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a b s t r a c t

The spatio-temporal analysis of residential fires could allow decision makers to plan effective resource

allocations in fire management according to fire clustering levels in space and time. In this study, we

provide guidelines for the use of various methods in detecting the differences in clustering patterns of

fire and non-fire (i.e., background residential) locations and how these patterns change over time. As a

preliminary analysis step, various exploratory data analysis methods, such as, intensity plots (i.e.,

kernel density estimates) are used. Moreover, the use of Diggle’s-function (a second order analysis

technique) is proposed for detecting the clustering of residential fire locations (if any) and whether

there is additional clustering (or regularity) in the locations of the fires compared to background

residential pattern. A test for trend over time (in years, months, and weeks) of the fire location patterns

are provided with a space–time interaction analysis by the spatio-temporal-function. Residential fire

data from C- ankaya Municipality of Ankara, Turkey is used as an illustrative example. The presented

methodology is also applicable to residential fire data from similar urban settings.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Each year, residential fires in urban areas incur various social
and economic losses with hundreds of deaths, thousands of
injuries and million dollars of property loss. Although it is not
possible to avoid fires entirely, it is always possible to reduce
their harms by effective fire management.

Fire management is a collection of activities that involves
systematic analysis, planning, decision making, assignment and
coordination of available resources to manage fire related risks
and includes interrelated sub-phases such as prevention, prepa-
redness, response and recovery. In the fire management litera-
ture, mainly there are four types of research areas. The first type is
related to the location/allocation, real time dispatching and
accessibility problems [see, e.g., [1–3]]. The second type concen-
trates on developing fire related databases and/or decision sup-
port systems [4,5]. The third type deals with understanding
cause and effect relationships between fire and several other
covariates [6–8]. Finally, the fourth type concentrates on

modeling, experimentation, and simulation of fire occurrence,
spread, loss and so on [9–11].

Recently, spatial, temporal, and spatio-temporal methods for
analysis of fire clustering have become a focus of considerable
attention. For example, Pew and Larsen [12] examine the spatial
and temporal pattern of human-caused wildfires (HCWs) in the
temperate rainforest of Vancouver Island (VI). A Geographic
Information System (GIS) is used to locate HCWs that occurred
from 1950 through 1992, by dividing VI into 1 km�1 km grid
cells, and determining the climate and distances to various
human-built infrastructures for each grid cell. They employ
logistic regression to build a model that predicts the probability
of HCW occurrence using spatial data regarding climate and the
distance to human-built infrastructures and determine whether
temporal variations in the number of fires, and the area affected
by them, have been constant or not over time in different HCW
probability classes. In another example, Podur et al. [13] analyze
spatial distribution of forest fires caused by lightning between
1976 and 1998 in Ontario region by using spatial data analysis
techniques such as kernel density estimation, nearest neighbor
and the K-function to detect whether the patterns are clustered or
random within the study area. More recently, Corcoran et al. [14]
apply spatial analysis methods to explore spatial dynamics and
patterns of fire incidents in an area of South Wales. In a further
research, Corcoran et al. [15] apply spatio-temporal methods to
understand the interaction between four principal fire incident
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categories, namely property, vehicle, secondary fires, and mal-
icious false alarms. They employ simple line and circular plots for
different periods of time (i.e., hourly, daily, and monthly) to
investigate temporal patterns; cumulative sum technique coupled
with the kernel density method to investigate spatial patterns;
the co-map technique which illustrates the entire time period
under study in a single visualization for the interaction of space
and time. Corcoran et al. [15] indicate that application of the
spatio-temporal analysis techniques for fire incidents has poten-
tial to inform policy makers from both a reactive, resource-
allocation perspective and a more proactive perspective, such as
spatial targeting of preventive measures. Asgary et al. [16] also
applied temporal, spatial, and spatio-temporal analysis techni-
ques and illustrate how the patterns of structural fire incidents in
Toronto, Ontario, Canada from 2000 to 2006 vary with the time of
the day, the day of the week, and the month of the year. For
temporal analysis, they present the data in the form of hour, day,
month and year, while for the spatial analysis, they use quadrat
count method, kernel density estimation and nearest neighbor
distance methods, and in spatio-temporal analysis, they use map
animation, isosurface and co-map methods. They demonstrate
that there are significant differences with respect to fire incidents
over time. Moreover, they point out that the application of these
methods can help decision makers take preventive measures over
time and space and improve resource allocations in case of
emergency.

Although there is extensive research in fire management
literature, the research on integration of spatial, temporal, and
spatio-temporal data analysis techniques into fire clustering are
quite limited and have started to gain attention recently. A better
understanding of spatio-temporal patterns could provide vital
information for effective fire management such as planning of fire
prevention and response actions in terms of risk identification,
resource targeting and routing of fire personnel and equipment,
allocation of preventive measures, and policy evaluation with
strategies for reducing fire related deaths, injuries and property
losses [14,16].

