, we write F = FX and M =
MX and we also assume thatXn is a random sample from F (i.e. Xj

iid∼ F for j = 1, . . . , n).

For Xj
iid∼ F, with the additional assumption that support S(Fi) ⊆ Ii and F is absolutely

continuous aroundMc,i and around the end points of Ii, it follows that the special cases in
the construction ofN(·, r, c) –X falls atMc,i or the end points ofIi – occurs with probability
zero. Notice thatXj having a non-degenerate one-dimensional probability density function
(pdf) f which is continuous around Mc,i and around the end points of Ii is a special case
of this (additional) assumption. Furthermore, for such an F, the region N(Xi, r, c) is an
interval a.s.

The results so far have been straightforward so far. The more interesting cases are
presented in the subsequent sections.

3. The distribution of the domination number of PICDs for uniform data in
one interval

We first consider the simplest case ofm = 2 withY2 = {y1, y2}with−∞ < y1 < y2 < ∞
and Xn = {X1,X2, . . . ,Xn} a random sample from U(y1, y2), we have the PICD with
vertices from F = U(y1, y2). The special case of m = 2 is important in deriving the dis-
tribution of the domination number in the general case ofm>2, because the domination
number in multiple interval case is the sum of the domination numbers for the inter-
vals. We denote such digraphs as Dn,2(U(y1, y2), r, c) and provide the exact distribution
of their domination number for the entire range of r and c. Let γn,2(U(y1, y2), r, c) be
the domination number of the PICD based on N(·, r, c) and Xn and pn(U(y1, y2), r, c) :=
P(γn,2(U(y1, y2), r, c) = 2), and p(U(y1, y2), r, c) := limn→∞ pn(U(y1, y2), r, c). We first
present a ‘scale invariance’ result for γn,2(U(y1, y2), r, c).

Theorem 3.1 (Scale Invariance Property): SupposeXn is a random sample fromU(y1, y2)
with −∞ < y1 < y2 < ∞. Then for any r ∈ [1,∞] the distribution of γn,2(U(y1, y2), r, c)
is independent of Y2 and hence independent of the support interval (y1, y2).

Proof: LetXn be a randomsample fromU(y1, y2)distribution.AnyU(y1, y2) randomvari-
able can be transformed into aU(0, 1) random variable by the transformation φ(x) = (x −
y1)/(y2 − y1), which maps intervals (t1, t2) ⊆ (y1, y2) to intervals (φ(t1),φ(t2)) ⊆ (0, 1).
That is, if X ∼ U(y1, y2), then we have φ(X) ∼ U(0, 1) and P1(X ∈ (t1, t2)) = P2(φ(X) ∈
(φ(t1),φ(t2))) for all (t1, t2) ⊆ (y1, y2) where P1 is the probability measure with respect to
U(y1, y2) and P2 is with respect to U(0, 1). So, the distribution of γn,2(U(y1, y2), r, c) does
not depend on the support interval (y1, y2), i.e. it is scale invariant. �

Note that scale invariance of γn,2(F,∞, c) follows trivially for allXn fromanyFwith sup-
port in (y1, y2), since for r = ∞, we have γn,2(F,∞, c) = 1 a.s. for all n>1 and c ∈ (0, 1).
The scale invariance of γ1,2(F, r, c) holds for all r ≥ 1 and c ∈ [0, 1], and scale invariance of
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γn,2(F, r, c) with c ∈ {0, 1} holds for all n ≥ 1 and r ≥ 1 as well. The scale invariance prop-
erty in Theorem 3.1 will simplify the notation and calculations in our subsequent analysis
of γn,2(U(y1, y2), r, c) by allowing us to consider the special case of the unit interval, (0, 1).
Hence we drop the interval end points y1 and y2 in our notation and write γn,2(U , r, c)
and pu(r, c, n), and pu(r, c) for pn(U , r, c) and p(U , r, c) henceforth when vertices are from
uniform distribution. Then the proximity region for x ∈ (0, 1) with parameters r ≥ 1 and
c ∈ [0, 1] simplifies to

N(x, r, c) =
{

(0,min(1, rx)) if x ∈ (0, c),
(max(0, 1 − r(1 − x)), 1) if x ∈ (c, 1)

(3)

with the comments below Equation (2) applying to N(x, r, c) as well. �

Remark 3.2: Given X(1) = x1 and X(n) = xn, let �1(Xn, r, c) = (δ1, δ2). Then the prob-
ability of γn,2(F, r, c) = 2 (i.e. the quantity pn(F, r, c)) is (1 − [F(δ2) − F(δ1)]/[F(xn) −
F(x1)])(n−2) provided that δ1 < δ2 (i.e. �1(Xn, r, c)
�= ∅); if �1(Xn, r, c) = ∅,r then we would have γn,2(F, r, c) = 2. That is, P(γn,2(F, r, c) =
2) = P(γn,2(F, r, c) = 2,�1(Xn, r, c) �= ∅) + P(γn,2(F, r, c) = 2,�1(Xn, r, c) = ∅). Then

P(γn,2(F, r, c) = 2,

�1(Xn, r, c) �= ∅) =
∫ ∫

S1

f1n(x1, xn)
(
1 − F(δ2) − F(δ1)

F(xn) − F(x1)

)(n−2)
dxn dx1, (4)

where S1 = {0 < x1 < xn < 1 : (x1, xn) �∈ �1(Xn, r, c), and �1(Xn, r, c) �= ∅} and
f1n(x1, xn) = n(n − 1)f (x1)f (xn)(F(xn) − F(x1))(n−2)I(0 < x1 < xn < 1) is the joint pdf
of X(1),X(n). The integral in (4) becomes

P(γn,2(F, r, c) = 2,�1(Xn, r, c) �= ∅) =
∫ ∫

S1

H(x1, xn) dxn dx1, (5)

where

H(x1, xn) := n(n − 1)f (x1)f (xn)
(
F(xn) − F(x1) + F (δ1) − F (δ2)

)n−2. (6)

If �1(Xn, r, c) = ∅, then γn,2(F, r, c) = 2. So

P(γn,2(F, r, c) = 2,�1(Xn, r, c) = ∅) = P(�1(Xn, r, c) = ∅) =
∫ ∫

S2

f1n(x1, xn) dxn dx1

(7)
where S2 = {0 < x1 < xn < 1 : �1(Xn, r, c) = ∅}.

3.1. Exact distribution of γn,2(U , r, c)
We first consider the case of U(y1, y2) data with r ≥ 1 and c ∈ [0, 1] and n = 1, 2, . . .. That
is, we derive the distribution of γn,2(U , r, c) for the entire range of the parameters r and c.
For r ≥ 1 and c ∈ (0, 1), the �1-region is �1(Xn, r, c) = (X(n)/r, c] ∪ [c, (X(1) + r − 1)/r)
where (X(n)/r, c] or [c, (X(1) + r − 1)/r) or both could be empty.
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Theorem3.3 (MainResult 1): LetXn be a random sample fromU(y1, y2) distribution with
n ≥ 1, r ≥ 1, and c ∈ (0, 1). Then we have

γn,2(U , r, c) − 1 ∼ BER(pu(r, c, n))

with

pu(r, c, n) =

⎧⎪⎨
⎪⎩
pu,a(r, c, n) for c ∈ [ (

3 − √
5
)
/2, 1/2

]
,

pu,b(r, c, n) for c ∈ [
1/4,

(
3 − √

5
)
/2

)
,

pu,c(r, c, n) for c ∈ (0, 1/4),

where explicit forms of pu,a(r, c, n), pu,b(r, c, n), and pu,c(r, c, n) are provided in Section S3.1
of the Supplementary File. By symmetry, for c ∈ (1/2, (

√
5 − 1)/2], we have pu(r, c, n) =

pu,a(r, 1 − c, n), for c ∈ ((
√
5 − 1)/2), 3/4], pu(r, c, n) = pu,b(r, 1 − c, n), and for c ∈

(3/4, 1), pu(r, c, n) = pu,c(r, 1 − c, n) with the understanding that the transformation
c → 1 − c is also applied in the interval endpoints in the piecewise definitions of
pu,a(r, c, n), pu,b(r, c, n) and pu,c(r, c, n), respectively.

Furthermore, we have γn,2(U , r, 0) = γn,2(U , r, 1) = 1 for all n ≥ 1.

