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Abstract We compare the performance of relative densities of two parameterized
random geometric digraph families called proximity catch digraphs (PCDs) in testing
bivariate spatial patterns. These PCD families are proportional edge (PE) and central
similarity (CS) PCDs and are defined with proximity regions based on relative po-
sitions of data points from two classes. The relative densities of these PCDs were
previously used as statistics for testing segregation and association patterns against
complete spatial randomness. The relative density of a digraph, D, with n vertices
(i.e., with order n) represents the ratio of the number of arcs in D to the number of
arcs in the complete symmetric digraph of the same order. When scaled properly,
the relative density of a PCD is a U -statistic; hence, it has asymptotic normality by
the standard central limit theory of U -statistics. The PE- and CS-PCDs are defined
with an expansion parameter that determines the size or measure of the associated
proximity regions. In this article, we extend the distribution of the relative density of
CS-PCDs for expansion parameter being larger than one, and compare finite sample
performance of the tests by Monte Carlo simulations and asymptotic performance by
Pitman asymptotic efficiency. We find the optimal expansion parameters of the PCDs
for testing each alternative in finite samples and in the limit as the sample size tending
to infinity. As a result of our comparisons, we demonstrate that in terms of empirical
power (i.e., for finite samples) relative density of CS-PCD has better performance
(which occurs for expansion parameter values larger than one) for the segregation al-
ternative, while relative density of PE-PCD has better performance for the association
alternative. The methods are also illustrated in a real-life data set from plant ecology.
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List of Abbreviations
PCD proximity catch digraph
CCCD class cover catch digraph
CS-PCD central similarity PCD
PE-PCDs proportional edge PCD
PAE Pitman asymptotic efficiency
CSR complete spatial randomness
NNCT nearest neighbor contingency table
NN nearest neighbor

Symbols and Notation
D(V,A) Vertex random PCD with vertex set V and arc set A. See Sect. 2,

paragraph 1.
N(·) and N(x) Proximity map and the proximity region associated with a point x.

See Sect. 2, paragraph 5.
CH (Ym) Convex hull of Ym. See Sect. 2, paragraph 7.
T (Y3) = T (y1, y2, y3) The triangle with vertices y1, y2, y3. See Sect. 2, paragraph 7.
S(F ) Support of the distribution F and U(T (Y3)): Uniform distribution on

T (Y3). See Sect. 2, paragraph 7.
NPE(x, r) The proportional edge proximity map with expansion parameter r .

See Sect. 2, paragraph 8.
RV (y1), RV (y2), and RV (y3) The vertex regions for vertices y1, y2, y3. See Sect. 2,

paragraph 8.
NCS(x, τ ) The central similarity proximity map with expansion parameter τ .

See Sect. 2, paragraph 9.
RE(e1), RE(e2), RE(e3) The edge regions for edges e1, e2, e3 opposite to the

vertices y1, y2, y3 See Sect. 2, paragraph 9.
ρ(D) The relative density of the digraph D. See Sect. 3, paragraph 1.
ρPE(n, r) and ρCS(n, τ ) The relative densities of PE-PCDs and CS-PCDs,

respectively. See Theorem 3.1.
μPE(r) and νPE(r) The arc probability (or the asymptotic mean) and asymptotic

variance of relative density of PE-PCDs. See Sect. 3.1, paragraph 4.
μCS(r) and ν

Cs
(r) The arc probability (or the asymptotic mean) and asymptotic
variance of relative density of CS-PCDs. See Sect. 3.1, paragraph 4.

ρ̃PE(n,m, r) and ρ̃CS(n,m, τ) The relative density for the PE-PCD and CS-PCD
in the multiple triangle case. See Sect. 3.2, paragraph 2.

μ̃PE(m, r) and ν̃PE(m, r) The asymptotic mean and asymptotic variance of
relative density of PE-PCDs in the multiple triangle case. See
Corollary 3.4.

RPE(r) The standardized test statistic based on the relative density of
PE-PCD in the one-triangle case. See (13).

˜RPE(r) The standardized test statistic based on the relative density of
PE-PCD in the multi-triangle case. See Sect. 4.1, paragraph 3.
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PAEPE(r) and PAECS(τ ) Pitman asymptotic efficiency score for relative density
of PE-PCD and CS-PCD, respectively. See Sect. 7, paragraph 2.

πout and π̂out Proportion of class 1 points outside the convex hull of class 2 points
and its estimate. See Sect. 8, paragraphs 1 & 2, respectively.

Cch The correction coefficient for the class 1 points outside the convex
hull of class 2 points. See (14).

˜Rch
PE(r) and ˜Rch

CS(τ ) The convex hull corrected versions of the standardized test
statistics based on the relative density of PE- and CS-PCDs. See (15).

1 Introduction

Spatial clustering has received considerable attention in the statistical literature
(Cressie 1993 and Diggle 2003). Recently, the use of mathematical graphs has gained
popularity in spatial analysis (Roberts et al. 2000) although it potentially reduces the
benefit of other geo-spatial information, since in general a graph ignores the geo-
graphic reference. However, graph-theoretic tools have been discussed in spatial pat-
tern analysis providing the means to go beyond the usual Euclidean metrics for spa-
tial analysis. Graph-theoretic applications in computer vision and pattern recognition
have been useful to automate efficient searches for structure in spatial data (Roberts
et al. 2000). For example, graph-based approaches have been proposed to determine
paths among habitats at various scales and dispersal movement distances, and balance
data requirements with information content (Fall et al. 2007). Furthermore, graphs are
potentially useful to ecological applications concerned with connectivity or move-
ment (Minor and Urban 2007). Many concepts in spatial ecology depend on the idea
of spatial adjacency which requires information on the close vicinity of an object
(Keitt 2007). Graph theory conveniently can be adapted to express and communicate
adjacency information allowing to compute meaningful quantities related to a spatial
point pattern. See Ceyhan (2011) and references therein.

In recent years, a new clustering approach has been developed. This approach
uses vertex random digraphs called proximity catch digraphs (PCDs) and is based
on the relative positions of the data points from various classes. Priebe et al. (2001)
introduced the class cover catch digraphs (CCCDs) which is a special type of PCDs
and gave the exact and the asymptotic distribution of the domination number of the
CCCD in R. The CCCD approach is extended to multiple dimensions by DeVinney
et al. (2002), Marchette and Priebe (2003), and Priebe et al. (2003), who demon-
strated relatively good performance of it in classification. The proportional edge (PE)
and central similarity (CS) proximity maps are introduced based on the appealing
properties of CCCDs for one dimensional uniform data (see Ceyhan 2010b and ref-
erences therein). One of the graph invariants used as a statistic is the relative density
which is the proportion of number of arcs (i.e., directed edges) which are present in
the digraph to the total number of arcs possible in a digraph with the same number of
vertices.

In the literature, for undirected simple graphs, the graph density is defined as the
ratio of the number of edges in the graph to the total number of edges possible in the
graph. Hence the maximal density is 1 (for complete graphs) and minimal density is
0 (for graphs with no edges) (Coleman and Moré 1983). Based on the graph density
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concept ‘dense’ and ‘sparse’ graphs are defined. For a dense graph, graph density is
close to 1 and for sparse graphs it is close to 0. Hence for an undirected simple graph,
G = (V ,E), with vertex set V and edge set E, graph density is 2|E|/(|V |(|V | − 1));
on the other hand, if D = (V ,A) is a directed graph (i.e., digraph) with vertex set
V and arc set A, graph density is |A|/(|V |(|V | − 1)). The latter quantity is referred
to as relative density henceforth in this article. A related concept is the average de-
gree of the graph G, which is twice the number of edges over number of vertices
2|E|/|V |, and average degree of the digraph D is |A|/|V |. For a given graph, an
important problem in practice is finding a subgraph with maximum density. A fast
algorithm is introduced for this purpose in Goldberg (1984) by reducing the problem
to a minimum capacity cut computation steps, which can be performed with network
flow methods. The density of a graph G = (V ,E) can also be extended to graphs
with edge capacities {c(e) : e ∈ E} as c(E)/|V |. A major topic in graph theory algo-
rithms is finding the densest components, e.g., finding a maximum density subgraph
which can be performed in polynomial time. However, finding a densest subgraph
with exactly k vertices is an NP-hard problem (Leibovich 2009). Various definitions
and extensions of the concept of graph density is discussed by Faragó (2008). Graph
density is also extended to weighted graphs with positive weights on vertices and
nonnegative weights on edges with the introduction of the concept of w-density for
the graphs (Shenggui et al. 2002). Graph density is also defined as the number of
edges divided by number of vertices (Goldberg 1984), but we will stick with the
more common definition referred to as relative density above.

In this article, we extend the definition of central similarity PCDs (CS-PCDs) for
expansion parameter values larger than one; whereas previously it was defined only
for the range of expansion parameter (0,1] (Ceyhan et al. 2007). Furthermore, we
compare various aspects of the relative density of two parameterized PCD families,
namely proportional edge PCDs (PE-PCDs) and CS-PCDs in testing bivariate spa-
tial patterns. In particular, we compare the finite sample performance of the relative
density of these two PCD families by empirical size and power analysis based on
extensive Monte Carlo simulations. We also compare the asymptotic distributions
and asymptotic power performance of the tests under the alternatives using Pitman
asymptotic efficiency (PAE). For two classes of points labeled as class 1 an 2, respec-
tively, PCDs are constructed with vertices from class 1 while points from class 2 are
used to determine the underlying binary relation to determine the occurrence of an
arc between two points from class 1. This binary relation is based on the Delaunay
triangulation of class 2 points. Hence, we first consider the case of one triangle based
on three non-collinear points from class 2, followed by the case of multiple triangles
(based on the Delaunay triangulation of four or more class 2 points in general posi-
tion). We also propose a correction for the proportion of class 1 points lying outside
the convex hull of class 2 points. Our Monte Carlo and PAE analysis indicates that
relative density of CS-PCDs has better performance for segregation, while that of
PE-PCDs has better performance for association. Segregation is the pattern in which
classes tend to repel each other in the sense that class 1 and class 2 points tend to be
clustered around points from the same class, while association is the pattern in which
points from one class tend to cluster around points from the other class. The exten-
sion of CS-PCDs for expansion parameter greater than 1 turned out to be useful, as
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the relative density of CS-PCDs has better performance in terms of empirical size and
power in this new range of the expansion parameter. Without such an extension, we
would only use CS-PCDs with expansion parameter less than or equal to 1, and thus
reach less satisfactory results in our comparison. In particular, PE-PCDs with the cor-
responding optimal expansion parameter would outperform CS-PCDs with expansion
parameter restricted to (0,1] in terms of size and power for both alternatives.