In this paper, in addition to some exploratory methods avail-
able in fire safety literature, we propose the use of Diggle’s D-
function [17] in the spatial analysis of the residential fires,
provide a test for trend of fire patterns over time, and spatio-
temporal K-function [18] for space–time interaction analysis.
Diggle’s D-function allows one to determine how much of the
clustering of residential fires (if any) is due to the clustering of the
residences, and whether there is additional clustering (or reg-
ularity) in the locations of the fires. In residential areas, if
probability of occurrence of fire is constant for each residence,
fire-clustering pattern would follow the same pattern as the
residential clustering. In other words, in residential areas with
more dwelling intensity, fire cases would also be more likely to
occur. Therefore, it is very important to determine if the fire
clustering pattern is different (more intense or more regular) than
the underlying (background) residential pattern. Kernel estima-
tion, nearest neighbor distance analysis and the K- function
methods have the shortcoming of indicating fire clusters without
sufficient consideration of background population, which are the
residential areas in this case. Although population weighted
kernel density estimation can be a solution to this problem, it is
only an exploratory tool and does not provide the statistical
significance for any decision. The proposed spatio-temporal
analysis methods are illustrated using residential fire data from
C- ankaya, an urban district of Ankara, Turkey. The residential fire
data was collected on years 1998, and 2005–2009 where in the
last three years the month, week, and day of fire (starting from
the beginning of the year) are also available. In the same region,
locations of the residences which did not experience fire (referred

to as non-fire cases, henceforth) are randomly sampled. The
differences in patterns of fire and non-fire locations are identified
and how these patterns change over time are investigated.
The relative patterns of fire and non-fire cases are compared
using Diggle’s D-function, which indicates the additional regular-
ity or clustering of fire cases compared to the non-fire cases.
Moreover, intensity plots (i.e., kernel density estimates) of the fire
locations and non-fire locations for data on all years combined
(referred to as overall data, henceforth) and for each year are also
obtained. Test for trend over time in years, months, and weeks of
the fire patterns are carried out and a space–time interaction
analysis is performed by using spatio-temporal K-function of
Rowlingson and Diggle [18], which provides better identification
of spatio-temporal clusters compared to the conventional
K-function.

As a final remark, we would like to emphasize that the primary
aim of the study is not to evaluate a specific fire clustering pattern
in a detailed manner but to provide guidelines to the decision
makers for the use of various spatio-temporal data analyses
techniques in understanding fire clustering patterns.

2. Analysis of spatial and spatio-temporal patterns

In general, a point pattern like the spatial distribution of fire
locations may exhibit one of the three types of patterns, namely,
complete spatial randomness (CSR), clustering, or regularity or a
mixture of them in an appropriately defined region [19]. Hence
determining which type of pattern exists in any given fire location
distribution requires analyzing the spatial distribution of points
in global (first-order properties) and local (second-order proper-
ties) scale. The following subsections provide the background on
methods of spatial and spatio-temporal point pattern analysis.

2.1. Spatial clustering methods

2.1.1. Local intensity and intensity ratios

Diggle [20] and Berman and Diggle [21] estimate a spatially
smooth local intensity of the points, l̂ðxÞ, by a kernel method
which employs the quadratic kernel function:

f ðxÞ ¼
ð1�u2=2Þ2 �

ffiffiffi
2

p
rur

ffiffiffi
2

p
,

0 otherwise

(
ð1Þ

and the resulting estimate is

l̂ðxÞ ¼ h�1
0

Xn
i ¼ 1

f ðdi=h0Þ ð2Þ

where di is the distance from point i to x.
A first description of a spatial pattern can be performed by the

spatial statistical density, which is proportional to the spatial
intensity. The spatial density and intensity are parts of the first-
order properties, because they measure the distribution of events
(here locations of fire and non-fire cases) in the study region. On
the other hand, the second-order properties measure the types
and strength of interaction between events of the point pro-
cess(es). Therefore, the second-order properties are particularly
interesting if one wants to study the clustering or interaction
between events. Informally, the second-order intensity of two
events i and j reflects the probabilities of any pair of events
occurring in the vicinities of i and j, respectively. The most
common method used for second-order analysis is Ripley’s K-
function, which is defined as

KiiðsÞ ¼ l�1E½# of extra events within distances

of a randomly chosen event� ð3Þ
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with l being the density (number of fires per unit area) of events
and K-function is estimated as

K̂iiðsÞ ¼ l̂
�1X

i

X
ia j

wði,dijÞIðdijosÞ=N ð4Þ

where l̂¼N=A is an estimate of density (N is the observed
number of points and A is the area of the study region), dij is
the distance between points i and j, I( U ) is the indicator function,
w(i,dij) is the proportion of the circumference of the circle
centered at point i with radius dij that falls in the study area,
which corrects for the boundary effects (See [17] for more detail).
When the null case is the random labeling (RL) of points from an
inhomogeneous Poisson process (like the case of this paper),
Ripley’s K- or L-functions in the general form are not appropriate
to test for the spatial clustering of the cases [22]. However, Diggle
[17] suggests a version based on Ripley’s univariate K-function as