Some remarks are in order for Main Result 1. The partitioning of c ∈ (0, 1/2) as c ∈
(0, 1/4), c ∈ [1/4, (3 − √

5)/2), and c ∈ [(3 − √
5)/2, 1/2) is due to the relative positions

of 1/(1 − c) and (1 − c)/c and the restrictions arising from various cases in the probability
computations (see the Supplementary File). For example, for c ∈ ((3 − √

5)/2, 1/2), we
have 1/(1 − c) > (1 − c)/c and for c ∈ (0, (3 − √

5)/2), we have 1/(1 − c) < (1 − c)/c.
We present the (three-dimensional) surface plots of pu(r, c, n) for n = 10 and n = 100

in Figure 2. As expected limr→1 pu(r, c, n) = 0. For finite n ≥ 1, the probability pu(r, c, n)
is continuous in (r, c) ∈ {(r, c) ∈ R2 : r ≥ 1, 0 ≤ c ≤ 1}. For fixed c ∈ (0, 1) and fixed
n, pu(r, c, n) is decreasing as r is increasing, while for fixed r ∈ (1,∞) and fixed
n, pu(r, c, n) is increasing as c is approaching to 1/2. In particular, as (r, c) → (2, 1/2)
the distribution of γn,2(U , r, c) − 1 converges to BER(pu(2, 1/2, n)), where pu(2, 1/2, n) =
4/9 − (16/9)4−n as in [10]. In the special cases of c = 1/2 or r = 2 or (r, c) = (2, 1/2), the
probability pu(r, c, n) reduces to much simpler forms. See Section S3.3 in the Supplemen-
tary Materials file.

Figure 2. Surface plots of pu(r, c, n)with n = 10 (left) and n = 100 (right).
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3.1.1. Asymptotic distribution of γn,2(U , r, c)
Theorem 3.4 (Main Result 2): For the PICD, Dn,2(U , r, c), with c ∈ (0, 1) and r∗ =
1/max(c, 1 − c), the domination number γn,2(U , r, c) has the following asymptotic distri-
bution. As n → ∞, for c ∈ (0, 1),

γn,2(U , r, c) − 1 L→

⎧⎪⎨
⎪⎩
0, for r > r∗,
BER(pr), for r = r∗,
1, for 1 ≤ r < r∗.

(8)

where

pr =

⎧⎪⎨
⎪⎩

r∗

r∗ + 1
, for c �= 1/2,

4
9
, for c = 1/2.

(9)

Notice the interesting behaviour of the asymptotic distribution of γn,2(U , r, c) around r =
r∗ for any given c ∈ (0, 1). The asymptotic distribution is non-degenerate only for r = r∗.
For r > r∗, limn→∞ γn,2(U , r, c) = 1 w.p. 1, and for 1 ≤ r < r∗, limn→∞ γn,2(U , r, 1/2) =
2 w.p. 1. The critical value r = r∗ corresponds to c = (r − 1)/r, if c ∈ (0, 1/2) (i.e.
r∗ = 1/(1 − c)) and c = 1/r, if c ∈ (1/2, 1) (i.e. r∗ = 1/c) and r = r∗ only possible
for r ∈ (1, 2). The probability pu(r, c) is continuous in r and c for r �= r∗ and there
is a jump (hence discontinuity) in the probability pu(r, c) at r = r∗, since pu(r∗, c) =
r∗/(r∗ + 1) for c �= 1/2 (see also Figure 3). Therefore, given a centrality parameter c ∈
(0, 1), we can choose the expansion parameter r for which the asymptotic distribu-
tion is non-degenerate, and vice versa. There is yet another interesting behaviour of the
asymptotic distribution around (r, c) = (2, 1/2). The probability pu(r∗, c) has jumps at
(r, c) = (r∗, c) for r ∈ [1, 2] with pu(r∗, c) = r∗/(r∗ + 1) for c �= 1/2. That is, for fixed
(r, c) ∈ S, limn→∞ pu(r∗, c, n) = r∗/(r∗ + 1) for c �= 1/2. Letting (r, c) → (2, 1/2), we
get pu(r∗, c) → 2/3, but pu(2, 1/2) = 4/9. Hence for (r, c) �= (2, 1/2) the distribution of
γn,2(U , r∗, c) − 1 converges to BER(r∗/(r∗ + 1)), but the distribution of γn,2(U , 2, 1/2) − 1
converges to BER(4/9) as n → ∞ (rather than BER(2/3)). In other words, pu(r∗, c) has
another jump at (r, c) = (2, 1/2). This interesting behaviour occurs due to the symme-
try around c = 1/2. Because for c ∈ (0, 1/2), with r = 1/(1 − c), for sufficiently large n,
a point Xi in (c, 1) can dominate all the points in Xn (implying γn,2(U , 1/(1 − c), c) = 1),
but no point in (0, c) can dominate all points a.s. Likewise, for c ∈ (1/2, 1) with r = 1/c,
for sufficiently large n, a point Xi in (0, c) can dominate all the points in Xn (implying
γn,2(U , 1/c, c) = 1), but no point in (c, 1) can dominate all points a.s. However, for c = 1/2
and r = 2, for sufficiently largen, points to the left or right of c candominate all other points
in Xn.

4. Distribution of γn,2(F, r, c)

We now relax the assumption of uniformity for the vertices of our PICD (i.e. forX points).
Let F(y1, y2) be a family of continuous distributions with support in SF ⊆ (y1, y2). Con-
sider a distribution function F ∈ F(y1, y2). For simplicity, assume y1 = 0 and y2 = 1.
Let Xn be a random sample from F, �1-region �1(Xn, r, c) = (δ1, δ2), and pn(F, r, c) :=
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Figure 3. Plot of the limiting probability pr := limn→∞ γn,2(U , r, c) for r = r∗ = 1/max(c, 1 − c) (see
also Equation (9)).

P(γn,2(F, r, c) = 2), p(F, r, c) := limn→∞ P(γn,2(F, r, c) = 2). The exact and asymptotic
distributions of γn,2(F, r, c) − 1 are BER(pn(F, r, c)) and BER(p(F, r, c)), respectively. That
is, for finite n > 1, r ∈ [1,∞), and c ∈ (0, 1), we have

γn,2(F, r, c) =
{
1 w.p. 1 − pn(F, r, c),
2 w.p. pn(F, r, c).

(10)

Moreover, γ1,2(F, r, c) = 1 for all r ≥ 1 and c ∈ [0, 1], γn,2(F, r, 0) = γn,2(F, r, 1) = 1 for all
n ≥ 1 and r ≥ 1, γn,2(F,∞, c) = 1 for all n ≥ 1 and c ∈ [0, 1], and γn,2(F, 1, c) = k4 for all
n ≥ 1 and c ∈ (0, 1) where k4 is as in Proposition S2.2 withm = 2. The asymptotic distri-
bution is similar with pn(F, r, c) being replaced with p(F, r, c). The special cases are similar
in the asymptotics with the exception that p(F, 1, c) = 1 for all c ∈ (0, 1). The finite sample
mean and variance of γn,2(F, r, c) − 1 are pn(F, r, c) and pn(F, r, c)(1 − pn(F, r, c)), respec-
tively; and similarly the asymptotic mean and variance of γn,2(F, r, c) − 1 are p(F, r, c) and
p(F, r, c)(1 − p(F, r, c)), respectively.

For Y2 = {y1, y2} ⊂ R with −∞ < y1 < y2 < ∞, a quick investigation shows that, by
Lemma 2.2, the �1-region is �1(Xn, r, c) = (

X(n)+y1(r−1)
r ,Mc] ∪ [Mc,

X(1)+y2(r−1)
r ). Notice

that for a given c ∈ [0, 1], the corresponding Mc ∈ [y1, y2] is Mc = y1 + c(y2 − y1). Let F
be a continuous distributionwith supportS(F) ⊆ (0, 1). The simplest of such distributions
isU(0, 1), which yields the simplest exact distribution for γn,2(F, r, c)with (r, c) = (2, 1/2).
If X ∼ F, then by probability integral transform, F(X) ∼ U(0, 1). So for any continuous F,
we can construct a proximity map depending on F for which the distribution of the dom-
ination number of the associated digraph has the same distribution as that of γn,2(U , r, c),
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which is explicated in the below proposition whose proof is provided in the Supplementary
File.