We describe the two particular PCD families in Sect. 2, provide the asymptotic
distribution of relative density of the PCDs for uniform data in Sect. 3, describe the
alternative patterns of segregation and association, propose tests based on relative
density of PCDs for testing segregation/association, and provide the asymptotic nor-
mality and consistency of the tests under the alternatives in Sect. 4. We present the
empirical size of the PCD tests in Sect. 5, empirical power under the alternatives in
Sect. 6, and asymptotic efficiency in Sect. 7. We propose a correction method for the
class 1 points outside the convex hull of class 2 points in Sect. 8 and illustrate the use
of the tests in an ecological data set in Sect. 9. We present discussion and conclusions
in Sect. 10.

2 The proximity map families and the associated PCDs

In the classical sense, random graphs were introduced by Erdős and Rényi (1959).
In the classical model, the vertices are fixed in the sense that they only serve as
end points of the edges, but edges are independently chosen and attached to the ver-
tices. Similarly, for the random digraphs, arcs (i.e., directed edges) are independently
inserted. More specifically, let n be a positive integer and [n] = {1,2, . . . , n}, and
let Gn (Dn) denote the set of all simple graphs G = (V ,E) (digraphs D = (V ,A))
with vertex set V = [n] and edge set E (arc set A). A random graph (digraph) is
a probability space of the form (G ,P ) ((D,P )) where P is a probability mea-
sure defined on Gn (Dn). In Erdős–Rényi graphs, each of the

(

n
2

)

edges appear in-

dependently of others with probability p. Hence P(G) = p|E|(1 − p)(
n
2)−|E| for

G ∈ Gn. The simplest digraph equivalent of Erdős–Rényi graphs is obtained if each
of the n(n − 1) arcs appear independently of others with probability p. Hence
P(D) = p|A|(1 − p)n(n−1)−|A| for D ∈ Dn.

Since their introduction, random graphs have been extended in various direc-
tions. For more detail, see Beer et al. (2010) who also classify random graphs as
edge random graphs, vertex random graphs, and edge-vertex random graphs based
on which component contains randomness. They call Erdős–Rényi graphs as edge
random graphs and its digraph counterpart can be labeled as edge random digraph.
Edge random graphs can further be extended, if the probability of an edge appearing
between vertices i and j equals p(i, j) which is not necessarily constant. A similar
extension can be provided for digraphs in a straightforward manner.

Vertex random graphs (digraphs) can be defined as follows. Let (Ω,μ) be a
probability space, ϕ : Ω × Ω → {0,1} be a symmetric function and ν : Ω ×
Ω → {0,1} be a function which is not necessarily symmetric. The vertex random
graph G(n,Ω,μ,ϕ) (or digraph D(n,Ω,μ,ν)) is the random graph (G ,P ) (or
digraph (D,P )) satisfying P(G) = ∫

I(G(x,ϕ) = G)μ(dx), G ∈ Gn (or P(D) =
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∫

I(D(x, ν) = D)μ(dx), D ∈ Dn) where I(·) stands for the indicator of a set, μ(dx)

stands for the product integrator μn(dx) = μ(dx1) · · ·μ(dxn) on Ωn, G(x,ϕ) is the
graph (or D(x, ν) is the digraph) with vertex set [n] such that for all i, j ∈ [n], i �= j ,
ij ∈ E iff ϕ(i, j) = 1 (or (i, j) ∈ A iff ν(i, j) = 1). Here actually G(·, ϕ) (or D(·, ν))
is a graph-valued (or digraph-valued) random variable on Ωn with probability as-
signment being done as the vertex random graph (or digraph) taking the value G

(or D).
If we let Ω be the set of real intervals and ϕ(i, j) = I(Ii ∩ Ij �= ∅), we obtain

the random interval graph. Also, letting Ω = R
k , if we take n points iid from some

probability distribution on Ω which is also equipped with a metric d , then taking
ϕ(x, y) = I(d(x, y) ≤ t) for some threshold t > 0, we obtain the random geometric
graphs. Notice that for random geometric graphs we are assigning edges to the ver-
tices deterministically, if the distance between the vertices are lower than a certain
threshold (i.e., ij ∈ E iff d(xi, xj ) ≤ t) but the vertices are randomly generated or
chosen in a metric space (see Penrose 2003 for an extensive treatment).

Our PCDs are vertex random digraphs where the vertices are randomly generated
or selected from a probability space and arcs are deterministically inserted between
vertices based on proximity regions around the vertices. We first define proximity
maps, regions and PCDs in a fairly general setting. For PCDs, the regions around
the vertices are based on the proximity maps which are defined as follows. For the
probability space (Ω,μ) with ℘(·) representing the power set function, the prox-
imity map N(·) : Ω → ℘(Ω) defines a proximity region N(x) ⊆ Ω for each point
x ∈ Ω . In our discussion hereinafter, we will have points from two classes, namely
classes 1 and 2. Let Xn ⊆ Ω be n points from class 1 and Ym ⊆ Ω be m points
from class 2. The region N(x) will be defined based on the dissimilarity between x

and Ym. Hence given Ym, we define the vertex random PCD, D(V,A), with vertex
set V = Xn = {X1,X2, . . . ,Xn} and arc set A by (Xi,Xj ) ∈ A iff Xj ∈ N(Xi). In
the above vertex random digraph setting, we would have ν(i, j) = I(Xj ∈ N(Xi)).
The term “proximity” comes from thinking of the region N(x) as representing
those points in Ω “close” to x and “catch” comes from N(u) catching v when-
ever v ∈ N(u). An extensive treatment of the proximity graphs is provided by Tous-
saint (1980) and Jaromczyk and Toussaint (1992). In the CCCD approach, we have
Ω = R

k and the points correspond to observations from class 1 and the sets (i.e.,
proximity regions) are defined to be (open) balls centered at the points with max-
imal radius (relative to the other class, i.e., class 2): N(x) = B(x, r(x)), where
r(x) = d(x,Ym) is the minimum Euclidean distance between the observation x ∈Xn

and the observations, Ym, from the other class (Priebe et al. 2001). Hence the proxim-
ity region for CCCD is also called spherical proximity region, and CCCD itself is also
called spherical PCD (Ceyhan 2010b). In the vertex random graph setting, we would
have ν(i, j) = I(Xj ∈ B(Xi, r(Xi))). Notice that PCDs can be viewed as an exten-
sion of random interval graphs to higher dimensions with proximity regions replacing
intervals. Moreover, PCDs can also be viewed as an extension of random geometric
graphs with varying regions around the vertices or by replacing the distance with a
dissimilarity, and the defining function being no longer symmetric (hence we have
arcs instead of edges).

Next, we briefly define PE and CS proximity maps and the associated PCDs. Here
the points correspond to observations from class 1 and the proximity regions are
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106 E. Ceyhan

defined to be (closed) regions based on class 1 and class 2 points; and the regions
increase in size as the distance of a class 1 point from the set of class 2 points in-
creases. The space is partitioned by the Delaunay tessellation of class 2 points which
is a triangulation in R

2. In each triangle, a family of PCDs is constructed based on
the relative positions of the class 1 points with respect to each other and to class 2
points. These proximity maps have the advantage that the calculations to obtain the
asymptotic distribution of the relative density are analytically tractable (Ceyhan et al.
2006, 2007).

For Ω = R
d , let Ym = {y1, y2, . . . , ym} be m given points from class 2 in general

position in R
d . The space, Rd , is partitioned by the Delaunay tessellation of class 2

points. Then, let Ti be the ith Delaunay cell for i = 1,2, . . . , Jm. Let Xn be a set of iid
random variables from distribution F and constitute class 1 points in R

d with support
S(F ) ⊆ CH (Ym) where CH (Ym) stands for the convex hull of Ym. In particular, for
illustrative purposes, we focus on R

2 where a Delaunay tessellation is a triangulation
provided that no more than three points in Ym are cocircular (i.e., lie on the same
circle). For simplicity, we consider the one triangle case first. Let Y3 = {y1, y2, y3}
be three non-collinear points in R

2 and T (Y3) = T (y1, y2, y3) be the triangle with
vertices Y3. Let Xn be a set of iid random variables from F with support S(F ) ⊆
T (Y3) and U(T (Y3)) be the uniform distribution on T (Y3). We adopt the convention
that random variables are represented with capital letters, while fixed quantities are
represented with lower case letters. Hence, in our setup, we assume Ym is given, i.e.,
it is a set of fixed class 2 points, while Xn is a set of random points from class 1.

The PE proximity maps are defined in detail in Ceyhan et al. (2006); we pro-
vide the definition briefly here for the sake of completeness. For the expansion pa-
rameter r ∈ [1,∞], we define the PE proximity map with expansion parameter r ,
denoted NPE(x, r) as follows; see also Fig. 1 (left). Using line segments from the
center of mass of T (Y3) to the midpoints of its edges, we partition T (Y3) into “ver-
tex regions” RV (y1), RV (y2), and RV (y3). For x ∈ T (Y3) \ Y3, let v(x) ∈ Y3 be the
vertex in whose region x falls, so x ∈ RV (v(x)). If x falls on the boundary of two
vertex regions, we assign v(x) arbitrarily to one of the adjacent regions. Let e(x)

be the edge of T (Y3) opposite v(x). Let 	(x) be the line parallel to e(x) through
x. Let d(v(x), 	(x)) be the Euclidean distance from v(x) to 	(x). For r ∈ [1,∞),
let 	r(x) be the line parallel to e(x) such that d(v(x), 	r (x)) = rd(v(x), 	(x)) and
d(	(x), 	r (x)) < d(v(x), 	r (x)). Let TPE(x, r) be the triangle similar to and with the
same orientation as T (Y3) having v(x) as a vertex and 	r(x) as the opposite edge.
Then the PE proximity region NPE(x, r) is defined to be TPE(x, r) ∩ T (Y3). Notice
that r ≥ 1 implies x ∈ NPE(x, r). Note also that limr→∞ NPE(x, r) = T (Y3) for all
x ∈ T (Y3) \ Y3, so we define NPE(x,∞) = T (Y3) for all such x. For x ∈ Y3, we
define NPE(x, r) = {x} for all r ∈ [1,∞].

