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a b s t r a c t

Spatial clustering patterns in a multi-class setting such as segregation and association
between classes have important implications in various fields, e.g., in ecology, and can
be tested using nearest neighbor contingency tables (NNCTs). A NNCT is constructed
based on the types of the nearest neighbor (NN) pairs and their frequencies. We survey
the cell-specific (or pairwise) and overall segregation tests based on NNCTs in literature
and introduce new ones and determine their asymptotic distributions. We demonstrate
that cell-specific tests enjoy asymptotic normality, while overall tests have chi-square
distributions asymptotically. Some of the overall tests are confounded by the unstable
generalized inverse of the rank-deficient covariance matrix. To overcome this problem,
we propose rank-based corrections for the overall tests to stabilize their behavior. We
also perform an extensive Monte Carlo simulation study to compare the finite sample
performance of the tests in terms of empirical size and power based on the asymptotic
and Monte Carlo critical values and determine the tests that have the best size and power
performance and are robust to differences in relative abundances (of the classes). In
addition to the cell-specific tests, we discuss one(-class)-versus-rest type of tests as post-
hoc tests after a significant overall test. We also introduce the concepts of total, strong,
and partial segregation/association to differentiate different levels of these patterns. We
compare the new tests with the existing NNCT-tests in literature with simulations and
illustrate the tests on an ecological data set.

© 2016 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Spatial clustering of two or more classes with respect to each other can have important consequences in various fields.
Multi-class clustering patterns such as segregation and association might result from the interaction between two or more
classes (or species). For convenience, categories of the points or units are referred to as ‘‘classes’’, e.g., a class can stand for
species or some other characteristic of the unit or subject. Segregation is the spatial pattern in which points from the same
class are closer to each other, while association is the pattern in which points from different classes are closer to each other.
These patterns may have important implications in ecology, plant biology, or epidemiology (see, e.g., Diggle, 2003, Hamill &
Wright, 1986, and Whipple, 1980). In particular, in ecology, two tree species could be highly dependent on each other (as a
result of, say, symbiosis or mutualism), and thus, they coexist in a close vicinity (i.e., they are associatedwith each other), or
they could be enjoying the company of conspecifics and thus form one-class clumps or groups (i.e., they are segregated from
each other). In epidemiology, cases might be clustered compared to controls (i.e., cases and controls are segregated), due to
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infectious nature of a disease or proximity of subjects to a disease source such as a source of a pollutant. These patterns can
also be of interest in social studies. For example, segregation of residences due to the socioeconomic status or ethnicity can
be investigated by generativemodels (Fossett, 2011). In a social network, segregation of individuals is alsomodeled via tools
from randomgraph theory (Henry, Pralat, & Zhang, 2011). In veterinary epidemiology, a nonparametricmethod for detecting
spatial segregation according to the genotype and year of occurrence of bovine tuberculosis is employed by Diggle, Zheng,
and Durr (2005). Spatial segregation is also used in literature to refer to a one-class pattern of spatial clustering (Robertson
& Cushing, 2011), which is also called as aggregation in literature (Coomes, Rees, & Turnbull, 1999).

Many univariate (i.e., one-class) or multivariate (i.e., multi-class) spatial clustering tests have been proposed in literature
(see Kulldorff, 2006 for an extensive review). These methods include K -function (Ripley, 2004), or J-function (van Lieshout
& Baddeley, 1999), nearest neighbor (NN) methods (Diggle, 2003) and so on. Among NNmethods, this article pertains to the
ones based on nearest neighbor contingency tables (NNCTs). Pielou (1961) introduced various tests based on NNCTs; Dixon
(1994) extended these tests in various directions, and also determined the correct asymptotic distribution of the proposed
tests in the two-class setting. Ceyhan (2008, 2009, 2010a) compared NNCT-tests in literature, and also proposed various
tests based on NNCTs. All these NNCT-tests are appropriate for completely mapped data.

In this article, we survey these NNCT-tests and also introduce new cell-specific segregation tests (i.e., tests for each
cell or entry in the NNCT) and the corresponding overall tests for completely mapped data. Since the generalized inverse
is employed on the covariance matrices to obtain the overall tests and these covariance matrices are rank-deficient, the
generalized inverse may be highly unstable (in the sense that the generalized inverse may produce a matrix which may
not be positive definite). To overcome this problem, we propose a rank-based correction for the computation of the overall
tests (which stabilizes and makes them have the correct asymptotic distribution). We demonstrate that cell-specific tests
are asymptotically normal, and overall tests tend to chi-square distributions with respective degrees of freedom as class
sizes tend to infinity. In practice, cell-specific tests can serve as post-hoc tests to be performed when an overall segregation
test yields a significant result. In Ceyhan (2008), cell-specific tests are compared for two types of NNCT-tests. As an
alternative post-hoc test after a significant overall test, we discuss one-class-versus-rest (or one-vs-rest) type of NNCT-
tests. By extensive Monte Carlo simulations, we compare these tests with the existing NNCT-tests in literature (i.e., with the
ones proposed in Ceyhan, 2008, 2010a and Dixon, 1994, 2002a) in terms of empirical size and power based on asymptotic
andMonte Carlo critical values, and thus determinewhich tests perform better for the segregation or association alternative
and which ones are more robust to differences in relative abundances (of the classes). There are also methods to test spatial
correlation of lattice data, such as Moran’s I (Moran, 1950), Ord’s statistics (Ord, 1975) and recently developed approximate
profile likelihood estimator (Li, Calder, & Cressie, 2011). However, these statistics have been introduced to identify spatial
clusters and spatial interactions among areas. But our cell-specific and overall NNCT-tests, though detecting/testing spatial
interaction, are not based on area or aggregated data. The term ‘‘cell’’ in our cell-specific test does not refer to areas or
quadrats, but to the entries in the NNCT.

We describe the NNCTs and the null and alternative patterns in Section 2, provide the cell-specific tests and the
corresponding overall tests in Section 3, empirical size analysis in the two- and three-class cases in Sections 4 and 5,
respectively, and empirical power analysis under segregation and association in the two-class and three-class cases in
Sections 6 and 7, respectively. We present the empirical size and power analysis for the one-vs-rest type testing in the
three-class case in Section 8, the cell-specific and one-vs-rest type tests as post-hoc tests in Section 9, the illustration of the
methodology on the example data set in Section 10, and our conclusions and guidelines for using the tests in Section 11.

2. NNCTs and null and alternative spatial patterns

NNCTs are constructed using the NN frequencies of classes. In this article, to find the NN of a point, we employ the
usual Euclidean distance. The construction of NNCTs for two classes is described, e.g., in Ceyhan (2010a); here we provide a
brief description for m ≥ 2 classes. Suppose there are m classes labeled as {1, 2, . . . ,m}. NNCTs are constructed using NN
frequencies for each class. Let Ni be the number of points from class i for i ∈ {1, 2, . . . ,m} and n =

m
i=1 Ni and n points be

denoted as {w1, w2, . . . , wn}. If we record the class of each point and its NN, the NN relationships fall intom2 categories:

(1, 1), (1, 2), . . . , (1,m); (2, 1), (2, 2), . . . , (2,m); . . . , (m,m)

where in category or cell (i, j), class i is called the base class and class j is called the NN class. Denoting Nij as the observed
frequency of category (i, j) for i, j ∈ {1, 2, . . . ,m}, we obtain the NNCT, N , in Table 1 where Cj is the sum of column
j; i.e., number of times class j points serve as NNs for j ∈ {1, 2, . . . ,m}. Note also that n =


i,j Nij, ni =

m
j=1 Nij,

Cj =
m

i=1 Nij, and

Nij =

n
l=1

n
k=1

I(wk is NN of wl) · I(wl is from class i) · I(wk is from class j),

where wk ≠ wl and I(·) denotes the indicator function. Here we adopt the convention that variables denoted by upper
case letters are random, while variables denoted by lower case letters are fixed. Thus, in our NNCT-analysis, row sums
are assumed to be fixed (i.e., class sizes are given), while column sums are assumed to be random and depend on the NN
relationships between the classes.
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Table 1
The NNCT, N , for m classes.

NN class Total
class 1 . . . classm

Base class
class 1 N11 . . . N1m n1

.

.

.
.
.
.

. . .
.
.
.

.

.

.

class m Nm1 . . . Nmm nm

Total C1 . . . Cm n

We describe the spatial point patterns for two classes only; the extension to multi-class case is straightforward. Our null
hypothesis is

Ho : randomness in the NN structure with NN probabilities being proportional to class frequencies
which may result from random labeling (RL) or (an appropriate type of) independence of points from two classes. Under
independence, the two classes result independently from the same stochastic process which ensures that their spatial
distribution is identical. In this article, among independence patternswewill consider complete spatial randomness (CSR) of
points from two classes. Roughly, under CSR independence, two classes are independently uniformly distributed in a region
of interest, while RL is the pattern in which, given a fixed set of points in a region, class labels are assigned to these fixed
points randomly so that the labels are independent of the locations. For CSR independence, we condition on Ni = ni; i.e., we
work with a binomial process. If it is desired to have the class sizes Ni to be random, we may consider a spatial Poisson
point process on the region of interest as our null hypothesis. The null model in a NNCT analysis depends on the particular
ecological context. Goreaud and Pélissier (2003) state that under CSR independence, the two classes are a priori the result of
different processes (e.g., individuals of different species or age cohorts). On the other hand, under RL, some processes affect
a posteriori the individuals of a single population (e.g., diseased vs. non-diseased individuals of a single species).

As alternatives, we consider two major types of deviations from Ho, namely, segregation and association. Segregation
occurs if the NN of an individual is more likely to be of the same class as the individual than to be from a different class. That
is, the probability that this individual having a NN from the same class is larger than the relative frequency of the same class
(see, e.g., Pielou, 1961). Association occurs if the NN of an individual is more likely to be from another class than to be of the
same class as the individual. That is, the probability that this individual having a NN from another class is larger than the
relative frequency of the other class in question. These patterns are not symmetric, e.g., for two classes, one class might be
more associated with the other class. For example, plant species X could be more dependent on species Y , hence X plants
occur in close vicinity of Y plants, while the reverse relation may not be at the same level or type. Also, class X points might
exhibit a stronger clustering, compared to class Y points, and thus might be more segregated compared to class Y points.
See Ceyhan (2010a) for more details on the null and alternative patterns.