DðsÞ ¼ K11ðsÞ�K22ðsÞ ð5Þ

where K11(s) is usually Ripley’s K-function for the class of interest
and K22(s) is Ripley’s K-function for the background class. In our
setup, K22(s) measures the degree of spatial clustering of non-fires
(i.e., the background population at risk), while K11(s) measures
this same spatial clustering plus any additional clustering due to
fire patterns. In this formulation, ‘‘no spatial clustering’’ is
equivalent to RL of fires and non-fires on the locations in the
sample, which implies D(s)¼0. The test statistic D(s) is estimated
by

D̂ðsÞ ¼ K̂11ðsÞ�K̂22ðsÞ: ð6Þ

2.2. Spatio-temporal clustering methods

2.2.1. Second-order analysis of spatio-temporal clustering of fire

cases

The theory of point processes on general spaces is well
established [see e.g., [23]]. For the purpose of analyzing the
distribution of fires, the points of the process, called events (i.e.,
fire cases), are a countable set of points (xi,ti) where xiAR2

represents the spatial location of the ith event and tiAR its
associated reference time. For a stationary process, the intensity
l is identified as the expected number of events per unit space per
unit time, and the reduced second moment measure or spatio-
temporal K-function, as

Kðs,tÞ ¼ l�1E½# of extra events within distance; s; and time; t

of an arbitrary event�: ð7Þ

For a spatio-temporal homogeneous Poisson process, in which
the spatial and temporal components are independent homoge-
neous Poisson processes on R2 and R, respectively,

Kðs,tÞ ¼ 2ps2t: ð8Þ

Eq. (8) can be used as a benchmark against which the second
order properties of a spatio-temporal process. If these component
processes are independent, it then follows that the K-function in
(8) factorizes as

Kðs,tÞ ¼ K1ðsÞK2ðtÞ ð9Þ

In Eq. (9), K1(U) and K2(U) are the K-functions of the spatial and
temporal component processes

K1ðsÞ ¼ l�1
1 E½# of extra events within distance; s; an arbitrary event�

ð10Þ

and

K2ðtÞ ¼ l�1
2 E # of extra events within time; t;of an arbitrary event

� �
,

ð11Þ

respectively.
In this study, the spatial–temporal interaction in the distribu-

tion of the residential fire cases is analyzed by using the function
of spatial and temporal separation. The main question of interest
is whether fire cases, which are close in space, are also close in
time or not. If they are close in time, then it can be deduced that
the fire distribution exhibits spatio-temporal clustering.

In most cases fire data might show both spatial clustering,
reflecting a non-uniform geographical distribution of the popula-
tion at risk over the region in question, and temporal clustering,
For example the fire occurrences might occur more frequently in a
particular time period. Unless there is a series of spatially and
temporally localized increases in the fire incidences, it can be
expected that these spatial and temporal effects operate inde-
pendently. For this reason, the detection of spatio-temporal
clustering constitutes a preliminary step for a more detailed
analysis of fire in question. In this paper, the levels of spatio-
temporal clustering of fire cases are estimated as a function of
spatial and temporal separation. The analysis is based on the
second-order properties of a spatio-temporal point process of
fire cases.

2.2.2. Estimation of second-order properties

Let {(xi,ti): i¼1,..., n} denote the locations and times of all
events within a spatio-temporal region A� (0,T). Let dij¼Jxi�xjJ

and uij¼9ti�tj9 be the spatial and temporal separations of the ith

and jth events. Let wij be the reciprocal of the proportion of the
circumference of the circle with center xi and radius dij which lies
within A. Let vij¼1 if both ends of the interval of length 2uij and
center ti lie within (0,T), vij¼2 otherwise. Then, using I(U) to
denote the indicator function, approximately unbiased estimators
for K(s,t), K1(s) and K2(t) are

K̂ðs,tÞ ¼ 9A9Tfnðn�1Þg�1
X
ja i

wijvijIðdijosÞIðuijotÞ, ð12Þ

K̂1ðsÞ ¼ 9A9fnðn�1Þg�1
X
ja i

wijIðdijosÞ, ð13Þ

and

K̂2ðtÞ ¼ Tfnðn�1Þg�1
X
ja i

vijIðuijotÞ: ð14Þ

The three equations above are the obvious extensions of
Ripley’s estimator [24,25] to spatial-temporal processes for a
purely spatial point process. The weights wij constitute an
important correction for edge effects in estimating the spatial
second order properties. The corresponding weights vij play the
same role for the temporal properties, where edge effects are
much less important in practice. See, for example [26].

2.2.3. Diagnostics for spatio-temporal clustering

Estimated K-functions are widely accepted as useful tools for
analyzing spatial point patterns [19,17]. In this paper, simple
diagnostic procedures for analyzing possible dependence
between the spatial and temporal components of the underlying
spatial-temporal point process are adopted.