Define NCS(x, τ ) to be the CS proximity map with expansion parameter τ as
follows; see also Fig. 1 (right). The CS proximity maps were previously defined with
expansion parameter τ ≤ 1 (Ceyhan et al. 2007). Below, we provide a definition for a
much wider range of the expansion parameter τ ∈ (0,∞]. Let ej be the edge opposite
vertex yj for j = 1,2,3, and let “edge regions” RE(e1), RE(e2), RE(e3) partition
T (Y3) using line segments from the center of mass of T (Y3) to the vertices. For
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Comparison of relative density of two random geometric digraph 107

Fig. 1 Plotted on the left is the illustration of the construction of PE proximity region, NPE(x, r = 2)

(shaded region) for an x ∈ RV (y1) where d1 = d(v(x), 	(v(x), x)) and d2 = d(v(x), 	2(x)) =
2d(v(x), 	(x)); and on the right is the illustration of the construction of CS proximity region,
NCS(x, τ = 1/2) (shaded region) for an x ∈ RE(e3) where h2 = d(x, eτ

3 (x)) = 1
2 d(x, e(x)) and

h1 = d(x, e(x))

x ∈ (T (Y3))
o, let e(x) be the edge in whose region x falls; x ∈ RE(e(x)). If x falls

on the boundary of two edge regions we assign e(x) arbitrarily. For τ > 0, the CS
proximity region NCS(x, τ ) is defined to be the triangle TCS(x, τ ) ∩ T (Y3) with the
following properties:

(i) For τ ∈ (0,1], the triangle TCS(x, τ ) has an edge eτ (x) parallel to e(x) such
that d(x, eτ (x)) = τ d(x, e(x)) and d(eτ (x), e(x)) ≤ d(x, e(x)) and for τ > 1,
d(eτ (x), e(x)) < d(x, eτ (x)) where d(x, e(x)) is the Euclidean distance from x

to e(x);
(ii) The triangle TCS(x, τ ) has the same orientation as and is similar to T (Y3); and

(iii) The point x is at the center of mass of TCS(x, τ ).

Notice that τ > 0 implies that x ∈ NCS(x, τ ) and, by construction, we have
NCS(x, τ ) ⊆ T (Y3) for all x ∈ T (Y3). Let ∂(·) stand for the boundary of a given
region. Then, for x ∈ ∂(T (Y3)) and τ ∈ (0,∞], we define NCS(x, τ ) = {x}. For
all x ∈ T (Y3)

o the edges eτ (x) and e(x) are coincident iff τ = 1. Note also that
limτ→∞ NCS(x, τ ) = T (Y3) for all x ∈ (T (Y3))

o, so we define NCS(x,∞) = T (Y3)

for all such x.

Remark 2.1 Notice that Xi
iid∼ F , with the additional assumption that the non-

degenerate two-dimensional probability density function f exists with support in
T (Y3), implies that the special case in the construction of NPE(·, r)—X falls on the
boundary of two vertex regions—occurs with probability zero; similarly, the special
case in the construction of NCS(·, τ )—X falls on the boundary of two edge regions—
occurs with probability zero also.

3 The asymptotic distribution of relative density

The relative density of a digraph D = (V ,A) of order |V | = n, denoted ρ(D), is de-
fined as
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108 E. Ceyhan

ρ(D) = |A|
n(n − 1)

where | · | stands for set cardinality (Janson et al. 2000). Thus ρ(D) represents the
ratio of the number of arcs in the digraph D to the number of arcs in the complete

symmetric digraph of order n, which is n(n − 1). If X1,X2, . . . ,Xn
iid∼ F , then the

relative density of the associated data-random PCD, denoted ρ(Xn;h,N), is shown
to be a U -statistic (Ceyhan et al. 2006, 2007),

ρ(Xn;h,N) = 1

n(n − 1)

∑∑

i<j

hij (1)

where

hij := h(Xi,Xj ;N) = I
{

(Xi,Xj ) ∈ A
} + I

{

(Xj ,Xi) ∈ A
}

= I
{

Xj ∈ N(Xi)
} + I

{

Xi ∈ N(Xj )
}

.

Since the digraph is asymmetric, hij is defined as the number of arcs in D be-
tween vertices Xi and Xj , in order to produce a symmetric kernel with finite vari-
ance (Lehmann 1988). Moreover, by a central limit theorem (CLT) for U -statistics
(Lehmann 1988), it has been proved that

√
n
(

ρn − E[ρn]
) L−→N

(

0,Cov[h12, h13]
)

(2)

provided Cov[h12, h13] > 0 where N (μ,σ 2) stands for the normal distribution with
mean μ and variance σ 2 and E[ρn] = 1

2 E[h12] (Ceyhan et al. 2006, 2007).

3.1 The one triangle case

For simplicity, we consider that three non-collinear points Y3 = {y1, y2, y3} forming
a triangle T (Y3) and class 1 points are iid uniform in T (Y3). The null hypothesis is
a type of complete spatial randomness (CSR), that is,

Ho : Xi
iid∼ U

(

T (Y3)
)

for i = 1,2, . . . , n. (3)

We first present a “geometry invariance” result that will simplify our subsequent
analysis by allowing us to consider the special case of the equilateral triangle.

Theorem 3.1 (Geometry invariance for uniform data) Let Y3 = {y1, y2, y3} ⊂ R
2 be

three non-collinear points. For i = 1,2, . . . , n, let Xi
iid∼ F = U(T (Y3)). Then

(i) For any r ∈ [1,∞], the distribution of relative density of PE-PCDs, ρPE(n, r), is
independent of Y3, hence the geometry of T (Y3).

(ii) For any τ ∈ (0,∞], the distribution of relative density of CS-PCDs, ρCS(n, τ ), is
independent of Y3, hence the geometry of T (Y3).
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The proof is provided in Sect. 1 of the Online Resource 1.
In fact, the geometry invariance of ρPE(n,∞) (or ρCS(n,∞)) for data from any

continuous distribution on T (Y3) follows trivially, since for r = ∞ (or τ = ∞),
we have ρPE(n, r) = 1 (or ρCS(n, τ ) = 1) almost surely (a.s.) (i.e., its distribu-
tion is degenerate). Based on the geometry invariance for uniform data, we may
assume that T (Y3) is a standard equilateral triangle, Te, with vertices Y3 =
{(0,0), (1,0), (1/2,

√
3/2)} henceforth.

The CLT for U -statistics establishes the asymptotic normality under the uniform
null hypothesis. For our proximity maps and uniform null hypothesis, the asymptotic
null distribution of ρPE(n, r) (or ρCS(n, τ )) can be derived as a function of r (or τ ).
Let μPE(r) := E[ρPE(n, r)] and νPE(r) := Cov[h12, h13] where hij is the symmetric
kernel in (1) for PE-PCDs. Notice that μPE(r) = E[h12]/2 = P(X2 ∈ NPE(X1, r)) is
the probability of an arc occurring between any pair of vertices, hence is also called
the arc probability. Similarly, let μCS(τ ) := E[ρCS(n, τ )], then μCS(τ ) = P(X2 ∈
NCS(X1, τ )) and let νCS(τ ) := Cov[˜h12,˜h13] where ˜hij is the symmetric kernel for
CS-PCDs.

By detailed geometric probability calculations, the means and the asymptotic vari-
ances of the relative density of the PE-PCDs were calculated explicitly and pre-
sented below for completeness (details of their derivation is provided in Ceyhan et al.
2006).

Theorem 3.2 For r ∈ [1,∞),

√
n (ρPE(n, r) − μPE(r))√

νPE(r)

L−→N (0,1) (4)

where

μPE(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

37
216 r2 for r ∈ [1,3/2),

− 1
8 r2 + 4 − 8r−1 + 9

2 r−2 for r ∈ [3/2,2),

1 − 3
2 r−2 for r ∈ [2,∞),

(5)

and

νPE(r) = ν1(r) I
(

r ∈ [1,4/3)
) + ν2(r) I

(

r ∈ [4/3,3/2)
) + ν3(r) I

(

r ∈ [3/2,2)
)

+ ν4(r) I
(

r ∈ [2,∞]) (6)

with

ν1(r) = [

3007 r10 − 13824 r9 + 898 r8 + 77760 r7 − 117953 r6 + 48888 r5

− 24246 r4 + 60480 r3 − 38880 r2 + 3888
] / [

58320 r4],

ν2(r) = [

5467 r10 − 37800 r9 + 61912 r8 + 46588 r6 − 191520 r5 + 13608 r4

+ 241920 r3 − 155520 r2 + 15552
] / [

233280 r4],
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ν3(r) = −[

7 r12 − 72 r11 + 312 r10 − 5332 r8 + 15072 r7 + 13704 r6 − 139264 r5

+ 273600 r4 − 242176 r3 + 103232 r2 − 27648 r + 8640
] / [

960 r6],

ν4(r) = 15 r4 − 11 r2 − 48 r + 25

15 r6
.

For r = ∞, ρPE(n, r) is degenerate.

The means and asymptotic variances for CS-PCDs were previously calculated for
τ ∈ (0,1] (Ceyhan et al. 2007). Here we extend the result for τ > 1 as well (see
Sect. 2 of Online Resource 1).

Theorem 3.3 For τ ∈ (0,∞),
√

n(ρCS(n, τ ) − μCS(τ ))√
νCS(τ )

L−→N (0,1) (7)

where

μCS(τ ) =
{

τ 2

6 for τ ∈ (0,1],
τ (4 τ−1)

2(1+2 τ)(2+τ)
for τ ∈ (1,∞),

(8)

and

νCS(τ ) =
⎧

⎨

⎩

τ 4(6 τ 5−3 τ 4−25 τ 3+τ 2+49 τ+14)
45 (τ+1)(2 τ+1)(τ+2)

for τ ∈ (0,1],
168 τ 7+886 τ 6+1122 τ 5+45 τ 4−470 τ 3−114 τ 2+48 τ+16

5(2 τ+1)4(τ+2)4 for τ ∈ (1,∞).
(9)

For τ = 0, ρCS(n, τ ) is degenerate.

The forms of the mean function are depicted together in Fig. 2 (left). Note that
μPE(r) is monotonically increasing in r , since NPE(x, r) increases in size with r

for all x ∈ RV (yj ) \ RS(NPE(·, r),MC), where RS(NPE(·, r),MC) := {x ∈ T (Y3) :
NPE(x, r) = T (Y3)}. In addition, μPE(r) → 1 as r → ∞ at rate O(r−2), since the di-
graph becomes complete in the limit, which explains why ρPE(n, r) becomes degen-
erate, i.e., νPE(r = ∞) = 0. μPE(r) is continuous, with the value at r = 1, μPE(1) =
37/216 ≈ 0.17. Note also that μCS(τ ) is monotonically increasing in τ , since
NCS(x, τ ) increases in size with τ for all x ∈ RE(ej ) \ RS(NCS(·, τ ),MC), where
RS(NCS(·, τ ),MC) := {x ∈ T (Y3) : NCS(x, τ ) =
T (Y3)}. Note also that μCS(τ ) is continuous in τ with μCS(τ = 1) = 1/6 and
limτ→0 μCS(τ ) = 0. In addition, μCS(τ ) → 1 as τ → ∞ at rate O(τ−1), so ρCS(n, τ )

becomes degenerate as τ → ∞. Observe also that μPE(r) > μCS(τ ) for all r ∈ [1,∞)

and τ ∈ (0,∞).
The asymptotic variance functions are depicted together in Fig. 2 (right). Note that

νPE(r) is also continuous in r with limr→∞ νPE(r) = 0 and νPE(1) = 34/58320 ≈
0.0006 and observe that supr≥1 νPE(r) ≈ 0.13 which is attained at r ≈ 2.045. Note
also that νCS(τ ) is continuous in τ with limτ→∞ νCS(τ ) = 0 and ν(τ = 1) = 7/135
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Fig. 2 Asymptotic null means (i.e., arc probabilities) (left) and variances (right) as a function of the
expansion parameters for relative density of PE-PCDs (solid line) and CS-PCDs (dashed line). The vertical
lines indicate the endpoints of the intervals in the piecewise definition of the functions. Notice that the
vertical and horizontal axes are differently scaled

and limτ→0 νCS(τ ) = 0—there are no arcs when τ = 0 a.s.—which explains why the
limiting distribution of ρCS(n, τ ) becomes degenerate as τ goes to zero. Moreover,
supτ>0 νCS(τ ) ≈ 0.18 which is attained at τ ≈ 4.0051. Observe also that νCS(τ ) >

νPE(r) for all r ∈ [1,∞) and τ ∈ (0,∞).
The finite sample variance and skewness of ρPE(n, r) and ρCS(n, τ ) can be de-

rived analytically in much the same way as were asymptotic variances. In particular,
the variances of h12 for PE-PCDs and CS-PCDs are derived and presented in the
technical report Ceyhan (2010a).