Proposition 4.1: Let Xi
iid∼ F which is an absolutely continuous distribution with sup-

port S(F) = (0, 1) and let Xn := {X1,X2, . . . ,Xn}. Define the proximity map NF(x, r, c) :=
F−1(N(F(x), r, c)). That is,

NF(x, r, c) =
{

(0,min(1, F−1(rF(x)))) if x ∈ (0, F−1(c)),
(max(0, F−1(1 − r(1 − F(x))), 1) if x ∈ (F−1(c), 1).

(11)

Then the domination number of the digraph based on NF , Xn, andY2 = {0, 1} has the same
distribution as γn,2(U , r, c).

The result in Proposition 4.1 can easily be generalized for a distribution F with S(F) =
(a, b) with finite a<b. For X ∼ F, the transformed random variable W = X−a

b−a would
have cdf FW(w) = FX(a + w(b − a)) which has support S(FW) = (0, 1). Then one can

apply Proposition 4.1 toWi
iid∼ FW . There is also a stochastic ordering between γn,2(F, r, c)

and γn,2(U , r, c) provided that F satisfies some regularity conditions, which are provided
in Proposition S4.1 in the Supplementary File. We can also find the exact distribution of
γn,2(F, r, c) for F whose pdf is piecewise constant with support in (0, 1), see Remark S4.2
in the Supplementary File for more details.

Recall the PICD, Dn,m(F, r, c). We denote the digraph which is obtained in the spe-
cial case of Y2 = {y1, y2} and support of FX in (y1, y2) as Dn,2(F, r, c). Below, we provide
asymptotic results pertaining to the distribution of domination number of such digraphs.

4.1. Asymptotic distribution of γn,2(F, r, c)

Although the exact distribution of γn,2(F, r, c)may not be analytically available in a simple
closed form for F whose density is not piecewise constant, the asymptotic distribution of
γn,2(F, r, c) is available for larger families of distributions. First, we present the asymptotic
distribution of γn,2(F, r, c) forDn,2(F, r, c) with Y2 = {y1, y2} ⊂ R with −∞ < y1 < y2 <

∞ for general F with support S(F) ⊆ (y1, y2). Then we will extend this to the case with
Ym ⊂ R withm>2.

Let c ∈ (0, 1/2] and r ∈ (1, 2]. Then for (r, c) = (1/(1 − c), c), we define the family of
distributions

F1
(
y1, y2

)
:= {F : (y1, y1 + ε) ∪ (

Mc,Mc + ε
) ⊆ S(F)

⊆ (y1, y2)for some ε ∈ (0, c) with c = (0, 1/2]}.
Similarly, let c ∈ [1/2, 1) and r ∈ (1, 2]. Then for (r, c) = (1/c, c), we define

F2
(
y1, y2

)
:= {F : (y2 − ε, y2) ∪ (

Mc − ε,Mc
) ⊆ S(F)

⊆ (y1, y2) for some ε ∈ (0, 1 − c) with c = [1/2, 1)}.

Let kth order right (directed) derivative at x be defined as f (k)(x+) := limh→0+
f (k−1)(x+h)−f (k−1)(x)

h for all k ≥ 1 and the right limit at u be defined as f (u+) :=
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limh→0+ f (u + h). Let the left derivatives and limits be defined similarly with +’s being
replaced by −’s.

Theorem 4.2 (Main Result 3): Suppose Y2 = {y1, y2} ⊂ R with −∞ < y1 < y2 <

∞, Xn = {X1,X2, . . . ,Xn} with Xi
iid∼ F with S(F) ⊆ (y1, y2), and c ∈ (0, 1) and r∗ =

1/max(c, 1 − c). Let Dn,2(F, r, c) be the PICD based on Xn and Y2.

(i) Then for n > 1, r ∈ (1,∞), we have γn,2(F, r∗, c) − 1 ∼ BER(pn(F, r∗, c)). Note also
that γ1,2(F, r, c) = 1 for all r ≥ 1 and c ∈ [0, 1]; for r = 1, we have γn,2(F, 1, 0) =
γn,2(F, 1, 1) = 1 for all n ≥ 1 and for r = ∞, we have γn,2(F,∞, c) = 1 for all n ≥ 1
and c ∈ [0, 1].

(ii) Suppose c ∈ (0, 1/2) and r = r∗ = 1/(1 − c), F ∈ F1(y1, y2) with pdf f, and k ≥ 0 is
the smallest integer for which F(·) has continuous right derivatives up to order (k + 1)
at y1, Mc, and f (k)(y+

1 ) + r−(k+1)f (k)(M+
c ) �= 0 and f (i)(y+

1 ) = f (i)(M+
c ) = 0 for all

i = 0, 1, 2, . . . , (k − 1) and suppose also that F(·) has a continuous left derivative at y2.
Then for bounded f (k)(·), we have the following limit

p(F, 1/(1 − c), c) = lim
n→∞ pn(F, 1/(1 − c), c) = f (k)(y+

1 )

f (k)(y+
1 ) + (1 − c)(k+1)f (k)

(
M+

c
) .

(iii) Suppose c ∈ (1/2, 1) and r = r∗ = 1/c, F ∈ F2(y1, y2) with pdf f, and 
 ≥ 0 is the
smallest integer for which F(·) has continuous left derivatives up to order (
 + 1) at
y2, andMc, and f (
)(y−

2 ) + r−(
+1)f (
)(M−
c ) �= 0 and f (i)(y−

2 ) = f (i)(M−
c ) = 0 for all

i = 0, 1, 2, . . . , (
 − 1) and suppose also that F(·) has a continuous right derivative at
y1. Then for bounded f (
)(·), we have the following limit

p(F, 1/c, c) = lim
n→∞ pn(F, 1/c, c) = f (
)(y−

2 )

f (
)(y−
2 ) + c(
+1)f (
)

(
M−

c
) .

(iv) Suppose (Mc − ε,Mc + ε) ∪ (y1, y1 + ε) ∪ (y2 − ε, y2) ⊂ S(F) for some ε > 0, then

p(F, r, c) =
{
1 if r > r∗,
0 if r < r∗.

The asymptotic distribution of γn,2(F, r, c) for r = 2 and c = 1/2 is provided in
Theorem S4.3 in the Supplementary File.

In Theorem 4.2 parts (ii) and (iii), we assume that f (k)(·) and f (
)(·) are bounded
on (y1, y2), respectively. The extension to the unbounded derivatives is provided in
Remark S4.4 in the Supplementary File. The rates of convergence in Theorem 4.2 parts
(ii) and (iii) depend on f and are provided in Remark S4.5 in the Supplementary File. The
conditions of the Theorems 4.2 and S4.3 might seem a bit esoteric. However, most of the
well known functions that are scaled and properly transformed to be pdf of some ran-
dom variable with support in (y1, y2) satisfy the conditions for some k or 
, hence one can
compute the corresponding limiting probability p(F, r∗, c).

Examples: (a) With F = U(y1, y2), in Theorem 4.2 (ii), we have k = 0 and f (y+
1 ) =

f (M+
c ) = 1/(y2 − y1), and in Theorem 4.2 (iii), we have 
 = 0 and f (y−

2 ) = f (M−
c ) =



STATISTICS 15

1/(y2 − y1). Then limn→∞ pn(U , r∗, c) = r∗/(r∗ + 1) for c �= 1/2, which agrees with the
result given in Equation (8) and limn→∞ pu(2, 1/2, n) = 4/9.

(b) For F with pdf f (x) = (x + 1/2)I(0 < x < 1), we have k = 0, f (0+) = 1/2, and
f (c+) = c + 1/2 in Theorem 4.2 (ii). Then p(F, 1/(1 − c), c) = 1

2+c−2c2 for c �= 1/2. In
Theorem 4.2 (iii), we have 
 = 0, f (1−) = 3/2 and f (c−) = c + 1/2, then p(F, 1/c, c) =

3
3+c+2c2 for c �= 1/2. Based on Theorem S4.3, p(F, 2, 1/2) = 3/8.

(c) For F with pdf f (x) = (π/2)| sin(2πx)|I(0 < x < 1) = (π/2)(sin(2πx)I(0 <

x ≤ 1/2) − sin(2πx)I(1/2 < x < 1)), we have k = 0, f (0+) = 0, and f (c+) = (π/2)
(sin(2πc)) in Theorem4.2 (ii). Then p(F, 1/(1 − c), c) = 0 for c �= 1/2. As for Theorem4.2
(iii), we have 
 = 0, f (1−) = 0 and f (c−) = −(π/2)(sin(2πc). Then p(F, 1/c, c) = 0 for
c �= 1/2. Moreover, by Theorem S4.3, p(F, 2, 1/2) = 0 as well.