NNCTs are constructed to test spatial patterns in a multi-class framework. Under CSR independence or RL, cell counts,
Nij, would be close to their expected values, while under segregation the diagonal counts, Nii, would be larger, while under
association the off-diagonal counts, Nij, would be larger than expected. When Pielou (1961) developed NNCT-tests, she used
the usual Pearson’s χ2 test of independence for testing segregation, but this approach is not appropriate for completely
mapped data due to the (spatial) dependence structure in a NNCT. Dixon (1994) derived the correct asymptotic distribution
of the cell counts under RL and hence the appropriate test which also has a χ2-distribution asymptotically. Pielou’s test is
shown to be appropriate for a random sample of (base,NN) pairs, while Dixon’s test is appropriate for completely mapped
data (Ceyhan, 2010b). Dixon (1994) also introduced cell-specific tests based onNNCTs and combined these tests to an overall
test of segregation. However, Dixon’s cell-specific tests only incorporate cell counts, and to get more information and (thus
better tests) from a NNCT, we also consider four cell-specific tests which incorporate row and/or column sums as well. Since
overall tests are obtained by combining cell-specific tests, they are expected to inherit the properties of the corresponding
cell-specific tests. One main advantage of NNCT-tests is that for m > 2 classes, an overall NNCT-test provides a compound
measure of any deviation(s) from the null pattern. That is, in analogy with ANOVA F-test for testing equality of multiple
group means, an overall NNCT-test is a statistic testing the significance of deviations of cell-statistics from their expected
values, or any deviation of a pair of classes from the null pattern. To the author’s knowledge, no other such overall test exists
in spatial statistics literature. Furthermore, in analogy with the employment of t-tests after a significant ANOVA F-test,
cell-specific tests can be employed as post-hoc pairwise tests after a significant overall test, to determine which pair (pairs)
deviates (deviate) significantly from the null pattern. The motivation to introduce new cell-specific and overall segregation
tests was that Dixon’s test is confounded by the differences between the class sizes (i.e., relative abundances), and requires
each cell count to be at least 10 for asymptotic approximation to work for the cell-specific tests. So, NNCT-tests which are
more robust to differences in relative abundances and asymptotic approximation working for smaller cell counts would
have practical importance. Hence other NNCT-tests were introduced in Ceyhan (2008, 2010a) which are more robust to
differences in relative abundances and require smaller cell counts when number of classes is more than two. Additionally,
we consider Dixon’s tests together with four variants of NNCT-tests (three of which are newly introduced) to determine the
best performers in terms of robustness to relative abundance differences, and in terms of size and power performance for
relatively small as well as large sample sizes.
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2.1. Types of segregation and association

When Ho is rejected, if the diagonal entries (i.e., Nii values) tend to be larger than expected, there is segregation; if the off-
diagonal entries are larger than expected, there is association. These types of patterns are easy to detect for m = 2 classes,
but for m > 2, rejecting Ho only indicates that there is some sort of deviation from the null case, but with many possible
directions, since rejecting Ho only implies that for some class i, there exist classes that are more likely to serve as NN to class
i or less likely to serve as NN to class i than expected under Ho. Let πij be the probability that a point is from class i and its NN
is from class j. For example, for a fixed class i, if πii ≥


j≠i πij, then we have total segregation of class i from other classes;

that is, class i is more likely to have a same class NN than all other classes combined. If πii ≥ πij for all i ≠ j, then we have
strong segregation, which implies that class i is more likely to have a con-specific NN compared to all other classes one at
a time. Notice that total segregation implies strong segregation. The strict inequalities in the above definitions yield strict
versions of total and strong segregation patterns.

For fixed classes i and j, with i ≠ j, if πij ≥


k≠j πik, then we have total association of class j with class i; that is, class j is
more likely to be a NN of class i than all other classes combined. If πij ≥ πik for all k ≠ j, then we have strong association of
class j with class i, which implies that class j is more likely to be a NN of class i compared to all other classes one at a time.
Notice that total association implies strong association. Furthermore, the strict inequalities in the above definitions yield
strict versions of total and strong association patterns.

On the other hand, if πii ≥ πij for all j ∈ S1 ( {1, 2, . . . ,m} \ {i} and πii ≤ πij for all j ∈ S2 = {1, 2, . . . ,m} \ (S1 ∪ {i}),
thenwe say that class i ismore segregated from the classes in S1 andmore associatedwith the classes in S2. We call such cases
as partial segregation of class i with respect to classes in S1 and partial association of class i with classes in S2.

3. Cell-specific and overall segregation tests

We describe cell-specific segregation tests of Dixon and introduce new cell-specific tests labeled as type I–IV cell-specific
tests, henceforth. We also define the overall segregation tests for each type of cell-specific test by following the same
mechanism. More specifically, we merge the cell-specific tests to a vector (so that the indices follow the NNCT row-by-
row), center it to zero, and then scale by the covariance of the cell-specific tests yielding an overall quadratic test statistic.
Among the cell-specific and overall segregation tests considered here, type I, II and IV tests are newly introduced in this
article.

3.1. Dixon’s cell-specific and overall segregation tests

Dixon’s cell-specific tests are used to measure the deviation of observed count in cell (i, j) in a NNCT from its expected
value under Ho described in detail in, e.g., Dixon (1994, 2002a). Here, we provide the details for completeness. The test
statistic suggested by Dixon for cell (i, j) is given by

ZD
ij =

Nij − E[Nij]
Var[Nij]

, (1)

where E[Nij] is the expected cell count and Var[Nij] is the variance of cell count Nij.
Form ≥ 2 classes, under RL or CSR independence, the expected cell count for cell (i, j) is

E[Nij] =


ni(ni − 1)/(n − 1) if i = j,
ni nj/(n − 1) if i ≠ j, (2)

where ni is the fixed sample size for class i for i = 1, 2, . . . ,m. Observe that the expected cell counts depend only on the
class sizes (i.e., row sums), but not on the column sums. And the variance is

Var[Nij] =


(n + R) pii + (2 n − 2 R + Q ) piii + (n2

− 3 n − Q + R) piiii − (n pii)2 if i = j,
n pij + Q piij + (n2

− 3 n − Q + R) piijj − (n pij)2 if i ≠ j,
(3)

with pxx, pxxx, and pxxxx are the probabilities that a randomly picked pair, triplet, or quartet of points, respectively, are the
indicated classes and are given by

pii =
ni (ni − 1)
n (n − 1)

, pij =
ni nj

n (n − 1)
,

piii =
ni (ni − 1) (ni − 2)
n (n − 1) (n − 2)

, piij =
ni (ni − 1) nj

n (n − 1) (n − 2)
, (4)

piiii =
ni (ni − 1) (ni − 2) (ni − 3)
n (n − 1) (n − 2) (n − 3)

, piijj =
ni (ni − 1) nj (nj − 1)

n (n − 1) (n − 2) (n − 3)
.
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Furthermore, R is twice the number of reflexive pairs and Q is the number of points with shared NNs, which occurs when
two or more points share a NN. Then Q = 2 (Q2 + 3Q3 + 6Q4 + 10Q5 + 15Q6) where Qj is the number of points that serve
as a NN to other points j times.

In themulti-class casewithm classes, combining them2 cell-specific tests in Eq. (1), Dixon (2002a) suggests the following
quadratic form to obtain the overall segregation test:

XD = (N − E[N])′Σ−

D (N − E[N]) (5)

where N is the m2
× 1 vector of m rows of the NNCT concatenated row-wise, E[N] is the vector of E[Nij] which are as in

Eq. (2), ΣD is the m2
× m2 variance–covariance matrix for the cell count vector N with diagonal entries being equal to

Var[Nij] and off-diagonal entries being Cov[Nij, Nkl] for (i, j) ≠ (k, l). The explicit forms of the variance and covariance
terms are provided in Dixon (2002a). Also, Σ−

D is a generalized inverse of ΣD (Searle, 2006) and ′ stands for the transpose of
a vector or matrix. Then under RL, XD has a χ2

m(m−1) distribution asymptotically.

3.2. Type I cell-specific and overall segregation tests

In standard cases likemultinomial sampling for contingency tables with fixed row totals and conditioning on the column
totals, Cj = cj, the expected cell count for cell (i, j) in contingency tables is E[Nij] =

ni cj
n . We first consider the difference

Nij −
ni cj
n for cell (i, j). However under RL, Ni = ni are fixed, but Cj are random quantities and Cj =

m
i=1 Nij, hence we

suggest as the first type of cell-specific segregation test as

T I
ij = Nij −

ni Cj

n
.

Then under RL,

E

T I
ij


=


ni(ni − 1)
(n − 1)

−
ni

n
E[Ci] if i = j,

ni nj

(n − 1)
−

ni

n
E[Cj] if i ≠ j.

(6)

For all j, E[Cj] = nj, since

E[Cj] =

m
i=1

E[Nij] =
nj(nj − 1)
(n − 1)

+


i≠j

ninj

(n − 1)
=

nj(nj − 1)
(n − 1)

+
nj

(n − 1)


i≠j

ni

=
nj(nj − 1)
(n − 1)

+
nj

(n − 1)
(n − nj) = nj.

Therefore,

E

T I
ij


=


ni(ni − n)
n(n − 1)

if i = j,

ni nj

n(n − 1)
if i ≠ j.

(7)

For the variance of T I
ij, we have

Var

T I
ij


= Var[Nij] +


n2
i

n2


Var[Cj] − 2

ni

n


Cov[Nij, Cj] (8)

where Var[Nij] are as in Eq. (3), Var[Cj] =
m

i=1 Var[Nij]+


k≠i


i Cov[Nij,Nkj] and Cov[Nij, Cj] =
m

k=1 Cov[Nij,Nkj] with
Cov[Nij,Nkl] are as in equations (4)–(12) of Dixon (2002a).

As a new cell-specific test, we propose

Z I
ij =

T I
ij − E


T I
ij


Var


T I
ij

 . (9)

We can also combine the type I cell-specific tests T I
ij. Let TI be the vector ofm2 T I

ij values, i.e.,

TI =

T I
11, T

I
12, . . . , T

I
1m, T I

21, T
I
22, . . . , T

I
2m, . . . , T I

mm

′
,

and let E [TI] be the vector of E

T I
ij


values. Note that

E

T′

I


=


E


T I
11


, E


T I
12


, . . . , E


T I
1m


, E


T I
21


, E


T I
22


, . . . , E


T I
2m


, . . . , E


T I
mm


.
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Hence to obtain a new overall segregation test, referred to as type I overall test, we use the following quadratic form:

XI = (TI − E [TI])′ Σ−

I (TI − E [TI]) (10)

where ΣI is them2
× m2 variance–covariance matrix of TI.

Under RL, the diagonal entries in the variance–covariance matrix ΣI are Var

T I
ij


which are provided in Eq. (8). For the

off-diagonal entries in ΣI , i.e., Cov

T I
ij, T

I
kl


with (i, j) ≠ (k, l), we have

Cov

T I
ij, T

I
kl


= Cov


Nij −

ni

n
Cj,Nkl −

nk

n
Cl


= Cov[Nij,Nkl] −

nk

n
Cov[Nij, Cl] −

ni

n
Cov[Nkl, Cj] +

nink

n2
Cov[Cj, Cl].

3.3. Type II cell-specific and overall segregation tests

In Section 3.2, we suggested Nij −
ni Cj
n as the test statistic for cell (i, j). However, under RL, E[Cj] = nj, so we suggest as

the second type of segregation test as

T II
ij = Nij −

ni nj

n
.

Then under RL, E

T II
ij


= E


T I
ij


which is provided in Eq. (7). Moreover, the variance of T II

ij is Var

T II
ij


= Var[Nij], since ni, nj

and n are fixed.
As a cell-specific test, we propose

Z II
ij =

T II
ij − E


T II
ij


Var


T II
ij

 . (11)

We also combine the type II cell-specific tests T II
ij . Let TII be the vector ofm2 T II

ij values, i.e.,

TII =

T II
11, T

II
12, . . . , T

II
1m, T II

21, T
II
22, . . . , T

II
2m, . . . , T II

mm

′
,

and let E [TII] be the vector of E

T II
ij


values. As the type II overall segregation test, we use the following quadratic form:

XII = (TII − E [TII])′ Σ−

II (TII − E [TII]) (12)

where ΣII is the m2
× m2 variance–covariance matrix of TII.

Under RL, the diagonal entries in the variance–covariancematrixΣN are Var

T II
ij


which are same as Var[Nij]. For the off-

diagonal entries inΣII , i.e., Cov

T II
ij , T

II
kl


with (i, j) ≠ (k, l), we have Cov


T II
ij , T

II
kl


= Cov[Nij−

ninj
n ,Nkl−

nknl
n ] = Cov[Nij,Nkl].

3.4. Type III cell-specific and overall segregation tests

In the previous sections, E

T I
ij


= E


T II
ij


≠ 0 under RL. Hence, instead of these test statistics, in order to have the

expected value of our test statistic to be zero, we suggest the following test statistic:

T III
ij =


Nii −

(ni − 1)
(n − 1)

Ci if i = j,

Nij −
ni

(n − 1)
Cj if i ≠ j.