3.2 The multiple triangle case

In this section, we present the asymptotic distribution of the relative density for class 1
points in multiple triangles. Suppose Ym = {y1, y2, . . . , ym} ⊂ R

2 is a set of m points
in general position with m > 3 and no more than three points are cocircular. As a
result of the Delaunay triangulation of Ym (Okabe et al. 2000), there are Jm > 1 De-
launay triangles denoted as Tj , for j = 1,2, . . . , Jm. The Delaunay triangles partition
the convex hull of Ym. We wish to investigate

Ho : Xi
iid∼ U

(

CH (Ym)
)

for i = 1,2, . . . , n (10)

against segregation and association alternatives (see Sect. 4). Figure 3 presents a real-
ization of 1000 observations independent and identically distributed as U(CH (Ym))

for m = 10 and Jm = 13.
For Jm > 1 (i.e., m > 3), as in Sect. 2, let ρ̃PE(n,m, r) = |A|/(n (n − 1)) be the

relative density for the PE-PCD in the multiple triangle case. Let ρ̃CS(n,m, τ) be de-
fined similarly for the CS-PCD. The asymptotic normality of the relative density of
PE-PCDs and CS-PCDs (with τ ∈ (0,1]) is provided in Ceyhan et al. (2006, 2007),
respectively. The result for CS-PCDs with τ > 1 follows similarly (see Ceyhan
2010a).

Let ni be the number of class 1 points in Ti for i = 1,2, . . . , Jm. Letting wi =
A(Ti)/A(CH (Ym)) with A(·) being the area function and W = {w1,w2, . . . ,wJm},
we obtain the following as a corollary to Theorems 3.2 and 3.3.
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Fig. 3 A realization of

Ho : Xi
iid∼ U(CH (Ym)) for

i = 1,2, . . . , n for |Ym| = 10
points with n = 1000 class 1
points generated iid in the
convex hull of Ym

Corollary 3.4 For r ∈ [1,∞], the asymptotic distribution for ρ̃PE(n,m, r) condi-
tional on W is given by

√
n
(

ρ̃PE(n,m, r) − μ̃PE(m, r)
) L−→N

(

0,4 ν̃PE(m, r)
)

, (11)

as n → ∞, where μ̃PE(m, r) = μPE(r)(
∑Jm

i=1 w2
i ) and

ν̃PE(m, r) =
[

νPE(r)

(

Jm
∑

i=1

w3
i

)

+ (

μPE(r)
)2

(

Jm
∑

i=1

w3
i −

(

Jm
∑

j=1

w2
i

)2)]

with μPE(r) and νPE(r) being as in (5) and (6), respectively. The asymptotic distri-
bution of ρ̃CS(n,m, τ) with τ ∈ (0,∞] is similar.

See Sect. 3 of the Online Resource 1 for the proof.
By an appropriate application of the Jensen’s inequality, we see that

∑Jm

i=1 w3
i ≥

(
∑Jm

i=1 w2
i )

2. So the covariance above is zero iff νPE(r) = 0 and
∑Jm

i=1 w3
i =

(
∑Jm

i=1 w2
i )

2, so asymptotic normality may hold even though νPE(r) = 0 in the multi-
ple triangle case. That is, ρ̃PE(n,m, r) has the asymptotic normality even for r = ∞
provided that

∑Jm

i=1 w3
i > (

∑Jm

i=1 w2
i )

2. The same holds for τ = ∞ in the central sim-
ilarity case.

4 Parameterization of the alternative patterns: segregation and association

Spatial interaction among species (including segregation and association of species)
also has important consequences and potential for applicability in biodiversity the-
ory (Illian and Burslem 2007). Many procedures are suggested for spatial clustering
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Fig. 4 An example for the
segregation alternative with a
particular expansion parameter ε

(shaded region), and its
complement is for the
association alternative with
expansion parameter

√
3/3 − ε

(unshaded region) on the
standard equilateral triangle

based on count data (see, e.g., Jung and Kulldorff 2007). In a two-class setting, the
phenomenon known as segregation occurs when members of one class have a ten-
dency to repel members of the other class. For instance, it may be the case that one
type of plant does not grow well in the vicinity of another type of plant, and vice
versa. This implies, in our notation, that Xi are unlikely to be located near elements
of Ym. Alternatively, association occurs when members of one class have a tendency
to attract members of the other class, as in symbiotic species, so that Xi will tend to
cluster around the elements of Ym. See, for instance, Dixon (1994) and Coomes et al.
(1999).

Under association, the defining proximity regions tend to be small, and hence
there should be fewer arcs; while under segregation, the proximity regions tend to
be larger and cover many points, resulting in many arcs. Thus, the relative density
is a reasonable statistic to employ in this problem. Unfortunately, in the case of the
CCCD, it is difficult to make precise calculations in multiple dimensions due to the
geometry of the neighborhoods.

In the basic triangle, Tb , we define the alternatives HS
ε and HA

ε with ε ∈ (0,
√

3/3),
for segregation and association alternatives, respectively. Under HS

ε , 4ε2/3 × 100 %
of the area of Tb is chopped off around each vertex so that the class 1 points are
restricted to lie in the remaining region. Let Tε be the union of the triangular regions
around the vertices as illustrated in Fig. 4. Below, we have the parametrization of the
distribution families under the alternatives:

U S
ε := {

F : F = U(Tb \ Tε)
}

and U A
ε := {

F : F = U(T√
3/3−ε

)
}

. (12)

See Ceyhan (2010a) for the explicit forms of the support regions under the alterna-
tives. These alternatives HS

ε and HA
ε with ε ∈ (0,

√
3/3) can be transformed into the

equilateral triangle as in Ceyhan et al. (2006, 2007).
For the standard equilateral triangle, we have εi = ε for i = 1,2,3 in Tj (ε) =

{x ∈ Te : d(y, 	j (x)) ≤ εj }. Thus HS
ε implies Xi

iid∼ U(Te \ Tε) and HA
ε be the model

under which Xi
iid∼ U(T√

3/3−ε
). See Fig. 4 for a depiction of the above segregation

and the association alternatives in Te.
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Fig. 5 Realization of segregation (left) and association (right) with n = 1000 class 1 points for |Ym| = 10
points as in Fig. 3

The geometry invariance result also holds under the alternatives HS
ε and HA

ε for
both PCD families (see Ceyhan 2010a). In particular, the segregation alternative with
ε ∈ (0,

√
3/4) in the standard equilateral triangle corresponds to the case that in an

arbitrary triangle, κ × 100 % of the area is carved away as forbidden from the ver-
tices using line segments parallel to the opposite edge where κ = 4ε2 (which implies
κ ∈ (0,3/4)). This argument is for the segregation alternative with ε ∈ (0,

√
3/4); a

similar construction is available for the other cases. In the multiple triangle case, the
segregation and association alternatives, HS

ε and HA
ε with ε ∈ (0,

√
3/3), are defined

as in the one-triangle case, in the sense that, when each triangle (together with the
data inside it) is transformed to the standard equilateral triangle, we obtain the same
alternative pattern described above.

Thus in the case of Jm > 1, we have a (conditional) test of Ho : Xi
iid∼ U(CH (Ym)).

The segregation (with κ = 1/16, i.e., ε = √
3/8), and association (with κ = 1/4, i.e.,

ε = √
3/12) realizations are depicted in Fig. 5 with n = 1000.

Remark 4.1 There are many possible types of parameterizations for the alternatives.
The particular parametrization of the alternatives in (12) is chosen so that the distri-
bution of the relative density under the alternatives would also be geometry invariant
(i.e., independent of the geometry of the support polygons). The more natural alterna-
tives (i.e., the alternatives that are more likely to be found in practice) can be similar
to or might be approximated by our parametrization. Because under a segregation al-
ternative, the class 1 points will tend to be further away from class 2 points and under
an association alternative, class 1 points will tend to cluster around the class 2 points.
Such patterns can be detected by the test statistics based on the relative density, since
under segregation (whether it is parameterized as above or not) we expect them to
be larger, and under association (regardless of the parametrization) they tend to be
smaller.
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4.1 Consistency

Asymptotic normality of relative density of the PCDs under both alternative hypothe-
ses of segregation and association were established by the same method as under the
null hypothesis. In particular, asymptotic normality of relative density of PE-PCDs
under the alternatives is proved in Ceyhan et al. (2006), while that for CS-PCDs for
τ ∈ (0,1] is proved in Ceyhan et al. (2007). The proof for τ ∈ (1,∞) follows the
same mechanism.

The relative density of the PCD is a test statistic for the segregation/association al-
ternative; rejecting for extreme values of ρPE(n, r) is appropriate, since under segre-
gation, we expect ρPE(n, r) to be larger, while under association, we expect ρPE(n, r)

to be smaller compared that under CSR.
In the one triangle case, using the standardized test statistic

RPE(r) =
√

n(ρPE(r) − μPE(r))√
νPE(r)

, (13)

the asymptotic critical value for the one-sided level α test against segregation is
given by zα = Φ−1(1 − α) where Φ(·) is the standard normal distribution func-
tion. Against segregation, the test rejecting for RPE(r) > zα and against associa-
tion, the test rejecting for RPE(r) < z1−α was shown to be consistent (Ceyhan et al.
2006). The same holds for the standardized test statistic in the multiple triangle case,
˜RPE(r) =

√
n(ρ̃PE(n,r)−μ̃PE(r))√

ν̃PE(r)
.

