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We consider two types of spatial symmetry, namely, symmetry in the mixed or shared nearest neighbor (NN) structures. We use
Pielou’s and Dixon’s symmetry tests which are defined using contingency tables based on the NN relationships between the data
points. We generalize these tests to multiple classes and demonstrate that both the asymptotic and exact versions of Pielou’s first
type of symmetry test are extremely conservative in rejecting symmetry in the mixed NN structure and hence should be avoided or
only the Monte Carlo randomized version should be used. Under RL, we derive the asymptotic distribution for Dixon’s symmetry
test and also observe that the usual independence test seems to be appropriate for Pielou’s second type of test. Moreover, we apply
variants of Fisher’s exact test on the sharedNNcontingency table for Pielou’s second test and determine themost appropriate version
for our setting. We also consider pairwise and one-versus-rest type tests in post hoc analysis after a significant overall symmetry
test.We investigate the asymptotic properties of the tests, prove their consistency under appropriate null hypotheses, and investigate
finite sample performance of them by extensive Monte Carlo simulations. The methods are illustrated on a real-life ecological data
set.

1. Introduction

The analysis of spatial point patterns in natural populations
(in R2 and R3) has been studied extensively. In particular,
spatial patterns in epidemiology, population biology, and
ecology have important practical consequences. Since the
early days of this research, most of the research has been on
data from one class, that is, on spatial pattern of one class
with respect to the ground (e.g., intensity, clustering, etc). An
example of a pattern in a one-class framework is aggregation
[1]. It is also of practical importance to investigate the
spatial interaction between two or more classes, for example,
spatial patterns of one class with respect to other classes
[2]. Two frequently studied spatial patterns between multiple
classes or species are segregation and association. Segregation
occurs when an individual is more likely to be found near
conspecifics (i.e., individuals of the same species) [3] and
association occurs when an individual from one class is more
likely to be found near individuals from the other class.

There are many tests available in the literature for the
analysis of spatial point patterns in various fields. An exten-
sive survey is provided byKulldorff [4] who enumeratesmore

than 100 such tests, most of which need adjustment for some
sort of inhomogeneity.However, none of the tests surveyed by
Kulldorff [4] are designed for testing spatial symmetry. Most
of the tests for multiple classes deal with the existence (or
lack) of spatial interaction (in the form of spatial association
or segregation) between the classes.

In the literature, Baczkowski and Mardia [5] proposed
methods for testing spatial symmetry based on the sample
semivariogram. Their methods are applicable for a Gaussian
doubly geometric process on a regular lattice.The latestmeth-
ods for testing and detecting isotropy, symmetry, and sepa-
rability in spatiotemporal models are discussed in a recent
book by Sherman [6] who investigated these properties in
the directional sense. For example, isotropy is assessed in the
sense of direction-independence of the second-order proper-
ties of the spatial point pattern. Spatial symmetry is not only
useful in ecological contexts (as in spatial symmetry of plant
species in a region of interest), but also in socioeconomic the-
ory to help understand spatial equilibrium configurations [7].
Axial symmetry methods based on the sample periodogram
for data collected on a rectangular lattice are also considered
and shown to perform well in Scaccia and Martin [8].
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Themethods discussed in the current paper are the spatial
symmetry tests based on NN relationships. There are at
least six different groups of NN methods for spatial patterns
(see, e.g., [9]). These methods are based on some measure
of (dis)similarity between a point and its NN, such as the
distance between the point and its NN or the class types of
the point and its NN. For example, Pielou [2] constructed
nearest neighbor contingency tables (NNCTs) which yield
tests of segregation (positive or negative), symmetry, and
niche specificity, and a coefficient of segregation in a two-
class setting. Additionally, Dixon devised overall, class- and
cell-specific tests based on NNCTs for the two-class case in
[10] and extended his methodology to multiclass case in [3].
Pielou’s and Dixon’s symmetry tests are designed to detect
the symmetry (or lack of it) in the mixed or shared NN
structure and are the only tests for detecting such symmetry
structure (to the authors knowledge). Symmetry in mixed
NN structure implies equality of the expected values of the
number of NN pairs in which the points in the pair are from
different classes, while symmetry in shared NN structure
implies that the proportion—with respect to the class size—
of number of times points from one class serving as NN to
other classes is equal for all classes. Asymmetry in mixed NN
structure would be suggestive of different types or levels of
spatial interaction between the two classes of points, while
asymmetry in sharedNNstructurewould indicate differences
in spatial distribution of points from one class with respect
to all the points (from both classes) in the study region
compared to that of points from the other class.

Pielou has described her symmetry tests for completely
mapped data in R2, although her tests are not appropriate
for such data [10, 11]. A data set is completely mapped, if the
locations of all events in a defined space are observed. We
assume that data is sparsely sampled; that is, only a (random)
subset of NN pairs is observed for Pielou’s first type of
symmetry test. Pielou’s first type of symmetry and Dixon’s
symmetry test are based on the NNCTs that are constructed
using the NN frequencies. Both tests are defined for the
two-class case only. Pielou’s second type of symmetry test is
based on the frequencies of number of times points in a class
serve as NNs yielding a contingency table which we call 𝑄-
symmetry contingency table. So, points from each class are
categorized into six groups, namely 0, 1, . . . , 5, where a point
serving as a NN to no other point is in category “0,” to one
other point is in category “1,” and so on. Due to geometric
constraints, inR2, a point can not serve as a NN tomore than
six points. For data from a continuous distribution, a point
can serve as a NN to at most five points almost surely. Under
spatial symmetry in shared NN structure in a multiclass case,
the frequencies of these six categories should have the same
distributional form for each class.

Pielou’s symmetry tests were introduced and illustrated in
[2], while Dixon’s symmetry test was introduced in passing in
[10]. None of tests were extensively studied nor investigated
for size and/or power performance. In this paper, we inves-
tigate the underlying assumptions for these symmetry tests.
We derive their asymptotic distributions under appropriate
null hypotheses and extend these symmetry tests tomulticlass

case. In particular, we demonstrate that Pielou’s first type of
symmetry test is extremely conservative when used asMcNe-
mar’s test with its asymptotic critical value and hence should
be avoided in practice (or its Monte Carlo randomized ver-
sion can be used).We also show that various patterns can con-
stitute as the null case for Dixon’s symmetry test and Pielou’s
second type of symmetry test but derive the asymptotic dis-
tributions of these tests under CSR independence andRL pat-
terns only. We also investigate the use of Fisher’s exact test on
the 𝑄-symmetry contingency table used for Pielou’s second
type of symmetry test (for shared NN structure). Moreover,
the tests discussed in this paper are constructed using the
NN relations based on the usual Euclidean distance; so we
discuss the generalization of the tests for the case inwhichNN
relations are defined by a dissimilaritymeasure. Furthermore,
we discuss the extension of the methodology to high or
infinite dimensional data. In a multiclass setting, first the
overall symmetry is tested and if the overall test is significant
we propose various post hoc tests such as pairwise symmetry
tests or one-versus-rest type tests.The local asymptotic power
of the tests is also investigated using the local approximation
of the power function or Pitman asymptotic efficiency. Finite
sample empirical (size and power) performance comparisons
are investigated by Monte Carlo simulations.

We describe and discuss switch the order of these two
parts, tests of symmetry in NN structure, their extension to
multiclass case, and the corresponding sampling frameworks
for the cell counts (i.e., entries in the contingency tables) in
Section 2.We discuss the variants of Fisher’s exact test for the
𝑄-symmetry contingency table in Section 3 and asymptotic
power analysis (i.e., consistency of the tests and their
asymptotic efficiency) in Section 4 and provide an extensive
empirical performance analysis by Monte Carlo simulations
in Section 5. We discuss the use of one-versus-rest and
pairwise tests as post hoc tests in Section 6, illustrate the
methodology on an ecological data set in Section 7, discuss
the extension of the methodology to the case where NN
relations are defined with dissimilarity measures in Section
8, and provide some guidelines and discussion in Section 9.

2. Tests of Symmetry in the NN Structure

Two or more classes may exhibit many different forms of
spatial asymmetry. Although it is not possible to list all pos-
sible asymmetry types or configurations, existence of asym-
metry can be detected by an analysis of the NN relationships
of the class members.

2.1. Preliminaries. The null case for asymmetry alternatives
is that there is symmetry in the allocations of points with
respect to each other. In particular, consider symmetry in
mixed NN structure for two classes 𝑖 and 𝑗.Then the null case
is that the expected number of times class 𝑖 points serving
as NN to class 𝑗 would be the same as the expected number
of times class 𝑗 points serving as NN to class 𝑖. On the other
hand, for symmetry in shared NN structure, the vector of
relative frequencies (with respect to the class size) of points
from each class serving as NN to other points is the same
for all classes. In general, the null hypothesis for symmetry
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in mixed NN structure would be implied by a more general
pattern, namely, if there is randomness in the NN structure
in such a way that the probability of a NN of a point being
from a class is proportional to the relative frequency of that
class. This assumption holds, for example, under RL or CSR
independence of the points from each class. Under CSR
independence, the points from each class are independent
realizations of homogeneous Poisson process (HPP) with
fixed class sizes. In particular, conditioned on the class sizes,
the points are independently uniformly distributed in the
region of interest. Under RL, class labels are independently
and randomly assigned to a set of given locations, where
these locations could be fromHPP or some other clustered or
regular pattern. The null hypothesis for symmetry in shared
NN structure would be implied if there is randomness in the
NN structure in such a way that the probability of a point
from a class serving as NN to 𝑚 other points is proportional
to the relative frequency of that class. This assumption also
holds under RL or CSR independence of the points from each
class. Therefore, both CSR independence and RL patterns
would imply symmetry in the mixed or shared NN struc-
ture.

Pielou suggests two types and Dixon suggests one type
of symmetry tests in the two-class case. Pielou’s first type of
symmetry test and Dixon’s symmetry test are defined for the
two-class case only and are based on the corresponding 2 × 2

NNCT. We provide a brief description of NNCTs; for a more
detailed discussion see, for example, [12]. Suppose that there
are 𝑘 = 2 classes labeled as {1, 2}. NNCTs are constructed
using NN frequencies for each class. Let 𝑛

𝑖
be the number of

points from class 𝑖 for 𝑖 ∈ {1, 2} and 𝑛 = 𝑛
1
+ 𝑛

2
. If we record

the class of each point and its NN, the NN relationships fall
into 𝑘

2
= 4 categories: (1, 1), (1, 2); (2, 1), (2, 2), where in

category (𝑖, 𝑗), class 𝑖 is the base class and class 𝑗 is the class of
the NN. Denoting 𝑁

𝑖𝑗
as the observed frequency of category

(𝑖, 𝑗) for 𝑖, 𝑗 ∈ {1, 2}, we obtain the NNCT in Table 1, where𝐶
𝑗

is the sumof column 𝑗; that is, a number of times class 𝑗points
serve as NNs for 𝑗 ∈ {1, 2}. Note also that 𝑛

𝑖
= ∑

2

𝑗=1
𝑁
𝑖𝑗
,𝐶

𝑗
=

∑
2

𝑖=1
𝑁
𝑖𝑗
, and 𝑛 = ∑

𝑖,𝑗
𝑁
𝑖𝑗

= ∑
2

𝑖=1
𝑛
𝑖
= ∑

2

𝑗=1
𝐶
𝑗
. Throughout

the paper, we adopt the convention that random variables
are denoted with upper case letters and fixed quantities with
lower case letters. Notice that row sums (i.e., class sizes) are
assumed to be fixed,while column sums (i.e., number of times
a class serves as NN) is random in our NNCTs.

2.2. Pielou’s First Type of Symmetry Test. Pielou’s first type
of symmetry test involves testing equality of expected values
of mixed NN frequencies, that is, the equality of expected
values of off-diagonal entries in the NNCT. So Pielou’s first
type of symmetry test is used to detect the symmetry in the
“mixed NN structure.” In this case, if 𝑁

12
≈ 𝑁

21
, spatial

allocation of points from two classes is symmetricwith respect
to the (mixed) NN structure; otherwise, the population is
asymmetric. When two classes, 𝑋 and 𝑌, are of equal size, in
a symmetric population, points from each class are equally
likely to serve as NN to points from the other class, and, in
an asymmetric population, points from one class, say class𝑋,
tend to serve more as NN to points from class 𝑌 compared

Table 1: The NNCT for two classes.

NN class Total
Class 1 Class 2

Base class
Class 1 𝑁

11
𝑁
12

𝑛
1

Class 2 𝑁
21

𝑁
22

𝑛
2

Total 𝐶
1

𝐶
2

𝑛

to class 𝑌 serving as NN to points from class 𝑋. So the null
hypothesis is

𝐻
𝑜
: E [𝑁

12
] = E [𝑁

21
] (1)

which may have various forms based on the assumed under-
lying frameworks for the contingency tables in general and
for the NNCTs.