First, the following functions are considered:

D̂ðs,tÞ ¼ K̂ðs,tÞ�K̂1ðsÞK̂2ðtÞ ð15Þ

and

D̂0ðs,tÞ ¼ D̂ðs,tÞ=½K̂1ðsÞK̂2ðtÞ�: ð16Þ
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Eq. (15) is based on Eq. (9) and yields another benchmark
relative to which second order dependence between the spatial
and temporal component processes can be assessed. A perspec-
tive (i.e., three-dimensional) plot of the surface D̂ðs,tÞ gives
information on the scale and nature of the dependence between
the spatial and temporal components, and constitutes our first
suggested diagnostic for space–time clustering. Note that
D̂ð0,0Þ ¼ 0. Also, as it will be shown in further sections, the
sampling fluctuations in D̂ðs,tÞ typically increase with s or t and
the useful information in D̂ðs,tÞ is therefore confined to values of s
and t which are small relative to the spatial and temporal
dimensions of A� (0,T).

In general, the sampling distributions of the quantities D̂ðs,tÞ
are intractable, but progress is possible if the spatial and temporal
component processes are independent and conditioned on the
realizations of each component. In this null case the sampling
distribution of D̂ðs,tÞ is the distribution induced by random
permutation of the times {ti: i¼1,..., n} for a fixed set of locations
{xi: i¼1,..., n}, or vice versa [27].

Let V(s,t) denote the variance of D̂ðs,tÞ from [27], and write
K̂0ðs,tÞ ¼ K̂1ðsÞK̂2ðtÞ. Then, a third diagnostic for space–time interac-
tion is a plot of the standardized quantities Rðs,tÞ ¼ D̂ðs,tÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
Vðs,tÞ

p
against K̂0ðs,tÞ, analogous to a plot of standardized residuals against
fitted values in regression modeling. The main advantage of this
diagnostic plots over the plot of D̂ðs,tÞ or D̂0ðs,tÞ is that it is two
dimensional rather than three dimensional and easier to visualize. A
corresponding disadvantage is that the spatial and temporal scales
are no longer explicit.

2.2.4. Tests for space–time interaction

A discrete approximation to the integral of the standardized
residual surface is given below:

U ¼
X
s

X
t

Rðs,tÞ ð17Þ

Significantly, positive or negative values indicate positive or
negative space–time interaction, respectively. Whatever statistic
U is chosen, it makes sense to confine attention to values of s and t

which are small relative to the dimensions of the region on which
the data are observed. For an approximate test of significance,
based on the above test statistic, the null variance of U from [27]
can be evaluated, and it refers to the standardized statistic
U=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðUÞ

p
to critical values of N(0,1). An exact alternative,

applicable to statistic U, is a Monte Carlo test, in which the
observed value u1 of U is ranked amongst values u2,..., um
generated by re-computing the

P
s

P
tRðs,tÞ after each of m�1

independent random permutations of the reference times; if u1

ranks kth largest (or smallest) the one-sided attained significance
level is k/m. Both the Monte Carlo test and the approximate
normal (i.e., Gaussian) test based on Eq. (17) are computation-
intensive, but the latter can be simplified by computing V(s,t) only
for a coarse grid of values of s and t, and then interpolating.

3. Case study implementation

3.1. Data description

The city of Ankara is the second most populated city and the
capital of Turkey with a population of more than 4 million people.
Ankara is governed by a ‘‘greater metropolitan municipality’’,
including eight main metropolitan districts, which are C- ankaya
(the case study area), Yenimahalle, Kec- iören, Altındağ, Mamak,
Sincan, Etimesgut and Gölbas-ı (see Fig. 1).

C- ankaya district is one of the oldest districts of Ankara with an
area of 12,700 ha and approximate population of 800,000 people
according to the results of 2007 census [28].

In Turkey, fire protection and prevention, taking necessary
measures against fires, rescuing the citizens in accidents and
other emergency situations and organizing training programs
against fire threat are assigned to municipalities by Law of
Municipalities no 1580. In metropolitan cities like Ankara, this
responsibility is executed by Metropolitan Municipalities pur-
suant to Law of Metropolitan Municipalities no 3030.

Fire Department of Ankara Metropolitan Municipality is com-
prised of the following units: head office of Ankara Municipality
Fire Department in _Iskitler (Ankara Büyüks-ehir Belediyesi _Itfaiye
Daire Bas-kanlığı) is the most authorized unit of Ankara fire
department and reports to the Mayor of Metropolitan Munici-
pality of Ankara. There are 14 fire brigades reporting to Ankara
Metropolitan Municipality Head Office of Ankara Fire Depart-
ment: Sincan, Batıkent, Kec- iören, Altınpark, Siteler, Kurtulus-, Kale,
Kayas-, Esat, Kös-k, Gölbas-ı, AS-T_I, and Esenboğa. Four of the 14 fire
brigade units, namely Kale, Kös-k, AS-T_I and Esenboğa fire depart-
ments are special departments and only responsible from their
specific areas which are historical Kale region, Presidential Palace,
Ankara Intercity Bus Terminal, and Esenboğa airport, respectively
(Fig. 2a). The other 10 fire brigades are responsible from the fires
that take place in their fire responsibility zones of Sincan,
Batıkent, Kec- iören, Altınpark, Siteler, Kurtulus-, Kayas-, Esat,
Gölbas-ı, and _Iskitler (head office) as shown in Fig. 2b.