A similar construction is available for ρCS(n, τ ) and consistency for τ ∈ (0,1] was
established in Ceyhan et al. (2007), consistency for τ > 1 can be proved similarly.

5 Empirical size analysis under CSR

In one triangle case, for the null pattern of CSR, we generate n class 1 points iid
U(Te) where Te is the standard equilateral triangle. We calculate the relative density
of PE-PCDs for r = 1,11/10,6/5,4/3,

√
2,3/2,2,3,5,10, and that of CS-PCDs for

τ = 0.2,0.4,0.6, . . . ,3.0,3.5,4.0, . . . ,20.0 at each Monte Carlo replicate. We repeat
the Monte Carlo procedure Nmc = 10000 times for each of n = 10,50,100. Using
the critical values based on the normal approximation for the relative density, we
calculate the empirical size estimates for both right-sided (i.e., for segregation) and
left-sided (i.e., for association) tests as a function of the expansion parameters. Let

RPE(r, j) :=
√

n (ρPE(n,r,j)−μPE(r))√
νPE(r)

be the standardized relative density for PE-PCD for
Monte Carlo replicate j with sample size n for j = 1,2, . . . ,Nmc. We estimate the
empirical size against the segregation alternative as 1

Nmc

∑Nmc

j=1 I(RPE(r, j) > zα), and

against the association alternative as 1
Nmc

∑Nmc

j=1 I(RPE(r, j) < −zα). For CS-PCDs,
the standardized relative density RCS(τ, j), asymptotic critical value, and empirical
size are defined and calculated similarly. The empirical sizes significantly smaller
(larger) than 0.05 are deemed conservative (liberal). The asymptotic normal approxi-
mation to proportions is used in determining the significance of the deviations of the
empirical sizes from 0.05. For these proportion tests, we also use α = 0.05 as the
significance level. With Nmc = 10000, empirical sizes less than 0.0464 are deemed
conservative, greater than 0.0536 are deemed liberal at α = 0.05 level.
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Fig. 6 The empirical size estimates of the relative density of the PE-PCDs (left) and CS-PCDs (right) in
the one triangle case based on 10000 Monte Carlo replicates for the right-sided alternative, (i.e., relative
to segregation) (top) and the left-sided alternative, (i.e., relative to association) (bottom) with n = 100

under the CSR pattern (i.e., under Ho : Xi
iid∼ U(Te) for i = 1,2, . . . , n). The horizontal lines are located

at 0.0464 (upper threshold for conservativeness), 0.050 (nominal level), and 0.0536 (lower threshold for
liberalness). Notice that the vertical and horizontal axes are differently scaled for the two PCD families

The empirical sizes together with upper and lower bounds of liberalness and con-
servativeness are plotted in Fig. 6 for n = 100. We only present the empirical size
results for n = 100 in the one triangle case. The results for other n values are de-
ferred to the technical report Ceyhan (2010a).

With PE-PCDs, for the right-sided tests (i.e., relative to segregation) the size is
close to the nominal level for r ∈ (2,3), for smaller r values (i.e., r < 2), the test
seems to be liberal with liberalness increasing as r decreases; and for larger r values
(i.e., r > 3), the test seems to be conservative with conservativeness increasing as r

increases. For the left-sided tests (i.e., relative to association) the size is close to the
nominal level for r ∈ (1.5,3), for other r values the test seems to be liberal (more
liberal for smaller r values). This is due to the fact that very large and small values of
r require much larger sample sizes for the normal approximation to hold.

With CS-PCDs, for the right-sided tests, the size is close to the nominal level for
τ ∈ (5,14) and closest to 0.05 for τ ≈ 5 or τ ∈ (7,9) for all sample sizes; for smaller
τ values (i.e., τ � 4.5) the test seems to be liberal with liberalness increasing as τ de-
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Fig. 7 The empirical size estimates of the relative density of the PE-PCDs (left) and CS-PCDs (right) in
the multiple triangle case based on 1000 Monte Carlo replicates under the segregation alternative (top)
and the association alternative (bottom) with n = 1000 under the CSR pattern. The horizontal lines are
located at 0.039 (upper threshold for conservativeness), 0.050 (nominal level), and 0.061 (lower threshold
for liberalness). The vertical and horizontal axes are differently scaled for the two PCD families

creases; and for τ � 15 and the test is slightly conservative for n = 100. Considering
all sample sizes (see the technical report Ceyhan 2010a), we recommend τ ∈ (5,10)

for testing against segregation. For the left-sided alternative, the test has the desired
size for τ ∈ (2,15). With all sample sizes, the test seems to be conservative (slightly
liberal) for smaller (larger) τ values. Considering all sample sizes, we recommend
τ ∈ (2.5,5) for testing against association. The range of appropriate τ values gets
wider with the increasing sample size and very large and small values of τ require
much larger sample sizes for the normal approximation to hold.

In the multiple triangle case, for the null pattern of CSR, we generate n class 1
points iid U(CH (Y10)) where Y10 is the set of the 10 class 2 points given in Fig. 3.
With Nmc = 1000, empirical sizes less than 0.039 are deemed conservative and those
greater than 0.061 are deemed liberal at α = 0.05 level.

The empirical sizes for the PCDs together with upper and lower bounds of liber-
alness and conservativeness are plotted in Fig. 7 for n = 1000. Observe that in the
multiple triangle case (which is more realistic than the one triangle case), the em-
pirical sizes are much closer to the nominal level compared to the one triangle case.
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With PE-PCDs, for the right-sided alternative (i.e., against segregation), the size is
about the nominal level for r ∈ (1.5,3), and for the left-sided alternative (i.e., against
association), the size is about the nominal level for r ∈ (1.1,2). Furthermore, al-
though the empirical sizes for both right- and left-sided alternatives are about the
desired level for r values between 1.5 and 2, it seems that they are not very far from
the nominal level for r ∈ (1.5,10). The test seems to be liberal for the segregation
alternative and conservative for the association alternative, when not at the desired
level.

With CS-PCDs, the empirical sizes are much closer to the nominal level com-
pared to the one triangle case also. Furthermore, for the right-sided alternative with
n = 1000, the test has the desired level for τ ≥ 2. Considering all sample sizes, we
recommend τ ∈ (2.5,8) for testing against segregation. For the left-sided alternative
with n = 1000, τ ≥ 0.5 seems to yield the appropriate level. Considering all sample
sizes, we recommend τ ∈ (0.5,20) for testing against association.

Remark 5.1 Empirical size comparison for the PCD families: In the one triangle case,
the size estimates for the CS-PCD is close to the nominal level of 0.05 against the
segregation alternative for more of the expansion parameter values considered. On
the other hand, the size estimates against association are close to the nominal level
for both PCD families, but the size estimates for CS-PCD is closer to the nominal
level. In the multiple triangle case, the size performance of the two PCD families
is similar and the size estimates are close to the nominal level for both one-sided
alternatives.

6 Empirical power analysis under the alternatives

To compare the power performance of the test statistics under the alternatives, we
generate n class 1 points uniformly in the corresponding support sets described in
Sect. 4.

6.1 Empirical power analysis under the segregation alternative

In the one triangle case, at each Monte Carlo replicate under segregation, HS
ε , we

generate Xi
iid∼ U(Te \Tε), for i = 1,2, . . . , n for n = 10,50,100 and compute the rel-

ative density of the PCDs. We consider r ∈ {1,11/10,6/5,4/3,
√

2,3/2,2,3,5,10}
for the PE-PCD and τ ∈ {0.2,0.4,0.6, . . . ,3.0,3.5,4.0, . . . ,20.0} for the CS-
PCD. We repeat the above simulation procedure Nmc = 10000 times. We consider
ε ∈ {√3/8,

√
3/4,2

√
3/7} (which correspond to 18.75 %, 75 %, and 4500/49 ≈

91.84 % of the triangle (around the vertices) being unoccupied by the class 1 points,
respectively) under the segregation alternatives.

For PE-PCDs, under segregation alternatives with ε > 0, the distribution of
ρPE(n, r) is degenerate for large values of r . For a given ε ∈ (0,

√
3/4), the cor-

responding digraph is complete a.s. when r ≥
√

3
2ε

, hence ρPE(n, r) = 1 a.s. For

ε ∈ (
√

3/4,
√

3/3), the corresponding digraph is complete a.s., when r ≥
√

3−2ε
ε

.

Author's personal copy



Comparison of relative density of two random geometric digraph 119

In particular, for ε = √
3/8, ρPE(n, r) is degenerate when r ≥ 4, for ε = √

3/4,
ρPE(n, r) is degenerate when r ≥ 2, and for ε = 2

√
3/7, ρPE(n, r) is degenerate

when r ≥ 3/2. Such a problem does not occur for CS-PCDs.
For a given alternative and sample size, we analyze the empirical power of the test

based on ρPE(n, r) and ρCS(n, τ )—using the asymptotic critical value—as a function
of the expansion parameters r and τ , respectively. We estimate the empirical power
for PE-PCDs as 1

Nmc

∑Nmc

j=1 I(RPE(r, j) > zα). The empirical power for CS-PCDs is
estimated similarly.

In Fig. 8, we present Monte Carlo power estimates for relative density of the PCDs
in the one triangle case as a function of expansion parameters for n = 10,50,100
against HS√

3/4
only. Notice that, for PE-PCDs, Monte Carlo power estimate increases

as r gets larger and then decreases, due to the magnitude of r and n. Because for
small n and large r , the critical value is approximately 1 under Ho, as we get a com-
plete digraph with high probability. Under moderate segregation (with ε = √

3/4),
r around 1.5 to 5 yields the highest power (for other r values, the power performance
is very poor). Furthermore, under moderate to severe segregation, with n = 10 the
power estimate seems to be close to 1 for r ∈ (1,4), and with n = 50 or 100 the
power estimate seems to be close to 1 for r ∈ (1,5). However, the power estimates
are valid only for r within (2,3), since the test has the desired size for this range
of r values against the right-sided alternative. So, for small sample sizes, r ≈ 1.5 is
recommended, and for larger sample sizes, moderate values of r (i.e., r ∈ (2,3)) are
recommended for the segregation alternative as they are more appropriate for normal
approximation and they yield the desired significance level.

For CS-PCDs, Monte Carlo power estimate increases as τ gets larger or n gets
larger. With n = 10, the power estimates are high for τ ∈ (5,14) and virtually 0 for
τ ≥ 14. With n = 50 or 100, the power values are high for τ ≥ 1, with highest power
occurring around τ ≈ 8. However, for τ ≥ 6, the power values are virtually same.
Considering the empirical size estimates, we recommend τ ≈ 8 for mild segregation,
and τ ≈ 5 for more severe segregation alternatives.