For more examples, see Supplementary File. In Theorem 4.2 (ii), if we have f (k)(0+) =
f (k)(c+), then limn→∞ pn(F, 1/(1 − c), c) = 1

1+(1−c)(k+1) . In particular, if k = 0, then
limn→∞ pn(F, 1/(1 − c), c) = 1/(2 − c). Hence γn,2(F, 1/(1 − c), c) and γn,2(U , 1/(1 −
c), c) would have the same limiting distribution. Likewise, in Theorem 4.2 (iii), if we have
f (
)(1−) = f (
)(c−), then limn→∞ pn(F, 1/c, c) = 1

1+c(
+1) . In particular, if 
 = 0, then
limn→∞ pn(F, 1/c, c) = 1/(1 + c). Hence γn,2(F, 1/c, c) and γn,2(U , 1/c, c) would have the
same limiting distribution.

5. Distribution of γn,m(FX,Y , r, c)

We now consider the more challenging case ofm>2. For ω1 < ω2 in R, define the family
of distributions

H (R) := {
FX,Y : (Xi,Yi) ∼ FX,Y with support S(FX,Y) = (ω1,ω2)

2

� R2,Xi ∼ FX and Yi
iid∼ FY

}
.

We provide the exact distribution of γn,m(FX,Y , r, c) for the PICD, Dn,m(FX,Y , r, c), with
FX,Y ∈ H (R) in Theorem S5.1 in the Supplementary File.

This exact distribution for finite n andm has a simpler form when X and Y points are
both uniformly distributed in a bounded interval in R. Define U (R) as follows

U (R) := {
FX,Y : X and Y are independent Xi

iid∼ U(ω1,ω2) and Yi
iid∼ U(ω1,ω2),

with − ∞ < ω1 < ω2 < ∞}
.

Clearly, U (R) � H (R). Then we have Corollary S5.2 to Theorem S5.1 (see the Supple-
mentary File).

For n,m < ∞, the expected value of domination number is

E[γn,m(FX,Y , r, c)] = P
(
X(1) < Y(1)

) + P
(
X(n) > Y(m)

)
+

m−1∑
i=1

n∑
k=1

P(Ni = k)E[γ[i](Fi, r, c)] (12)

see Supplementary File for details and its limit as n → ∞.
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Theorem 5.1 (Main Result 4): Let Dn,m(FX,Y , r, c) be the PICD with FX,Y ∈ H (R).
Then

(i) for fixed n < ∞, limm→∞ γn,m(FX,Y , r, c) = n a.s. for all r ≥ 1 and c ∈ [0, 1].
For fixed m < ∞, and

(ii) for r = 1 and c ∈ (0, 1), limn→∞ P(γn,m(FX,Y , 1, c) = 2m) = 1 and limn→∞
P(γn,m(FX,Y , 1, 0) = m + 1) = limn→∞ P(γn,m(FX,Y , 1, 1) = m + 1) = 1,

(iii) for r>2 and c ∈ (0, 1), limn→∞ P(γn,m(FX,Y , r, c) = m + 1) = 1,
(iv) for r = 2, if c �= 1/2, then limn→∞ P(γn,m(FX,Y , 2, c) = m + 1) = 1; if c = 1/2, then

limn→∞ γn,m(FX,Y , 2, 1/2)
d= m + 1 + ∑m

i=1 Bi with Bi ∼ BER(p(Fi, 2, 1/2)),
(v) for r ∈ [1, 2), if r �= r∗ = 1/max(c, 1 − c), then limn→∞ γn,m(FX,Y , r, c) is degenerate;

otherwise, it is non-degenerate. That is, for r ∈ [1, 2), as n → ∞,

γn,m(FX,Y , r, c)
L→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m + 1, for r > r∗,

m + 1 +
m∑
i=1

Bi, for r = r∗,

2m, for r < r∗,

(13)

where Bi ∼ BER(p(Fi, r, c)).

Proof: Part (i) is trivial. Part (ii) follows fromPropositions S2.1 and S2.2, since as ni → ∞,
we have X[i] �= ∅ a.s. for all i.

Part (iii) follows from Theorem 3.4, since for c ∈ (0, 1), it follows that r > r∗ implies
r>2 and as ni → ∞, we have γ[i](Fi, r, c) → 1 in probability for all i.

In part (iv), for r = 2 and c �= 1/2, based on Corollary S3.2, as ni → ∞, we have
γ[i](Fi, r, c) → 1 in probability for all i. The result for r = 2 and c = 1/2 is proved in [14].

Part (v) follows from Theorem 3.4. �

The PICD discussed in this article can be viewed as the one-dimensional version of
proportional-edge proximity catch digraphs introduced in [28] for two-dimensional data.
The extension to higher dimensions Rd with d>2 is also provided in [28,36].

6. Practical application: testing uniformity with domination number of
PICDs

Let Xi, i = 1, 2, . . . , n, be iid random variables from a distribution F with finite support.
We will employ domination number of the PICD to test for uniformity of one-dimensional
data in a bounded interval, say (0, 1); i.e. our null hypothesis is Ho : F = U(0, 1). For this
purpose, we consider three approaches:

approach (i) In Theorem 3.3, we derived the P(γn,2(U , r, c) = 2) for all n ≥ 2, c ∈
(0, 1) and r ≥ 1 for uniform data on (0, 1). In this approach, we will use γn,m(U , r, c)
as an approximate binomial test statistic for testing uniformity of data in (0, 1) (by
Theorem 3.1, the results would also be valid for uniform data on any bounded interval
(a1, a2) with −∞ < a1 < a2 < ∞). Here, the approximation is not the large sample
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convergence to binomial distribution, but in estimating the probability of success (i.e.
P(γn,2(U , r, c) = 2)) as we are using the expected number of observations for ni for
each subinterval i under uniformity assumption.
approach (ii) In Theorem S5.1 in the Supplementary File, we have the exact distribu-
tion of γn,m(F, r∗, c). One could use this distribution in an exact testing procedure, but
for convenience, we estimate the Monte Carlo critical values of γn,m(F, r∗, c) and use
it in our tests.
approach (iii) In Theorem 3.4, we have the asymptotic distribution of γn,m(F, r∗, c).
We will use this distribution in an approximate testing procedure, where the asymp-
totic value of the probability of success (i.e, limn→∞ P(γn,2(U , r, c) = 2)) is used in the
binomial test (i.e. large sample approximation is used for the probability of success).

In approaches (i)–(iii), we divide the interval (0, 1) into m subintervals, and treat the
interval endpoints to be the Y points, i.e. we set Ym = {0, 1/(m − 1), 2/(m − 1), . . . , 1}.
This can be done without loss of generality in this context, because we are testing uni-
formity of points from one class in a bounded interval, and the proximity regions are
constructed using arbitrarily chosen Y points.

In both approaches, we compute the domination number for each subinterval and use
Gn := γn,m(r, c) − m as our test statistic. However in approach (i), we use an approximate
binomial test with Gn approximately having BIN(m, pu(r, c, ni)) with ni = �n/m�. This is
an approximate procedure since E[Ni] = n/m, i.e. ni = n/m on the average. Furthermore,
if Gn < 0, then we set the corresponding p-value to 0 for this test, since this is already
evidence of severe deviation from uniformity. In approach (ii), we use the exact distribu-
tion provided in Theorem S5.1. However, for convenience, we estimate the critical value by
Monte Carlo simulations. In particular, we generate 10,000 samples for each (r, c) combina-
tion considered and compute the domination number γn,m(r, c) for each sample. Then for
the left-sided (right-sided) alternative, 5th percentile (95th percentile) of the test statistic
constitutes the empirical critical value at α = 0.05 level.