In particular, C- ankaya district is under the responsibility of six
different fire brigade services which are _Iskitler (head office),
Kurtulus-, Esat, Gölbas-ı, AS-T_I, and Kös-k fire brigades (Fig. 2c).

Fig. 1. Study area (light gray region), C- ankaya district, Ankara, Turkey.
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_Iskitler, Kurtulus-, Esat and Gölbas-ı fire brigades are the main units
that serve C- ankaya district and the other two brigades of AS-T_I and
Kös-k have special responsibilities as described above. The fire
responsibility zones do not follow the district borders since they
are constructed based on transportation network (i.e., the road
and street network) in Ankara.

The residential fire data of C- ankaya district is obtained from
Head Office of Ankara Fire Department in tabular format by
special permission from Ankara Metropolitan Municipality. The
obtained data consist of the address information of all residential
fires reported to Head Office of Ankara Fire Department that occur
inside the administrative borders of C- ankaya district in 1998 and
2005–2009. The locations of fire cases are residences, dwellings or
shops. For the time component, the reference time is the date of
fire and for each of years 2007–2009 (inclusive) the month, week,
and day of the fire starting from the beginning of the year are
available. The fire data obtained in tabular format are geo-coded
and converted to point features in GIS environment. In geo-coding
phase, it was only possible to geo-code nearly 52% of the 2007–
2009 data, because of the address matching limitations of the GIS

software. However this problem does not effect the results
considerably as the primary aim of the study is not to perform
an extensive case study of a real life data, but provide a
methodology to understand the residential fire clustering pattern
relative to the non-fire residential pattern.

3.2. Spatial clustering analysis of residential fire cases

The first step in such analysis is to perform exploratory data
analysis to visually inspect the point pattern. In Figs. 3 and 4, the
scatter plots of the locations of overall non-fire cases and yearly
residential fire cases are presented. Notice that the fire and non-
fire cases seem to exhibit similar but not identical clustering
patterns. The non-fire cases represent the distribution of the
residential units, which seems to be non-uniform in the region
of interest as expected. In fact, due to physical restrictions such as
lakes, rivers, rocky or uneven terrains, and social restrictions or
public regulations, usually locations of residences are different
from the CSR pattern in the region. See, for example, Fig. 5 for
Ripley’s (modified) L-function for non-fire locations, which

Fig. 2. Fire brigades and responsibility zones in Ankara.
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indicate significant clustering for distances from 0 to 500 m.
Moreover, one might also expect that the higher the residential
intensity (number of houses per unit area), the higher the risk of
residential fire, and hence the higher the fire case intensity
(number of fires per unit area). Therefore, a clustering analysis
of fire cases only may be misleading about the dynamics and the
risk of fire distribution pattern. For example, if every residential
unit has the same risk of fire, fire clustering and residential

clustering will have the same pattern. Hence it is more reasonable
to analyze the clustering of fire cases with respect to the
residential clustering present (in the background). In case of
excess clustering of fire cases (i.e., if fire cases are more clustered
compared to non-fire residences), then we can conclude that the
houses in that neighborhood have higher risk of fire (compared to
the rest of the region). On the other hand, if fire cases are less
clustered than the non-fire residences, then houses in that
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Fig. 3. Plots of the locations of non-fire cases (top) and fire cases (bottom) for years 1998, 2005 and 2006.
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Fig. 4. Plots of the locations of non-fire cases (top) and fire cases (bottom) for years 2007–09.

E. Ceyhan et al. / Fire Safety Journal 58 (2013) 226–239 231



neighborhood have lower risk of fire. This inference might have
important implications for precautionary measures against fire or
rates of fire insurance.

In Fig. 3, the locations of the non-fire cases are plotted for all
years combined and in Fig. 4 fire cases for each year are plotted.
The plots for each year apparently show a different trend in fire
(at least for some years) and there seems to be some differences
between the clustering of fire cases compared to non-fire cases. In
years 1998, 2005–2007, fire cases tend to occur mostly on dense
residential areas. However, in years 2008 and 2009, fire clustering
also occurs in southwest part of the region where the residential
intensity is lower. A more rigorous formal analysis is presented in
Sections 3.3 and 3.4.

With the kernel estimation in Eq. (2), the intensity estimates of
fire and non-fire cases are obtained and presented in Fig. 6.
Ignoring the time effect, it is observed that the overall fire and
non-fire intensities follow a similar but not the same trend. There
seems to be higher intensity (or clustering) in fire and non-fire
clustering in north-eastern part of the region. In Fig. 6 the fire
intensity plots for each year are also presented. By visual inspec-
tion, in 2005 and 2006 fire and non-fire intensities are similar;
while in the other years they seem to be different. Observe that
the fire clustering pattern more or less follow the trend of
residence clustering, but perhaps with different intensities.
Furthermore, in 1998, there seems to be one major fire cluster,
but in other years there seems to be multiple (possibly intersect-
ing) major clusters.