The two-sided alternative is usually a more reasonable
alternative, although one-sided alternatives are also possible.
Pielou [2] tests for significant differences between 𝑁

12
and

𝑁
21
with a 𝜒

2 test (with Yates’ correction) with 1 df using

X
2

I =
(
󵄨󵄨󵄨󵄨𝑁12

− 𝑁
21

󵄨󵄨󵄨󵄨 − 1)
2

𝑁
12

+ 𝑁
21

(2)

which is the same as the McNemar’s test with continuity
correction [13]. This test is appropriate only for sparsely
sampled data and large 𝑁

12
+ 𝑁

21
with neither 𝑁

12
or

𝑁
21

being too small compared to each other and applicable
only for the two-class case. So we suggest the approach
recommended in Remark 1 below.The discussion till the end
of this subsection is for (properly) sparsely sampled data.
Furthermore, in a population in which two classes are highly
segregated or the intensities (number of points per unit area)
of the classes are very different, the frequencies 𝑁

12
and

𝑁
21

can be too small, which renders the 𝜒
2 approximation

inappropriate for the test in (2). In such a case, one can
use the exact finite sample distribution of 𝑁

12
which follows

a binomial distribution (conditionally). Given that 𝑁
12

+

𝑁
21

= 𝑛
𝑡
, the test statistic𝑁

12
has a BIN(𝑛

𝑡
, 1/2) distribution

under𝐻
𝑜
for properly sparsely sampled data, where BIN(𝑛, 𝑝)

stands for the binomial distribution with 𝑛 independent trials
with probability of success𝑝. So, for small 𝑛

𝑡
, the statistic,𝑁

12
,

can be used with the binomial critical values. For large 𝑛
𝑡
,

𝑍I =
𝑁
12

− 𝑛
𝑡
/2

√𝑛
𝑡
/4

=
𝑁
12

− 𝑁
21

√𝑁
12

+ 𝑁
21

(3)

has approximately𝑁(0, 1) distribution, so 𝑍I can be used for
the one-sided alternatives. Furthermore, the testX2

I in (2) has
approximately 𝜒2

1
distribution, which can only be used for the

two-sided alternative.
Pielou’s first type of symmetry test can be extended to the

multiclass case (with 𝑘 > 2) as

X
2

I = ∑

𝑖<𝑗

(
󵄨󵄨󵄨󵄨󵄨
𝑁
𝑖𝑗
− 𝑁

𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
− 1)

2

𝑁
𝑖𝑗
+ 𝑁

𝑗𝑖

. (4)
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Under 𝐻
𝑜
: “𝑝

𝑖𝑗
= 𝑝

𝑗𝑖
, for all 𝑖 ̸= 𝑗”, X2

I in (4) is the same
as Bowker’s test of symmetry, which is an extension of
McNemar’s test for the 𝑘 × 𝑘 contingency tables [14]. The test
statistic in this case has 𝜒2

𝑘(𝑘−1)/2
distribution asymptotically.

2.2.1. The Row-Wise Multinomial Framework. In general,
a contingency table may result from various frameworks.
The first type of framework is the row-wise multinomial
framework, where each row in a 𝑘 × 𝑘 contingency table is
independent of other rows and is from a multinomial distri-
bution. That is, letting the entries of the contingency table be
denoted as 𝑁

𝑖𝑗
(as in the NNCT in Table 1), we have entries

in row 𝑖 having (𝑁
𝑖1
, 𝑁

𝑖2
, . . . , 𝑁

𝑖𝑘
) ∼ M(𝑛

𝑖
, 𝑝

𝑖1
, 𝑝

𝑖2
, . . . , 𝑝

𝑖𝑘
),

where 𝑝
𝑖𝑗
is the probability of an experimental unit being

from row category 𝑖 and column category 𝑗 simultaneously
and M(𝑛, 𝑝

1
, 𝑝

2
, . . . , 𝑝

𝑘
) standing for the multinomial dis-

tribution with 𝑛 independent trials and the probability of a
trial resulting in category 𝑘 is 𝑝

𝑘
with ∑

𝑘

𝑖=1
𝑝
𝑖

= 1. In the
2 × 2 contingency table, the rows will have two entries, so the
multinomial distribution reduces to a binomial distribution.
More specifically, we would have𝑁

𝑖1
∼ BIN(𝑛

𝑖
, 𝑝

𝑖1
) (or𝑁

𝑖2
∼

BIN(𝑛
𝑖
, 𝑝

𝑖2
)) for 𝑖 = 1, 2.

In a NNCT, 𝑘 is the number of classes and 𝑝
𝑖𝑗
is the

probability of a point from class 𝑗 serving as a NN to a point
from class 𝑖 for 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑘}. However, a NNCT is
unlikely to result from a row-wise multinomial framework.
In a NNCT, a trial is the categorization of a base-NN pair;
that is, a trial is “determining the type of a base-NN pair.”
For entry (𝑖, 𝑗), a trial results in success, if a base-NN pair
belongs to category 𝑖, 𝑗 (i.e., base point is from class 𝑖 and its
NN point is from class 𝑗). For example, in a 2×2 contingency
table, in general, (𝑁

11
, 𝑁

12
) and (𝑁

21
, 𝑁

22
) are assumed to

be independent and so are the individual trials under the
row-wise multinomial framework.This assumption is invalid
when theNNCT is based on completelymapped data because
independence between rows is violated (see also Remark 1). If
the NNCT is constructed using a random sample of base-NN
pairs, then the usual contingency table assumptions under the
row-wise multinomial framework would hold. Such a NNCT
can be (approximately) obtained only if a (small) subset of
all the base-NN pairs obtained from the data in the study
region was randomly selected; that is, if the data is obtained
by an appropriate sparse sampling. When the data were
properly sparsely sampled, we will assume that the NNCT
satisfies the usual independence assumptions in the row-wise
multinomial framework henceforth. In this framework, the
explicit form of the null hypothesis becomes

𝐻
𝑜
: 𝑛

1
𝑝
12

= 𝑛
2
𝑝
21
. (5)

When the 2×2NNCT is constructed from a sparsely sampled
data, the rows are assumed to be from the same multinomial
distribution, so the entries in row 𝑖 satisfy 𝑁

𝑖𝑗
∼ BIN(𝑛

𝑖
, 𝜅

𝑗
)

for 𝑗 = 1, 2, where 𝜅
𝑗
is the probability of a NN point being

from class 𝑗.Then, under𝐻
𝑜
in (5), we have E[𝑁

12
] = E[𝑁

21
],

which holds if and only if 𝑛
1
𝑝
12

= 𝑛
2
𝑝
21
if and only if 𝑛

1
𝜅
2
=

𝑛
2
𝜅
1
. Since 𝜅

1
+ 𝜅

2
= 1 in a two-class setting, we have 𝑛

1
(1 −

𝜅
1
) = 𝑛

2
𝜅
1
if and only if 𝑛

1
= (𝑛

1
+ 𝑛

2
) 𝜅

1
= 𝑛𝜅

1
. Letting

]
𝑖
be the proportion of points from class 𝑖 in our sample, we

have 𝑛]
1
= 𝑛𝜅

1
if and only if ]

1
= 𝜅

1
. One-sided or two-sided

alternatives are possible for the𝐻
𝑜
in (5).

2.2.2. The Overall Multinomial Framework. An alternative
framework for a general contingency table is the overall
multinomial framework. In this case, the cell counts are
assumed to arise from independent multinomial trials. That
is, for example, for a 𝑘 × 𝑘 contingency table,

N = (𝑁
11
, 𝑁

12
, . . . , 𝑁

1𝑘
, 𝑁

21
, 𝑁

22
, . . . , 𝑁

2𝑘
, 𝑁

𝑘1
,

𝑁
𝑘2
, . . . , 𝑁

𝑘𝑘
)

∼ M (𝑛, 𝑝
11
, 𝑝

12
, . . . , 𝑝

1𝑘
, 𝑝

21
, 𝑝

22
, . . . , 𝑝

2𝑘
, . . . ,

𝑝
𝑘1
, 𝑝

𝑘2
, . . . , 𝑝

𝑘𝑘
) .

(6)

For a NNCT, if the data is completely mapped, independence
between trials is violated again. Under sparse sampling, this
framework is able to model a NNCT approximately. That
is, if the NNCT is based on a random sample of base-NN
pairs, it will (approximately) satisfy the assumptions in the
overall multinomial framework because of the inherent cor-
relation between components or entries of a multinomially
distributed random variable. For example, in a two-class
setting with sparsely sampled data, we have

N = (𝑁
11
, 𝑁

12
, 𝑁

21
, 𝑁

22
) ∼ M (𝑛, ]

1
𝜅
1
, ]
1
𝜅
2
, ]
2
𝜅
1
, ]
1
𝜅
2
) ,

(7)

where ]
1
+ ]

2
= 1 and 𝜅

1
+ 𝜅

2
= 1. Then the null hypothesis

of symmetry becomes

𝐻
𝑜
: 𝑝

12
= 𝑝

21 (8)

which is equivalent to 𝐻
𝑜

: ]
1
𝜅
2

= ]
2
𝜅
1
or equivalently

𝐻
𝑜

: ]
1

= 𝜅
1
since 𝜅

2
= 1 − 𝜅

1
and ]

2
= 1 − ]

1
.

Row-wise and overall multinomial frameworks are closely
related. Conditional on 𝑁

𝑖
= 𝑛

𝑖
, the overall multinomial

framework reduces to the row-wise multinomial framework.
But a NNCT for completely mapped data does not fit to the
overall multinomial framework either, due to the inherent
spatial dependence and the row sums being fixed.McNemar’s
test (and hence Bowker’s test) is only appropriate in the
overall multinomial framework and is extremely conservative
for the row-wise multinomial framework. In particular, in a
NNCT for completely mapped data, we have row sums (i.e.,
class sizes) fixed as in the row-wise multinomial framework.
Hence, Pielou’s first type of symmetry test would also be
extremely conservative for the NNCTs.

Remark 1. In Pielou’s first type of symmetry test, both of
the above multinomial frameworks assume that the trials are
independent multinomial trials. However, when a trial is the
base-NN relation, the assumption of independence between
trials is violated. The dependence mainly originates from the
fact that a point ismore likely to be theNNof its ownNN (i.e.,
more likely to form a reflexive (base, NN) pair); hence, many
reflexive pairs are possible.Thus, Pielou’s test is influenced by
deviations not only from the null case but also by deviations
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from dependence on trials.The dependence due to reflexivity
can not merely be avoided by random subsampling but can
be circumvent by an appropriate sparse sampling [15]. The
assessment of various sparse sampling schemes for these tests
is a topic of ongoing research. Furthermore, Pielou’s first
type of symmetry test requires the NNCT resulting from an
overall multinomial framework, which does not hold for a
NNCT based on completely mapped data either. So Pielou’s
first type of symmetry test is only appropriate under the
overall multinomial framework (with random row sums),
which can be satisfied by an appropriate sparse sampling.Our
suggestion for Pielou’s first type of symmetry test is as follows.
If the data is properly sparsely sampled under the overall
multinomial framework, then one can employ it. But if the
data is completely mapped, to remove the influence of spatial
dependence on Pielou’s first type of symmetry test, we suggest
the usual Monte Carlo randomization, where class labels are
randomly assigned to the given points a large number of
times and test statistics are computed, and the 𝑝 value of the
test is based on the rank (scaled by the number of Monte
Carlo replications) of the test statistic of the original data
in the sample of test statistics obtained from Monte Carlo
randomization procedure.

2.3. Dixon’s Symmetry Test. Dixon [10] also suggested a
symmetry test for testing the equality of frequency of mixed
NNs (or between class NNs), that is, the equality of the
expected values of the off-diagonal entries in the 2×2NNCTs.
So the null hypothesis is given by

𝐻
𝑜
: E [𝑁

12
] = E [𝑁

21
] (9)

and, under RL or CSR independence, E[𝑁
𝑖𝑗
] = 𝑛

𝑖
𝑛
𝑗
/𝑛 for

𝑖 ̸= 𝑗. Notice that the null hypotheses for Dixon’s symmetry
test and Pielou’s first type of symmetry test look identical;
however, the corresponding underlying assumptions are dif-
ferent. Pielou’s first type of symmetry test is only appropriate
when the data are (properly) sparsely sampled under overall
multinomial framework, whereas Dixon’s symmetry test is
appropriate when the data are completely mapped. That
is, Pielou’s first type of symmetry test is appropriate when
we have a random sample of base-NN pairs under overall
multinomial framework; that is, between-row independence
assumptions are satisfied (up to the inherent correlation for
multinomial entries) and, hence, ignore the spatial infor-
mation. On the other hand, Dixon’s test can be used for
completely mapped data and takes the spatial dependence
into account.