For comparative purposes, we employ Kolmogorov–Smirnov (KS) test for uniform dis-
tribution and Pearson’s χ2 goodness of fit test, since these are the most well known and
commonly used tests for checking the goodness of distributional fit.We also consider three
recently proposed tests, namely, a uniformity test based on Too-Lin characterization of the
uniform distribution [22], and two entropy-based tests, denoted as TB1 and TB2 in [27].
The entropy tests due to [27] reject the null hypothesis of uniformity for small values of
TB1 and TB2. On the other hand, the uniformity test denoted as T(m)

n in [22], usesm = 2
and kth order statistic Too-Lin characterization rejects for large absolute values of the test
statistic and we take k = 1 in T(2)

n . For all these tests TB1, TB2 and T(2)
n , the critical values

are obtained by Monte Carlo simulations.
We also compare the performance of PICD domination number test with that of the

arc density of two ICDs: (i) PICD and (ii) Central ICD (CICD) which is based on central
similarity (CS) proximity region. For a digraph Dn = (V ,A) with vertex set V and arc
set A, the arc density of Dn which is of order |V| = n ≥ 2, denoted ρ(Dn), is defined as
ρ(Dn) = |A|

n(n−1) where | · | stands for the set cardinality function [37]. So ρ(Dn) is the ratio
of the number of arcs in the digraph Dn to the number of arcs in the complete symmetric
digraph of order n, which is n(n − 1). For n ≤ 1, we set ρ(Dn) = 0. Arc density of ICDs
is shown to be aU-statistic, and hence its asymptotic distribution is a normal distribution,
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provided that its asymptotic variance is positive [26]. Arc density of PICDs is studied in
[26] and but not used in testing uniformity before. Likewise, CICDs were introduced in
[25] and its arc density was employed for testing uniformity in the same article as well. CS
proximity region is defined as follows [25]: For τ > 0, c ∈ (0, 1) and x ∈ Ii
NCS(x, τ , c)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
x − τ

(
x − Y(i−1)

)
, x + τ(1 − c)

c
(
x − Y(i−1)

))
⋂ (

Y(i−1),Y(i)
) if x ∈ (Y(i−1),Mc,i),

(
x − cτ

1 − c
(
Y(i) − x

)
, x + τ

(
Y(i) − x

))
⋂ (

Y(i−1),Y(i)
) if x ∈ (

Mc,i,Y(i)
)
.

(14)

6.1. Empirical size analysis

We perform a size analysis to determine whether the tests have the appropriate size in
testing Ho : F = U(0, 1). Along this line, we partition the domain of pu(r, c, n) for r and
c as follows. We take c = .01, .02, . . . , .99 and r = 1.00, 1.01, . . . , 2.10, and consider each
(r, c) combination on a 99 × 210 grid with n = 20, 50, 100. For each (r, c) combination,
we generate Nmc = 10, 000 samples each of size n iid from U(0, 1) distribution. We also
partition the interval (0, 1) intom equal subintervals wherem equals

√
n (rounded to the

nearest integer) whose choice is inspired by the choice of windows size in entropy-based
goodness-of-fit tests [38]. This choice is not to justify the use of binomial distribution,
as the distribution of the domination number is available for any r > 1, c ∈ (0, 1) and
finite n ≥ 2. That is, the binomial distribution would hold regardless of the size of m, but
it is preferable that it is large enough to give enough resolution for the discrete binomial
test. The reason we use the (r∗, c) combination that renders the asymptotic distribution
non-degenerate is that other choices of (r, c) could make the distribution close to being
degenerate for large n, whose rate of convergence to 0 or 1 depends on the values of r
and c. Then for each subinterval, we compute the domination number (which is either
0, 1, or 2), and sum the domination numbers over the m subintervals and thus obtain
γn,m(r, c). We use this summed domination number minus m, i.e. Gn, in an approximate
binomial test statistic (i.e. we follow approach (i) above). UnderHo, Gn approximately has
BIN(m, pu(r, c, �n/m�)) distribution, sowe compute the p-value based on the binomial test
with m trials and probability of success being p = pu(r, c, �n/m�) for the two-sided alter-
native. For each of the 10,000 samples generated, we also compute the arc density of the
ICDs for the parameters of choice and appeal to the asymptotic normality of the arc den-
sity of these ICDs. We compute size estimates based on the corresponding normal critical
values for the arc density for each (r, c) (resp. (τ , c)) combination for PICD (resp. CICD).
For each sample, we also compute KS, χ2, TB1 and TB2 and T(2)

n tests as well. In the χ2

test, we use the same partition of (0, 1) with m subintervals, and compare the observed
and expected frequencies of data points in these subintervals under uniformity. Empirical
size is estimated as the frequency of number of times p-value is significant at α = .05 level
divided by Nmc = 10, 000. With Nmc = 10, 000, empirical size estimates larger than .0536
are deemed liberal, while those less than .0464 are deemed conservative. These bounds
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are also based on binomial test for the proportions for Nmc = 10, 000 trials at .05 level.
Since the entropy tests TB1 and TB2 and T(2)

n test and PICD domination number test with
approach (ii) are using critical values based on Monte Carlo simulations, we exclude them
in the empirical size comparison, as they, by construction, attain the nominal size. How-
ever, we find the empirical critical values for these tests as the sample 100αth percentile of
the TB1 and TB2 values computed in our simulations, and 100(1 − α)th percentile of the
|T(2)

n | values computed in our simulations.
We present the empirical size estimates of the tests based on the domination number

of PICD with approach (i) as two-level image plots (with empirical sizes not significantly
different from 0.05 in black dots, and others are blanked out in white) with n = 20, c =
.01, .02, . . . , .99 and r = 1.00, 1.01, . . . , 2.10 in Figure 4 (the plots for n = 50 and 100 have
the similar trend, hence not presented). Notice that the sizes for the right-sided alternatives
are at about the nominal level for (r, c) around (1, 0) or (1, 1), while the sizes for the left-
sided alternatives are about the nominal level of 0.05 at the asymptotically non-degenerate
(r, c) = (r∗, c) pairs for c ∈ (.25, .75). The reason for the asymmetric performance for the
left-sided versus right-sided alternatives is that pu(r, c, n) values are higher (i.e. close to 1)
around (r, c) = (1, 0) or (1, 1), and lower for other values, but away from 1 or 0 for (r, c) =
(r∗, c) pairs. Therefore, for the power analysis, we only consider (r, c) = (r∗, c) pairs, as
empirical size is closer to the nominal level for these parameters in approach (i).

In approach (ii), by construction the size estimates should be around the nominal level
of .05. But due to the discrete nature of γn,m with very few atoms for small n and m, the
exact test is liberal or conservative depending on whether we include the critical value in
our size estimation. In particular, let γn,m,i be the domination number for sample i and γ.05
be the 5th percentile for the exact distribution of γn,m(r, c) (as in Theorem S5.1). Also let
αinc :=

∑Nmc
i=1 γn,m,i ≤ γ.05 and αexc :=

∑Nmc
i=1 γn,m,i < γ.05. Then for testing the left-sided

alternative, αinc tends to be much larger than .05 (implying the procedure is liberal) and
αexc tends to be much smaller than .05 (implying the procedure is conservative). In our
power computations with approach (ii), we adjust for this discrepancy.

The size estimates in approach (iii) depend on the sample size n, and the parameters
r and c, i.e. they tend to be liberal for some values of (r, c), and conservative for others,

Figure 4. The empirical size estimates of the tests based on domination number of PICD with approach
(i) for n = 20 andNmc = 10, 000 for r = 1.01, 1.02, . . . , 2.10 and c = .01, .02, . . . , .99 for the two-sided,
right-sided and left-sided alternatives (left to right); size estimates significantly different from .05 are
blanked out, while size estimates within .0536 and .0464 are plotted as black dots. The solid lines in the
bottom row plots indicate the case of (r, c) = (r∗, c) which yields the asymptotically non-degenerate
distribution for the domination number.
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especially when n is not large enough. Our simulations suggest that large sample sizes are
needed (about 30 or more per each subinterval seems to work), where the required sample
size would also depend on r and c as well. Hence we do not present approach (iii) except
for the large sample simulation cases (in the cases with n = 1000 here).

We estimate the empirical sizes of the tests based on the arc density of the PICDs
and CICDs for n = 20, 50 and 100 and c = .01, .02, . . . , .99 with r = 1.1, 1.2, . . . , 10.0 for
PICDs and τ = .1, .2, . . . , 10.0 for CICDs. For the one-sided alternatives, the regions at
which size estimates are about the nominal level of 0.05 are somewhat complementary,
in the sense that, the sizes are appropriate for the parameter combinations in one region
for left-sided alternative and mostly in its complement for the right-sided alternative. We
also observe that arc density of PICD has appropriate size for the two-sided alternative for
more parameter combinations, and arc density of CICD has appropriate size for the left-
sided alternative for more parameter combinations. See Figure S3 in the Supplementary
File for the related image plots of the empirical size estimates.