3.3. Second-order analysis of residential fire cases

In Fig. 7, we present Ripley’s K-function for overall fire and
non-fire patterns and Diggle’s D-function for the overall data
(ignoring the time effect). Notice that level of the residential
clustering is significantly higher than the benchmark CSR pattern
for all the inter-point distances considered (i.e., 0–100 m), and the
same holds for fire clustering also. However, the level of fire
clustering, although follows the same trend, is significantly higher
than non-fire residential clustering which is also seen in the plot
of Diggle’s D-function, since D̂ðsÞ curve is above the upper

confidence limit. That is, the fire pattern exhibit a higher level
of clustering compared to the non-fire cases. In Fig. 8, Diggle’s D-
function for each year is presented. Observe that for 1998, 2005,
and 2007–2009, the fire locations seem to be (significantly) more
clustered at all the distances considered (namely, from s¼0 to
100 m). On the other hand, in 2006, the clustering of fires does
not significantly differ from the clustering of residences (i.e., non-
fire cases) at small scales (for s up to around 80 m), and for larger
distances, fire locations seem to be more clustered than the
residences. This is more or less in agreement with the visual
inspection of intensity plots in Fig. 6. Furthermore, these results
suggest that fire clustering pattern changes over time (hence
suggest a temporal trend or clustering as well) which is analyzed
in Section 3.4.

3.4. Analysis of temporal clustering of fire cases

In the analysis of the temporal clustering of residential fire
cases, first, the frequency histogram of fire cases by year in Fig. 9
(left) are plotted, where it is observed that the frequency of the
fire cases tends to reduce by year with largest being about 450
cases in 1998. The fire incidence frequencies by month for the
years 2007–2009 combined in Fig. 9 (right) are also considered.
Notice that fire cases are most frequent in February, April, July,
and December, whereas least frequent in September. The fire
incidence frequencies by month for each year between 2007 and
2009 (inclusive) are plotted in Fig. 10. Fire cases are most
frequent in February and December in 2007; January, February,
July and December in 2008, and March, June, and December in
2009. In these years, fire cases are less frequent in September.
Therefore, one might conclude that fire occurs more frequently in
colder months when people use coal or natural gas stoves (unless
central heating) or in hotter months following perhaps a period of
draught.

3.5. Spatio-temporal analysis of residential fire cases

In this section, the space–time clustering analysis of [18] for
the residential fire data is performed. In Fig. 5, the locations of fire
and non-fire cases (pooled over all the years) are given. Observe
that the clustering of fire cases seems to differ from year to year.

3.5.1. Spatio-temporal analysis for time measured in years

In spatio-temporal analysis, the K-function in space, time, and
space–time is estimated. The spatial K-function for distances from
0–100 m and temporal K-function for time differences in years
from 0 to 11 years are plotted in Fig. 11. Observe that the fire
locations tend to be clustered in time and space. Furthermore, the
values of K̂ðs,tÞ tend to increase as time and distance increases,
and the substantial jump for the recent years suggests that space–
time interaction occurs in the fire distribution in this district. The
standard error for each pair of (s,t) values is stored in a matrix and
plotted as a color-coded grid plot in Fig. 12. Notice that the largest
estimates of the standard error occurs for distances around 90–
100 m and time differences around 5 years. That is, the estimated
K̂ðs,tÞ has more variability at 5-year time differences and for
distances between 90 and 100 m. In the spatial component, this is
no coincidence, because as the inter-point distance, s, increases
the standard error of K̂ðsÞ increases. On the other hand, such a
trend does not occur in time differences, standard error for the
spatio-temporal K-function K̂ðs,tÞ tends to be larger for large
inter-point distances considered and moderate time differences.

The diagnostic plots for spatio-temporal clustering are pre-
sented in Fig. 13. The top left is the locations of the fire cases (all
years combined). The top right presents the perspective plot of

Fig. 5. Second-order analysis of non-fire locations: Function plotted is Ripley’s

univariate L-function L̂ðtÞ�t as a function of distance t in 0–500 m. The dotted

horizontal line at 0 is the expected value under CSR, while the dashed lines around

0 are 99% confidence bands for non-fire residences under CSR.
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Fig. 6. Intensity plots for non-fire cases (i.e., residences which did not experience fire) and for fire cases (with overall data and for each year). The intensity value increases

from red to white (The intensity value increase from dark to light for the greyscale image. For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article).
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D̂ðs,tÞ. Notice that D̂ðs,tÞ values increase in distance s, but much
faster for smaller time scales. A scatter plot of R(s,t) versus
K̂0ðs,tÞ ¼ K̂ðsÞK̂ðtÞ is presented in Fig. 13 (see the residual plot in
bottom left). This residual plot strongly suggests the presence of
space–time interaction in the data for smaller K̂0ðs,tÞ values, since the
standardized residuals R(s,t) are almost all positive with an average
close to 6, whereas in the absence of space–time interaction R(s,t)
would have expected value 0 and variance 1. The larger R(s,t)
values at smaller K̂0ðs,tÞ values suggest that the strongest interaction

is at the smaller spatial and/or temporal scales. That is, the level of
spatial clustering changes in time as well and largest spatio-temporal
clustering occurs at large spatial scales and small time scales (see plot
of D̂ðs,tÞ in top right). Furthermore, the residual plot is suggestive of
nine groupings by year. A Monte-Carlo test is also performed for
space–time interaction where the sum of residuals as a test statistic
is used, randomly permuting the times of the set of points
and recomputing the test statistic for a number of simulations
(See [27] for details). The observed value of the test statistic was