Under RL, the test statistic for Dixon’s symmetry test is
given by

𝑍
𝐷

:=
𝑁
12

− 𝑁
21

− E [𝑁
12

− 𝑁
21
]

√Var [𝑁
12

− 𝑁
21
]

=
𝑁
12

− 𝑁
21

√Var [𝑁
12
] + Var [𝑁

21
] − 2Cok [𝑁

12
, 𝑁

21
]

,

(10)

where E[𝑁
12

− 𝑁
21
] = E[𝑁

12
] − E[𝑁

21
] = 0 since E[𝑁

12
] =

E[𝑁
21
] = 𝑛

1
𝑛
2
/2 andVar[𝑁

12
−𝑁

21
] = Var[𝑁

12
]+Var[𝑁

21
]−

2Cok[𝑁
12
, 𝑁

21
] with

Var [𝑁
𝑖𝑗
] = 𝑛𝑝

𝑖𝑗
+ 𝑄𝑝

𝑖𝑖𝑗
+ (𝑛

2
− 3𝑛 − 𝑄 + 𝑅)𝑝

𝑖𝑖𝑗𝑗

−(𝑛𝑝
𝑖𝑗
)
2

(11)

for (𝑖, 𝑗) ∈ {(1, 2), (2, 1)} and

Cok [𝑁
12
, 𝑁

21
] = 𝑅𝑝

12
+ (𝑛 − 𝑅) (𝑝

112
+ 𝑝

122
)

+ (𝑛
2
− 3𝑛 − 𝑄 + 𝑅)𝑝

1122
− 𝑛

2
𝑝
12
𝑝
21
.

(12)

Here 𝑝
𝑥𝑥
, 𝑝

𝑥𝑥𝑥
, and 𝑝

𝑥𝑥𝑥𝑥
are the probabilities that a ran-

domly picked pair, triplet, or quartet of points, respectively,
are from the indicated classes and are given by

𝑝
𝑖𝑖
=

𝑛
𝑖
(𝑛

𝑖
− 1)

𝑛 (𝑛 − 1)
,

𝑝
𝑖𝑖𝑖

=
𝑛
𝑖
(𝑛

𝑖
− 1) (𝑛

𝑖
− 2)

𝑛 (𝑛 − 1) (𝑛 − 2)
,

𝑝
𝑖𝑖𝑖𝑖

=
𝑛
𝑖
(𝑛

𝑖
− 1) (𝑛

𝑖
− 2) (𝑛

𝑖
− 3)

𝑛 (𝑛 − 1) (𝑛 − 2) (𝑛 − 3)
,

𝑝
𝑖𝑗
=

𝑛
𝑖
𝑛
𝑗

𝑛 (𝑛 − 1)
,

𝑝
𝑖𝑖𝑗𝑗

=
𝑛
𝑖
(𝑛

𝑖
− 1) 𝑛

𝑗
(𝑛

𝑗
− 1)

𝑛 (𝑛 − 1) (𝑛 − 2) (𝑛 − 3)
.

(13)

Furthermore, 𝑄 is the number of points with shared NNs,
which occurs when two or more points share a NN and 𝑅

is twice the number of reflexive pairs. Then 𝑄 = 2(𝑄
2
+

3𝑄
3
+ 6𝑄

4
+ 10𝑄

5
+ 15𝑄

6
), where 𝑄

𝑗
is the number of

points that serves as a NN to other points 𝑗 times. For large
𝑛
𝑖
, 𝑍

𝐷
asymptotically has 𝑁(0, 1) distribution. A two-sided

alternative and one-sided alternatives are possible with the
test statistic, 𝑍

𝐷
.

We describe this setting in a broader context with 𝑘 ≥ 2

classes. Let ]
𝑖
be the probability of an arbitrary point being

from class 𝑖 and ]
𝑖𝑗
be the probability of a base-NN pair with

base point being from class 𝑖 and its NN being from class 𝑗.
Then, under RL, we have ]

𝑖𝑗
= ]

𝑖
]
𝑗
and the expression (𝑛

𝑖
(𝑛
𝑖
−

1)/𝑛(𝑛−1))I (𝑖 = 𝑗)+(𝑛
𝑖
𝑛
𝑗
/𝑛(𝑛−1))I (𝑖 ̸= 𝑗) can be viewed as

an estimator or approximation for ]
𝑖𝑗
for large 𝑛

𝑖
, where I(⋅)

stands for the indicator function. Furthermore, for large 𝑛
𝑖
,

the null hypothesis of symmetry is equivalent to

𝐻
𝑜
: E [𝑁

12
] = E [𝑁

21
] ≈ 𝑛]

1
]
2
. (14)

In Dixon’s framework, for large 𝑛
𝑖
, the row marginals satisfy

𝑛
𝑖
/𝑛 ≈ ]

𝑖
and the column marginals satisfy 𝜅

𝑗
= E[𝐶

𝑗
/𝑛] =

∑
𝑘

𝑖=1
]
𝑖
]
𝑗
= ]

𝑗
.

The symmetry in mixed NN frequencies may result from
various patterns. In particular, under RL or CSR indepen-
dence, 𝐻

𝑜
in (9) would hold. In a RL framework with fixed
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allocation of points, the quantities 𝑄 and 𝑅 are also fixed,
but, for a CSR allocation of points, 𝑄 and 𝑅 are random
with E[𝑄/𝑛] ≈ .63 and E[𝑅/𝑛] ≈ .62 for large 𝑛 (estimated
empirically by Monte Carlo simulations for homogeneous
planar Poisson pattern).Hence,𝑍

𝐷
in (10) and its distribution

is conditional on 𝑄 and 𝑅 under CSR independence but
unconditional under RL. To be more precise, under CSR
independence, the expected values for𝑍

𝐷
are as in RL, but the

variances and covariances are conditional on𝑄 and 𝑅. Given
the difficulty in finding the distribution of 𝑄 and 𝑅 under
CSR, we use their observed values even if the null hypothesis
is implied by CSR independence.

2.3.1. Extension of Dixon’s Symmetry Test to Multiclass Case.
Dixon’s symmetry test can be extended to the 𝑘 > 2 case as
follows. Consider the 𝑁

𝑖𝑗
− 𝑁

𝑗𝑖
values for 𝑖 < 𝑗. Combining

𝑁
𝑖𝑗
− 𝑁

𝑗𝑖
values for 𝑖 < 𝑗, we obtain the vector

T
𝑆
= (𝑁

12
− 𝑁

21
, 𝑁

13
− 𝑁

31
, . . . , 𝑁

1𝑘
− 𝑁

𝑘1
,

𝑁
23

− 𝑁
32
, . . . , 𝑁

2𝑘
− 𝑁

𝑘2
, . . . , 𝑁

(𝑘−1)𝑘
− 𝑁

𝑘(𝑘−1)
)

(15)

which has length 𝑘(𝑘−1)/2. Under RL,E[𝑁
𝑖𝑗
−𝑁

𝑗𝑖
] = E[𝑁

𝑖𝑗
]−

E[𝑁
𝑗𝑖
] = 𝑛

𝑖
𝑛
𝑗
/𝑛−𝑛

𝑗
𝑛
𝑖
/𝑛 = 0 andVar[𝑁

𝑖𝑗
−𝑁

𝑗𝑖
] = Var[𝑁

𝑖𝑗
] +

Var[𝑁
𝑗𝑖
] − 2Cok[𝑁

𝑖𝑗
, 𝑁

𝑗𝑖
], where Cok[𝑁

𝑖𝑗
, 𝑁

𝑗𝑖
] = 𝑅𝑝

𝑖𝑗
+ (𝑛 −

𝑅)(𝑝
𝑖𝑖𝑗

+𝑝
𝑖𝑗𝑗
) + (𝑛

2
− 3𝑛−𝑄+𝑅)𝑝

𝑖𝑖
𝑝
𝑗𝑗
−𝑛

2
𝑝
𝑖𝑗
𝑝
𝑗𝑖
. For large 𝑛

𝑖
,

𝑍
𝑖𝑗

𝐷
=

𝑁
𝑖𝑗
− 𝑁

𝑗𝑖

√Var [𝑁
𝑖𝑗
− 𝑁

𝑗𝑖
]

(16)

approximately has𝑁(0, 1) distribution.
To combine the entries of the vector T

𝑆
in one overall test

statistic for symmetry, we also need the covariance matrix of
T
𝑆
, denoted Σsym. The diagonal entries of T

𝑆
are Var[𝑁

𝑖𝑗
−

𝑁
𝑗𝑖
] in the order of entries of T

𝑆
. For the off-diagonal entries,

we need the covariance terms Cok[𝑁
𝑖𝑗
− 𝑁

𝑗𝑖
, 𝑁

𝑘𝑙
− 𝑁

𝑙𝑘
]. By

construction, we have 𝑖 < 𝑗 and 𝑘 < 𝑙 and there are six cases
regarding these covariance terms.

Case 1 (𝑖 = 𝑘 and 𝑗 = 𝑙). In this case, the covariance term is
just the variance term, Var[𝑁

𝑖𝑗
− 𝑁

𝑗𝑖
].

Case 2 (𝑖 = 𝑘 and 𝑗 ̸= 𝑙). Cok[𝑁
𝑖𝑗

− 𝑁
𝑗𝑖
, 𝑁

𝑖𝑙
− 𝑁

𝑙𝑖
] =

Cok[𝑁
𝑖𝑗
, 𝑁

𝑖𝑙
] −Cok[𝑁

𝑖𝑗
, 𝑁

𝑙𝑖
] −Cok[𝑁

𝑗𝑖
, 𝑁

𝑖𝑙
] +Cok[𝑁

𝑗𝑖
, 𝑁

𝑙𝑖
].

Case 3 (𝑖 ̸= 𝑘 and 𝑗 = 𝑙). Cok[𝑁
𝑖𝑗

− 𝑁
𝑗𝑖
, 𝑁

𝑘𝑗
− 𝑁

𝑗𝑘
] =

Cok[𝑁
𝑖𝑗
, 𝑁

𝑘𝑗
] − Cok[𝑁

𝑖𝑗
, 𝑁

𝑗𝑘
] − Cok[𝑁

𝑗𝑖
, 𝑁

𝑘𝑗
] + Cok[𝑁

𝑗𝑖
,

𝑁
𝑗𝑘
].

Case 4 (𝑖 = 𝑙 and 𝑗 ̸= 𝑘). Cok[𝑁
𝑖𝑗

− 𝑁
𝑗𝑖
, 𝑁

𝑘𝑖
− 𝑁

𝑖𝑘
] =

Cok[𝑁
𝑖𝑗
, 𝑁

𝑘𝑖
]−Cok[𝑁

𝑖𝑗
, 𝑁

𝑖𝑘
]−Cok[𝑁

𝑗𝑖
, 𝑁

𝑘𝑖
] +Cok[𝑁

𝑗𝑖
, 𝑁

𝑖𝑘
].

Case 5 (𝑖 ̸= 𝑙 and 𝑗 = 𝑘). Cok[𝑁
𝑖𝑗

− 𝑁
𝑗𝑖
, 𝑁

𝑗𝑙
− 𝑁

𝑙𝑗
] =

Cok[𝑁
𝑖𝑗
, 𝑁

𝑗𝑙
]−Cok[𝑁

𝑖𝑗
, 𝑁

𝑙𝑗
]−Cok[𝑁

𝑗𝑖
, 𝑁

𝑗𝑙
] + Cok[𝑁

𝑗𝑖
, 𝑁

𝑙𝑗
].

Case 6 (𝑖 ̸= 𝑘, 𝑖 ̸= 𝑙 and 𝑗 ̸= 𝑙, 𝑗 ̸= 𝑘).Cok[𝑁
𝑖𝑗
−𝑁

𝑗𝑖
, 𝑁

𝑘𝑙
−𝑁

𝑙𝑘
] =

Cok[𝑁
𝑖𝑗
, 𝑁

𝑘𝑙
] − Cok[𝑁

𝑖𝑗
, 𝑁

𝑙𝑘
] − Cok[𝑁

𝑗𝑖
, 𝑁

𝑘𝑙
] + Cok[𝑁

𝑗𝑖
,

𝑁
𝑙𝑘
].

The covariance term in Case 6 above is zero, since

Cok [𝑁
𝑖𝑗
, 𝑁

𝑘𝑙
] = (𝑛

2
− 3𝑛 − 𝑄 + 𝑅)𝑝

𝑖𝑗𝑘𝑙
− 𝑛

2
𝑝
𝑖𝑗
𝑝
𝑘𝑙
,

Cok [𝑁
𝑖𝑗
, 𝑁

𝑙𝑘
] = (𝑛

2
− 3𝑛 − 𝑄 + 𝑅)𝑝

𝑖𝑗𝑙𝑘
− 𝑛

2
𝑝
𝑖𝑗
𝑝
𝑙𝑘
,

Cok [𝑁
𝑗𝑖
, 𝑁

𝑘𝑙
] = (𝑛

2
− 3𝑛 − 𝑄 + 𝑅)𝑝

𝑗𝑖𝑘𝑙
− 𝑛

2
𝑝
𝑗𝑖
𝑝
𝑘𝑙
,

Cok [𝑁
𝑗𝑖
, 𝑁

𝑙𝑘
] = (𝑛

2
− 3𝑛 − 𝑄 + 𝑅)𝑝

𝑗𝑖𝑙𝑘
− 𝑛

2
𝑝
𝑗𝑖
𝑝
𝑙𝑘
,

𝑝
𝑖𝑗𝑘𝑙

= 𝑝
𝑖𝑗𝑙𝑘

= 𝑝
𝑗𝑖𝑘𝑙

= 𝑝
𝑗𝑖𝑙𝑘

=
𝑛
𝑖
𝑛
𝑗
𝑛
𝑘
𝑛
𝑙

𝑛 (𝑛 − 1) (𝑛 − 2) (𝑛 − 3)
,

𝑝
𝑖𝑗
𝑝
𝑘𝑙

= 𝑝
𝑖𝑗
𝑝
𝑙𝑘

= 𝑝
𝑗𝑖
𝑝
𝑘𝑙

= 𝑝
𝑗𝑖
𝑝
𝑙𝑘

=
𝑛
𝑖
𝑛
𝑗

𝑛 (𝑛 − 1)

𝑛
𝑘
𝑛
𝑙

𝑛 (𝑛 − 1)
.