6.2. Empirical power analysis

We perform a power analysis to determine which tests have better performance in detect-
ing deviations from uniformity. For the alternatives (i.e. deviations from uniformity), we
consider five types of non-uniform distributions with support in (0, 1):

(I) f1(x, δ) = (2δx + 1 − δ)I(0 < x < 1),
(II) f2(x, σ) = φ(x, 1/2, σ)/(�(1, 1/2, σ) − �(0, 1/2, σ))I(0 < x < 1) where φ(x, 1/

2, σ) is the pdf for normal distribution with mean μ = 1/2 and standard deviation
σ , (i.e. normal distribution with μ = 1/2 restricted to (0, 1)),

(III) f3(x, δ) = (δ(x − 1/2)2 + 1 − δ/12)I(0 < x < 1),
(IV) f4(x, ε) = (1/(1 − 2mε))I(x ∈ (0, 1) \ ∪m

i=0(i/m − ε, i/m + ε)), that is, f4(x, ε) is a
pdf so that ε × 100 % of the regions around the m subinterval end points are
prohibited, and the data is uniform in the remaining regions.

(V) f5(x, ε′) = (1/2mε′)I(x ∈ (0, 1) ∩ (∪m
i=0(i/m − ε′, i/m + ε′))), that is, f5(x, ε′) is a

distribution so that data is uniform over the ε′ × 100 % of the regions around the
m subinterval end points are prohibited, and the remaining regions are prohibited.
Notice that the supports of f4(x, ε) and f5(x, ε′) are complimentary in (0, 1).

That is,

HI
a : f = f1(x, δ) with δ ∈ (0, 1)HII

a : f = f2(x, σ) with σ > 0

HIII
a : f = f3(x, δ) with δ ∈ (0, 12]

HIV
a : f = f4(x, ε) with ε ∈ (0, 1/2) and HV

a : f = f5(x, ε′) for ε′ ∈ (0, 1/2)

In type I alternatives, δ = 0 corresponds to U(0, 1) distribution, and with increasing
δ > 0, the density of the distribution ismore clustered around 1 and less clustered around 0;
in type II alternatives, with decreasing σ , the density of the distribution getsmore clustered
around 1/2 (and less clustered around the end points, 0 and 1); and in type III alternatives,
δ = 0 corresponds to U(0, 1) distribution, and with increasing δ > 0, the density of the
distribution is more clustered around the end points, 0 and 1, and less clustered around
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1/2. Types IV and V alternatives are actually motivated from two-class one-dimensional spa-
tial point patterns called segregation and association. Roughly defined, segregation is the
pattern in which points from the same class tend to cluster, while under association, points
from one class is clustered around the points from the other class and vice versa. In one-
dimensional case, the segregation alternative is as in HIV

a , where X points are distributed
according to f4 and Y points constitute the end points of the interval partition of (0, 1) (i.e.
{0, 1/(m − 1), 2/(m − 1), . . . ,1}. Hence, X points tend to stay away from Y points, which
suggests segregation between the classes X and Y. Furthermore, ε = 0 in type IV alterna-
tive corresponds to the null case (i.e. uniform distribution). The association alternative is
as in HV

a . The pdf under type I alternative is skewed left for δ > 0, while pdfs under other
alternatives are symmetric around 1/2. See Figure S6 in the Supplementary File for sample
plots of the pdfs with various parameters for alternative types I–III.

Under each alternative, we generate n points according to the specified alternatives
with various parameters. In particular, for HI

a : F = F1(x, δ), we consider δ = .2, .4, .6, .8,
for HII

a : F = F2(x, σ), we consider σ = .1, .2, .3, .4, for HIII
a : F = F3(x, δ), we consider

δ = 2, 4, 6, 8, and for HIV
a : F = F4(x, ε), we consider ε = .1, .2, .3, .4 (also called HIV

a -
case (1)). For the domination number of PICDs, we replicate each case Nmc times for
(r, c) = (r∗, c) with c = .01, .02. . . . , .99 (i.e. for (r, c) values that make γn,2(U , r, c) non-
degenerate in the limit (see Theorem 3.4)). We compute the power using the critical values
based on BIN(m, pu(r, c, �n/m�)) distribution (i.e. approach (i)) and based on the empir-
ical critical values (i.e. approach (ii)). For types I–IV alternatives, we take n = 20, 50,
100 and Nmc = 10, 000. By construction, our domination number test is more sensitive
for segregation/association type alternatives which also implies the same direction for
each subinterval considered hence, the sum of domination number over the subintervals
detects such deviations from uniformity better. In fact, we have consistency results for
the domination number test under HIV

a and HV
a type alternatives (see Section 7). These

consistency results suggest that domination number test gets very sensitive under very
mild forms of HIV

a and HV
a when n gets large. Along this line, we consider two more

cases for the type IV alternative in addition to case (1). More specifically, we consider
HIV
a -case (1): ε = .1, .2, .3, .4 n = 50, m = 7 ≈ √

n and Nmc = 10, 000, HIV
a -case (2):

n = 1000, m = 32 ≈ √
n and Nmc = 1000; and HIV

a -case (3): n = 1000, m = 20 and
Nmc = 1000 where in cases (2) and (3) we take ε = .01, .02, .03, .04.

For the arc density of the ICDs, we generate n points according to the specified
alternatives with various parameters (where n is taken as in the simulations for the
domination number for the null case and each alternative). With CICDs, we use (τ , c)
for τ = .1, .2, . . . , 10.0 and c = .01, .02. . . . , .99 and with PICDs, we use (r, c) for r =
1.1, 1.2, . . . , 10.0 and c = .01, .02. . . . , .99. With CICDs, for each (τ , c) and δ combination,
and with PICDs, for each (r, c) and δ combination, we replicate the sample generationNmc
times. We compute the power using the asymptotic critical values based on the normal
approximation. We also keep the parameter combinations ((r, c) for PICDs and (τ , c) for
CICDs) at which the tests have the appropriate level (of .05), i.e. if the test is conserva-
tive or liberal for the one-sided version in question, we ignore that parameter combination
in our power estimation, as they would yield unreliable results which might have a sub-
stantial effect on the power values. We call this procedure the ‘size adjustment’ for power
estimation. For the arc density of PICDs and CICDs, we only report the maximum power
estimates under each alternative.



22 E. CEYHAN

The power comparisons between PICD domination number test, KS, χ2, TB1, TB2 and
T(2)
n tests are presented in Figure 5 for alternatives HI

a − HIII
a , and in Figure 6 for alterna-

tivesHIV
a -cases (1)-(3). The power estimates based on asymptotic critical values of the tests

(i.e. the power estimates for the test based on domination number of PICD with approach
(i), Kolmogorov–Smirnov test, and Chi-square test) are provided in the top row and those
based on Monte Carlo critical values (for the test based on domination number of PICD
with approach (ii), T(2)

n test based on the uniformity characterization, two versions of the
entropy-based tests) are provided in the bottom row in these figures. The power estimates
under alternatives HI

a − HIII
a and HIV

a -case (1) are presented in Table 1, and those under
alternativeHIV

a -cases (2) and (3) in Table 2; in both tables the power estimates are rounded
to two decimal places. In Figures 5 and 6, we do not present the power estimates for ICD
arc density tests, due to the difficulty in presentation since ICD arc density tests depend
on two parameters. For the domination number test, the power estimates based on asymp-
totic critical values are provided in the top row and those based on Monte Carlo critical
values are provided in the bottom row in these figures. In Tables 1 and 2, we only present
the maximum power estimates for the ICD arc density tests for the two-sided alternative and
for the PICD domination number tests. Considering Figures 5 and 6 and Tables 1 and 2, we
observe that power estimates increase as the departure from uniformity gets more severe.
In particular, power estimate increases as δ increases inHI

a orHII
a , as ε increases inHIV

a and
as σ decreases in HII

a . Under HI
a − HIII

a and HIV
a -case(1), arc density of PICD and CICD

Figure 5. Power estimates under under HIa : F = F1(x, δ = .8), HIIa : F = F2(x, σ = 0.2), HIIIa : F =
F3(x, δ = 8), with n = 50 and Nmc = 10000. Gbin and Gemp: tests based on domination number of PICD

with approaches (i) and (ii), respectively, KS: Kolmogorov–Smirnov test, χ2: Chi-square test, NT: T(2)
n test

based on the uniformity characterization, TB1 and TB2: two versions of the entropy-based tests. Tests
presented in each row are indicated in the legend in that row.
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Figure 6. Power estimates under under HIVa : F = F1(x, ε), case (1) with ε = .4, n = 50,m = 7 and
Nmc = 10, 000 (left column), case (2) ε = .04, n = 1000,m = 32 andNmc = 1000 (middle column), and
case (3) ε = .04, n = 1000,m = 20 and Nmc = 1000 (right column). Labelling of the tests are as in
Figure 5. Tests presented in each row are indicated in the legend in that row.