(13)

This test statistic is the same as the new cell-specific test introduced in Ceyhan (2010a) and details of this test are provided
here for completeness. Then E


T III
ij


= 0, since, for i = j,

E

T III
ii


= E[Nii] −

(ni − 1)
(n − 1)

E[Ci] =
ni(ni − 1)
(n − 1)

−
(ni − 1)
(n − 1)

ni = 0,

and for i ≠ j,

E

T III
ij


= E[Nij] −

(ni − 1)
(n − 1)

E[Cj] =
ni nj

(n − 1)
−

(ni − 1)
(n − 1)

nj = 0.
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As for the variance of T III
ij , we have

Var

T III
ij


=


Var[Nii] +

(ni − 1)2

(n − 1)2
Var[Ci] − 2

(ni − 1)
(n − 1)

Cov[Nii, Ci] if i = j,

Var[Nij] +
n2
i

(n − 1)2
Var[Cj] − 2

ni

(n − 1)
Cov[Nij, Cj] if i ≠ j.

(14)

As a new cell-specific test, we propose

Z III
ij =

T III
ij

Var

T III
ij

 . (15)

When we combine the type III cell-specific tests T III
ij , we obtain type III overall test as follows. Let TIII be the vector of

m2 T III
ij values, i.e.,

TIII =

T III
11, T

III
12, . . . , T

III
1m, T III

21, T
III
22, . . . , T

III
2m, . . . , T III

mm

′
,

and let E [TIII] be the vector of E

T III
ij


values. Note that E [TIII] = 0where 0 stands for a vector of zeros. As the type III overall

segregation test, we use the following quadratic form:

XIII = T′

IIIΣ
−

IIITIII (16)

where ΣIII is the m2
× m2 variance–covariance matrix of TIII.

Under RL, the diagonal entries in the variance–covariance matrix ΣIII are Var

T III
ij


which are provided in Eq. (14). For

the off-diagonal entries in ΣIII , i.e., Cov

T III
ij , T III

kl


with (i, j) ≠ (k, l), there are four cases to consider:

case 1: i = j and k = l, then

Cov

T III
ii , T III

kk


= Cov


Nii −

(ni − 1)
(n − 1)

Ci,Nkk −
(nk − 1)
(n − 1)

Ck


= Cov[Nii,Nkk] −

(nk − 1)
(n − 1)

Cov[Nii, Ck] −
(ni − 1)
(n − 1)

Cov[Nkk, Ci] +
(ni − 1)(nk − 1)

(n − 1)2
Cov[Ci, Ck].

case 2: i = j and k ≠ l, then

Cov

T III
ii , T III

kl


= Cov


Nii −

(ni − 1)
(n − 1)

Ci,Nkl −
nk

(n − 1)
Cl


= Cov[Nii,Nkl] −

nk

(n − 1)
Cov[Nii, Cl] −

(ni − 1)
(n − 1)

Cov[Nkl, Ci] +
(ni − 1)nk

(n − 1)2
Cov[Ci, Cl].

case 3: i ≠ j and k = l, then Cov

T III
ij , T III

kk


= Cov


T III
kk , T

III
ij


, which is essentially case 2 above.

case 4: i ≠ j and k ≠ l, then

Cov

T III
ij , T III

kl


= Cov


Nij −

ni

(n − 1)
Cj,Nkl −

nk

(n − 1)
Cl


= Cov[Nij,Nkl] −

nk

(n − 1)
Cov[Nij, Cl] −

ni

(n − 1)
Cov[Nkl, Cj] +

nink

(n − 1)2
Cov[Cj, Cl].

3.5. Type IV cell-specific and overall segregation tests

For T III
ij , we introduced a coefficient in front of the second term, i.e., ni Cj/n, to obtain the expected value for our statistic

to be zero under RL. In this section, we modify the first term and obtain the following test statistic:

T IV
ij =


ni(n − 1)
n(ni − 1)

Nii −
ni

n
Ci =

ni

n


n − 1
ni − 1

Nii − Ci


if i = j,

n − 1
n

Nij −
ni

n
Cj =

1
n


(n − 1)Nij − ni Cj


if i ≠ j.

(17)

Then E

T IV
ij


= 0, since, for i = j,

E

T IV
ii


=

ni

n


n − 1
ni − 1

E[Nii] − E[Ci]


=

ni

n


n − 1
ni − 1

ni(ni − 1)
n − 1

− ni


= 0,



226 E. Ceyhan / Journal of the Korean Statistical Society 46 (2017) 219–245

and for i ≠ j,

E

T IV
ij


=

1
n


(n − 1)E[Nij] − niE[Cj]


=

1
n


(n − 1)

ni nj

n − 1
− ni nj


= 0.

As for the variance of T IV
ij , we have

Var

T IV
ij


=


n2
i

n2


(n − 1)2

(ni − 1)2
Var[Nii] + Var[Ci] − 2

(n − 1)
(ni − 1)

Cov[Nii, Ci]


if i = j,

1
n2


(n − 1)2Var[Nij] + n2

i Var[Cj] − 2(n − 1)niCov[Nij, Cj]


if i ≠ j.
(18)

As a new cell-specific test, we propose

Z IV
ij =

T IV
ij

Var

T IV
ij

 . (19)

When we combine the type IV cell-specific tests T IV
ij , we obtain type IV overall test as follows. Let TIV be the vector of

m2 T IV
ij values, i.e.,

TIV =

T IV
11 , T

IV
12 , . . . , T

IV
1m, T IV

21 , T
IV
22 , . . . , T

IV
2m, . . . , T IV

mm

′
,

and let E [TIV] be the vector of E

T IV
ij


values. Note that E [TIV] = 0. As the type IV overall segregation test, we use the

following quadratic form:

XIV = T′

IVΣ
−

IVTIV (20)

where ΣIV is the m2
× m2 variance–covariance matrix of TIV.

Under RL, the diagonal entries in the variance–covariance matrix ΣIV are Var

T IV
ij


which are provided in Eq. (18). For

the off-diagonal entries in ΣIV , i.e., Cov

T IV
ij , T IV

kl


with (i, j) ≠ (k, l), there are four cases to consider:

case 1: i = j and k = l, then

Cov

T IV
ii , T IV

kk


= Cov


ni

n


n − 1
ni − 1

Nii − Ci


,
nk

n


n − 1
nk − 1

Nkk −
(nk − 1)
(n − 1)

Ck


=

nink

n2
Cov


n − 1
ni − 1

Nii − Ci,
n − 1
nk − 1

Nkk −
(nk − 1)
(n − 1)

Ck


=

nink

n2


(n − 1)2

(ni − 1)(nk − 1)
Cov[Nii,Nkk]

−
(n − 1)
(ni − 1)

Cov[Nii, Ck] −
(n − 1)
(nk − 1)

Cov[Nkk, Ci] + Cov[Ci, Ck]


.

case 2: i = j and k ≠ l, then

Cov

T IV
ii , T IV

kl


= Cov


ni

n


n − 1
ni − 1

Nii − Ci


,
1
n

((n − 1)Nkl − nkCl)


=

ni

n2
Cov


n − 1
ni − 1

Nii − Ci, (n − 1)Nkl − nkCl


=

ni

n2


(n − 1)2

(ni − 1)
Cov[Nii,Nkl]

−
(n − 1)nk

(ni − 1)
Cov[Nii, Cl] − (n − 1)Cov[Nkl, Ci] + nkCov[Ci, Cl]


.

case 3: i ≠ j and k = l, then Cov

T IV
ij , T IV

kk


= Cov[T IV

kk , T
IV
ij ], which is essentially case 2 above.

case 4: i ≠ j and k ≠ l, then

Cov

T IV
ij , T IV

kl


= Cov


1
n


(n − 1)Nij − niCj


,
1
n

((n − 1)Nkl − nkCl)


=

1
n2

Cov

(n − 1)Nij − niCj, (n − 1)Nkl − nkCl


=

1
n2


(n − 1)2Cov[Nij,Nkl] − (n − 1)nkCov[Nij, Cl]

− (n − 1)niCov[Nkl, Cj] + ninkCov[Cj, Cl]

.
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In all the above cases, Cov[Nij,Nkl] are as in Dixon (2002a), Cov[Nij, Cl] =
m

k=1 Cov[Nij,Nkl] and Cov[Ci, Cj] =m
k=1

m
l=1 Cov[Nki,Nlj].

3.6. Rank-adjustment for the overall NNCT-tests

Asymptotically, under RL, XD and XII have a χ2
m(m−1) distribution since rank ofΣD andΣII ism(m−1), in fact,ΣD = ΣII .

XIII has aχ2
(m−1)2

distribution asymptotically since rankofΣIII is (m−1)2. Similarly,XI andXIV also haveχ2
(m−1)2

distribution
asymptotically.

In the mechanism for obtaining overall tests from the cell-specific tests, we form the vector of m2 (normalized) cell-
specific tests, and then form the quadratic term for the overall tests that involve the generalized inverse of the m2

× m2

covariance matrix for the vector of cell-specific tests. Although, in general, generalized inverse of a matrix is not unique, the
Moore–Penrose procedure yields a unique generalized inverse under certain constraints (see, e.g., Penrose, 1955). Since the
covariance matrix for Dixon’s and type II tests are of rank m(m − 1) and for type I, III, and IV tests, the rank is (m − 1)2,
the covariance matrix is rank-deficient. The generalized inverse procedure for rank-deficient matrices is a complicated
procedure which may result in an inverse that is not well-behaving (Meyer, 1973). For example, the generalized inverse
may yield unstable results for the overall tests in the sense that the quadratic overall test may give negative or extremely
large values, even under RL or CSR independence, where getting a negative overall test would be impossible from such a
quadratic form. To avoid this problem, we adjust the corresponding cell-specific vectors and the covariance matrices. Along
this line, for Dixon’s and type II tests, we remove the cell-specific tests with indices corresponding to the last column entries
in the NNCT (since it contains redundant information, given the class sizes) in our computations. The removal of the last
column is an arbitrary choice, as removal of any other column entries would also yield the same result. Similarly, for type I,
III and IV tests, we remove the cell-specific testswith indices corresponding to the last row and column in theNNCT (as given
the row and column sums, these are redundant). Similarly, removal of last row and column entries is an arbitrary choice, as
removal of any other row and column entries would also work. The covariance matrices formed with the modified NNCT as
above are now of full rank, and the generalized inverse is a stable and reliable procedure for such matrices. Without such
an adjustment, the tests tend to be unstable with substantially larger variances, and especially type IV overall test yields
much different results compared to type III test, although the corresponding cell-specific tests are identical. To see the effect
of such a rank-adjustment on the overall tests, we generate ni points i.i.d. uniformly on the unit square for each of classes
i = 1, 2, . . . ,m, and determine the rank of the covariance matrices for the full NNCT and also compute the overall tests
for the full NNCT (i.e., without rank-adjustment) and also for the reduced NNCT (i.e., with the rank-adjustment). We repeat
the above procedure Nmc = 1000 times, and present the ranks and the proportion of negative overall tests, denoted pneg ,
in Table 2. Observe that in each replication, we obtain the rank as expected for each overall test (i.e., for Dixon’s and type
II tests, rank is m(m − 1) and for type I, III, and IV tests, the rank is (m − 1)2). With no rank adjustment, the proportion of
negative overall tests is zero or very close to zero for Dixon’s and type II tests, but it is positive for type I, III, and IV tests (and
substantially large for some of them). With the rank-adjustment, we obtain no negative overall test and the rank values
are as expected (results are not presented) and each test has more stable behavior with a distribution much closer to its
corresponding limiting (asymptotic) distribution. We further note that for Dixon’s and type II tests, the rank-adjustment
generally has a mild influence, and slightly improves their behavior. Nonetheless, in our subsequent analysis,we implement
rank-adjustment for all of the overall tests considered.