(17)

Notice that Σsym is a 𝑘
𝑠
× 𝑘

𝑠
matrix with 𝑘

𝑠
= 𝑘(𝑘 − 1)/2 and

E[T
𝑆
] = (0, 0, . . . , 0). Then

X
2

𝐷
= (T

𝑆
− E [T

𝑆
])
󸀠

Σ
−

sym (T
𝑆
− E [T

𝑆
]) = T󸀠

𝑆
Σ
−

symT𝑆 (18)

asymptotically has 𝜒2
𝑘
𝑠

distribution.

2.4. Pielou’s Second Type of Symmetry Test. In the two-class
case, a more elaborate test of symmetry due to Pielou [2] is
based on a 2 × 6 contingency table, called the 𝑄-symmetry
contingency table, where the class of each observation and the
number of times it serves as a NN are recorded. A point can
only serve as a NN to 0, 1, 2, 3, 4, or 5 other observations due
to geometric constraints in R2 provided that the points are
from a continuous distribution (as in CSR independence).
For a two-class population, the observations are sorted into
two sets of frequencies, namely,𝑄

𝑖,0
, 𝑄

𝑖,1
, . . . , 𝑄

𝑖,5
, for 𝑖 = 1, 2,

where 𝑄
𝑖,𝑚

is the frequency of class 𝑖 observations serving as
a NN to 𝑚 other points for 𝑚 ∈ {0, 1, 2, 3, 4, 5}. So Pielou’s
second type of symmetry test uses more spatial information
than just the categorization of base-NN relations. Notice that
𝑄
𝑖,𝑚

is also the number of class 𝑖 points shared as a NN by 𝑚

other points.
The corresponding contingency table for the two-class

case is given in Table 2(a), where 𝑄
𝑚

is the column sum,
that is, the total number of points serving as a NN 𝑚 times
or the number of points shared as a NN by 𝑚 other points
for 𝑚 ∈ {0, 1, 2, 3, 4, 5}. Only if the allocation of the points
from both populations is symmetric in terms of frequency
of “serving as a NN” property, the expected proportions of
classes 1 and 2 points serving as NNs 𝑚 times will be the
same for each𝑚 value. Hence, this type of symmetry refers to
“symmetry in shared NN structure.” Let 𝑝⃗

𝑖
= (𝑝

𝑖,0
, . . . , 𝑝

𝑖,5
)

be the vector of probabilities (or proportions) associated with
row 𝑖 for 𝑖 = 1, 2 in the𝑄-symmetry contingency table under
the row-wise multinomial framework. In a 𝑄-symmetry
contingency table, sum of row 𝑖 equals 𝑛

𝑖
(i.e., size of class

𝑖). Hence, 𝑄-symmetry contingency table may not result
from the overall multinomial framework, since row sums
in a 𝑄-symmetry contingency table are fixed for completely
mapped data. Furthermore, under RL, column sums 𝑄

𝑚
are

fixed and hence can be denoted as 𝑄
𝑚

= 𝑞
𝑚
, but, under CSR

independence, 𝑄
𝑚
are random quantities.
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Table 2:The𝑄-symmetry contingency table for 𝑘with 𝑘 = 2(a) and
𝑘 > 2(b).

(a)

The number of times a point serving as a NN Total
0 1 2 3 4 5

Classes
Class 1 𝑄

1,0
𝑄
1,1

𝑄
1,2

𝑄
1,3

𝑄
1,4

𝑄
1,5

𝑛
1

Class 2 𝑄
2,0

𝑄
2,1

𝑄
2,2

𝑄
2,3

𝑄
2,4

𝑄
2,5

𝑛
2

Total 𝑄
0

𝑄
1

𝑄
2

𝑄
3

𝑄
4

𝑄
5

𝑛

(b)

The number of times a point serving as a NN Total
0 1 2 3 4 5

Classes
Class 1 𝑄

1,0
𝑄
1,1

𝑄
1,2

𝑄
1,3

𝑄
1,4

𝑄
1,5

𝑛
1

...
...

...
...

...
...

...
...

Class 𝑘 𝑄
𝑘,0

𝑄
𝑘,1

𝑄
𝑘,2

𝑄
𝑘,3

𝑄
𝑘,4

𝑄
𝑘,5

𝑛
𝑘

Total 𝑄
0

𝑄
1

𝑄
2

𝑄
3

𝑄
4

𝑄
5

𝑛

Thus, the null hypothesis of symmetry in the shared NN
structure is given by

𝐻
𝑜
: 𝑝⃗

1
= 𝑝⃗

2
= (𝑝

0
, 𝑝

1
, . . . , 𝑝

5
)

or (𝑝
1,0

, . . . , 𝑝
1,5

) = (𝑝
2,0

, . . . , 𝑝
2,5

) = (𝑝
0
, 𝑝

1
, . . . , 𝑝

5
) .

(19)

In general, if the independence assumptions in the row-
wise multinomial framework hold, we would have E[𝑄

𝑖,𝑚
] =

𝑛
𝑗
𝑄
𝑚
/𝑛. Then we may test the equality of proportions by

using the usual Pearson’s 𝜒2 test

X
2

II =
5

∑
𝑚=0

2

∑

𝑗=1

(𝑄
𝑖,𝑚

− E [𝑄
𝑖,𝑚

])
2

E [𝑄
𝑖,𝑚

]
(20)

which has approximately a 𝜒
2

5
distribution for large 𝑛. Under

RL, although it would be possible for a point to serve as NN
to 6 other points with a positive probability (depending on
the fixed allocation of the points), we will only consider up
to 5 (and combine 5 and 6 categories and treat them as one
category). If these categories have nonnegligible counts, then
the above discussion can easily be extended to the case that
shared NN frequencies have 7 levels, and the corresponding
test has 𝜒2

6
distribution for large 𝑛.

A conservative requirement for the cell frequencies in
the contingency table is that no expected cell count is less
than 1 and no more than 20% of the cell counts are less
than 5 [16]. Otherwise, it is recommended to merge some
of the categories. For the 𝑄-symmetry contingency table, in
practice, such a merging would usually be necessary for 𝑚 ≥

2, whence the dimension of the contingency table becomes
2×3 and df becomes 2. Large values ofX2

II indicate deviations
from the null case. Hence, if the𝑝 value is significant, then the
population can be assumed to be asymmetric in the shared

NN structure in the sense that the distribution of the rows
in the 𝑄-symmetry contingency table would be different for
the two classes; that is, there is significant asymmetry in the
shared NN structure.

Pielou’s second type of symmetry test can immediately
be extended to the multiclass case. With 𝑘 > 2, we record
the frequency of class 𝑖 members serving as NN 𝑚 times
in a 𝑘 × 6 contingency table (merging cells when necessary
which might be needed for 𝑚 ≥ 2). Then we obtain the
contingency table given in Table 2(b). In the 𝑘-class case, the
null hypothesis is

𝐻
𝑜
: 𝑝⃗

𝑖
= (𝑝

𝑖,0
, . . . , 𝑝

𝑖,5
) = (𝑝

0
, 𝑝

1
, . . . , 𝑝

5
)

∀𝑖 ∈ {1, 2, . . . , 𝑘} .
(21)

The corresponding test statistic X2

II = ∑
5

𝑚=0
∑
𝑘

𝑖=1
((𝑄

𝑖,𝑚
−

E[𝑄
𝑖,𝑚

])
2
/E[𝑄

𝑖,𝑚
]) would be approximately distributed as

𝜒
2

5(𝑘−1)
(and when columns are merged for 𝑚 ≥ 2, we obtain

a 𝑘 × 3 𝑄-symmetry contingency table and the asymptotic
distribution is 𝜒

2

2(𝑘−1)
) for large 𝑄

𝑚
and 𝑛

𝑖
provided that

the independence assumptions in the row-wise multinomial
framework hold.

This test seems to arise from the row-wise multinomial
framework by construction, with the test statistic,X2

II, given
in (20). Furthermore, the trials here are “base point-” “num-
ber of times the point serving as a NN” or “base point-”
“number of times the point is shared as a NN.” Under RL or
CSR independence, between row or column independence is
violated for the𝑄-symmetry contingency table. For example,
under RL with two classes, 𝑄

1,𝑚
and 𝑄

2,𝑚
are highly corre-

lated; in fact, correlation between them is −1 when 𝑘 = 2,
since 𝑄

2,𝑚
= 𝑞

𝑚
− 𝑄

1,𝑚
. Furthermore, 𝑄

𝑖,𝑚
and 𝑄

𝑖,𝑚
󸀠 are also

highly dependent and so are 𝑄
𝑖,𝑚

and 𝑄
𝑖
󸀠
,𝑚
󸀠 . Hence, the sug-

gested asymptotic distribution forX2

II should be appropriate
under sparse sampling only. However, our extensive Monte
Carlo simulations suggest that the asymptotic approximation
with the reduced contingency table using 𝜒

2

2(𝑘−1)
distribution

seems to hold for completely mapped data as well. Therefore,
the test seems to be appropriate for both sparsely sampled or
completelymapped data. Yet, finding the exact and asymptotic
distribution ofX2

II is still open problems.

3. Fisher’s Exact Test for the 𝑄-Symmetry
Contingency Table

Fisher’s exact test is widely used for contingency tables for
small sample sizes (see, e.g., [17]). However, it can neither
be used to test Pielou’s first type of symmetry nor Dixon’s
symmetry test for two classes nor for their extensions to 𝑘 >

2 case, since we only consider the equality of off-diagonal
entries in these tests, while Fisher’s exact test is used to detect
any departure from independence for all cell count in the
contingency table. An alternative exact test for small 𝑛

𝑡
=

𝑁
12

+ 𝑁
21

can be obtained by using the usual binomial test
for Pielou’s first type of symmetry test under the appropriate
sampling framework. The use of exact tests on NNCTs for
testing segregation/association is discussed in Ceyhan [18].
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We can apply Fisher’s exact test for the 2 × 6 𝑄-symmetry
contingency table given in Table 2 (or the reduced 2 × 3

contingency table) for Pielou’s second type of symmetry test.
If calculated manually, Fisher’s exact test is feasible only

for small size contingency tables. Furthermore, the under-
lying assumption of the Fisher’s exact test is that the total
number of observations, row and column sums are fixed, so
Fisher’s exact test is a test conditional on the marginals. For
𝑘 × 𝑙 contingency tables, when 𝑘 = 𝑙 = 2, then Fisher’s exact
test can be one-sided or two-sided, whereas, whenmin(𝑘, 𝑙) >

2 (hence for the 𝑄-symmetry contingency table), it is two-
sided only [17].

There are numerous ways to obtain 𝑝 values for the two-
sided alternatives for exact inference on contingency tables
[17]. These variants of Fisher’s exact test are described below.
The 𝑝 values based on Fisher’s exact tests tend to be more
conservative than most approximate (asymptotic) ones [17].

3.1. Variants of Fisher’s Exact Test for Two-Sided Alternatives.
To find the 𝑝 values for Fisher’s exact test, we find the
probabilities of the contingency tables obtained from the
distribution with the same row and column marginal sums.
For the two-sided alternatives, a recommended method is
adding up probabilities of contingency tables of the same size
and smaller than the probability associated with the current
table. Alternatively, twice the one-sided 𝑝 value can also be
used for a 2 × 2 contingency table [17]. Let the probability of
the 𝑘 × 𝑙 contingency table, 𝐶

𝑇
, be denoted as 𝑓(𝐶

𝑇
), where

min(𝑘, 𝑙) > 2, and let sum of row 𝑖 be 𝑟
𝑖
, let sum of column

𝑗 be 𝑐
𝑗
, and let entry 𝑖, 𝑗 be 𝑁

𝑖𝑗
. Then the probability of the

contingency table, 𝐶
𝑇
, is [13]

𝑓 (𝐶
𝑇
) =

∏
𝑘

𝑖=1
(𝑟
𝑖
!/ (𝑁

𝑖1
!𝑁

𝑖2
! . . . 𝑁

𝑖𝑙
!))

𝑛!/ (𝑐
1
!𝑐
2
! . . . 𝑐

𝑙
!)

. (22)

In particular, for the 2 × 3 reduced 𝑄-symmetry contingency
table, we get

𝑓 (𝐶
𝑇
) =

(𝑛
1
!/ (𝑄

1,0
!𝑄

1,1
!𝑄

1,2
!)) (𝑛

2
!/ (𝑄

2,0
!𝑄

2,1
!𝑄

2,2
!))

𝑛!/ (𝑄
0
!𝑄

1
!𝑄

2
!)

.

(23)

Let the probability of the current contingency table be
denoted as 𝑝

𝑡
.