In the multiple triangle case, we generate the class 1 points uniformly in the sup-
port for the segregation alternatives in the triangles based on the 10 class 2 points
given in Fig. 3. We use the parameters ε ∈ {√3/8,

√
3/4,2

√
3/7}. The correspond-

ing empirical power estimates as a function of expansion parameters r and τ (using
the normal approximation) are presented in Fig. 9 for ε = √

3/4 for n = 500 and
n = 1000. Observe that, for PE-PCDs, the Monte Carlo power estimate increases as
r gets larger and then decreases, as in the one triangle case. The empirical power is
maximized for r ∈ (1.5,2) under mild segregation, and for r ∈ (1.5,3) under moder-
ate to severe segregation. Considering the empirical size and power estimates, r ≈ 1.5
is recommended under mild segregation, while r ∈ (2,3) seems to be more appropri-
ate (hence recommended for more severe segregation), since the corresponding test
has the desired level with high power.

For CS-PCDs, the Monte Carlo power estimate tends to increase as τ gets larger.
Under mild segregation with ε = √

3/8, the empirical power is large for τ ≥ 2 with
largest being around τ ∈ (4,8). Under moderate to severe segregation, the empirical
power is virtually one for τ ≥ 0.4. Considering the empirical size and power esti-
mates, τ ≈ 7 seems to be more appropriate (hence recommended for segregation),
since the corresponding test has the desired level with highest power.
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Fig. 9 Empirical power estimates under segregation in the multiple triangle case for PE-PCDs (top) and
CS-PCDs (bottom) using the asymptotic critical value against segregation alternative HS√

3/4
as a function

of expansion parameters for n = 500 (left) and n = 1000 (right)

6.2 Empirical power analysis under the association alternative

In the one triangle case, at each of Nmc = 10000 Monte Carlo replicates under asso-

ciation, HA
ε , we generate Xi

iid∼ U(T√
3/3−ε

), for i = 1,2, . . . , n for n = 10,50,100.
Unlike the segregation alternatives, the distribution of ρPE(n, r) is non-degenerate for
all ε ∈ (0,

√
3/3) and r ∈ [1,∞). We consider ε ∈ {5√

3/24,
√

3/12,
√

3/21} (which
correspond to 18.75 %, 75 %, and 4500/49 ≈ 91.84 % of the triangle being occupied
around the class 2 points by the class 1 points, respectively) for the association alter-
natives.

Under association, for each r value, we estimate the empirical power as
1

Nmc

∑Nmc

j=1 I(RPE(r, j) < −zα). The asymptotic critical value and empirical power
for CS-PCDs are similarly defined. In Fig. 10, we present Monte Carlo power esti-
mates for relative density of the PCDs in the one triangle case against HA

5
√

3/24
as

a function of r for n = 10,50,100. Notice that, for PE-PCDs, Monte Carlo power
estimate increases as r gets larger and then decreases, as in the segregation case.
Because for small n and large r , the critical value is approximately one under Ho, as
we get a nearly complete digraph with high probability. Highest power is attained for
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r ≈ 2, which is recommended against the association, as it yields the desired level
with high power.

For CS-PCDs, under mild association and small n, highest power is attained
around τ ≈ 3, under mild association with large n, power increases as τ increases.
For moderate to severe association and large n, power is virtually one for all the τ

values we considered. Considering the empirical size and power performances, we
recommend τ ≈ 5, as it has the desired level and high power.

In the multiple triangle case, we generate the class 1 points uniformly in the sup-
port for the association alternatives in the triangles based on the 10 class 2 points
given in Fig. 3. We use the parameters ε ∈ {5√

3/24,
√

3/12,
√

3/21}. The corre-
sponding empirical power estimates as a function of r (using the normal approxima-
tion) are presented in Fig. 11 for ε = 5

√
3/24 for n = 500 and n = 1000. Observe

that, for PE-PCDs, the Monte Carlo power estimate decreases as r gets larger unlike
the one triangle case. The empirical power is large (i.e., close to one) for r ∈ (1,5).
Considering the empirical size estimates, we recommend r ≈ 2 for association alter-
native, since the corresponding test has the desired level with high power.

For CS-PCDs, the Monte Carlo power estimate tends to decrease as τ gets larger.
The empirical power is maximized for τ ≤ 1. Considering the empirical size and
power estimates, we recommend τ ≈ 1 for association, since the corresponding test
has the desired level with high power.

We only present the empirical power results under some of the alternatives in
the one and multiple triangle cases. For the results under other alternatives, see the
technical report Ceyhan (2010a).

Remark 6.1 Empirical power comparison for the two PCD families: In the one tri-
angle case, under the segregation alternatives, the power estimates of the CS-PCDs
tend to be higher than those of the PE-PCDs. Under mild to moderate association
alternatives, CS-PCDs have higher power estimates, while under severe association,
PE-PCD has higher power estimates. In the multiple triangle case, under segregation,
CS-PCDs has higher power estimates; while under association, PE-PCDs has higher
power estimates.

7 Pitman asymptotic efficiency

Pitman asymptotic efficiency (PAE) provides for an investigation of “local (around
Ho) asymptotic power”. This involves the limit as n → ∞ as well as the limit as
ε → 0 under the alternatives. A detailed discussion of PAE is available in Kendall
and Stuart (1979), van Eeden (1963) and Ceyhan (2010a).

Under segregation or association alternatives, the PAE of ρPE(n, r) is given by

PAEPE(r) = (μ(k)(r, ε = 0))2

νPE(r)

where k is the minimum order of the derivative with respect to ε for which μ(k)(r, ε =
0) �= 0. That is, μ(k)(r, ε = 0) �= 0 but μ(l)(r, ε = 0) = 0 for l = 1,2, . . . , k − 1. Sim-
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Comparison of relative density of two random geometric digraph 125

Fig. 12 Pitman asymptotic efficiency against segregation (left) and association (right) alternatives as a
function of the expansion parameters in the one triangle case for the relative density of PE-PCDs (solid
line) and CS-PCDs (dashed line). Notice that the vertical axes are differently scaled

ilarly, the PAE of ρCS(n, τ ) is given by

PAECS(τ ) = (μ(k)(τ, ε = 0))2

νCS(τ )

where k is defined as above. For PE-PCDs and CS-PCDs, we need k = 2 under both
segregation and association alternatives. See Ceyhan (2010a) for details.

7.1 PAE analysis in the one-triangle case

The PAE scores for PE-PCDs were calculated in Ceyhan et al. (2006) and for CS-
PCDs with τ ∈ (0,1] were calculated in Ceyhan et al. (2007). We extend the PAE
calculations for τ > 1 (the details deferred to technical report Ceyhan 2010a).

In Fig. 12 (left), we present the PAE as a function of the expansion parameter for
segregation. The corresponding PAE score is denoted with an “S” in the superscript.
Notice that PAES

PE(r = 1) = 160/7 ≈ 22.86 and limr→∞ PAES
PE(r) = ∞. Further-

more, limτ→0 PAES
CS(τ ) = 320/7 ≈ 45.71 and limτ→∞ PAES

CS(τ ) = ∞. Moreover,
a local maximum occurs at τ = 1 with PAES

CS(τ = 1) = 960/7 ≈ 137.14 and a local
minimum occurs at τ ≈ 1.62 with PAE score ≈ 112.70.

Based on the PAE analysis, we suggest, for large n and small ε, choosing expan-
sion parameters large for testing against segregation. However, for small and moder-
ate values of n, normal approximation is not appropriate due to the skewness in the
density of ρPE(n, r) (or ρCS(n, τ )) for extreme values of r (or τ ). Therefore, for small
n, we suggest moderate r values for PE-PCDs and moderate τ values (i.e., τ ∈ [7,8])
for CS-PCDs.

Comparing the PAE scores of the relative density of PE-PCDs and CS-PCDs un-
der segregation alternatives, we see that PAES

PE(t) < PAES
CS(t) for 1 ≤ t � 1.09; and

PAES
PE(t) > PAES

CS(t) for t � 1.09. Therefore, under segregation alternatives, over-
all, relative density of PE-PCD is asymptotically more efficient compared to the CS-
PCD. Furthermore, PAES

PE(t) tends to ∞ as t → ∞ at rate O(t2) while PAES
CS(t)

tends to ∞ as t → ∞ at rate O(t).
In Fig. 12 (right), we present the PAE as a function of the expansion parameter

for association. The corresponding PAE score is denoted with an “A” in the super-
script. Notice that PAEA

PE(r = 1) = 174240/17 ≈ 10249.41, limr→∞ PAEA
PE(r) = 0
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Fig. 13 Pitman asymptotic efficiency against segregation (left) and association (right) alternatives as a
function of expansion parameters in the multiple triangle case with the realization of Ym given in Fig. 3
for the relative density of PE-PCDs (solid line) and CS-PCDs (dashed line). Notice that vertical axes are
differently scaled

and argsupr∈[1,∞) PAEA
PE(r) ≈ 1.01 with supremum ≈ 10399.77. PAEA

PE(r) has also
a local supremum at rl ≈ 1.44 with local supremum ≈ 3630.89. Moreover, we have
limτ→0 PAEA

CS(τ ) = 72000/7 ≈ 10285.71 which is also the global maximum. More-
over, a local minimum of PAEA

CS(τ ) occurs at τ ≈ 0.45 with PAE score being equal to
≈ 6191.67 and a local maximum occurs at τ = 1 with PAEA

CS(τ = 1) = 61440/7 ≈
8777.14.

Based on the PAE analysis, we suggest, for large n and small ε, choosing r (or τ )
small for testing against association. However, for small and moderate values of
n, normal approximation is not appropriate due to the skewness in the density of
ρPE(n, r) (or ρCS(n, τ )). Therefore, for small n, we suggest moderate r values for
PE-PCDs and τ ≈ 1 for CS-PCDs.

Comparing the PAE scores of the relative density of PE-PCDs and CS-PCDs under
association alternatives, we see that PAEA

PE(t) < PAEA
CS(t) for 1 ≤ t � 1.46 and for

t � 1.52; and PAEA
PE(t) > PAEA

CS(t) for 1.46 � t � 1.52. Under association, relative
density of CS-PCD is asymptotically more efficient compared to that of the PE-PCD.
Furthermore, PAEA

PE(t) goes to 0 as t → ∞ at rate O(t−2) while PAEA
CS(t) goes to 0

as t → ∞ at rate O(t−1).

7.2 PAE analysis in the multiple triangle case

For Jm > 1 (i.e., m > 3), in addition to the expansion parameter, PAE analysis de-
pends on the number of triangles as well as the relative sizes of the triangles (i.e., on
Ym). So the optimal expansion parameter values with respect to the PAE criteria in
the multiple triangle case might be different than that of the one triangle case. See the
technical report Ceyhan (2010a) for explicit form of the PAE scores in the multiple
triangle case.