The asymptotic distributions of the overall tests provide a natural classification of these NNCT-tests. More specifically,
Dixon’s and type II overall tests only use the cell counts and row sums (i.e., class sizes) in the corresponding cell-specific
tests and hence asymptotically have χ2 distribution with m(m − 1) df, while type I, III and IV overall tests use the column
sums in addition to cell counts and row sums and hence have asymptotic χ2 distribution with (m − 1)2 df. That is, if only
the row sums are incorporated, then one df is lost in each row as the sums of the row cells yield the fixed class sizes. On
the other hand, if both row and column sums are incorporated, one row and column can be obtained given the row and
column sums, hence leaving only (m − 1)2 df for the overall tests. It can be easily established that Dixon’s and type II tests
are identical. Type III and IV cell-specific tests (after standardization) and overall tests are also identical, although the Tij
values and the variance–covariance matrices are different. Additionally, type I tests and type III tests are similar (but not
identical), and hence give similar results.

3.7. Further remarks on NNCT-tests

(i) Asymptotic structures forNNCT-tests: There are twomajor types of asymptotic structures for spatial data in literature:
infill asymptotics and increasing domain asymptotics (Lahiri, 1996). In infill asymptotics, the region of interest is a fixed
bounded region and the number of observed points gets larger in this region. Hence the minimum distance between
data points tends to zero as the sample size tends to infinity. In increasing domain asymptotics, any two observations
are required to be at least a fixed distance apart. Hence as the number of observations increases, the region onwhich the
process is observed eventually becomes unbounded (Cressie, 1993). The sampling structure in our asymptotic sampling
distribution could be either one of these asymptotic structures. Because we only consider the class sizes tending to in-
finity (i.e., minm

i=1 ni → ∞) and hence the total sample size tending to infinity regardless of the size of the study region.
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Table 2
The ranks and the proportion of negative overall tests, pneg , based on the full
(i.e., not adjusted for rank) NNCTs for uniform data in the unit square with
m classes based on Nmc = 1000 replicates. For m = 2, the class sizes are
n1 = 100, n2 = 200; for m = 3, the class sizes are n1 = 100, n2 =

150, n3 = 200; and form = 4, the class sizes are n1 = 100, n2 = 133, n3 =

166, n4 = 200.

Overall tests
XD XI XII XIII XIV

m = 2 classes
Rank 2 1 2 1 1
pneg 0 0.117 0 0.088 0.110

m = 3 classes
Rank 6 4 6 4 4
pneg 0 0.010 0 0.467 0.030

m = 4 classes
Rank 12 9 12 9 9
pneg 0.002 0.090 0.002 0.056 0.071

(ii) Asymptotic distribution of cell-specific tests: Under RL, Dixon’s cell-specific tests have N(0, 1) distribution
asymptotically form = 2 classes, but form > 2 classes his cell-specific tests for the diagonal cells, ZD

ii , are shown to have
N(0, 1) distribution asymptotically, while the asymptotic normality of the off-diagonal cells in NNCTs is not rigorously
established yet, although extensive Monte Carlo simulations indicate approximate normality for large samples (Dixon,
2002a). The asymptotic normality of the off-diagonal cells for m > 2 classes can be established when classes are from
a homogeneous Poisson Process or a binomial process as suggested in Penrose (2003), and for RL, the result of Cuzick
and Edwards (1990) could be generalized. Both aspects (i.e., asymptotic normality under CSR independence and RL)
are topics of ongoing research, with significant progress achieved in them recently. However, the particular result in
Cuzick and Edwards (1990) required more conditions (e.g., symmetry) which do not hold for the off-diagonal cells. The
Monte Carlo simulations provide substantial evidence in favor of asymptotic normality even at moderate sample sizes.
Therefore, as a safety check, for the tests on the off-diagonal cells and for the overall test for three or more classes,
one should employ both the asymptotic approximation version and the Monte Carlo randomized version. The same
conclusions can be extended to type I–IV cell-specific tests in a similar fashion. Furthermore, after standardization,
Dixon’s cell-specific test and type II cell-specific test are identical, and so are type III and IV cell-specific tests. The same
holds for the corresponding overall tests, since they are constructed based on the cell-specific tests. However, the cell-
specific test statistics are dependent, hence their squares do not sum to the corresponding overall segregation tests.

(iii) Status of Q and R under CSR independence and RL: Under CSR independence, the cell-specific and overall tests are as
in the RL case. However, under RL, Q and R are fixed quantities, as they depend only on the location of the points, but
not the types of NNs, while under CSR independence, they are random. Under CSR independence, the distributions of
the test statistics above are similar to the RL case. The only difference is that the new cell-specific tests asymptotically
have N(0, 1) distribution conditional on Q and R. Hence, under CSR independence, Var[Nij], Cov[Nij,Nkl], Cov[Nij, Ck],
Cov[Ci, Cj], and all other quantities depending on Q and R are conditional on Q and R. The unconditional variances can
be obtained by replacingQ and Rwith their expectations (see Ceyhan, 2010a formore details). SinceQ and R are random
under CSR independence, the variances of the cell-specific test statistics tend to be larger compared to the ones under RL.

(iv) Other spatial patterns: Not all stochastic independence patterns yield random NN structure similar to that under RL
or CSR independence. For example, a Matérn cluster process can be generated in two stages (Stoyan & Stoyan, 1994):
in the first stage, parent points are generated from a homogeneous Poisson process with intensity λ and in the second
stage, daughter points are uniformly and independently distributed within a distance r from each parent event. In the
resulting process, the daughter points constitute a realization of a Matérn cluster process. Even if two classes are gen-
erated independently from the same Matérn cluster process, they will be very likely to be segregated unless the same
parent points are used for both classes, because points from the classes will be clustered around their corresponding
parents. The random NN structure similar to that under RL or CSR independence can be obtained if the same parent
points are used for both classes.

(v) Interpretation of NNCT-tests: Each of the cell-specific tests measures the deviation of the test statistic from its ex-
pected value under Ho. Dixon’s and type II cell-specific tests depend on Nij (i.e., cell counts) and row sums only, and
type I, III, and IV cell-specific tests incorporate column sums as well. For the cell-specific tests, the z-score for cell (i, j)
indicates the level and direction of spatial interaction between classes i and j. If the z-score for cell (i, i) is significantly
larger (less) than zero, then class i exhibits (lack of) segregation from other classes. If the z-score for cell (i, j) with i ≠ j
is significantly larger (less) than zero, then class j exhibits (lack of) association with class i. Moreover, for cell (i, j) with
i ≠ j, the cell-specific tests are not symmetric. For example, the cell-specific test for cell (i, j) may exhibit a different
level of interaction compared to the cell (j, i). The overall tests combine cell-specific tests in one compound summary
statistic. The performance of cell-specific tests is expected to carry over to the overall tests, provided the correct degrees
of freedom is used.
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Since each cell countNij has asymptotic normal distribution in the two-class case (Cuzick & Edwards, 1990), the new
cell-specific tests Z I

ij, Z
II
ij , Z

III
ij and Z IV

ij also converge in law to N(0, 1) as n → ∞ (with ni → ∞ for all i). Moreover, one
and two-sided versions of these tests are also possible. For the diagonal cells, the right-sided (left-sided) version of these
tests is for (lack of) segregation and for the off-diagonal cells, the right-sided (left-sided) version of these tests is for (lack
of) association. In the two-class case, only at most two cells contain all the information provided by the NNCT. In partic-
ular, for i ≠ j, segregation of class i from class j implies lack of association between classes i and j and lack of segregation
of class i from class j implies association between classes i and j. For Dixon’s cell-specific test, we have ZD

i1 = −ZD
i2 for i =

1, 2. For type I cell-specific test, Z I
11 = Z I

22 = −Z I
12 = −Z I

21; and for type II cell-specific test, we have ZD
ij = Z II

ij ; for type
III cell-specific test, we have Z III

1j = −Z III
2j for j = 1, 2; and for type IV cell-specific test, we have Z III

ij = Z IV
ij for i, j = 1, 2.

In the multi-class case with m > 2, a positive z-score for the diagonal cell (i, i) indicates segregation, but it does not
necessarily mean lack of association between class i and class j (i ≠ j), since it could be the case that class i could be
associated with one class, yet not associated with another one. See also Section 2.1.

The cell-specific and overall tests are all consistent under both segregation and association alternatives, which can be
proved as in Ceyhan (2010b).

3.8. Post-hoc tests after the overall tests: class-specific, pairwise, and one-vs-rest type tests

In our construction of the NNCT-tests, although we first introduce the cell-specific tests and then develop overall tests
based on the cell-specific tests, in practice, it is more natural to conduct the tests in reverse order. That is, first an overall
NNCT-test could be performed, and if significant, then one can perform cell-specific tests to determine the types and levels
of the spatial interaction patterns between the classes. This procedure is somewhat analogous to ANOVA F-test to compare
multiple groups, in the sense that if the F-test yields a significant result, then one performs pairwise tests to determine
which pairs are different. However, NNCT-tests can provide more alternatives (compared to ANOVA F-test) as post-hoc
tests after a significant overall test. In the multi-class case, when an overall test is rejected; i.e., there is evidence in favor of
some sort of deviation from randomness of the spatial pattern, the next natural question is what type of deviation occurs for
each class (or species). To this end, one can conduct several post-hoc tests: (i) One type of post-hoc tests is the class-specific
tests discussed in Ceyhan (2009) and Dixon (2002a). (ii) For pairwise comparison of the interaction between classes, one can
resort to two options: (a) in anm×mNNCT, one can consider cell-specific tests for each cell (which also provides interaction
of the class with itself on the diagonal cells) and (b) one can restrict attention to the pair of classes i, j with i ≠ j one at a
time and conduct the tests as in the two-class case with a 2× 2 NNCT. Here the 2× 2 NNCT can be formed as if only classes
i and j are present in the study region ignoring the other classes. Notice that in (b), Q and R values should also be updated.
We recommend the approach in (a), since it incorporates all the classes in question and provides the types of interaction in
the presence of all classes, while the approach in (b) ignores the possible confounding effects of classes different from the
pair in question. Furthermore, the approach in (b) might not give the exact picture of the mixed relationships between all
the classes in practice. (iii) Alternatively, for class i, we can pool the remaining classes and treat them as the other class in
a two-class setting. Then we apply the two-class tests to the resulting NNCT. To emphasize the difference, this version of
the class-specific test is called one-vs-rest type test. For m > 2 classes, recall that N represents the m × m NNCT with cell
counts being Nij and let N be the 2 × 2 NNCT for the one-versus-rest type procedure with cell counts being Nij. When we
are performing a one-versus-rest type testing for class i, without loss of generality, we can reserve the first row in N to class
i and the second row to the rest (of the classes). Then N11 = Nii, N12 =


j≠i Nij, N21 =


j≠i Nji, and N22 =


j≠i,k≠i Njk.

Hence in the one-versus-rest type testing, the cell-specific test for cell (1, 1) in N would be same as the cell-specific test
for cell (i, i) in N . Therefore, to extract information from N that is not provided by N , we consider the cell-specific tests
for cell (2, 2) of N . The overall test statistics for N are also different than the overall tests for N . Although one-vs-rest type
tests were first suggested by Dixon (2002a) in passing, their properties and performance are only discussed and assessed in
detail in this article.