For summing the 𝑝 values of more extreme tables than
the current table in both directions, the following variants of
the exact test are obtained. The 𝑝 value is calculated as 𝑝 =

∑
𝑆
𝑓(𝐶

𝑇
) for the appropriate choice of the set of contingency

tables, 𝑆, as follows:
(i) table-inclusive version, denoted as 𝑝inc: take 𝑆 = {𝐶

𝑇
:

𝑓(𝐶
𝑇
) ≤ 𝑝

𝑡
};

(ii) twice-table-inclusive version, 𝑝
𝑡,inc: the probability of

the observed table is included twice, once for each
side;

(iii) table-exclusive version, 𝑝exc: table-inclusive minus 𝑝
𝑡
;

(iv) mid-𝑝 version, 𝑝mid: table-exclusive plus one-half the
𝑝
𝑡
;

(v) Tocher corrected version, 𝑝Toc, is obtained as follows.

Tocher’s correctionmakes Fisher’s exact test less conservative,
by including the probability for the current table based on
a randomized test [19]. When table-inclusive version of the
𝑝 value, 𝑝inc, is larger than the level of the test 𝛼, but table-
exclusive version, 𝑝exc, is less than 𝛼, a random number, 𝑈,
is generated from uniform distribution in (0, 1), and if 𝑈 ≥

(𝛼 − 𝑝exc)/𝑝𝑡, then 𝑝inc is used as the 𝑝 value, otherwise 𝑝exc
is used as the 𝑝 value. That is,

𝑝Toc =

{{

{{

{

𝑝inc if 𝑈 ≥
(𝛼 − 𝑝exc)

𝑝
𝑡

,

𝑝exc otherwise.
(24)

Observe that 𝑝exc = 𝑝inc − 𝑝
𝑡
and 𝑝mid = 𝑝exc + 𝑝

𝑡
/2.

Additionally, 𝑝exc ≤ 𝑝Toc ≤ 𝑝inc < 𝑝
𝑡,inc and 𝑝exc < 𝑝mid <

𝑝inc < 𝑝
𝑡,inc.

4. Asymptotic Power Analysis

The null hypotheses are different for the symmetry tests and
so are the alternative hypotheses.This makes the comparison
of the tests inappropriate even for large samples; however,
under specific alternatives and assumptions, we can estimate
asymptotic efficiency scores, such as those of Pitman asymp-
totic efficiency. A reasonable test should have more power as
the sample size increases. So, we first prove the consistency of
the tests in question under appropriate hypotheses.

4.1. Consistency of Tests. The consistency of Pielou’s second
and first types of symmetry tests is shown as below.

Theorem2. For properly sparsely sampled data under the row-
wise multinomial framework, Pielou’s second type of symmetry
test for the multiclass case with the 𝑘 × 6 contingency table;
that is, the test rejecting 𝐻

𝑜
: 𝑝⃗

𝑖
= (𝑝

0
, . . . , 𝑝

5
) for all

𝑖 ∈ {1, 2, . . . , 𝑘} for X2

𝐼𝐼
> 𝜒

2

5(𝑘−1)
(1 − 𝛼) with X2

𝐼𝐼
=

∑
5

𝑚=0
∑
𝑘

𝑖=1
((𝑄

𝑖,𝑚
− 𝑁

𝑖
𝑄
𝑚
/𝑛)

2
/(𝑁

𝑖
𝑄
𝑚
/𝑛)) is consistent.

Proof. In the multiclass case with 𝑘 ≥ 2, deviations from 𝐻
𝑜

mayhavemany possible forms. In any deviation from𝐻
𝑜
, that

is, under𝐻
𝑎
, for large 𝑛,X2

II is approximately distributed as a
𝜒
2 distribution with noncentrality parameter 𝜆( ⃗𝜀) and 5(𝑘 −

1) df, which is denoted as 𝜒
2

5(𝑘−1)
(𝜆( ⃗𝜀)). The noncentrality

parameter is a quadratic form which can be written as
𝜇⃗( ⃗𝜀)

󸀠
𝐴𝜇⃗( ⃗𝜀) for some positive definitematrix𝐴 of rank 5(𝑘−1)

(see, e.g., [20]); hence, 𝜆( ⃗𝜀) > 0 under 𝐻
𝑎
. Then, for large 𝑛,

the null and alternative hypotheses are equivalent to𝐻
𝑜
: 𝜆 =

0 versus 𝐻
𝑎
: 𝜆 = 𝜆( ⃗𝜀) > 0. Then, by standard arguments for

the consistency of 𝜒2-tests, the result follows.

The consistency of Pielou’s second type of symmetry test
for the 2 × 3 (reduced) contingency table can be shown
similarly.

Theorem3. Let the NNCT be constructed by a random sample
of base-NN pairs (i.e., data is obtained by an appropriate sparse
sampling) under an overall multinomial framework. Then,
Pielou’s first type of symmetry test, that is, the test rejecting



The Scientific World Journal 9

𝐻
𝑜

: E[𝑁
𝑖𝑗
] = E[𝑁

𝑗𝑖
] for all 𝑖, 𝑗 with 𝑖 ̸= 𝑗 against 𝐻

𝑎
:

E[𝑁
𝑖𝑗
] ̸=E[𝑁

𝑗𝑖
] for some 𝑖, 𝑗with 𝑖 ̸= 𝑗 forX2

𝐼
> 𝜒

2

𝑘(𝑘−1)/2
(1−𝛼)

with X2

𝐼
as in (4) is consistent. The corresponding one-sided

tests using 𝑍
𝐼
given in (3) are also consistent.

Proof. In the two-class case, recall that this test is the same
as McNemar’s test with a continuity correction. Given that
𝑁
12

+ 𝑁
21

= 𝑛
𝑡
, the correction is used for small 𝑛

𝑡
and its

impact vanishes as 𝑛
𝑡
→ ∞. So we prove the consistency for

the uncorrected version (i.e., for the test without continuity
correction), X2

I = (𝑁
12

− 𝑁
21
)
2
/(𝑁

12
+ 𝑁

21
). Let 𝑇

𝑛
𝑡

=

𝑁
12
/𝑛

𝑡
− 1/2. Then, under 𝐻

𝑜
, we have 𝑁

12
∼ BIN(𝑛

𝑡
, 1/2).

So 𝑍I = (𝑁
12

− 𝑛
𝑡
/2)/√𝑛

𝑡
/4 = 𝑇

𝑛
𝑡

/√1/(4 𝑛
𝑡
) = (𝑁

12
−

𝑁
21
)/√𝑁

12
+ 𝑁

21
. Hence, 𝑍I is approximately distributed as

𝑁(0, 1) for large 𝑛
𝑡
under the null hypothesis and a normal

distribution under alternative hypothesis. Notice that 𝑍2

I =

X2

I in the uncorrected version. Under 𝐻
𝑜
, E[𝑇

𝑛
𝑡

] = 0 and,
under 𝐻

𝑎
, E[𝑇

𝑛
𝑡

| 𝐻
𝑎
] = 𝜀 > 0 or E[𝑇

𝑛
𝑡

| 𝐻
𝑎
] = 𝜀 < 0. Then,

by the standard arguments for the consistency of 𝑧-tests, the
test using 𝑍I is consistent. The 𝛼-level test based on X2

I is
equivalent to 𝛼-level two-sided test based on 𝑍I. Hence, the
consistency of X2

I follows as well. For 𝑘 > 2, consistency of
𝑍
𝑖𝑗

I = (𝑁
𝑖𝑗
−𝑁

𝑗𝑖
)/√𝑁

𝑖𝑗
+ 𝑁

𝑗𝑖
is similar to𝑍I with (𝑖, 𝑗) = (1, 2)

and consistency of X2

I follows as in the proof of Theorem
2.

Theorem 4. Let the NNCT be constructed from a completely
mapped data under RL. Then Dixon’s symmetry test, that is,
the test rejecting 𝐻

𝑜
: E[𝑁

𝑖𝑗
] = E[𝑁

𝑗𝑖
] for all 𝑖, 𝑗 with

𝑖 ̸= 𝑗 against 𝐻
𝑎

: E[𝑁
𝑖𝑗
] ̸=E[𝑁

𝑗𝑖
] for some 𝑖, 𝑗 with 𝑖 ̸= 𝑗 for

X2

𝐷
> 𝜒

2

𝑘(𝑘−1)/2
(1 − 𝛼) with X2

𝐷
as in (18) is consistent. The

corresponding one-sided tests using 𝑍
𝐷
given in (10) are also

consistent.

Proof. In the two-class case, let 𝑇
𝐷

= (𝑁
12
/𝑛 − 𝑁

21
/𝑛)/

√Var[𝑁
12
/𝑛 + 𝑁

21
/𝑛]; then 𝑇

𝐷
= 𝑍

𝐷
. Under RL, E[𝑍

𝐷
] = 0

since E[𝑁
12
] = E [𝑁

21
] and 𝑍

𝐷
is approximately distributed

as 𝑁(0, 1) for large 𝑛
𝑖
under the null hypotheses. Under 𝐻

𝑎
,

E[𝑍
𝐷

| 𝐻
𝑎
] = 𝜀 > 0 or E[𝑍

𝐷
| 𝐻

𝑎
] = 𝜀 < 0 and Var[𝑁

𝑖𝑗
/𝑛] =

𝑝
𝑖𝑗
(𝜀)/𝑛 + 𝑄𝑝

𝑖𝑖𝑗
(𝜀)/𝑛

2
+ (1 − 3/𝑛 − 𝑄/𝑛

2
)𝑝

𝑖𝑖𝑗
(𝜀) − (𝑝

𝑖𝑗
(𝜀))

2

and Cok[𝑁
𝑖𝑗
/𝑛,𝑁

𝑗𝑖
/𝑛] = 𝑅𝑝

𝑖𝑗
(𝜀)/𝑛

2
+ (1/𝑛 − 𝑅/𝑛

2
)(𝑝

𝑖𝑖𝑗
(𝜀) +

𝑝
𝑗𝑗𝑖

(𝜀))+(1−3/𝑛−𝑄/𝑛
2
+𝑅/𝑛

2
)𝑝

𝑖𝑗𝑗𝑗
(𝜀)−𝑝

𝑖𝑗
(𝜀)𝑝

𝑗𝑖
(𝜀). So, under

𝐻
𝑎
, Var[𝑁

𝑖𝑗
] → 0 and Cok[𝑁

𝑖𝑗
, 𝑁

𝑗𝑖
] → 0 as 𝑛

𝑖
→ ∞.

Hence, the test using 𝑍
𝐷
is consistent. The 𝛼-level test based

on X2

𝐷
is consistent as in the proof of Theorem 2, since X2

𝐷

is a quadratic based on 𝑍
𝑖𝑗

𝐷
values; that is,X2

𝐷
∼ 𝜒

2

df(𝜆(𝜀)) for
some 𝜆(𝜀) > 0.

Remark 5. The consistency result for Pielou’s first type of
symmetry test is only for sparsely sampled data with contin-
gency table from the overall multinomial framework. Pielou’s
second type of symmetry test is consistent only for sparsely
sampled data with the row-wise multinomial framework. For
completelymapped data, these tests do not have the appropri-
ate size. In particular, Monte Carlo simulations suggest that
Pielou’s first type of symmetry test (with 𝜒

2 approximation

or exact binomial version) is extremely conservative. See also
Section 5.

4.2. Asymptotic Power Comparison of the Tests. The power
of a test in hypothesis testing depends on the statistic being
employed, sample size, the level of the test 𝛼, and the
parameter(s) under 𝐻

𝑎
. To be able to compare the tests, we

should consider the asymptotics with only 𝑛 → ∞, where
the asymptotic power tends to 1 for consistent tests. Since
the power depends onmultiple parameters, many asymptotic
efficiency methods are introduced to compare asymptotic
power performance. See [21] for a brief survey of asymptotic
efficiency measures.

The tests with small level and high power under alter-
natives close to null hypothesis have practical importance.
Hence, Pitman asymptotic efficiency (PAE) is widely used in
practice. PAE analysis provides for an investigation of local
power around 𝐻

𝑜
, which involves the limit as 𝑛 → ∞

together with the limit of alternative parameter converging to
the null parameter. See, for example [22, 23] for more details.

Remark 6. Suppose that the distribution 𝐹 under considera-
tion can be indexed byΘ ⊆ R and consider𝐻

𝑜
: 𝜃 = 𝜃

0
versus

𝐻
𝑎
: 𝜃 > 𝜃

0
. If the test statistic satisfies central limit theorem

together with the Pitman’s conditions [23] with 𝜇
𝑛

= E[𝑇
𝑛
]

and 𝜎
2

𝑛
= Var[𝑇

𝑛
], then PAE of 𝑇

𝑛
is given by

PAE (𝑇
𝑛
) = lim

𝑛→∞

𝜇
2

𝑛
(𝜃 = 𝜃

0
)

𝑛𝜎2
𝑛

. (25)

If a test statistic, 𝑇
𝑛
, converges in law to 𝜒

2

] distribution
as 𝑛 → ∞, then the local power approximation using
asymptotic normality of𝑇

𝑛
is not appropriate [24]. By suitable

transformations, the corresponding test asymptotically boils
down to 𝐻

𝑜
: 𝜆 = 0 versus 𝐻

𝑎
: 𝜆 > 0, where 𝜆 is the

noncentrality parameter for the𝜒2] distribution.Therefore, we
investigate the local power around 𝜆 = 0. Let 𝑓](𝑥, 𝜆) and
𝐹](𝑥, 𝜆) be the pdf and cdf of 𝜒

2

] (𝜆) distribution, respectively.