In Fig. 13 (left), we present the PAE scores as a function the expansion parame-
ter under segregation alternative conditional on the realization of Ym given in Fig. 3.
Let PAES

PE(m, r) be the PAE score for the PE-PCD under the segregation alterna-
tive in the multiple triangle case and define the PAE scores under association and
those for CS-PCDs in the multiple triangle case similarly. Notice that, unlike the
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one triangle case, PAES
PE(m, r) is bounded from above by limr→∞ PAES

PE(m, r) ≈
139.34. Some values of interest are PAES

PE(m, r = 1) ≈ 0.39, and a local maximum
value of ≈ 110.97 is attained at the argsupr∈[1,2] PAES

PE(m, r) ≈ 1.97. On the other
hand, the PAE curve for the CS-PCDs in the multiple triangle case is similar to
that in the one triangle case (See Fig. 12 (left)). But unlike the one triangle case,
PAES

CS(m, τ) is bounded with limτ→∞ PAES
CS(m, τ) ≈ 139.34. Some values of note

are limτ→0 PAES
CS(m, τ) ≈ 38.20; and a local maximum of ≈ 100.77 is attained at

τ = 1, and a local minimum of ≈ 75.97 is attained at τ ≈ 2.04. Based on the PAE
analysis of the relative density of PE-PCDs, under segregation alternative, larger r

values yield larger asymptotic relative efficiency. However, due to the skewness of
the pdf of ρPE(m, r), moderate r values (r around 1.5 or 2) are recommended. As
for the CS-PCDs, larger τ values have larger asymptotic relative efficiency. However,
due to the skewness of the pdf of ρCS(m, τ), moderate τ values (τ around 1) are
recommended.

Comparing the PAE scores for PE-PCDs and CS-PCDs under the segregation
alternative, we see that for 1 ≤ t � 1.45 asymptotic relative efficiency of rela-
tive density of CS-PCDs is larger, since PAES

CS(m, t) > PAES
PE(m, t), and for t �

1.45 asymptotic relative efficiency of relative density of PE-PCDs is larger since
PAES

CS(m, t) < PAES
PE(m, t). Therefore, PE-PCD tends to be more efficient asymp-

totically compared to the CS-PCD under segregation.
In Fig. 13 (right), we present the PAE scores as a function the expansion parame-

ter under association alternative conditional on the realization of Ym given in Fig. 3.
Notice that, as in the one triangle case, PAEA

PE(m, r) tends to 0 as r → ∞. Some
values of interest are PAEA

PE(m, r = 1) ≈ 422.96, and a global maximum value of
≈ 1855.97 is attained at r = 1.5. On the other hand, the PAE curve for the CS-PCDs
in the multiple triangle case is similar to the one in the one triangle case. (See Fig. 12
(left)). Notice also that limτ→0 PAEA

CS(m, τ) ≈ 8593.97; a local maximum value of
≈ 6449.54 is attained at τ = 1; and a local minimum value of ≈ 5024.22 is attained
at τ ≈ 0.49. Moreover, limτ→∞ PAEA

CS(m, τ) = 0 at rate O(τ−2). Based on the PAE
analysis for relative density of PE-PCDs, smaller τ values tend to yield larger asymp-
totic relative efficiency. However, we suggest, for large n and small ε, choosing mod-
erate τ for testing against association due to the skewness of the density of ρCS(n, τ )

for very small τ values.
Comparing the PAE scores for PE-PCDs and CS-PCDs, under the association al-

ternative, we see that asymptotic relative efficiency of relative density of CS-PCDs is
larger for t ≥ 1, since PAEA

CS(m, t) > PAEA
PE(m, t). Therefore, CS-PCD tends to be

more efficient asymptotically compared to the PE-PCD under association.

Remark 7.1 Empirical power versus PAE for the PCD families: The finite sample
performance (based on the Monte Carlo simulations) and the asymptotic efficiency
(based on PAE scores) may seem to give conflicting results. The reason for this is
two fold: (i) in the Monte Carlo simulations, we only have a finite number of ob-
servations, and the asymptotic normality of the relative density of the PCDs require
smaller sample sizes for moderate values of the expansion parameters, and (ii) PAE
is designed for infinitesimal deviations from the null hypothesis (i.e., as close as pos-
sible to the null case), while in our simulations we use mild to severe but fixed levels
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of deviations. Hence, if we had extremely large samples, the results of our finite sam-
ple and asymptotic comparisons would agree under extremely mild segregation or
association alternatives.

Furthermore, when the PAE scores are compared at the optimal expansion param-
eters, the comparison results agree with that of the Monte Carlo simulation results.
In particular, recall that in the one triangle case, the optimal parameters for PE-PCDs
were 1.5 and 2 (and for CS-PCDs, they were 8 and 5) against mild segregation and as-
sociation, respectively. Under segregation, CS-PCD is asymptotically more efficient,
while under association, PE-PCD is asymptotically more efficient at these optimal
parameters. These agree with the conclusions of empirical power comparisons. In the
multiple triangle case, the optimal parameters for PE-PCDs were 1.5 and 2 (and for
CS-PCDs, they were 7 and 1) against mild segregation and association, respectively.
Under both alternatives, CS-PCD is asymptotically more efficient. In this case, only
the segregation results are in agreement. The power estimates under association were
virtually same at these optimal values for both PCD families.

An extension of PE proximity regions and CS proximity regions to higher dimen-
sions (hence the corresponding PCDs to data in higher dimensions) are provided in
Ceyhan et al. (2006, 2007), respectively.

8 Correction for class 1 points outside the convex hull of Ym

Our null hypothesis in (10) is somewhat restrictive, in the sense that, it might not
be realistic to assume the support of class 1 points being CH (Ym) in practice. Up to
now, our inference was restricted to the CH (Ym). However, crucial information from
the data (hence power) might be lost, since a substantial proportion of class 1 points,
denoted πout, might fall outside the CH (Ym). A correction is suggested in Ceyhan
(2011) to mitigate the effect of πout (or restriction to the CH (Ym)) on the use of the
domination number for the PE-PCDs. We propose a similar correction for the points
outside the CH (Ym) for the relative density in this article.

Along this line, Ceyhan (2011) estimated the πout values for independently gen-
erated Xn and Ym as random samples from U((0,1) × (0,1)). The considered
values were n = 100,200, . . . ,900,1000, 2000, . . . ,9000, 10000 for each of m =
10,20, . . . ,50. The procedure is repeated Nmc = 1000 times for each n,m combina-
tion. Let π̂out be the estimate of the proportion of class 1 points outside the CH (Ym)

which is obtained by averaging the πout values (over n) for each m,n combination.
The simulation results suggested that π̂out ≈ 1.7932/m + 1.2229/

√
m (see Ceyhan

2011). Notice that as m → ∞, we have π̂out → 0.
Based on the Monte Carlo simulation results, we propose a coefficient to adjust

for the proportion of class 1 points outside CH (Ym), namely,

Cch := signum
(

pout − E[π̂out]
) × (

pout − E[π̂out]
)2 (14)

where signum(pout − E[π̂out]) is the sign of the difference pout − E[π̂out] and pout
is the observed proportion and E[π̂out] ≈ 1.7932/m + 1.2229/

√
m is the expected

proportion of class 1 points outside CH (Ym). For the test statistics in Sect. 4.1, we
suggest
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˜Rch
PE(r) := ˜RPE(r) + Cch

∣

∣˜RPE(r)
∣

∣ and ˜Rch
CS(τ ) := ˜RCS(τ ) + Cch

∣

∣˜RCS(τ )
∣

∣. (15)

The convex hull adjustment slightly affects the empirical size estimates under CSR
of class 1 and 2 points in the same rectangular support, since pout and E[π̂out] values
would be very similar. On the other hand, under segregation alternatives, we expect
˜Rch

PE(r) value and pout −E[π̂out] to be positive, so the convex hull correction increases
the value of ˜RPE(r) in favor of the right-sided alternative (i.e., segregation). Under
association alternatives, we expect ˜Rch

PE(r) value and pout − E[π̂out] to be negative,
so the convex hull correction decreases the value of ˜RPE(r) in favor of the left-sided
alternative (i.e., association).

9 Example data set

We illustrate the method on an ecological data set, namely, swamp tree data of Dixon
(2002b). Good and Whipple (1982) considered the spatial patterns of tree species
along the Savannah River, SC, USA. From this data, Dixon (2002b) used a single
50 m × 200 m rectangular plot (denoted as the (0,200) × (0,50) rectangle) to illus-
trate his nearest neighbor contingency table (NNCT) methods. All live or dead trees
with 4.5 cm or more dbh (diameter at breast height) were recorded together with their
species labels. The plot contains 13 different tree species, four of which comprising
over 90 % of the 734 tree stems. See Ceyhan (2010c) for more detail on the data.

In this article, we only consider the middle 50 m × 55 m rectangular plot from
the original study area (i.e., the subset (95,150) × (0,50) of the 50 m × 200 m
rectangular plot) and investigate the spatial interaction of all other tree species (i.e.,
other than bald cypress trees) with bald cypresses (i.e., bald cypresses are taken to
be the class 2 points, while all other trees are taken to be the class 1 points; hence
Delaunay triangulation is based on the locations of bald cypresses). The study area
contains 8 bald cypress trees and 156 other trees. See also Fig. 14 which is suggestive
of segregation of other trees from bald cypresses.

For this data, we find that 108 other trees are inside and 48 are outside
of the convex hull of bald cypresses. Hence the proportion of other trees out-
side the convex hull of bald cypresses is pout = 0.3077 and the expected pro-
portion is πout = 0.6515. Hence the convex hull correction decreases the mag-
nitude of the raw test statistics. We calculate the standardized test statistics,
RPE(r), for r = 1,11/10,6/5,4/3,

√
2,3/2,2,3,5,10 values and, RCS(τ ), for

τ = 0.2,0.4,0.6. . . . ,3.0,3.5,4.0, . . . ,20.0 values and the corresponding convex
hull corrected versions. The p-values based on the normal approximation are pre-
sented in Fig. 15. Observe that, with RPE(r), the convex hull corrected version is not
significant (for both the right- and the left-sided alternatives) at 0.05 level at any of
the r values considered (only significant at 0.10 level at r between 1.4 and 2.0 for the
right-sided alternative), while the uncorrected version is significant (at 0.05 level) for
r values between 1.4 and 2.0. On the other hand, with RCS(τ ), the convex hull cor-
rected version is significant (for the right-sided alternatives) at 0.05 level at τ values
between 0.2 and 4.0, while the uncorrected version is significant (at 0.05 level) for
τ values between 0.2 and 7. Hence, there is significant evidence for segregation of
other trees from bald cypresses. We also perform Monte Carlo randomization tests
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for this data set (not presented), and see that the Monte Carlo randomized tests are
more conservative in this example (see Ceyhan 2010a for more detail).