In amulti-class casewithm ≥ 2 classes, there arem class-specific andm one-vs-rest types of tests and
m

2


= m(m−1)/2

pairwise tests andm2 cell-specific tests. Asm increases the class-specific tests are less intensive computationally and easier
to interpret, whereas the pairwise tests might yield conflicting results.

4. Empirical size analysis in the two-class case

We provide the empirical significance levels for Dixon’s and the new cell-specific and overall segregation tests in the
two-class case under CSR independence.

4.1. Empirical size analysis under CSR independence of two classes

For the CSR independence pattern in the two-class case, we label the classes as X and Y , or class 1 and class 2,
interchangeably. We generate n1 points from class X and n2 points from class Y both of which are independent of each
other and independently uniformly distributed on the unit square, (0, 1) × (0, 1). We use the class size combinations
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Fig. 1. The empirical size estimates of the cell-specific tests for cells (1, 1) (left), cell (2, 2) (middle), and overall segregation tests (right) under the CSR
independence pattern in the two-class case. The horizontal lines are located at 0.0464 (upper threshold for conservativeness), 0.05 (nominal level), and
0.0536 (lower threshold for liberalness). The horizontal axis labels: 1 = (10, 10), 2 = (10, 30), 3 = (10, 50), 4 = (30, 30), 5 = (30, 50), 6 = (50, 50),
7 = (50, 100), 8 = (100, 100). The legend labeling: D = Dixon’s, I = type I, and III = type III cell-specific or overall tests.

(n1, n2) ∈ {(10, 10), (10, 30), (10, 50), (30, 30), (30, 50), (50, 50), (50, 100), (100, 100)} and perform Nmc = 10 000
replications. The empirical sizes are calculated as the ratio of number of significant results to the number of Monte Carlo
replications, Nmc . We use 0.05 as our nominal significance level.

We present the empirical significance levels for the NNCT-tests in Fig. 1. The empirical sizes significantly smaller (larger)
than0.05 are deemedas conservative (liberal). The asymptotic normal approximation to proportions are used in determining
the significance of the deviations of the empirical sizes from the nominal level of 0.05. For these proportion tests, we also
use α = 0.05 to test against empirical size being equal to 0.05. With Nmc = 10 000, empirical sizes less than 0.0464 are
deemed conservative, greater than 0.0536 are deemed liberal at α = 0.05 level. These thresholds are indicated as the
dashed horizontal lines in Fig. 1. Note also that the class sizes are arranged in the increasing order for the first and then the
second entries. The size values for discrete class size combinations are joined by straight lines for better visualization. LetαD
i,j,αI

i,j–αIV
i,j be the empirical significance levels of Dixon’s and the type I–IV cell-specific tests, respectively,αD be for Dixon’s

andαI–αIV be for the type I–IV overall segregation tests. Notice that in the two-class caseαD
1,1 = αD

1,2 andαD
2,1 = αD

2,2 for
the two-sided alternative, since N12 = n1 − N11 and N21 = n2 − N22. The same holds for αII

i,j. Furthermore, αIII
1,1 = αIII

2,1

andαIII
1,2 = αIII

2,2 for the two-sided alternative, and the same holds forαIV
i,j . On the other handαI

i,j are equal for all i, j for the
two-sided alternative. So we only present cell-specific tests for cells (1, 1) and (2, 2) in the two-class settings in the rest of
the article. Furthermore, since Dixon’s cell specific test and type II cell-specific test are equivalent, and so are type III and
IV cell-specific tests, we only present Dixon’s, type I and III cell-specific tests. Since the same holds for the overall test, we
present only the corresponding tests as well.

For cell (1, 1), Dixon’s cell-specific test has empirical size close to the nominal level of 0.05 for balanced class sizes
(i.e., for n1 ≈ n2 or when relative abundance of classes are similar), while for unbalanced class sizes, it tends to be liberal or
conservative. On the other hand, type I and type III cell-specific tests are less severely affected by the differences in relative
abundances of the classes, i.e., they are closer to the nominal level for all class size combinations. For cell (2, 2), Dixon’s
cell-specific test is much closer to 0.05 for all class size combinations, while type I and III cell-specific tests have similar
performance as in cell (1, 1). Thus, Dixon’s cell-specific test has much better empirical size performance for the diagonal
cell corresponding to the class with larger size, while type I and type III cell-specific tests have better size performance for
the diagonal cell corresponding to the class with smaller size.

For the overall tests, Dixon’s test has better size performance for classes of smaller size. Type I and III overall tests are
conservative for classes of smaller size, while they have the desired level for classes of larger size.

The empirical size performance under RL is similar (see Ceyhan, 2013), hence is not presented.

5. Empirical size analysis in the three-class case

In this section, we provide the empirical significance levels for the overall and cell-specific segregation tests in the three-
class case under RL and CSR independence patterns.

5.1. Empirical size analysis under CSR independence of three classes

The symmetry in cell counts for rows in Dixon’s cell-specific tests and columns in the new cell-specific tests occurs only
in the two-class case. To assess the performance of the cell-specific and overall tests better, we also consider the three-class
case. In the three-class case, we label the classes as X , Y , and Z or classes 1, 2, and 3, interchangeably.We generate n1, n2, n3
points distributed independently uniformly on the unit square (0, 1) × (0, 1) from these classes. We use

(n1, n2, n3) ∈ {(10, 10, 10), (10, 10, 30), (10, 10, 50), (10, 30, 30), (10, 30, 50), (30, 30, 30), (10, 50, 50),
(30, 30, 50), (30, 50, 50), (50, 50, 50), (50, 50, 100), (50, 100, 100), (100, 100, 100)};

and Nmc = 10 000. The empirical sizes and the significance of their deviation from 0.05 are calculated as in Section 4.1.
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Fig. 2. The empirical size estimates of the cell-specific tests for cells (1, 1)–(3, 3) under the CSR independence pattern in the three-class case. The
horizontal lines and legend labeling are as in Fig. 1. The horizontal axis labels are: 1 = (10, 10, 10), 2 = (10, 10, 30), 3 = (10, 10, 50), 4 = (10, 30, 30),
5 = (10, 30, 50), 6 = (30, 30, 30), 7 = (10, 50, 50), 8 = (30, 30, 50), 9 = (30, 50, 50), 10 = (50, 50, 50), 11 = (50, 50, 100), 12 = (50, 100, 100),
13 = (100, 100, 100).

Fig. 3. The empirical size estimates of the overall tests under the CSR independence pattern in the three-class case. The horizontal lines, and legend
labeling are as in Fig. 1 and axis labels are as in Fig. 2.

We present the empirical significance levels for the cell-specific tests in Fig. 2 and for the overall tests in Fig. 3. For the
cell-specific tests, clearly, type I and III tests are closer to the desired level, and are less affected by the differences in class
sizes. On the other hand, Dixon’s test is extremely liberal or conservative, when class sizes are very different (which may
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0

Fig. 4. A sample realization of segregation alternative H II
S (left) and the association alternative H II

A (right) with n1 = n2 = 100. Class X (or class 1) points
are marked with circles (◦), and class Y (or class 2) points are marked with pluses (+). The supports of the classes are indicated by squares bounded by
dashed lines.

result in smaller expected cell counts). The overall tests have similar size performancewith Dixon’s test being slightly better
for classes of smaller size, while types I and III slightly better for classes of larger size.

The empirical size performance under RL is similar (see Ceyhan, 2013), hence is not presented.

6. Empirical power analysis in the two-class case

To assess the empirical power performance of the tests, we consider three cases for each of segregation and association
alternatives in the two-class case.

6.1. Empirical power analysis under segregation of two classes

Under the segregation alternatives for two classes, we generate Xi
i.i.d.
∼ U(S1) and Yj

i.i.d.
∼ U(S2) where S1 = (0, 1 − s) ×

(0, 1 − s) and S2 = (s, 1) × (s, 1) for i = 1, . . . , n1 and j = 1, . . . , n2 and s ∈ (0, 1). This is the same segregation setting
used in Ceyhan (2008, 2010a). We have opted this very same setup, because we want to compare all the tests under the
settings same as before. We consider the following three segregation alternatives:

H I
S : s = 1/6, H II

S : s = 1/4, and H III
S : s = 1/3. (21)

Notice that, the level of segregation increases as s increases; that is, segregation gets stronger fromH I
S toH III

S . A sample re-
alization ofH II

S with n1 = n2 = 100 is provided in Fig. 4 (left). Class X (or class 1) points aremarkedwith circles (◦), and class
Y (or class 2) points aremarkedwith pluses (+).We calculate the power estimates using the asymptotic critical values based
on the standard normal distribution for the cell-specific tests and the corresponding χ2-distributions for the overall tests.

The power estimates based on the asymptotic critical values underH I
S andH II

S are presented in Fig. 5 (the power estimates
under H III

S have a similar trend, hence are omitted). We also omit the power estimates of the cell-specific tests for cells
(1, 2) and (2, 1), since they would be same as cells (1, 1) and (2, 2) (although cell-specific tests for cells (1, 2) and (2, 1)
have high (virtually zero) power for the left-sided (right-sided) alternative, and those for cells (1, 1) and (2, 2) have high
(virtually zero) power for the right-sided (left-sided) alternative). As expected, the power estimates increase as segregation
gets stronger and also as sample size increases. For the cell-specific and overall tests, type I and III tests have higher power
estimates.

We also estimate the power of the tests under the segregation alternatives based on the Monte Carlo critical values. For
10000 Monte Carlo replicates, the 0.05 level Monte Carlo critical value for the right-sided alternative (i.e., for segregation)
is the 950th value out of the calculated test statistics under CSR independence for each class size combination. The power
estimates under H I

S − H III
S have similar trends as in Fig. 5, hence are omitted. When Monte Carlo critical values are used, we

get the same power estimates for Dixon’s and type II cell-specific tests, and also the same power estimates for type I, III,
and IV cell-specific tests. The same holds for the overall tests as well. The power estimates follow a similar trend as those
based on asymptotic critical values, hence are not presented. That is, for the cell-specific and the overall tests, type I, III and
IV tests have higher power estimates compared to Dixon’s and type II tests.

6.2. Empirical power analysis under association of two classes

Under the association alternatives for two classes, we consider three cases also. In each case, we generate Xi
i.i.d.
∼

U((0, 1) × (0, 1)) for i = 1, 2, . . . , n1. Then we generate Yj associated with X ’s for j = 1, 2, . . . , n2 as follows. For each j,
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Fig. 5. The empirical power estimates based on the asymptotic critical values for the cell-specific (left and middle columns) and the overall tests (right
column) under the segregation alternatives, H I

S (top row) and H II
S (bottom row), in the two-class case. The horizontal axis labels and legend labeling are as

in Fig. 1.

select an i randomly, and set Yj = Xi + Rj

cos Tj, sin Tj

′ where Rj
i.i.d.
∼ U(0, r) with r ∈ (0, 1) and Tj

i.i.d.
∼ U(0, 2π). We

consider the following association alternatives (which were also recommended in Ceyhan, 2014):

H I
A : r = 1/(2

√
nt), H II

A : r = 1/(3
√
nt), and H III

A : r = 1/(4
√
nt) (22)

where nt = n1 + n2. Notice that association gets stronger as r decreases; that is, association gets stronger from H I
A to H III

A .
Furthermore, by construction, the association of Y points with X points is stronger, compared to the association of X points
with Y points. These association alternatives are motivated from the expected distance between points from homogeneous
Poisson Process (HPP). Letting D be the distance from a randomly chosen point to the nearest other point in a HPP with
intensity ρ, we have E[D] = 1/(2

√
ρ) and Var[D] = (4−π)/(4π ρ) (Dixon, 2002b). In our case, under CSR independence,

intensity of nt points would beρ = nt , since area of the unit square is 1. Hence we have set r = 1/(2
√
nt), r = 1/(3

√
nt),

and r = 1/(4
√
nt) for H I

A to H III
A . For example, under H I

A, the displacements of Yj around Xi would be limited by the average
distance between nt points under Ho. A sample realization of H II

A with n1 = n2 = 100 is provided in Fig. 4 (right).
The association parameterization in Eq. (22) is not considered in Ceyhan (2008, 2010a) where the association parameter

r was fixed (and independent of the class sizes). In particular, the alternatives employed were H I
A : r = 1/4, H II

A : r =

1/7, and H III
A : r = 1/10. The new parameterization is chosen because the previous one was confounded by the differences

in the class sizes, while the current parameterization takes the class sizes into account (Ceyhan, 2014).
The empirical power estimates under association alternatives H II

A are presented in Fig. 6 (the power estimates under H I
A

and H III
A have a similar trend, hence omitted). As association gets stronger, the power estimates increase. However, there is

a decline in power from (n1, n2) = (10, 10) to (10, 30) and (10, 50), and this decline is more dramatic for Dixon’s cell (1, 1)
test. For balanced class sizes, the power tends to increase as nt increases. Furthermore, type I and III tests have higher power
for all class size combinations for cell (1, 1), and for most class size combinations for cell (2, 2) and the overall test.