Theorem 7. Suppose that 𝐶2 is a test statistic which converges
in law to 𝜒

2

] (𝜆) with 𝜆 = 0 under 𝐻
𝑜
and to 𝜒

2

] (𝜆) with 𝜆 > 0

under𝐻
𝑎
.Then the local power for small𝜆 (𝜆 around 0) is given

by

𝛽 (𝜆, ], 𝛼)

≈ 𝛼 + 𝜆 (−
𝛼

2
+

1

2
[1 − 𝐹]+2 (𝜆 = 0, 𝜒

2

] (0, 1 − 𝛼))]) .

(26)

The proof is provided in the Appendix.

4.2.1. Asymptotic Local Power Analysis of the Tests. Pielou’s
first type of symmetry test is used for testing 𝐻

𝑜
: E[𝑁

12
] =

E[𝑁
21
] versus 𝐻

𝑎
: E[𝑁

12
] ̸=E[𝑁

21
]. Under 𝐻

𝑜
, given that

𝑁
12

+ 𝑁
21

= 𝑛
𝑡
, 𝑁

12
∼ BIN(𝑛

𝑡
, 1/2), since E[𝑁

12
]/(E[𝑁

12
] +

E[𝑁
21
]) = 1/2. Under 𝐻

𝑎
, 𝑁

12
∼ BIN(𝑛

𝑡
, 1/2 + 𝜀

1
) for 𝜀

1
∈

(0, 1/2). Let 𝑇
𝑛
𝑡

= 𝑁
12
/𝑛

𝑡
− 1/2. Then 𝑇

2

𝑛
𝑡

= (𝑁
12

− 𝑁
21
)
2
/𝑛

𝑡

which is equal toX2

I (without Yates’ correction) in (2). Under
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𝐻
𝑜
, E[𝑇

𝑛
𝑡

] = 0 and Var[𝑇
𝑛
𝑡

] = 1/4𝑛
𝑡
and under 𝐻

𝑎
, let

E[𝑇
𝑛
𝑡

| 𝐻
𝑎
] = 𝜀

1
. Next, let 𝜇

𝑛
𝑡

= E[𝑇
𝑛
𝑡

] and 𝜎
2

𝑛
𝑡

(𝑇
𝑛
𝑡

) =

Var[𝑇
𝑛
𝑡

]. Then 𝜇
𝑛
𝑡

and 𝜎
𝑛
𝑡

satisfy the Pitman conditions and
𝜇
󸀠

𝑛
𝑡

(𝜀
1
= 0) = 1 (see [23]). Then by Remark 6, the PAE of 𝑇

𝑛
𝑡

(for the parameterization𝐻
𝑎
: E[𝑁

12
] − E[𝑁

21
] = 𝜀

1
) is

PAE (𝑇
𝑛
𝑡

) = PAE (𝑍I) = 4. (27)

The asymptotic local power for Dixon’s symmetry test for
the two-class case can also be investigated with PAE analysis.
For Dixon’s symmetry test for the two-class case, consider
𝑇
𝑛
= (𝑁

12
− 𝑁

21
)/𝑛. Then

𝑍
𝐷

=
𝑇
𝑛

√Var [𝑇
𝑛
]

=
𝑁
12

− 𝑁
21

√Var [𝑁
12
] + Var [𝑁

21
] − 2Cok [𝑁

12
, 𝑁

21
]

.

(28)

Let 𝜇
𝑛
= E[𝑇

𝑛
], 𝜎2

𝑛
= Var[𝑇

𝑛
], 𝑝

𝑞
= E[𝑄/𝑛], and 𝑝

𝑟
= E[𝑅/𝑛].

That is, 𝑝
𝑞
is the probability of a point being a shared NN and

𝑝
𝑟
is the probability of a pair being reflexive.Then, under𝐻

𝑜
,

E[𝑇
𝑛
| 𝐻

𝑜
] = 0 and

Var [𝑇
𝑛
| 𝐻

𝑜
]

=
(Var [𝑁

12
] + Var [𝑁

21
] − 2Cok [𝑁

12
, 𝑁

21
])

𝑛2
,

(29)

where for large 𝑛
𝑖

Var [𝑁
𝑖𝑗
] ≈ ]

𝑖
]
𝑗
[1 + 𝑝

𝑞
]
𝑖
− (3 + 𝑝

𝑞
− 𝑝

𝑟
) ]

𝑖
]
𝑗
] (30)

for (𝑖, 𝑗) ∈ {(1, 2), (2, 1)} and

Cok [𝑁
12
, 𝑁

21
]

≈ ]
1
]
2
[𝑝

𝑟
+ (1 − 𝑝

𝑟
) (]

1
+ ]

2
) − (3 + 𝑝

𝑞
− 𝑝

𝑟
) ]

1
]
2
] ,

(31)

and, under 𝐻
𝑎
, let E[𝑇

𝑛
| 𝐻

𝑎
] = 𝜀

2
. Then, by Remark 6, PAE

of 𝑍
𝐷
(for the parameterization 𝐻

𝑎
: E[(𝑁

12
− 𝑁

21
)/2] = 𝜀

2
)

is given by

PAE (𝑍
𝐷
) =

1

Var [𝑁
12
] + Var [𝑁

21
] − 2Cok [𝑁

12
, 𝑁

21
]

=
1

]
1
(1 − ]

1
) 𝑝

𝑞

.

(32)

For the asymptotic relative efficiency between Pielou’s
first type of symmetry test and Dixon’s symmetry test to
make sense, the null assumptions for these tests shouldmatch
and so should the alternatives and the parameterizations of
the alternatives (under which PAE scores are computed).
Otherwise, PAE(𝑍I) and PAE(𝑍𝐷

)would not be comparable.
In particular, since the (appropriate) null and alternatives
are different for these tests, we refrain from computing

asymptotic relative efficiency for these tests. On the other
hand, for Dixon’s symmetry test with varying ]

1
and 𝑝

𝑞
,

notice that PAE(𝑍
𝐷
) increases as ]

1
gets closer to 0 or 1 or

𝑝
𝑞
gets smaller. For example, for fixed 𝑝

𝑞
, PAE of 𝑍

𝐷
gets

larger as the relative abundances of the classes get more and
more different (which implies that ]

1
gets closer to 0 or 1).The

smallest PAE(𝑍
𝐷
) values are obtained when ]

1
= ]

2
= 1/2

for any 𝑝
𝑞

> 0. That is, the power of Dixon’s test for spatial
symmetry (in mixed NN structure) highly depends on the
relative abundances of the classes. The PAE of 𝑍

𝑖𝑗

𝐷
in the

multiclass case is similar.

5. Empirical Performance of the Tests

In this section we investigate the finite sample behavior of
the tests under various patterns via Monte Carlo simula-
tions.

5.1. Empirical Performance Analysis under RL and CSR Inde-
pendence. Both CSR independence and RL patterns imply
symmetry in themixed or sharedNNstructure.That is, under
these cases, the asymmetry would occur at expected levels.
More specifically, we expect that E[𝑁

12
] = E[𝑁

21
] = 𝑛

1
𝑛
2
/𝑛

would hold for symmetry inmixedNNstructure, and 𝑝⃗
1
= 𝑝⃗

2

in (19) would hold for symmetry in shared NN structure.
Hence, these patterns imply our null hypotheses and hence
can be used to assess the empirical size performance of the
tests.

In what follows empirical size estimates are based on
the asymptotic critical values (except for the exact tests). In
particular, for a test, 𝑇, with a 𝜒

2

df distribution asymptotically,
empirical sizes are estimated as follows. Let 𝑇

𝑖
be the value

of test statistic for the sample generated at 𝑖th Monte Carlo
replication for 𝑖 = 1, 2, . . . , 𝑁mc. Then the empirical size
of 𝑇 at level 𝛼 = 0.05, denoted 𝛼̂

𝑇
, is computed as 𝛼̂

𝑇
=

(1/𝑁mc) ∑
𝑁mc
𝑖=1

I (𝑇
𝑖
> 𝜒

2

df(0.95)), where 𝜒
2

df(0.95) is the 95th
percentile of 𝜒2df distribution. For an exact test, let 𝑝

𝑖
be the 𝑝

value for 𝑖th sample generated.Then the empirical size of this
test, denoted 𝛼̂

𝐸
, is computed as 𝛼̂

𝐸
= (1/𝑁mc) ∑

𝑁mc
𝑖=1

I (𝑝
𝑖
<

0.05). With 𝑁mc = 10000, an empirical size estimate larger
than 0.0536 is deemed liberal, while an estimate smaller than
0.0464 is deemed conservative at .05 level (based on binomial
critical values with 𝑛 = 10000 trials and probability of success
0.05).

5.1.1. Empirical Size Analysis under CSR Independence. We
consider the two-class case, with classes 1 and 2 (also
referred to as the classes 𝑋 and 𝑌, resp.) of sizes 𝑛

1
and 𝑛

2
,

respectively. Let {𝑋
1
, . . . , 𝑋

𝑛
1

} be the set of class 1 points and
let {𝑌

1
, . . . , 𝑌

𝑛
2

} be the set of class 2 points. Under 𝐻
𝑜
, at

each of 𝑁mc = 10000 replicates, we generate 𝑋 and 𝑌 points
independently of each other and iid from U((0, 1) × (0, 1)),
the uniform distribution on the unit square. We consider two
cases for CSR independence.

Case 1. We generate 𝑛
1
= 𝑛

2
= 𝑛 = 10, 20, 30, 40, 50 points iid

fromU((0, 1) × (0, 1)). In this case, the sample sizes are equal
and increasing.
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Table 3: The empirical significance levels of the symmetry tests
under CSR independence Case 1: 𝑛

1
= 𝑛

2
= 𝑛 = 10, 20, . . . , 50 and

Case 2: 𝑛
1
= 20, 𝑛

2
= 20, 30, . . . , 60 with 𝑁mc = 10000 at 𝛼 = .05.

𝛼̂
𝑃

I and 𝛼̂
𝑃
󸀠

I stand for the empirical significance levels for Pielou’s
first type of symmetry test using 𝜒

2 approximation with and without
Yates’ continuity correction, respectively; 𝛼̂𝑃bin stands for the exact
binomial version of Pielou’s first type of symmetry test conditional
on 𝑁

12
+ 𝑁

21
= 𝑛

𝑡
; 𝛼̂𝑃II stands for the empirical significance level

for Pielou’s second type of symmetry test; 𝛼̂𝐷
𝑆
stands for Dixon’s

symmetry test.

CSR independence Case 1
𝑛 𝛼̂

𝑃

I 𝛼̂
𝑃
󸀠

I 𝛼̂
𝑃

bin 𝛼̂
𝑃

II 𝛼̂
𝐷

𝑆

10 .0002 .0011 .0111 .0483 .0466
20 .0001 .0006 .0080 .0533 .0480
30 .0000 .0008 .0073 .0487 .0492
40 .0001 .0006 .0061 .0501 .0514
50 .0000 .0007 .0044 .0522 .0484

CSR independence Case 2
𝑛
2

𝛼̂
𝑃

I 𝛼̂
𝑃
󸀠

I 𝛼̂
𝑃

bin 𝛼̂
𝑃

II 𝛼̂
𝐷

𝑆

20 .0001 .0006 .0093 .0533 .0473
30 .0002 .0001 .0088 .0527 .0500
40 .0001 .0008 .0089 .0536 .0539
50 .0002 .0008 .0092 .0491 .0483
60 .0002 .0010 .0080 .0508 .0483

Case 2. To determine the influence of differences in the
sample sizes (i.e., differences in relative abundances) on the
empirical levels of the tests, we generate the samples from
the CSR independence pattern with 𝑛

1
= 20 and 𝑛

2
=

20, 30, . . . , 60.
The empirical significance levels (under CSR indepen-

dence Cases 1 and 2) for the symmetry tests are presented
in Table 3, where 𝛼̂

𝑃

I and 𝛼̂
𝑃
󸀠

I are the (estimated) empirical
significance levels for Pielou’s first type of symmetry test
using 𝜒

2 approximation with and without Yates’ continuity
correction, respectively; 𝛼̂𝑃bin is for the exact binomial version
of Pielou’s first type of symmetry test conditional on 𝑁

12
+

𝑁
21

= 𝑛
𝑡
; 𝛼̂𝑃II is the empirical significance level for Pielou’s

second type of symmetry test; 𝛼̂𝐷
𝑆
is forDixon’s symmetry test.

Notice that Pielou’s first type of symmetry tests and the exact
binomial test are extremely conservative. Furthermore, we
recommend the use of the Monte Carlo randomized versions
of these tests or with Monte Carlo critical values rather than
the approximate asymptotic critical values. A Monte critical
value is determined as the appropriately ranked value of the
test statistic in a certain number of generated data sets under
the null hypothesis. The other tests seem to be of the desired
level for each sample size considered.