has the highest power estimates, where PICD arc density tends to perform better (worse)
than CICD arc density underHI

a − HIII
a (underHIV

a -case (1)). UnderHI
a, ICD arc density

tests are followed by T(2)
n ; under HII

a , ICD arc density tests are followed by TB1 and TB2;
under HIII

a , ICD arc density tests are followed by χ2 test; and under HIV
a -case (1), ICD

domination number test is followed by CICD arc density test. Under HIV
a -cases (2) and

(3) ICD domination number tests have the highest power estimates, where under case (1)
PICD domination number test with approach (i) and under case (2) domination number
test with approach (ii) has better performance, and power estimates for the other tests are
just above .05 or at about .05. In these large sample cases, approach (iii) also works, and has
higher power estimates than the other two approaches (corresponding estimates not pre-
sented to be consistent with the presentations of the other alternatives). Moreover, PICD
domination number test performs better when the support is partitioned bym ≈ √

n. We
omit the power performance under HV

a as it is the opposite pattern to the one under HIV
a .

More simulation results for the arc density of ICDs are presented in in the Supplemen-
tary File, where we observe that the power estimates are symmetric around c = 1/2 under
types II-IV alternatives, which is in agreement with the symmetry in the corresponding
pdfs (around c = 1/2).

We also considered the power comparisons under HI
a − HIII

a and HIV
a case (1) at the

same alternative parameters with n = Nmc = 1000, to see the effect of the large samples
on the power estimates. The results are similar to those in the smaller sample cases, with
higher power for each test (hence not presented). In particular, under HI

a − HIII
a all tests
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Table 1. The power estimates under the alternativesHIa toH
IV
a with all four parameter values considered

and n = 50 and Nmc = 10, 000 for the tests we employed.

HIa , n = 50 HIIa , n = 50

δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4

PICD .33 .51 .76 .94 PICD 1.00 1.00 .79 .39
.15 .35 .64 .88 1.00 1.00 .79 .37

CICD .19 .43 .71 .92 CICD 1.00 1.00 .81 .42
.13 .33 .62 .88 1.00 1.00 .81 .41

Gbin .06 .08 .09 .14 Gbin .99 .25 .07 .06
Gemp .06 .09 .12 .21 Gemp .95 .37 .11 .07
KS .11 .32 .62 .88 KS 1.00 .75 .17 .07
χ2 .07 .17 .38 .68 χ2 1.00 .97 .39 .14
T(2)
n .13 .37 .70 .94 T(2)

n 1.00 .83 .17 .07
TB1 .08 .20 .43 .77 TB1 1.00 .99 .54 .22
TB2 .08 .20 .43 .79 TB2 1.00 1.00 .68 .31

HIIIa , n = 50 HIVa , n = 50

δ = 2 δ = 4 δ = 6 δ = 8 ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4

PICD .41 .66 .92 .99 PICD .27 .27 .34 .50
.28 .66 .92 .99 .06 .08 .10 .14

CICD .19 .53 .86 .98 CICD .11 .15 .28 .52
.19 .52 .86 .98 .06 .07 .08 .24

Gbin .07 .07 .09 .14 Gbin .28 1.00 1.00 1.00
Gemp .06 .07 .11 .19 Gemp .88 .95 .95 .95
KS .09 .19 .40 .67 KS .05 .06 .06 .07
χ2 .09 .27 .38 .87 χ2 .05 .05 .05 .05
T(2)
n .07 .14 .31 .58 T(2)

n .05 .05 .05 .06
TB1 .07 .19 .48 .82 TB1 .07 .10 .15 .26
TB2 .03 .06 .21 .56 TB2 .06 .07 .09 .14

Notes: PICDandCICD represent the arc densities of the ICD tests, and for each, top row iswithout size adjustment andbottom
row is with size adjustment (see the text for the description of size adjustment), Gbin and Gemp: tests based on domination

number of PICD with approaches (i) and (ii), KS: Kolmogorov–Smirnov test, χ2: Chi-square test, NT: T(2)
n test based on the

uniformity characterization, TB1 and TB2: two versions of the entropy-based tests.

have much higher power, with most having power virtually 1.00, but domination number
tests with approaches (i) and (ii) exhibit mild improvement, while under HIV

a case (1),
PICD domination number tests attain the highest power estimates, virtually 1.00, while
there is mild improvement in the performance of other tests, except for TB1 and TB2,
which show moderate improvement. We also observe that in the large sample case, PICD
domination number with approach (iii) attains very high power under each alternative.

The above methodology can easily be extended for testing non-uniform distributions
(see Remark S5.4 in the Supplementary File).

7. Consistency of the tests based on domination number of PICDs under HIV
a

and HV
a

Let bα be the α × 100th percentile of the binomial distribution BIN(m, pu(r, c, �n/m�)).

Theorem 7.1 (Consistency – Type I): Let γn,m(F, r, c) be the domination number under
segregation and association alternatives, HIV

a and HV
a , respectively, in the multiple inter-

val case with m intervals. The test against segregation with F = F4(x, ε) which rejects for
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Table 2. The power estimates under the alter-
natives HIVa with all four ε values considered
and n = 1000 and Nmc = 1000 for the tests we
employed.

HIVa , n = 1000, m = 32, Nmc = 1000

ε = 0.01 ε = 0.02 ε = 0.03 ε = 0.04

PICD .08 .08 .08 .08
.08 .08 .08 .08

CICD .08 .08 .08 .08
.07 .08 .08 .08

DN .49 1.00 1.00 1.00
.66 .95 .96 .97

KS .04 .04 .04 .05
χ2 .05 .05 .06 .05
T(2)
n .04 .04 .04 .06
TB1 .04 .07 .08 .09
TB2 .04 .06 .07 .09

HIVa , n = 1000, m = 20, Nmc = 1000

ε = 0.01 ε = 0.02 ε = 0.03 ε = 0.04

PICD .08 .08 .08 .08
.08 .08 .08 .08

CICD .08 .08 .08 .07
.08 .08 .08 .07

Gbin .40 1.00 1.00 1.00
Gemp .61 .95 .95 .97
KS .06 .04 .05 .05
χ2 .05 .05 .04 .05
T(2)
n .06 .05 .05 .06
TB1 .04 .08 .09 .15
TB2 .04 .07 .09 .13

Labelling of the tests is as in Table 1.

Gn < bα and the test against association with F = F5(x, ε′) which rejects for Gn > b1−α are
consistent.

Proof: Given F = F4(x, ε). Let γn,m(U , r, c) be the domination number for Xn being
a random sample from U(0, 1). Then P(γn,m(F, r, c) = 1) ≥ P(γn,m(U , r, c) = 1); and
P(γn,m(F, r, c) = 2) ≤ P(γn,m(U , r, c) = 2). Hence Gn < mpu(r, c, �n/m�) with probabil-
ity 1, as n � m → ∞. Furthermore, BIN(m, pu(r, c, �n/m�)) distribution converges
to normal distribution with mean mpu(r, c, �n/m�) and variance mpu(r, c, �n/m�)(1 −
pu(r, c, �n/m�)). Hence consistency follows from the consistency of tests which have
asymptotic normality. The consistency against the association alternative can be proved
similarly. �

Below we provide a result which is stronger, in the sense that it will hold for finite
m as n → ∞. Let Gn := Gn/m (i.e. domination number averaged over the number of
subintervals) and zα be the α × 100th percentile of the standard normal distribution.

Theorem 7.2 (Consistency – Type II): Let γn,m(F, r, c) be the domination numbers under
segregation and association alternatives HIV

a and HV
a , respectively, in the multiple interval

case with m intervals where m < ∞ is fixed. Let m∗(α, ε) := �( σ ·zα
Gn(r,c)−μ

)2� where �·� is
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the ceiling function and ε-dependence is through Gn,m(r, c) under a given alternative. Then
the test against HIV

a which rejects for Sn,m < zα is consistent for all ε ∈ (0,min(c, 1 − c))
and m ≥ m∗(α, ε), and the test against HV

a which rejects for Sn,m > z1−α is consistent for all
ε ∈ (0,min(c, 1 − c)) and m ≥ m∗(1 − α, ε).