We also estimate power based on theMonte Carlo critical values. A 0.05 level Monte Carlo critical value for the left-sided
alternative (i.e., for association) is the 50th value out of the 10000 calculated test statistics under CSR independence for each
class size combination. The power estimates under H II

A are presented in Fig. 6 (the power estimates under H I
A and H III

A have
a similar trend, hence omitted). The power estimates follow a similar trend as those based on asymptotic critical values. In
particular, for the cell-specific tests, type I, III and IV tests have the higher power estimates compared to Dixon’s and type II
tests. The same holds for the overall tests for most of the class size combinations.

7. Empirical power analysis in the three-class case

To assess the empirical power performance of the tests, we also consider three cases for each of segregation and
association alternatives in the three-class case.
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Fig. 6. The empirical power estimates for the NNCT-tests under the association alternatives, H II
A , based on the asymptotic critical values (top row) and

Monte Carlo critical values (bottom row), in the two-class case. The horizontal axis labels and legend labeling are as in Fig. 1.

Fig. 7. A sample realization of segregation alternative HS3 (left) and the association alternative HA1 (right) with n1 = n2 = n3 = 100. Class X (or class
1) points are marked with circles (◦), class Y (or class 2) points are marked with pluses (+), class Z (or class 3) points are marked with crosses (×). The
supports of the classes are indicated by squares bounded by dashed lines.

7.1. Empirical power analysis under segregation of three classes

Under the segregation alternatives for three classes, we generate Xi
i.i.d.
∼ U(S1), Yj

i.i.d.
∼ U(S2), and Zk

i.i.d.
∼ U(S3) for

i = 1, . . . , n1, j = 1, . . . , n2, and k = 1, . . . , n3 where S1 = (0, 1 − 2s) × (0, 1 − 2s), S2 = (2s, 1) × (2s, 1), and
S3 = (s, 1 − s) × (s, 1 − s) with s ∈ (0, 1/2). We consider the following segregation alternatives:

HS1 : s = 1/12, HS2 : s = 1/8, and HS3 : s = 1/6. (23)

Notice that, as s increases, segregation between the classes gets stronger; that is, segregation gets stronger fromHS1 toHS3 .
Furthermore, by construction classes X and Y are more segregated compared to Z and X or Z and Y . In fact, the segregation
between X and Z and segregation between Y and Z are identical (as a stochastic process). A sample realization of HS3 with
n1 = n2 = n3 = 100 is provided in Fig. 7 (left).

Empirical power estimates for the two-sided alternatives for the diagonal cells (1, 1), (2, 2), and (3, 3) under segregation
alternativesHS2 andHS3 and those for the off-diagonal cells (1, 2), (1, 3), and (2, 3) underHS2 are plotted in Fig. 8 (the power
estimates under HS1 have a similar trend, hence omitted). For diagonal cells (1, 1) and (2, 2) type I and III tests have higher
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Fig. 8. The empirical power estimates of the cell-specific tests for cells (1, 1), (2, 2), and (3, 3) under the segregation alternatives HS2 (top row) and HS3
(middle row) and empirical power estimates of the cell-specific tests for cells (1, 2), (1, 3), and (2, 3) under the segregation alternative HS2 (bottom row)
in the three-class case. The legend labeling is as in Fig. 1 and horizontal axis labels are as in Fig. 2.

Fig. 9. The empirical power estimates of the overall tests under the segregation alternatives HS1 (left), HS2 (middle), and HS3 (right) in the three-class case.
The legend labeling is as in Fig. 1 and horizontal axis labels are as in Fig. 2.

power, while for diagonal cell (3, 3), all tests have similar power estimates. For the off-diagonal cells (1, 2) and (1, 3) all
tests have similar power estimates (although type I and III tests have slightly higher power), while for cell (2, 3) type I and III
tests have higher power. In line with our simulation setup, power estimates for cells (1, 1) and (2, 2) are higher compared
to cell (3, 3), as classes X and Y are more segregated compared to class Z . For the same reason, power estimates for cell
(1, 2) is higher compared to cells (1, 3) and (2, 3).

Empirical power estimates for the overall tests are presented in Fig. 9. Type I and III tests have higher power compared
to Dixon’s test.
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Fig. 10. The empirical power estimates of the cell-specific tests for cells (1, 2), (1, 3) and (2, 3) (top row) and (2, 1), (3, 1) and (3, 2) (bottom row) under
the association alternative HA1 in the three-class case. The legend labeling is as in Fig. 1 and horizontal axis labels are as in Fig. 2.

Fig. 11. The empirical power estimates of the overall tests under the association alternatives HA1 (left), HA2 (middle), and HA3 (right) in the three-class
case. The legend labeling is as in Fig. 1 and horizontal axis labels are as in Fig. 2.

7.2. Empirical power analysis under association of three classes

Under the association alternatives for three classes, we also consider three cases. We generate Xi
i.i.d.
∼ U((0, 1) × (0, 1))

for i = 1, 2, . . . , n1. Then we generate Yj and Zk for j = 1, 2, . . . , n2 and k = 1, 2, . . . , n3 as follows. For each j, select an i

randomly, and set Yj := Xi+RY
j (cos Tj, sin Tj)′ whereRY

j
i.i.d.
∼ U(0, ry)with ry ∈ (0, 1) and Tj

i.i.d.
∼ U(0, 2π). Similarly, for each

k, select an i′ randomly, and set Zk := Xi′ + RZ
k (cosUℓ, sinUℓ)

′ where RZ
k

i.i.d.
∼ U(0, rz) with rz ∈ (0, 1) and Uk

i.i.d.
∼ U(0, 2π).

We consider the following association alternatives:

HA1 : ry = 1/(2
√
nt), rz = 1/(3

√
nt), HA2 : ry = 1/(2

√
nt), rz = 1/(4

√
nt),

and HA3 : ry = 1/(3
√
nt), rz = 1/(4

√
nt) (24)

where nt = n1 + n2 + n3. As ry and rz decrease, the level of association increases. That is, the association between X and Y
and association between X and Z get stronger from HA1 to HA3 . By construction, classes Y and Z are associated with class X ,
while classes Y and Z are not associated, but perhaps mildly segregated for small ry and rz . Furthermore, by construction,
classes X and Z are more associated compared to classes X and Y . A sample realization of HA1 with n1 = n2 = n3 = 100 is
provided in Fig. 7 (right).

The empirical power estimates under HA1 for cells (1, 2), (2, 1), (1, 3), (3, 1), (2, 3) and (3, 2) are presented in Fig. 10.
For cells (1, 2) and (1, 3), type I and III cell-specific tests have higher power, while for cells (2, 1), (3, 1), (2, 3) and (3, 2),
Dixon’s cell-specific test has higher power. The power estimates for the overall tests are presented in Fig. 11. For the overall
tests, Dixon’s test has higher power estimates.
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Fig. 12. The empirical size estimates of the cell-specific tests for cell (2, 2) and overall tests under CSR independence with one-vs-rest type testing in the
three-class case. The legend labeling is as in Fig. 1 and horizontal axis labels are as in Fig. 2.

8. Empirical size and power analysis for the one-vs-rest type tests in the three class case

In one-versus-rest type testing, we implement Monte Carlo simulations as in Section 5.1 to assess the empirical
size performance of these tests under CSR independence. We present the empirical size estimates for various class size
combinations in Fig. 12 where only cell-specific tests for cell (2, 2) and the overall test are presented, since for cell (1, 1)
the cell-specific test is the same as the cell-specific test in the 3×3 NNCT analysis in Sections 5.1 and 7. Among cell-specific
tests, type I and type III tests perform better compared to Dixon’s test, since they are closer to the nominal level especially
for large classes. For the overall tests, the tests are about the nominal level with type I and III tests being slightly closer than
Dixon’s test.

To evaluate the power performance of these tests, we perform simulations under segregation alternatives as in
Section 7.1. The empirical power estimates under the segregation alternative HS2 are presented in Fig. 13. Among the tests,
type I and III tests have higher power estimates compared to Dixon’s test. One class-vs-rest tests for classes 1 and 2 have
higher power estimates compared to that of class 3. This occurs, since by construction, classes 1 and 2 are equally segregated
from other classes, and these classes are more segregated compared to class 3.

For the association alternatives, we perform the simulations as in Section 7.2. The corresponding power estimates under
the association alternative HA2 are presented in Fig. 14. For the one-vs-rest cell-specific tests, Dixon’s test has higher power
for class 1-vs-rest and 2-vs-rest tests, and types I and III have higher power for class 3-vs-rest test. For the overall one-vs-rest
tests, Dixon’s test has higher power for classes 1 and 2, and for class 3, all tests have similar power estimates.

9. Size and power performance of cell-specific and one-vs-rest as post-hoc tests

Although in practice, we recommended the use of cell-specific and one-vs-rest type tests as post-hoc tests (after a
significant overall test), we have assessed their size and power performance unconditionally (i.e., not after a significant
overall test). If we perform these tests after a significant overall test, then its size and power performance would change.

Whenwe perform the overall test first, and if it is significant, perform the corresponding cell-specific or one-vs-rest type
tests, the tests tend to become significantly conservative. For example, the size estimates of the cell-specific tests as post-hoc
tests in the two and three class cases for the diagonal cells are provided in Fig. 15. Comparing these size estimates with those
in Figs. 1 and 2, we observe that Dixon’s test becomes extremely conservative in both two and three class caseswhen used as
a post-hoc test. However, type I and type III tests are not affected in the two class case, but become significantly conservative
in the three class case when used as post-hoc tests. In both two and three class cases, type I and type III cell-specific tests
are closer to the nominal level compared to Dixon’s test.

When conducting one-vs-rest tests as post-hoc tests, there are two types of tests: one is the cell-specific test for cell (2, 2)
in the new 2×2 NNCT, and the other is the overall test in the newNNCT. Notice that in one-vs-rest setting, after a significant
overall test for the m × m NNCT, there is also an overall test for the 2 × 2 NNCT as a post-hoc test. When one-vs-rest tests
are used as post-hoc tests, they become extremely conservative as well. For example, the size estimates of the one-vs-rest
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Fig. 13. The empirical power estimates of the cell-specific tests for cell (2, 2) (top), and the overall tests (bottom) under the segregation alternative HS2
in the three-class case with the one-versus-rest type testing. The legend labeling is as in Fig. 1 and horizontal axis labels are as in Fig. 2.