Fig. 7. Second-order analysis of fire data. Functions plotted are Ripley’s K-functions K̂iiðsÞ with i¼1 for fire and i¼2 for non-fire cases (left and middle) and Diggle’s D-

function D̂ðsÞ ¼ K̂11ðsÞ�K̂22ðsÞ (right) for the overall data. The dashed lines in the left two plots are plus and minus two standard errors of K̂iiðsÞ under RL of fire and non-fire

cases and the dashed/dotted lines are for the theoretical value of K̂iiðsÞ which is 2ps2 and in the left plot are plus and minus two standard errors of D̂ðsÞ under RL of fire and

non-fire cases.

Fig. 8. Second-order analysis of fire data. Functions plotted are Diggle’s D-functions D̂ðsÞ ¼ K̂11ðsÞ�K̂22ðsÞ with i¼1 for fire and i¼2 for non-fire pattern for each year. The

dashed lines around 0 are plus and minus two standard errors of D̂ðsÞ under RL of fire and non-fire cases.
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u1¼253199791.0, while the values u2,y, u1000 from 999 permuta-
tions of the times ranged from �59,396,644 to 72,773,452, so the test
statistic of the case seems highly significant (p¼0.001) which implies

significant space–time interaction for the time at year level. See
Fig. 13 (bottom right). This implies that the spatial clustering pattern
changes over year.

Fig. 9. Frequency histogram of the fire cases by year (left) and by month for the three years 2007–2009 combined (right).

Fig. 10. Frequency histogram of the fire cases by month for years 2007–2009.

Fig. 11. Spatial (left top) and temporal (left bottom) K-functions and the perspective plot of K(s,t) estimate (right) as a function of year and distance.

E. Ceyhan et al. / Fire Safety Journal 58 (2013) 226–239 235



3.5.2. Spatio-temporal clustering analysis with time measured in

days, weeks, and months for years 2007–2009 combined

The spatial and temporal K-functions for years 2007–2009
combined for the time differences measured in months, weeks,
and days are also obtained and given in Fig. 14 together with the

95% confidence bands. Notice that there seems to be no
significant temporal clustering at the month, week, and day
levels, except perhaps for time differences around 30 to 40
weeks or 210 to 280 days, where for these time differences
temporal clustering is smaller compared to the one under
temporal randomness.

The diagnostic plots for spatio-temporal clustering by month
are presented in Fig. 15. Notice that D̂ðs,tÞ values slightly increase
in distance s, but much faster for 6–8 month time differences (see
Eq. (15) for definition of D̂ðs,tÞ). The residual plot in bottom left
strongly suggests a presence of space–time interaction in the data
for smaller K̂0ðs,tÞ values, since the standardized residuals R(s,t)
are almost all positive with an average close to 1. The larger R(s,t)
values at smaller K̂0ðs,tÞ values suggest that the strongest inter-
action is at the smaller spatial and/or temporal scales. The Monte-
Carlo test for space–time interaction is performed. The observed
value of the test statistic was u1¼�55,418,028, while the values
u2,y, u1000 from 999 permutations of the times ranged from
�282,578,430 to 358,844,354, and the test statistic is not sig-
nificant (p¼0.300) which implies lack of space–time interaction
for the time at the month level. That is, spatial clustering pattern
does not seem to change over month in years 2007–2009
combined. Hence there is not significant evidence for the need
of different design of fire management strategies for different
months of the year and parts of the study region. See Fig. 15
(bottom right). The color-coded grid plot of the standard error
values for the (s,t) values in Fig. 16 suggests that the largest
standard error estimates occur for distances 90–100 m, and
within the middle part of the time differences (4–6 months or
12–25 weeks). That is, the estimated K̂ðs,tÞ has more variability

Fig. 12. Color-coded grid plot of the standard error matrix for space–time clustering

for the distance values from 1 to 100m and year differences from 0 to 11 years. Entry

(i,j) of the matrix is the standard error at si, tj (See [27] for details). The standard error

values increase from red to white (The intensity value increase from dark to light for

the greyscale image). (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article).

Fig. 13. Diagnostic plots for space–time clustering for distances and year differences. The four plots are the spatial map of the data points (top left), a perspective plot of

the difference between spatio-temporal K-function and the product of the spatial and temporal K-functions (top right), the standardized residuals against the product of

the spatial and temporal K-functions (bottom left) and histogram of the test statistics (bottom right), where the statistic for the data is indicated with a vertical line.
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for distances between 90 and 100 m and for time differences
about 5 months apart.