Proof: Let ε ∈ (0,min(c, 1 − c)). Under HIV
a , γn(F, r, c) is degenerate in the limit as

n → ∞, which implies Gn(r, c) is a constant a.s. In particular, for ε ∈ (0,min(c, 1 −
c)), Gn(r, c) = 1 a.s. as n → ∞. Then the test statistic Sn,m = √

m(Gn(r, c) − μ)/σ is a
constant a.s. and m ≥ m∗(α, ε) implies that Sn,m < zα a.s. Furthermore, Sn,m

L→ N(0, 1)
as n → ∞. Hence consistency follows for segregation.

UnderHV
a , as n → ∞, Gn(r, c) = 2 for all ε ∈ (0,min(c, 1 − c)) a.s. Thenm ≥ m∗(1 −

α, ε) implies that Sn,m > z1−α a.s., hence consistency follows for association. �

Notice that in Theorem 7.2 we actually have more than what consistency requires. In
particular, we show that the power of the test reaches 1 for m greater than a threshold as
n → ∞.

8. Discussion and conclusions

In this article, we derive the distribution of the domination number of a random digraph
family called parameterized interval catch digraph (PICD) which is based on two classes of
points, say X and Y . Points from one of the classes (say, class X ), denoted Xn, constitute
the vertices of the PICDs, while the points from the other class (say, class Y), denoted
Ym, are used in the binary relation that assigns the arcs of the PICDs. Our PICD is based
on a parameterized proximity map which has an expansion parameter r and a centrality
parameter c. We provide the exact and asymptotic distributions of the domination number
of the PICDs for uniform data and compute the asymptotic distribution for non-uniform
data for the entire range of (r, c).

We demonstrate an interesting behaviour of the domination number of the PICD for
one-dimensional data. For uniform data or data from a distribution which satisfies some
regularity conditions and fixed finite sample size n>1, the distribution of the domi-
nation number restricted to any interval is a translated form of Bernoulli distribution,
BER(p), where p is the probability that the domination number being 2. In the case
of Y2 = {y1, y2} with U(y1, y2) data, for finite n ≥ 1, the parameter of the asymptotic
distribution of the domination number of the PICD based on uniform data (i.e. prob-
ability of domination number being 2, denoted pu(r, c)) is continuous in r and c for
all r ≥ 1 and c ∈ (0, 1). For fixed (r, c) ∈ [1,∞) × (0, 1), pu(r, c) exhibits some discon-
tinuities. The asymptotic distribution of the domination number is degenerate for the
expansion parameter r>2 regardless of the value of c. For c ∈ (0, 1) the asymptotic distri-
bution is non-degenerate when the expansion parameter r equals r∗ = 1/max(c, 1 − c).
For r = r∗, the asymptotic distribution of the domination number is a translated form
of BER(pu(r∗, c)) where pu(r∗, c) is continuous in c. For r > r∗ the domination num-
ber converges in probability to 1, and for r < r∗ the domination number converges in
probability to 2. On the other hand, at (r, c) = (2, 1/2), the asymptotic distribution is
again a translated form of BER(pu(2, 1/2)), but there is yet another jump at (r, c) =
(2, 1/2), as pu(2, 1/2) = 4/9 while lim(r,c)→(2,1/2) pu(r∗, c) = 2/3. This second jump is due
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to the symmetry for the domination number at c = 1/2 (see the discussion at the end of
Section 3.1.1).

We employ domination number for testing uniformity of one-dimensional data. In
this application, we have n X points and we take m Y points to be the equidistant
points in the support of X points. For example, if the support of X points is (0, 1), we
take Y points to be Ym = {0, 1/(m − 1), 2/(m − 1), . . . , 1}. Since under Ho, HIV

a and
HV
a the data is uniform with different support regions, we can extend the methodol-

ogy to the random Ym case, but currently the method is only applicable given Ym as
above.

We compare the size and power performance of PICD domination number with two
well known tests, namely, Kolmogorov–Smirnov (KS) test and Pearson’s χ2 goodness-of-fit
test, three recently introduced tests, the uniformity test based on Too-Lin characterization,
denoted as T(2)

n [22], and two entropy-based tests, denoted as TB1 and TB2 in [27], and
also the arc density of PICDs and of another ICD family called central ICD (CICD), by
Monte Carlo simulations. Based on the simulation results, we see that ICDs have better
performance than their competitors (in terms of size and power). Arc density of ICDs per-
form better than others under most alternatives for some of the parameter values and the
domination number outperforms others under certain types of alternatives. In particular,
under the alternatives HI

a − HIII
a , ICD arc density tests outperform other tests, and under

HIV
a -cases (1) –(3), PICD domination number tests outperform other tests. For the ICD

arc density tests, we use the asymptotic critical values based on normal approximation.
For the PICD domination number test, we use the binomial critical values with an approx-
imate probability of success (i.e. approach (i)) and also the empirical critical values based
on Monte Carlo simulations (i.e. approach (ii)). For T(2)

n , TB1 and TB2 tests, the critical
values are also based on Monte Carlo simulations.

We recommend using the PICD domination number test for uniformity in the fol-
lowing scenario. If we are testing uniformity of data in multiple intervals (by hypothesis
or one can partition the support of the data), and the deviation from uniformity is in
the same direction at each interval, then, by construction, domination number tends to
be more sensitive to detect such alternatives (even if they are very mild deviations from
uniformity). Among the types of critical value computations, we recommend the use of
the exact distribution provided in Theorem S5.1 (with Monte Carlo critical values as an
approximation in practice), i.e. approach (ii) for small samples (this approach could be
used provided running time is feasible), and the approximate Binomial test for any n, i.e.
approach (i) (see Section 6.1). For large samples, binomial test with asymptotic probability
of success (i.e. approach (iii)) could also be employed. Our simulations suggest that about
30 or more for each subinterval seems to work for most (r∗, c) combination, however, the
sample size requirements for approach (iii) have not been studied thoroughly in this arti-
cle. The relevant functions for these tests are PEdom1D and TSDomPEBin1D which are
available in the R package pcds which is available on github and can be installed using
the command devtools::install_github("elvanceyhan/pcds") in an R
session. The function PEdom1D computes the domination number when one or two one-
dimensional data sets are provided, and the function TSDomPEBin1Duses the finite sample
binomial approximation (i.e. approach (i)) by default or can use the asymptotic binomial
version (i.e. approach (iii)) for very large sampleswhen asy.bin=TRUE option is employed.
Monte Carlo critical values can also be computed using PEdom1Dwith sampling from the
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uniform distribution of the data sets (i.e. approach (ii)). See the help pages for PEdom1D
and TSDomPEBin1D for more details. The domination number approach is easily adapt-
able to testing non-uniform distributions as well (see Remark S5.4 for more detail). PICDs
have other applications, e.g. as in [28], we can use the domination number in testing one-
dimensional spatial point patterns and our results can help make the power comparisons
possible for a large family of distributions (see, e.g. Section 6.2 for a brief treatment of this
issue). PICDs can also be employed in pattern classification as well (see, e.g. [12,39]). Fur-
thermore, this article may form the foundation of the generalizations and calculations for
uniform and non-uniform distributions in multiple dimensions.

In our calculations, we extensively make use of the ordering of points in R. The order
statistics ofYm partition the support of X points into disjoint intervals. This nice structure
inR allows us to find a minimum dominating set and hence the domination number, both
in polynomial time. Furthermore, the components of the digraph restricted to intervals
(see Section 2.3) are not connected to each other, since the defining proximity regions
N(xi, r,M) ∩ N(xj, r,M) = ∅ for xi, xj in distinct intervals. Extension of this approach to
higher dimensions is a challenging problem, since there is no such ordering for point in
Rd with d>1. However, we can use the Delaunay tessellation based on Ym to partition
the space as in [28]. Furthermore, for most of the article and for all non-trivial results (i.e.
for the exact and asymptotic distributions of the domination number), we assumed Ym
is given; removing the conditioning on Ym is a topic of ongoing research along various
directions, namely: (i) X and Y both have uniform distribution, (ii) X and Y both have
the same (absolutely) continuous distribution, and (iii) X is distributed as FX and Y is
distributed as FY (where FX �= FY and both FX and FY are absolutely continuous).
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