The empirical significance levels for the exact tests on
the𝑄-symmetry contingency table under CSR independence
Cases 1 and 2 are presented in Table 4, where 𝛼̂inc is the
empirical significance level for the two-sided test with the
table-inclusive version, 𝛼̂exc is for table-exclusive version, 𝛼̂mid
is for mid-𝑝 value version, and 𝛼̂Toc is for Tocher corrected
version. Notice that only the table exclusive version is about

Table 4: The empirical significance levels for Fisher’s two-sided
exact tests for the 𝑄-symmetry contingency tables under CSR
independence Cases 1 and 2 with 𝑁mc = 10000, for some
combinations of 𝑛

1
, 𝑛

2
at𝛼 = .05. 𝛼̂inc is for the empirical significance

level for the table-inclusive version of the two-sided test, 𝛼̂exc is for
table-exclusive version, 𝛼̂mid is for mid-𝑝 value version, and 𝛼̂Toc is
for Tocher corrected version.

CSR independence Case 1
𝑛 𝛼̂inc 𝛼̂exc 𝛼̂mid 𝛼̂Toc 𝛼̂

𝑡,inc

10 .0392 .0424 .0413 .0410 .0319
20 .0466 .0505 .0480 .0487 .0451
30 .0459 .0484 .0465 .0466 .0430
40 .0457 .0481 .0475 .0472 .0434
50 .0475 .0490 .0478 .0479 .0462

CSR independence Case 2
𝑛
2

𝛼̂inc 𝛼̂exc 𝛼̂mid 𝛼̂Toc 𝛼̂
𝑡,inc

20 .0454 .0497 .0462 .0469 .0444
30 .0484 .0533 .0504 .0512 .0435
40 .0479 .0505 .0489 .0490 .0460
50 .0485 .0524 .0504 .0509 .0460
60 .0474 .0500 .0489 .0487 .0445

the desired level, while the others are more conservative.
Hence, in what follows, only the table exclusive version will
be employed for exact inference on𝑄-symmetry contingency
table.

5.1.2. Empirical Size Analysis under RL. For the RL pattern,
the locations of the points are given and the marks or class
labels are assigned randomly to these points. The pattern
generating these locations is referred to as the background
pattern henceforth. Let Z

𝑛
= {𝑍

1
, 𝑍

2
, . . . , 𝑍

𝑛
} be the given

set of locations for 𝑛 points from the background pattern.
We consider RL of class labels of 1 and 2 (or 𝑋 and 𝑌)
to these points which are generated from homogeneous or
clustered patterns. We generate 100 different realizations of
the background pattern, Z

𝑛
, to mitigate the influence of a

particular background realization on the size performance of
the tests. At each background realization, 𝑛

1
of the points are

labeled as class 1 and the remaining 𝑛
2

= 𝑛 − 𝑛
1
points are

labeled as class 2.

Types of the Background Patterns

Case 1. The background points, Z
𝑛
, are generated iid in the

unit square (0, 1) × (0, 1). That is, 𝑍
𝑖

iid
∼ U((0, 1) × (0, 1))

for 𝑖 = 1, 2, . . . , 𝑛. To determine the effect of increasing equal
sample sizes, we consider 𝑛

1
= 𝑛

2
= 𝑛 = 10, 20, . . . , 50.

The above RL scheme is repeated 1000 times for each (𝑛
1
, 𝑛

2
)

combination of background realization.

Case 2. The background points,Z
𝑛
, are generated as in Case

1 above with 𝑛
1
= 20 and 𝑛

2
= 20, 30, . . . , 60 to determine the

differences in the sample sizes with number of class 1 points
fixed and number of class 2 points increasing. The above RL
scheme is repeated 1000 times for each (𝑛

1
, 𝑛

2
) combination

of background realization.
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Case 3. We generate the background points from a Matérn
cluster process. More specifically, 𝑍

𝑖
points are generated

from MatClust(𝜅, 𝑟, 𝜇) process, which is the Matérn cluster
process in the unit square [25]. In this process, first “parent”
points are generated from a Poisson process with intensity
𝜅 and then one replaces each parent point by 𝑁 new points
which are generated iid inside the circle centered at the parent
point with radius 𝑟. Here 𝑁 is also random; 𝑁 ∼ Poisson(𝜇).
At each background realization, one realization of Z

𝑛
is

generated from MatClust(𝜅, 𝑟, 𝜇). Let 𝑛 be the number of
points in a particular realization. Then 𝑛

1
= ⌊𝑛/2⌋ of these

points are labeled as class 1, where ⌊𝑥⌋ stands for the floor
of 𝑥 and 𝑛

2
= 𝑛 − 𝑛

1
as class 2. In our simulations, we use

𝜅 = 2, 4, . . . , 10, 𝜇 = ⌊100/𝜅⌋, and 𝑟 = 0.1. That is, we take
(𝜅, 𝜇) ∈ {(2, 50), (4, 25) . . . , (10, 10)}, in order to have about
100 𝑍 points, where about half of them are class 1 and the
other half are class 2 points on the average.

In RL Cases 1 and 2, the points are from HPP in the unit
square (with fixed 𝑛

1
and 𝑛

2
), where Case 1 is for assessing the

effect of increasing but equal sample sizes on the tests, while
Case 2 is for assessing the effect of increasing differences in
relative abundances of the classes (with one class size being
fixed, while the other is increasing). On the other hand, in
Case 3, we have the background realizations with cluster
centers and cluster numbers being random. On the average,
with increasing 𝜅, the number of clusters tend to increase, and
cluster sizes tend to decrease (so as to have fixed class sizes on
the average). Hence, in Case 3, we investigate the influence
of increasing number of clusters with randomly determined
centers on the size performance of the tests.

The empirical size estimates of the tests under RL Cases
1–3 are presented in Table 5. The empirical size performance
of the tests under Cases 1 and 2 is similar to that under CSR
independence Cases 1 and 2, respectively. Tests of Pielou’s first
type of symmetry are extremely conservative, while the other
tests are about the desired level. The empirical size estimates
of the exact test for Pielou’s second type of symmetry (the
table exclusive version) are denoted as 𝛼̂

𝐹

II for notational
convenience. Furthermore, 𝛼̂𝐹II is close to the nominal level for
all sample sizes or 𝜅 values. Notice also that the size estimates
of the tests are not influenced by the number of clusters, 𝜅,
when the class sizes are fixed.

Based on the empirical size performance of the tests, we
observe that variants of Pielou’s first type of symmetry test are
extremely conservative and hence are not reliable in practice.
On the other hand, Pielou’s second type of symmetry test
and Dixon’s symmetry test are appropriate for balanced or
unbalanced sample sizes. When the relative abundances of
the classes are close to one (i.e., 𝑛

𝑖
/𝑛

𝑗
≈ 1 for 𝑖 ̸= 𝑗), we call the

class sizes to be balanced, but when the relative abundances
deviate substantially from one we call the class sizes to be
unbalanced. For the exact tests on 𝑄-symmetry contingency
table, we recommend the table-exclusive version.

5.2. Empirical Performance of the Tests under Various Other
Patterns. To assess the empirical performance of the tests,
we consider six pattern cases for the NN structure. Empirical
rejection rate estimates are computed as the size estimates in
Section 5.1.

Table 5: The empirical significance levels of the tests under RL
Cases 1–3 with 𝑁mc = 1000 for each of 100 background realization
at 𝛼 = .05. The empirical size labeling is as in Table 3. 𝛼̂𝐹II stands for
the empirical size estimates of the exact tests for Pielou’s second type
of symmetry (the table exclusive version).

RL Case 1
𝑛 𝛼̂

𝑃

I 𝛼̂
𝑃
󸀠

I 𝛼̂
𝑃

bin 𝛼̂
𝐷

𝑆
𝛼̂
𝑃

II 𝛼̂
𝐹

II

10 .00011 .00089 .00092 .04368 .04989 .04205
20 .00018 .00096 .00106 .04797 .05283 .04831
30 .00017 .00095 .00110 .05037 .05147 .04974
40 .00016 .00056 .00042 .05156 .05242 .04994
50 .00028 .00070 .00050 .04981 .05020 .04934

RL Case 2
𝑛
2

𝛼̂
𝑃

I 𝛼̂
𝑃
󸀠

I 𝛼̂
𝑃

bin 𝛼̂
𝐷

𝑆
𝛼̂
𝑃

II 𝛼̂
𝐹

II

20 .00016 .00089 .00109 .04907 .05298 .04987
30 .00016 .00090 .00063 .05087 .05143 .05258
40 .00015 .00069 .00048 .04880 .05087 .05222
50 .00026 .00099 .00079 .04700 .05010 .05271
60 .00027 .00097 .00084 .04991 .04985 .05104

RL Case 3
𝜅 𝛼̂

𝑃

I 𝛼̂
𝑃
󸀠

I 𝛼̂
𝑃

bin 𝛼̂
𝐷

𝑆
𝛼̂
𝑃

II 𝛼̂
𝐹

II

2 .00018 .00063 .00065 .05158 .05241 .05006
4 .00023 .08451 .00083 .04848 .05024 .04988
6 .00012 .00051 .00048 .04953 .05061 .05057
8 .00024 .00076 .00074 .05075 .05007 .04963
10 .00024 .00070 .00083 .04939 .05087 .05063

Case I. For the first class of patterns, we generate
𝑋
𝑖

iid
∼ U((0, 1) × (0, 1)) for 𝑖 = 1, . . . , 𝑛

1
and

𝑌
𝑗

iid
∼ BVN(1/2, 1/2, 𝜎

1
, 𝜎

2
, 𝜌) for 𝑗 = 1, . . . , 𝑛

2
, where

𝐵𝑉𝑁(𝜇
1
, 𝜇

2
, 𝜎

1
, 𝜎

2
, 𝜌) is the bivariate normal distribution

withmean (𝜇
1
, 𝜇

2
) and covariance [ 𝜎1 𝜌𝜌 𝜎

2

]. In our simulations,
we set 𝜎

1
= 𝜎

2
= 𝜎 and 𝜌 = 0. We consider three patterns in

which

(i) : 𝜎 =
1

10
, (ii) : 𝜎 =

1

20
, (iii) : 𝜎 =

1

30
. (33)

The classes 1 and 2 (i.e.,𝑋 and 𝑌) have different distributions
with different local intensities. In particular, 𝑋 points con-
stitute a realization of HPP process in the unit square, while
𝑌 points are clustered around the center of the unit square,
namely (1/2, 1/2). In fact, the level of clustering of 𝑌 points
increases as 𝜎 decreases.

The means (±SD (standard deviations)) of the off-
diagonal entries,𝑁

12
,𝑁

21
, and their difference𝑁

12
−𝑁

21
and

empirical rejection rate estimates under the patterns, (i), (ii),
and (iii), with 𝑛

1
= 𝑛

2
= 40 are presented in Table 6(a), where

𝛽
𝑃

I and 𝛽
𝑃
󸀠

I stand for the empirical rejection rates for Pielou’s
first type of symmetry test using 𝜒

2 approximation with and
without Yates’ continuity correction, respectively; 𝛽𝑃bin is for
the exact binomial version of Pielou’s first type of symmetry
test conditional on𝑁

12
+𝑁

21
= 𝑛

𝑡
;𝛽𝐷

𝑆
is forDixon’s symmetry

test; 𝛽𝑃II is for Pielou’s second type of symmetry test; 𝛽𝐹II is for
the exact test on the 𝑄-symmetry contingency table. Notice
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Table 6: Presented are the means (±SD (standard deviations)) of the off-diagonal entries, 𝑁
12
, 𝑁

21
, and their difference 𝑁

12
− 𝑁

21
and the

rejection rate estimates under Case I patterns in (33) with 𝑁mc = 10000, 𝑛
1
= 𝑛

2
= 40 at 𝛼 = .05 (a) and rejection rate estimates based on

Monte Carlo randomization with 𝑛
1
= 𝑛

2
= 40 and 1000 Monte Carlo randomization steps are performed for each of 𝑁mc = 1000 generated

samples under Case I patterns (b). 𝛽𝑃I and 𝛽
𝑃
󸀠

I stand for the empirical rejection rate estimates for Pielou’s first type of symmetry test using 𝜒
2

approximation with and without Yates’ continuity correction, respectively; 𝛽𝑃bin stands for the exact binomial version of Pielou’s first type of
symmetry test conditional on𝑁

12
+𝑁

21
= 𝑛

𝑡
; 𝛽𝐷

𝑆
stands for Dixon’s symmetry test; 𝛽𝑃II is for Pielou’s second type of symmetry test; 𝛽𝐹II stands

for the exact test on the 𝑄-symmetry contingency table.