Fig. 14. The empirical power estimates the cell-specific tests for cell (2, 2) (top) and the overall tests (bottom) under the association alternative HA2 in
the three-class case with the one-vs-rest type testing. The legend labeling is as in Fig. 1 and horizontal axis labels are as in Fig. 2.

tests as post-hoc tests in the three class case are provided in Fig. 16. For the cell-specific tests as class i-vs-rest, type I and
type III tests are closer to the nominal level, while for the overall test as post-hoc test, Dixon’s test is closer to the nominal
level.

Just like the size estimates of the cell-specific and one-vs-rest tests decrease when used as post-hoc tests, the
corresponding power estimates under the segregation and association alternatives tend to decrease as well. However, the
overall trend and the order of power estimates do not change compared to the use of these tests as stand-alone tests. For
example, in a two class setting, we present the power estimates of the cell-specific tests as post-hoc tests for cells (1, 1)
and (2, 2) under the segregation alternative H I

S and under the association alternative H II
A in Fig. 17. Comparing these power
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Fig. 15. The empirical size estimates of the cell-specific tests as post hoc tests for the diagonal cells in the two-class case (top row) and in the three class
case (bottom row) under the CSR independence pattern in the two-class case. The horizontal lines, axis and legend labeling are as in Fig. 1 in the two
class case, and are as in Fig. 2 in the three class case.

Fig. 16. The empirical size estimates of the cell-specific tests for cell (2, 2) and overall tests under CSR independence with one-vs-rest type testing as
post-hoc tests in the three-class case. The legend labeling is as in Fig. 1 and horizontal axis labels are as in Fig. 2.

estimates with the ones in Figs. 5 and 6, we see that the power estimates exhibit a downward shift in Fig. 17 when the tests
are used in a post-hoc fashion at each sample size combination, preserving the trend and order of the power estimates.

10. Example data: swamp tree data

The NNCT methodology is illustrated on an ecological data set: the swamp tree data of Good and Whipple (1982) which
was also analyzed by Dixon (1994, 2002a). Briefly, the plot contains 13 different tree species, of which four species account
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Fig. 17. The empirical power estimates based on the asymptotic critical values for the cell-specific tests as post-hoc tests under the segregation alternative,
H I

S (top row) and under the association alternative H II
A (bottom row), in the two-class case. The horizontal axis labels and legend labeling are as in Fig. 1.

Fig. 18. The scatter plot of the locations of black gum trees (triangles △), Carolina ashes (pluses +), bald cypress trees (crosses ×).

for over 90% of the 734 tree stems. In our analysis, we only consider black gums (Nyssa sylvatica), Carolina ashes (Fraxinus
caroliniana), and bald cypresses (Taxodium distichum) as if only these three tree species exist in the area, so we are ignoring
the possible effects of other species on the spatial interaction between these species for illustrative purposes. This data was
also analyzed before butwith other species combinations (Ceyhan, 2008, 2010a). Thus, we perform a 3×3NNCT-analysis on
this data set. See Fig. 18 for the location of the trees in this plot and Table 3 for the associated 3× 3 NNCT together with cell
percentages based on the base class sizes, and marginal percentages based on the grand sum, n. When, e.g., black gum is the
base species and Carolina ash is the NN species, the cell count is 40 which is 20% of the black gums (and Carolina ashes are
34% of all trees). The percentages in Table 3 and Fig. 18 suggest that each tree species is segregated from the other trees as
the observed percentages of species in the diagonal cells aremuch larger than the row percentages (or species percentages).

In the swamp tree data, the locations of the tree species can be viewed a priori resulting from different processes, so
the more appropriate null hypothesis would be the CSR independence pattern (Goreaud & Pélissier, 2003). We compute
Q = 282 and R = 288 for this data set and our inference will be conditional on these values. Dixon’s and the new
overall segregation tests and the associated p-values are presented in Table 4, where pasy stands for the p-value based on the
asymptotic approximation, pmc is the p-value based on 10000 Monte Carlo replications of the CSR independence pattern in
the same plot and prand is based onMonte Carlo randomization of the labels on the given locations of the trees 10000 times.
Notice that pasy, pmc, and prand are all significant. The cell-specific test statistics and the associated p-values are presented in
Table 5, where p-values are calculated as in Table 4. Again, all three p-values in Table 5 are similar for each cell-specific test.

The overall segregation tests are all highly significant which implies that there is significant deviation from the CSR
independence pattern for at least one of the tree species. To determine which species exhibit segregation or association, we
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Table 3
The NNCT for swamp tree data and the corresponding percentages and πij = Nij/n values
(in parentheses), where the cell percentages are with respect to the size of the base species
(i.e., row sums), and marginal percentages are with respect to the total size, n. B.G. = black
gums, C.A. = Carolina ashes, and B.C. = bald cypresses.

NN sum
B.G. C.A. B.C.

Base
B.G. 142 (69%, 0.31) 40 (20%, 0.09) 23 (11%, 0.05) 205 (45%)
C.A. 34 (22%, 0.07) 97 (62%, 0.21) 25 (16%, 0.05) 156 (34%)
B.C. 38 (39%, 0.08) 32 (33%, 0.07) 28 (29%, 0.06) 98 (21%)

sum 214 (47%) 169 (37%) 76 (17%) 459 (100%)

Table 4
Test statistics and p-values for the overall tests and the corresponding p-values. pasy , pmc , and
prand stand for the p-values based on the asymptotic approximation, Monte Carlo simulation,
and randomization of the tests, respectively. XD stands for Dixon’s overall test, XI and XIII
are for type I and type III overall tests, respectively.

Overall tests

XD XI XIII
75.78 65.35 65.39

pasy <0.0001 <0.0001 <0.0001
pmc <0.0001 <0.0001 <0.0001
prand <0.0001 <0.0001 <0.0001

Table 5
Test statistics and p-values for the cell-specific tests and the corresponding p-values (in parentheses). The p-values are given in the order of pasy , pmc , and
prand , whose labeling is as in Table 4. B.G. = black gums, C.A. = Carolina ashes, and B.C. = bald cypresses.

B.G. C.A. B.C.

Dixon’s cell-specific tests

B.G. 6.57 (<0.0001, <0.0001, <0.0001,) −4.46 (<0.0001, <0.0001, <0.0001,) −3.74 (0.0002, <0.0001, 0.0003)
C.A. −5.65 (<0.0001, <0.0001, <0.0001) 6.60 (<0.0001, <0.0001, <0.0001) −1.70 (0.0893, 0.0918, 0.1032)
B.C. −1.18 (0.2395, 0.2470, 0.2596) −0.30 (0.7672, 0.7796, 0.8140) 1.51 (0.1320, 0.1345, 0.1445)

Type I cell-specific tests

B.G. 6.91 (<0.0001, <0.0001, <0.0001) −6.29 (<0.0001, <0.0001, <0.0001) −2.37 (0.0177, 0.0170, 0.0176)
C.A. −6.86 (<0.0001, <0.0001, <0.0001) 6.49 (<0.0001, <0.0001, <0.0001) −0.21 (0.8352, 0.8439, 0.8408)
B.C. −1.67 (0.0944, 0.0954, 0.0900) −0.96 (0.3382, 0.3407, 0.3433) 2.61 (0.0091, 0.0087, 0.0081)

Type III cell-specific tests

B.G. 6.91 (<0.0001, <0.0001, <0.0001) −6.29 (<0.0001, <0.0001, <0.0001) −2.37 (0.0180, 0.0172, 0.0179)
C.A. −6.86 (<0.0001, <0.0001, <0.0001) 6.49 (<0.0001, <0.0001, <0.0001) −0.20 (0.8381, 0.8455, 0.8436)
B.C. −1.67 (0.0943, 0.0953, 0.0898) −0.96 (0.3375, 0.3401, 0.3426) 2.60 (0.0094, 0.0088, 0.0084)

perform the cell-specific tests and one-vs-rest type tests for post-hoc analysis. At 0.05 level, Dixon’s and the new cell-specific
tests agree for all cells in term of significance except for (B.C., B.C.) cell, at which Dixon’s test is not significant but types I
and III are significant. At 0.10 level tests agree for cells except (B.C., B.G) and (C.A., B.C.), at cell (B.C., B.G) Dixon’s test is not
significant but types I and III are significant, while at cell (C.A., B.C.) Dixon’s test is significant but types I and III are not. At
0.01 level tests agree at cells except for cell (B.G., B.C.) at which Dixon’s test is significant while types I and III are not. The
test statistics are all positive (negative) for the diagonal (off-diagonal) cells which also support the segregation of species.

For a given class i, we estimate probabilities πij of Section 2.1 as πij = Nij/n. The estimated probabilities are presented
in parentheses as decimals in Table 3. For example, for (B.G., C.A.) cell, π12 = N12/n = 40/459 ≈ 0.09. For black gums,
we have π11 = 0.31 > π12 + π13 = 0.09 + 0.05 = 0.14, so black gums exhibit total segregation from the other two tree
species. Similarly, for Carolina ashes, we have π22 = 0.21 > π21 + π23 = 0.07 + 0.05 = 0.12, so Carolina ashes exhibit
total segregation from the other two tree species. However, bald cypresses exhibit neither strong nor total segregation,
since π33 = 0.06 < π31 = 0.08 and π33 < π32 = 0.07. Furthermore, black gums seem to be strongly associated with bald
cypresses as π31 = 0.08 > π32 = 0.07 and π31 > π33 = 0.06.

We present the one-vs-rest cell-specific and overall tests (see Table 6). For each species, we observe that the other species
combined tend to be segregated from the species in consideration, but to a lesser extent for bald cypresses.

The spatial interaction is significant for each species, but at different levels. In particular, black gums exhibit significant
segregation from other species (they are significantly segregated from both Carolina ashes and bald cypresses), Carolina
ashes exhibit significant segregation from other species (they are significantly segregated from black gums but not from
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Table 6
Test statistics and p-values for one-vs-rest cell-specific tests for cell (2, 2) and one-vs-rest overall tests. The
corresponding p-values are presented in parentheses. ZD

22 stands for Dixon’s cell-specific test, and Z I
22 and

Z III
22 stand for type I and III cell-specific tests. XD stands for Dixon’s overall test and XI and XIII are for type I

and III overall tests.

One-vs-rest cell-specific tests

ZD
22 Z I

22 Z III
22

B.G.-vs-rest 5.09 (<0.0001) 6.91 (<0.0001) 6.91 (<0.0001)
C.A.-vs-rest 3.86 (0.0001) 6.49 (<0.0001) 6.49 (<0.0001)
B.C.-vs-rest 4.12 (<0.0001) 2.61 (0.0046) 2.61 (0.0045)

One-vs-rest overall tests

XD XI XIII

B.G.-vs-rest 48.86 (<0.0001) 47.70 (<0.0001) 47.72 (<0.0001)
C.A.-vs-rest 44.79 (<0.0001) 42.11 (<0.0001) 42.15 (<0.0001)
B.C.-vs-rest 16.96 (0.0002) 6.79 (0.0091) 6.75 (0.0094)

Fig. 19. Pair correlation functions for each species in the swamp tree data. Wide dashed lines around 1 (which is the theoretical value) are the upper and
lower (pointwise) 95% confidence bounds for the pair correlation functions based on Monte Carlo simulation under the CSR independence pattern.

bald cypresses), and Bald cypresses exhibit significant segregation from other species (they are moderately segregated from
black gums only but when the two species of black gums and Carolina ashes are considered together, the (B.C., B.C.) cell is
significant).