The diagnostic plots for spatio-temporal clustering by week are
not presented. The Monte-Carlo test for space–time interaction yields
an observed value of the test statistic as u1¼�1,942,663,571, while
the values u2,y, u1000 from 999 permutations of the times ranged
from �4,978,470,470 to 5,150,828,532, so our test statistic seems
almost significant (p¼0.098) which implies mild space–time inter-
action for the time at the week level. Therefore, it can be inferred that
spatial clustering pattern changes moderately over week.

The diagnostic plots for spatio-temporal clustering by day are
not presented either. The Monte-Carlo test for space–time inter-
action yields an observed value of the test statistic as
u1¼�72,175,099,291, while the values u2,y, u1000 from 999
permutations of the times ranged from �249,322,402,266 to
223,555,566,842, so our test statistic seems mildly significant

(p¼0.148) which implies no space–time interaction for the time
at the day level. Hence, spatial clustering pattern does not change
significantly over day.

Remark: Spatio-temporal clustering analysis with time mea-
sured in days, weeks, and months for each of years 2007, 2008,
and 2009 can also be conducted in a similar manner. We present
the p-values for space–time interaction for months, weeks, and
days for each in Table 1. Notice that although we observed no
significant space–time interaction when the data over all years is
combined, there is significant space–time interaction for the time
at the month level. That is, spatial clustering pattern changes over
month in 2007. Hence different design of fire management
strategies may be appropriate for different months of the year
and parts of the study region. Also, there is mildly significant
interaction for time at the month level in 2008. However, there is
no significant interaction for time at week or day level in 2007
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Fig. 14. Temporal K-functions for time differences measured in month, week, and day for years 2007–2009 combined. In each plot, solid line is the estimate based on data,

the dotted lines are the estimated expected value based on uniform distribution of fires in time, and dashed lines are the 95% confidence limits.

Fig. 15. Diagnostic plots for space–time clustering for time measured in months in years 2007–2009 combined. The four plots are as in Fig. 13. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article).
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and 2008, and there is no significant interaction for month, week,
or day level in 2009. See the technical report [29] for the explicit
details of this analysis.

4. Discussion and conclusions

The primary goal of this study is to provide some methodology for
the spatio-temporal analysis of residential fire clustering patterns
relative to the background (non-fire) residential pattern. Along this
line, C- ankaya district of Ankara is used as an illustrative example. This
work could help decision makers to detect problematic regions in
terms of spatio-temporal patterns and concentrate on these specific
regions at specific times to develop policies and strategies for fire
prevention and management. This research can also help decision
makers to reduce the damages due to fires. Usually fire brigades can
miss the spatio-temporal fire patterns due to their heavy workload.
The decisionmakers can catch the important clues that are underlying
the spatio-temporal distribution patterns of fire locations.

The use of spatio-temporal analysis techniques enables one to
understand the general trends about patterns of fire locations.
Thereby such analyses help the decision maker to prioritize
limited resources and designing effective firefighting strategies
by determining priority sites and times which have fire clusters in
space and time. In other words, they provide with understanding
of the regions where there is evidence of clusters in space and
time, which offers evaluation of various opportunities and rede-
sign of fire prevention and management efforts in specific regions
rather than the whole urban area. The basic strategies that can be
considered based on spatio-temporal fire analysis are:

� Strengthening or building of new fire stations closer to
problematic areas,

� Distribution of current fire staff and equipment into smaller
and widespread stations considering clusters in space
and time,

� Replacement or deployment of critical facilities if necessary,
� Improving the fire resistance of buildings and physical struc-

tures, fire communication opportunities in clusters in space
and time,

� Legislative obligations for improving fire resistance of build-
ings by using fire resistant materials in constructions; building
fire warning systems (alarm) and fire sprinkler systems (auto-
matic fire extinguishment systems) in constructions (espe-
cially for problematic areas); fire insurance in clusters in space
and time.

� Overlaying critical areas with other additional urban related
maps such as fire service accessibility maps, land use/cover
maps, population density maps etc so as to extract additional
fire related information.

In this article, analysis of spatio-temporal patterns of residen-
tial fires are provided at four stages: (i) exploratory analysis of fire
clustering by scatter plots of fire versus non-fire locations and by
intensity plots, (ii) spatial analysis of fire and non-fire patterns by
Diggle’s D-function, (iii) temporal analysis of fire clustering by
temporal version of Ripley’s K-function, and (iv) analysis of
spatial–temporal interaction by spatio-temporal K-function and
Monte Carlo hypothesis testing. However, it is important to stress
that the evaluation of the exploratory analysis such as intensity
plots are intuitive processes and depends on some user defined
parameters. Therefore, in most of the cases the exploratory
analysis may be insufficient and it may be required to go further
to test various hypotheses or build models to explain the
observed fire patterns. Hence second order analysis of fire and
non-fire patterns by Diggle’s D-function serves for this purpose
and provides a Monte Carlo test for space–time interaction. The
predictive modeling of spatio-temporal fire patterns is a topic of
ongoing research. The results of this study are site specific;
however, the methodology followed can be adapted to any urban
location similar to ours.
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