We also analyze the same data in a 2×2 NNCT with Dixon’s overall test of segre-
gation (Dixon 2002a). See Table 1 for the corresponding NNCT and the percentages
(observe that the row sum for live trees is 157 instead of 156 due to ties in nearest
neighbor (NN) distances). The cell percentages are relative to the row sums (i.e., num-
ber of other or bald cypress trees) and marginal percentages are relative to the overall
sum. Notice that the table is not suggestive of segregation. Dixon’s overall test statis-
tic is CD = 0.9735 (p = 0.6146) and Ceyhan’s test is CN = 0.1825 (p = 0.6692),
both of which are suggestive of no significant deviation from CSR independence.
So, NNCT-analysis and our relative density approach seem to yield different results
about the spatial interaction of other trees with bald cypresses. However, NNCT and

Fig. 14 The scatter plot of the
locations of bald cypresses
(circles ◦) and other trees (black
squares �) in the swamp tree
data. The Delaunay
triangulation is based on the
locations of the bald cypresses

Fig. 15 The p-values based on PE-PCDs (left) and CS-PCDs (right) with convex hull corrected test statis-
tics (circles connected with solid lines) and uncorrected test statistics (triangles connected with dashed
lines). The horizontal lines are at 0 and 0.05 values. Notice that the horizontal axes are differently scaled
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Table 1 The NNCT for swamp tree data (left) and the corresponding percentages (right). O.T. stands for
“other trees” and B.C. for “bald cypresses”

NN Sum

O.T. B.C.

Base O.T. 151 6 157

B.C. 8 0 8

Sum 159 6 736

NN

O.T. B.C.

O.T. 96 % 4 % 95 %

B.C. 100 % 0 % 5 %

96 % 4 % 100 %

Fig. 16 Ripley’s bivariate
L-function ̂L12(t) − t for the
part of the swamp tree data we
considered. Wide dashed lines
are the upper and lower
(pointwise) 95 % confidence
bounds for the functions based
on Monte Carlo simulations
under the CSR independence
pattern. B.C. = bald cypresses
and O.T. = other trees

our relative density approach answer different questions. More specifically, NNCT-
tests are used to detect the spatial interaction between the two tree groups, while the
relative density approach only tests the spatial interaction of other trees with bald cy-
presses, but not vice versa. Furthermore, this situation is an example where relative
density is more appropriate, since there is much more other trees compared to bald
cypresses. On the other hand, the NNCT tests are more appropriate in the cases where
the relative abundance of the two species are similar and cell sizes are larger than 5
(Dixon 2002a and Ceyhan 2010c).

To find out the level of interaction between the tree species at different scales (i.e.,
distances between the trees), we also present the second-order analysis of the swamp
tree data (Diggle 2003) using the functions (or some modified version of them) pro-
vided in spatstat package in R (Baddeley and Turner 2005). We use Ripley’s bivariate
L-functions which are modified versions of his K-functions. For a rectangular region,
to remove the bias in estimating K(t), it is recommended to use distance values up to
1/4 of the smaller side length of the rectangle. So we take the values t ∈ [0,12.5] in
our analysis, since the rectangular region is 50 m × 55 m.

Ripley’s bivariate L-function, Lij (t), is symmetric in i and j in theory, that is,
Lij (t) = Lji(t) for all i, j . In practice although edge corrections will render it slightly
asymmetric, i.e., ̂Lij (t) �= ̂Lji(t) for i �= j . The corresponding estimates are pretty
close in our example, so we only present one of them. Ripley’s bivariate L-function
for the bald cypresses and other trees are plotted in Fig. 16, which suggests that bald
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cypresses and other trees are significantly segregated for distances about 0.5 to 7
meters, and do not significantly deviate from CSR for distances from 7 to 10 meters.
This significant finding for segregation is in agreement with the results of the PCD
test results.

10 Discussion

In this article, we compare the relative density of two proximity catch digraphs
(PCDs), namely, proportional edge (PE) and central similarity (CS) PCDs, each of
which is defined with an expansion parameter, for testing bivariate spatial patterns of
segregation and association against complete spatial randomness (CSR). To the au-
thor’s knowledge, the PCD-based methods are the only graph-theoretic tools for test-
ing spatial point patterns in literature (Ceyhan et al. 2006, 2007, and Ceyhan 2011).

We extend the expansion parameter, τ , of the CS-PCD to values higher than one
(previously it was defined only up to one in Ceyhan et al. 2007). This extension
proved to be useful, since the relative density of CS-PCDs has better performance in
terms of empirical size and power for expansion parameter values in this new range
(i.e., τ > 1) compared to the ones in the previous range (i.e., τ ∈ (0,1]). For finite
samples, we assess the empirical size and power of the relative density of the PCDs by
extensive Monte Carlo simulations. For the PE-PCDs, the optimal expansion parame-
ters (in terms of appropriate empirical size and high power) are about 1.5 under mild
segregation and values in (2,3) under moderate to severe segregation; and about 2
under association. On the other hand, for CS-PCDs, the optimal parameters are about
7 under segregation, and about 1 under association. Furthermore, we have shown that
relative density of CS-PCDs has better empirical size performance; and also, it has
higher power against the segregation alternatives. On the other hand, relative density
of PE-PCDs has higher power against the association alternatives.

For the two samples, Xn and Ym, with sizes n and m from classes 1 and 2, re-
spectively, with class 1 points being used as the vertices of the PCDs and class 2
points being used in the construction of Delaunay triangulation, the null hypothesis
is assumed to be CSR of class 1 points, i.e., the uniformness of class 1 points in the
convex hull of class 2 points, CH (Ym). Although we have two classes here, the null
pattern is not the CSR independence, since for finite m, we condition on relative areas
of the Delaunay triangles based on class 2 points (assumed to have no more than three
co-circular points). The relative density of the two PCD families lend themselves for
spatial pattern testing conveniently, because of the geometry invariance property for
uniform data on triangles (Ceyhan 2010b).

We also compare the asymptotic relative efficiency of the relative densities of the
two PCD families. Based on Pitman asymptotic efficiency, we have shown that in gen-
eral the relative density of PE-PCDs is asymptotically more efficient for segregation,
while relative density of CS-PCDs is more efficient for association. However, this
result is for n → ∞ under very mild deviations from CSR. Besides, for the above op-
timal expansion parameter values (optimal with respect to empirical size and power),
the asymptotic efficiency and empirical power analysis yield the same ordering in
terms of performance.

Author's personal copy



Comparison of relative density of two random geometric digraph 133

For the relative density approach to be appropriate, the size of class 1 points
(i.e., n) should be much larger compared to size of class 2 points (i.e., m). This
implies that n tends to infinity while m is assumed to be fixed. That is, the imbal-
ance in the relative abundance of the two classes should be large for our method
to be appropriate. Such an imbalance usually confounds the results of other spa-
tial interaction tests. Furthermore, by construction, our method uses only the class
1 points in CH (Ym) which might cause substantial data (hence information) loss.
To mitigate this, we propose a correction for the proportion of class 1 points lying
outside CH (Ym), because the pattern inside CH (Ym) might not be the same as the
pattern outside CH (Ym). We suggest a two-stage analysis with our relative density
approach: (i) analysis for CH (Ym), which provides inference restricted to class 1
points in CH (Ym), (ii) overall analysis with convex hull correction (i.e., for all class
1 points inside or outside CH (Ym)). We recommend the use of normal approximation
if n ≈ 10 × m or more, although Monte Carlo simulations suggest smaller n might
also work.

Acknowledgements I would like to thank an anonymous associate editor and referees whose construc-
tive comments and suggestions greatly improved the presentation and flow of the paper. Most of the Monte
Carlo simulations presented in this article were executed at Koç University High Performance Computing
Laboratory. This research was supported by the European Commission under the Marie Curie International
Outgoing Fellowship Programme via Project # 329370 titled PRinHDD.

References

Baddeley AJ, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw
12(6):1–42

Beer E, Fill JA, Janson S, Scheinerman ER (2010) On vertex, edge, and vertex-edge random graphs.
arXiv:0812.1410v2 [math.CO]

Ceyhan E (2010a) A comparison of two proximity catch digraph families in testing spatial clustering.
Technical Report # KU-EC-10-3, Koç University, Istanbul, Turkey. arXiv:1010.4436v1 [math.CO]

Ceyhan E (2010b) Extension of one-dimensional proximity regions to higher dimensions. Comput Geom
Theor Appl 43(9):721–748

Ceyhan E (2010c) New tests of spatial segregation based on nearest neighbor contingency tables. Scand J
Stat 37:147–165

Ceyhan E (2011) Spatial clustering tests based on domination number of a new random digraph family.
Commun Stat, Theory Methods 40(8):1363–1395

Ceyhan E, Priebe CE, Wierman JC (2006) Relative density of the random r-factor proximity catch digraphs
for testing spatial patterns of segregation and association. Comput Stat Data Anal 50(8):1925–1964

Ceyhan E, Priebe CE, Marchette DJ (2007) A new family of random graphs for testing spatial segregation.
Can J Stat 35(1):27–50

Coleman TF, Moré JJ (1983) Estimation of sparse Jacobian matrices and graph coloring problems. SIAM
J Numer Anal 20(1):187–209

Coomes DA, Rees M, Turnbull L (1999) Identifying aggregation and association in fully mapped spatial
data. Ecology 80(2):554–565

Cressie NAC (1993) Statistics for spatial data. Wiley, New York
DeVinney J, Priebe CE, Marchette DJ, Socolinsky D (2002) Random walks and catch digraphs

in classification. In: Proceedings of the 34th symposium on the interface: computing science
and statistics, vol 34. http://www.galaxy.gmu.edu/interface/I02/I2002Proceedings/DeVinneyJason/
DeVinneyJason.paper.pdf

Diggle PJ (2003) Statistical analysis of spatial point patterns. Hodder Arnold Publishers, London
Dixon PM (1994) Testing spatial segregation using a nearest-neighbor contingency table. Ecology

75(7):1940–1948

Author's personal copy

http://arxiv.org/abs/arXiv:0812.1410v2
http://arxiv.org/abs/arXiv:1010.4436v1
http://www.galaxy.gmu.edu/interface/I02/I2002Proceedings/DeVinneyJason/DeVinneyJason.paper.pdf
http://www.galaxy.gmu.edu/interface/I02/I2002Proceedings/DeVinneyJason/DeVinneyJason.paper.pdf


134 E. Ceyhan

Dixon PM (2002a) Nearest-neighbor contingency table analysis of spatial segregation for several species.
Ecoscience 9(2):142–151

Dixon PM (2002b) Nearest neighbor methods. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of
environmetrics, vol 3. Wiley, New York, pp 1370–1383
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