However, these results pertain to interaction at about the average NN distances. For the swamp tree data average NN
distance (± standard deviation) is about 2.1 (±1.35) meters. We might also be interested in the possible causes of the
segregation and the type and level of interaction between the tree species at different distances between the trees. Along
this line, we also present the second-order analysis of the swamp tree data by the pair correlation function g(t) (Stoyan &
Stoyan, 1994). The pair correlation function of a (one-class) stationary point process is defined as g(t) =

K ′(t)
2π t where K ′(t)

is the derivative of Ripley’s K(t) function. For a one-class stationary Poisson process, g(t) = 1; values of g(t) > 1 suggest
clustering (or aggregation) and the values of g(t) < 1 suggest inhibition (or regularity) between points. The pair correlation
functions for each species are plotted in Fig. 19. Black gums are aggregated for distance values of about 1–6 and 9–11 m;
Carolina ashes are aggregated for all the range of the plotted distances; and bald cypresses are aggregated for distance values
of about 2–8 and around 11 m. These distance ranges at which species are aggregated include the mean NN distance for our
data, hence this aggregation could be the reason of the significant segregation between the species.

The same definition of the pair correlation function can be applied to Ripley’s bivariate (i.e., two-class) K or L-functions.
Under CSR independence we have g(t) = 1; g(t) > 1 suggests association of the classes; and g(t) < 1 suggests segregation
of the classes. The bivariate pair correlation functions for the species in swamp tree data are plotted in Fig. 20. Black gums
and Carolina ashes are segregated for about 2–2.5, 3.5–4.5, 7.5–8.5, and 10.5–12 m; black gums and bald cypresses are
segregated for about 2.5, 3, and 6 m; and Carolina ashes and bald cypresses are associated for 7 and 9 m.

The pair correlation function estimates have considerably high variability for small t if g(t) > 0, hence are not so reliable
for small distances (Stoyan& Stoyan, 1996). See for example Figs. 19 and 20where the confidence bands for small t values are
much wider compared to those for larger t values. So pair correlation function analysis is more reliable for larger distances,
say, larger than about the average NN distance in the data set. While the pair correlation function provides information on
the one-class and bivariate patterns at all distances, NNCT-tests summarize the spatial interaction for distances about the
average NN distance in the data set.
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Fig. 20. Pair correlation functions for each pair of species in the swamp tree data.Wide dashed lines around 1 (which is the theoretical value) are the upper
and lower (pointwise) 95% confidence bounds for the pair correlation functions based on Monte Carlo simulations under the CSR independence pattern.
B.G. = black gums, C.A. = Carolina ashes, and B.C. = bald cypresses.

Table 7
The summary table for theNNCT-test statistics form classes. The common assumption for all these tests is that theNNCT is constructed based on completely
mapped data. Furthermore, all tests are conditional on Q and R under CSR independence, and unconditional under RL.

Test Asymptotic distribution for the tests Depends on
Usual (m > 1) One-vs-resta (m > 2)
Cell-specifica,b Overall Cell-specific Overall

Dixon’s Normal χ2
m(m−1) Normal χ2

2 Row sumsc

Type I Normal χ2
(m−1)2

Normal χ2
1 Row & column sums

Type II Normal χ2
m(m−1) Normal χ2

2 Row sums
Type III Normal χ2

(m−1)2
Normal χ2

1 Row & column sums
Type IV Normal χ2

(m−1)2
Normal χ2

1 Row & column sums
a The cell-specific tests and one-vs-rest tests can be used as stand-alone tests (unconditionally), or as post-hoc tests after a significant overall test.
b Asymptotic normality is proved for all cells in the two-class case, but for m > 2, it is proved only for the diagonal cells, and established by extensive

Monte Carlo simulations for the off-diagonal cells.
c Row sums (of the NNCT) are equal to the class sizes for all tests.

11. Discussion and conclusions

We survey the cell-specific and overall segregation tests based on nearest neighbor contingency tables (NNCTs) that exist
in literature, introduce new ones and discuss their properties. NNCT-tests are used in testing randomness in the nearest
neighbor (NN) structure between two or more classes with NN probabilities being proportional to the class frequencies. The
overall test is used for testing any deviation from the null pattern in all of the NNCT cells combined; cell-specific test for cell
(i, j) is used for testing any deviation from the null case in cell (i, j), i.e., the probability of a (base,NN) pair inwhich base class
is i and NN class is j being proportional to the product of frequencies of classes i and j. This statistic tests the segregation or
lack of it, if i = j; the association or lack of it between classes i and j, if i ≠ j. A summary of the properties of the NNCT-tests
is provided in Table 7. Among many possible patterns, the null pattern is implied by the RL or CSR independence patterns.
However, under the CSR independence pattern, NNCT-tests are conditional on Q and R, while under the RL pattern, these
tests are unconditional (see Section 3.7 part (iii)).

In the computation of the overall tests, we are employing a generalized inverse procedure on the covariance matrices
which are rank-deficient. Hence the resulting overall tests are confounded and may be severely distorted by the poor
performance of the generalized inverse procedure on these rank-deficient covariance matrices. To overcome this problem,
we also propose a rank-adjustment for the overall tests that makes the generalized inverse procedure yield the correct
(generalized) inverse and hence stabilizes the behavior and distribution of the overall tests. Althoughwe consider five types
of cell-specific and overall tests, we demonstrate that essentially, these tests yield three distinct types of cell-specific and
overall tests. More specifically, Dixon’s tests and type II tests are identical, and so are type III and type IV tests. Hence in our
empirical size and power analysis (as well as in the analysis of example data), we only use and present Dixon’s, type I and
type III test statistics. In the two-class case, cell-specific tests are essentially different only for at most two cells, since cells
(1, 1) and (1, 2) yield the same test statistic in absolute value for Dixon’s cell-specific test, likewise for cells (2, 1) and (2, 2).
Similarly, cells (1, 1) and (2, 1) yield the same test statistic in absolute value for type III cell-specific test, likewise for cells
(1, 2) and (2, 2). For type I cell-specific test, cells (1, 1) and (2, 2) yield the same test statistic value, and the off-diagonal
cells give the negative of this value.
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We observe that the cell-specific tests tend to standard normal distribution, as the class sizes get larger. Although this is
only proved for all cells in the two-class case and for the diagonal cells form > 2 classes, there is considerable progress for
proving the asymptotic normality of off-diagonal cells in author’s ongoing research using the tools in Penrose (2003) under
CSR independence and those in Cuzick and Edwards (1990) under RL. However, the proof of the asymptotic normality of
the off-diagonal cells in the case of three or more classes under RL is still an open problem, although simulations provide
substantial evidence in favor of asymptotic normality even at moderate sample sizes. As a result, as a safety check, we
recommend the use of asymptotic version and Monte Carlo randomized version of the tests for the off-diagonal cells and
the corresponding overall test for three or more classes. See also Remark (ii) in Section 3.7 On the other hand, the overall
tests tend to chi-square distribution with the corresponding degrees of freedom with the increasing class sizes. In terms
of the asymptotic distribution of the overall tests, we have two groups of tests. For m classes, Dixon’s overall test has χ2

distribution withm(m − 1) df, while type I and III tests have χ2 distribution with (m − 1)2 df.
The results obtained from our extensive Monte Carlo simulations are summarized below:

• Sample size requirement for asymptotic approximation: The asymptotic approximation for the cell-specific-tests is
appropriate only when the corresponding cell count in the NNCT is larger than 10; and for the overall tests when all cell
counts are at least 5. For NNCTs with smaller cell counts, we recommend the Monte Carlo randomization of the tests
when the null hypothesis is RL, and we recommend the use of Monte Carlo critical values (as discussed in Section 6.1)
when the null hypothesis is CSR independence.

• Empirical size performance:
– In the two-class case, type I and type III cell-specific tests have better performance for the cell corresponding to the

smaller class, while Dixon’s cell-specific test has better performance for the cell corresponding to the larger class. For
the overall test, the performance of the tests is similar for Dixon’s and type I and type III tests.

– In the three class case, type I and type III cell-specific tests have better performance, and overall tests have similar
size estimates. We also observe that type I and III cell-specific tests and type III overall test are more robust to the
differences in class sizes (i.e., differences in relative abundances).

• Empirical power performance under segregation:
– In the two-class case, type I and type III cell-specific tests have similar power estimates which are larger than those of

Dixon’s, and the same holds for the overall tests.
– In the three class case, type I, III and Dixon’s cell-specific tests have similar power estimates, with type I and type III

being slightly higher. The same holds for the overall tests.
• Empirical power performance under association:

– In the two-class case, type I and type III cell-specific and overall tests tend to have higher power estimates for most of
the class size combinations. The only exception is when the classes are highly unbalanced and the cell-specific test is
for the diagonal cell with the larger class. In this case, Dixon’s tests have higher power.

– In the three class case, type I and type III cell-specific tests have higher power estimates for cell (i, j), if ni is less than
nj, while Dixon’s cell-specific tests have higher power estimates if ni is larger than nj.

– For the overall tests, Dixon’s overall test has the highest power estimates.
• Overall recommendations:

– When empirical size and power performances are considered together, among cell-specific tests, type I and type III
cell-specific tests are recommended against the segregation alternatives, while type I, type III, and Dixon’s cell-specific
tests are recommended against the association alternatives depending on the class sizes in the off-diagonal cells.

– Among overall tests, type I and type III overall tests are recommended against the segregation alternatives, while
Dixon’s overall test is recommended against the association alternatives.

– We extend this recommendation to one-vs-rest type tests as well. Furthermore, for one-vs-rest type tests, all the tests
have similar size performance, but type I and type III are more robust to differences in relative abundances.

NNCT-tests summarize the pattern in the data set for small scales around the average NN distance between all points. On
the other hand, pair correlation function g(t) and Ripley’s classical K or L-functions and other variants (Baddeley, Møller, &
Waagepetersen, 2000) provide information on the pattern at various scales (i.e., around other distance values). Hence NNCT-
tests and pair correlation or K -functions are not comparable but provide complementary information about the pattern in
question. However, an advantage of overall NNCT-tests is that they provide the interaction in a multi-class setting in the
presence of all classes, while the second order analysis with K or g functions allows a comparison of pairs of classes (one
at a time). Furthermore, when an overall NNCT-test is significant, NNCT offers various post-hoc tests as follow-up to find
the specifics of the interaction: (i) cell-specific tests, (ii) one-class-vs-rest type tests, and (iii) class-specific tests. In the cell-
specific tests for cell (i, j), the interaction between classes i and j is examined in the presence of all other classes, and in
the class i-vs-rest testing, the interaction of all the classes other than class iwith class i is investigated. The pair correlation
function and K -functions can also be adapted for one-vs-rest type analysis, as classes i and the rest of the classes can be
treated as the two classes. On the other hand, the bivariate pair correlation function or K -functions are also applicable for
classes i and j; however, this analysis is restricted to the classes i and j only in the sense that the influence of the other classes
in the region is ignored. To the author’s knowledge, the class-specific tests (which are discussed in Ceyhan, 2009) have no
counterpart among the K -function type second order methods.
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The course of action we recommend depends on which null hypothesis is more appropriate. If CSR independence is
the reasonable null pattern, we recommend the overall segregation tests to detect the spatial interaction at small scales
at about the mean NN distance. If it yields a significant result, then to determine which pairs of classes have significant
spatial interaction, the cell-specific, class-specific or one-vs-rest type tests can be performed; we recommend all versions as
they provide information on different aspects of the spatial interaction. To detect spatial interaction at larger distances, pair
correlation function is recommended (Stoyan & Penttinen, 2000), due to the cumulative nature of Ripley’s K - or L-functions
for larger distances. On the other hand, if the RL pattern is the reasonable null pattern, we recommend the NNCT-tests to
detect the interaction at about the mean NN distance, and Diggle’s D-function (Diggle, 2003) or the modified version of
Ripley’s K function (Baddeley et al., 2000) to detect the interaction at higher distances.
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