(a)

Mean ± SD Rejection rate estimates for Case I patterns
𝑁
12

𝑁
21

𝑁
12

− 𝑁
21 𝛽

𝑃

I 𝛽
𝑃
󸀠

I 𝛽
𝑃

bin 𝛽
𝐷

𝑆
𝛽
𝑃

II 𝛽
𝐹

II

I-(i) 8.5 ± 2.5 6.8 ± 2.7 1.66 ± 2.26 .0018 .0060 .0721 .0092 .0379 .0359
I-(ii) 4.1 ± 1.7 2.2 ± 1.7 1.94 ± 1.58 .0118 .0511 .3109 .0017 .0345 .0324
I-(iii) 2.9 ± 1.4 1.0 ± 1.2 1.87 ± 1.34 .0338 .0919 .5345 .0002 .0324 .0296

(b)

Rejection rate estimates for Case I patterns based on Monte Carlo randomization
𝛽
𝑃

I 𝛽
𝑃
󸀠

I 𝛽
𝐷

𝑆
𝛽
𝑃

II 𝛽
𝐹

II

I-(i) .641219 .480581 .409682 .546873 .546491
I-(ii) .670268 .402391 .271784 .569909 .569605
I-(iii) .696817 .397304 .196840 .577398 .576899

that, under Case I patterns, the off-diagonal entries,𝑁
12
,𝑁

21
,

in the NNCTs tend to be much smaller than expected under
𝐻
𝑜
: E[𝑁

12
] = E[𝑁

21
] = 𝑛

1
𝑛
2
/𝑛 = 20 and 𝑁

12
values tend

to be larger than𝑁
21
values which suggests asymmetry in the

mixed NN structure. Furthermore,𝑁
12
,𝑁

21
tend to decrease

with decreasing 𝜎. That is, when the level of clustering of 𝑌
points in the center of the unit square increases (i.e., level
of segregation of 𝑌 points from 𝑋 points increases), the off-
diagonal entries tend to decrease (in a similar fashion). The
exact binomial version of Pielou’s first type of symmetry test
has the highest rejection rates which are increasing as 𝜎 is
decreasing. The rejection rate estimates for all other symme-
try tests are significantly smaller than the nominal level of
.05, indicating lack of asymmetry in the mixed and shared
NN structure. However, the fact that off-diagonal entries
are small seems to render the asymptotic approximations
inappropriate. Although the difference of the off-diagonal
entries is larger than zero, the standard deviations of the
differences are much smaller compared to those under CSR
independence or RL (see also Table 7). Moreover, the exact
binomial test is not appropriate either due to the dependence
between trials (hence dependence between rows of the
NNCT) for spatial data. Thus, in this situation, we recom-
mend performing Monte Carlo randomization to determine
more reliable rejection rate estimates. To that end, for each of
the 100 generated samples under each of Case I patterns, 1000
Monte Carlo resampling is performed, and rejection rate for
a test is estimated based on how many of the test statistics
on resamplings are at and above the original test statistic.
The correspondingMonteCarlo randomization rejection rate
estimates are presented in Table 6(b), where the binomial ver-
sion of Pielou’s first type of symmetry test is omitted since it is
conditional on𝑁

12
+𝑁

21
= 𝑛

𝑡
which is not fixed underMonte

Carlo randomization steps. The rejection rate estimates are

Table 7:Themeans (±SD) of the off-diagonal entries,𝑁
12
,𝑁

21
, and

their difference 𝑁
12

− 𝑁
21
under CSR independence Case 1 and RL

Case 1 with 𝑛
1
= 𝑛

2
= 40 at 𝛼 = .05.

Mean ± SD
𝑁
12

𝑁
21

𝑁
12

− 𝑁
21

CSR-ind Case 1 20.2 ± 3.3 20.3 ± 3.4 −.03 ± 3.60

RL Case 1 20.3 ± 3.4 20.3 ± 3.4 −.01 ± 3.57

high for all tests and much higher than the nominal rate of
0.05. Hence, Case I patterns are actually providing significant
asymmetry in mixed and shared NN structure, which was
not revealed by the asymptotic approximation of the tests.
Hence, this pattern is actually an alternative pattern for both
symmetry structures, and the rejection rates are in fact power
estimates under this alternative pattern. The highest power
estimates are observed for Monte Carlo randomized version
of Pielou’s first type of test (and lowest estimates are for
Dixon’s symmetry test). Furthermore, the power estimates
for Pielou’s second type of symmetry tests are very similar.
The power estimates for Monte Carlo randomized version of
Pielou’s first type of symmetry test and the two versions of
Pielou’s second type of symmetry test increase and those for
other tests decrease as 𝜎 decreases.

Case II. For Case II, we consider the following three patterns.
First, we generate 𝑋

𝑖

iid
∼ U((0, 1) × (0, 1)) for 𝑖 = 1, 2, . . . , 𝑛

1

and, for each 𝑗 = 1, 2, . . . , 𝑛
2
, we generate 𝑌

𝑗
around a

randomly picked 𝑋
𝑖
with probability 𝑝 in such a way that

𝑌
𝑗
= 𝑋

𝑖
+𝑅

𝑗
(cos𝑇

𝑗
, sin𝑇

𝑗
)
𝑡, where V𝑡 represents transpose of

the vector V, 𝑅
𝑗
∼ U(0,min

𝑖 ̸= 𝑗
𝑑(𝑋

𝑖
, 𝑋

𝑗
)) and𝑇

𝑗
∼ U(0, 2 𝜋),

or generate 𝑌
𝑗
uniformly in the unit square with probability
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Table 8: The means (±SD) of the off-diagonal entries, 𝑁
12
, 𝑁

21
, and their difference 𝑁

12
− 𝑁

21
and the rejection rate estimates for Case II

patterns in (34) with𝑁mc = 10000, 𝑛
1
= 𝑛

2
= 40 at 𝛼 = .05. Column labeling is as in Table 6.

Mean ± SD Rejection rate estimates for Case II patterns
𝑁
12

𝑁
21

𝑁
12

− 𝑁
21 𝛽

𝑃

I 𝛽
𝑃
󸀠

I 𝛽
𝑃

bin 𝛽
𝐷

𝑆
𝛽
𝑃

II 𝛽
𝐹

II

II-(i) 28.0 ± 3.9 27.3 ± 3.5 .68 ± 3.80 .0002 .0002 .0030 .0198 .3313 .3225
II-(ii) 36.4 ± 4.4 33.5 ± 3.0 2.84 ± 4.07 .0001 .0009 .0084 .0124 .8395 .8326
II-(iii) 45.3 ± 4.6 38.1 ± 1.8 7.21 ± 4.43 .0049 .0079 .0524 .0434 .9923 .9913

Table 9: The means (±SD) of the off-diagonal entries, 𝑁
12
, 𝑁

21
, and their difference 𝑁

12
− 𝑁

21
and the rejection rate estimates for Case III

patterns with𝑁mc = 10000, 𝑛
1
= 𝑛

2
= 40 at 𝛼 = .05. Column labeling is as in Table 6.

Mean ± SD Rejection rate estimates for Case III patterns
𝑁
12

𝑁
21

𝑁
12

− 𝑁
21 𝛽

𝑃

I 𝛽
𝑃
󸀠

I 𝛽
𝑃

bin 𝛽
𝐷

𝑆
𝛽
𝑃

II 𝛽
𝐹

II

III-(i) 14.4 ± 3.1 14.4 ± 3.1 .04 ± 3.09 .0004 .0009 .0086 .0225 .0385 .0368
III-(ii) 10.1 ± 2.7 10.1 ± 2.7 −.01 ± 2.58 .0000 .0011 .0096 .0073 .0341 .0321
III-(iii) 5.9 ± 2.1 5.9 ± 2.1 .03 ± 1.98 .0002 .0013 .0128 .0005 .0336 .0308

1 − 𝑝. In the pattern generated, 𝑌
𝑗
are more associated with

𝑋
𝑖
. The three values of 𝑝 constitute the following patterns:

(i) : 𝑝 = .25, (ii) : 𝑝 = .50, (iii) : 𝑝 = .75. (34)

In this case,𝑋points constitute a realization of aHPPpro-
cess in the unit square, while𝑌points are clustered around the
𝑋 points and the level of clustering increases as the parameter
𝑝 increases.Themeans (±SD) of the off-diagonal entries,𝑁

12
,

𝑁
21
, and their difference𝑁

12
−𝑁

21
and the empirical rejection

rate estimates for Case II patterns with 𝑛
1

= 𝑛
2

= 40 are
presented in Table 8. Notice that 𝑁

12
and 𝑁

21
in the NNCTs

tend to be similar and larger than expected and 𝑁
12

values
tend to be slightly larger than 𝑁

21
values. Furthermore, 𝑁

12
,

𝑁
21

tend to increase with increasing 𝑝. That is, when the
level of clustering of 𝑌 points around𝑋 points increases (i.e.,
level of association of 𝑌 points with 𝑋 points increases), the
off-diagonal entries tend to increase (in a similar fashion),
indicating symmetry in the NN structure (but the difference
between𝑁

12
and𝑁

21
values tends to increase with increasing

𝑝). Variants of Pielou’s first type of symmetry test have
virtually zero rejection rates, and, althoughDixon’s symmetry
test has higher rejection rates than Pielou’s first type, it has
rates smaller than 0.05; hence there is symmetry in themixed
NN structure. In fact, under this pattern, expected value
of the difference, 𝑁

12
− 𝑁

21
, is mostly positive and with a

larger variance compared to those under CSR independence
and RL. However, there is severe asymmetry in shared NN
structure, since Pielou’s second type of symmetry test and its
exact version have rejection rate estimates much larger than
0.05, and these estimates increase as 𝑝 increases. Hence, this
pattern type can serve as an alternative to symmetry in the
sharedNN structure and perhaps a null pattern for the tests of
symmetry in the mixed NN structure for the range of 𝑝 con-
sidered. However, using the asymptotic critical values based
on the distribution under RL, the tests of symmetry in mixed
NN structure would be extremely conservative for this null
case. If the correct form of the variance and covariance terms
can be determined as a function of 𝑝, then the tests for sym-
metry in mixed NN structure would have the desired level.

Otherwise, Dixon’s symmetry test and Pielou’s first type of
symmetry test can be used withMonte Carlo randomization.

Case III. For the third class of patterns, we consider 𝑋
𝑖

iid
∼

U((0, 1 − 𝑠) × (0, 1 − 𝑠)) for 𝑖 = 1, . . . , 𝑛
1
and 𝑌

𝑗

iid
∼ U((𝑠, 1) ×

(𝑠, 1)) for 𝑗 = 1, . . . , 𝑛
2
. The three values of 𝑠 constitute the

following patterns:

(i) : 𝑠 =
1

6
, (ii) : 𝑠 =

1

4
, (iii) : 𝑠 =

1

3
. (35)

Notice that these are the segregation patterns considered for
Monte Carlo analysis in Ceyhan [12]. The means (±SD))
of the off-diagonal entries, 𝑁

12
, 𝑁

21
, and their difference

𝑁
12

− 𝑁
21

and the empirical rejection rate estimates for
the segregation patterns are presented in Table 9. The off-
diagonal entries, 𝑁

12
, 𝑁

21
, are very similar under these

segregation patterns and are much smaller than expected
under RL and tend to decrease as 𝑠 (i.e., level of segregation)
increases. Hence, mixedNN structure seems to be symmetric
under these segregation patterns. The symmetry tests and
the exact tests have very small rejection rates, with Pielou’s
first type and Dixon’s symmetry tests having virtually zero
rates and the others having rates lower than .05. There seems
to be symmetry in both mixed and shared NN structure,
since the null hypotheses seem to be satisfied. That is, the
expected difference 𝑁

12
− 𝑁

21
is zero, and the cell counts in

the 𝑄-symmetry table are as expected under RL. However,
the variances seem to be much smaller compared to the ones
under RL or CSR independence (see Table 7). Thus, these
segregation patterns can form null patterns for both types of
symmetry tests; however, the correct variance and covariance
terms should be computed; otherwise, the symmetry tests
would be extremely conservative when the critical values are
based on the distribution under RL or CSR independence.

Case IV. We also consider patterns in which self-reflexive
pairs are more frequent than expected by construction. We
generate 𝑋

𝑖

iid
∼ 𝑆

1
for 𝑖 = 1, . . . , ⌊𝑛

1
/2⌋ and 𝑌

𝑗

iid
∼ 𝑆

2
for



The Scientific World Journal 15

𝑗 = 1, . . . , ⌊𝑛
2
/2⌋.Then, for 𝑘 = ⌊𝑛

1
/2⌋+1, . . . , 𝑛

1
, we generate

𝑋
𝑘

= 𝑋
𝑘−⌊𝑛
1
/2⌋

+ 𝑟(cos𝑇
𝑗
, sin𝑇

𝑗
)
𝑡 and, for 𝑙 = ⌊𝑛

2
/2⌋ +

1, . . . , 𝑛
2
, we generate 𝑌

𝑙
= 𝑌

𝑙−⌊𝑛
1
/2⌋

+ 𝑟(cos𝑇
𝑗
, sin𝑇

𝑗
)
𝑡, where

𝑟 ∈ (0, 1) and 𝑇
𝑗

∼ U(0, 2 𝜋). Appropriate small choices
of 𝑟 will yield an abundance of self-reflexive pairs. The three
values of 𝑟 we consider constitute the below self-reflexivity
patterns at each support pair (𝑆

1
, 𝑆

2
). Then the nine pattern

combinations we consider are given by the following:

(i) 𝑆
1
= 𝑆

2
= (0, 1) × (0, 1), (a) 𝑟 = 1/7, (b) 𝑟 = 1/8, and

(c) 𝑟 = 1/9;
(ii) 𝑆

1
= (0, 5/6) × (0, 5/6) and 𝑆

2
= (1/6, 1) × (1/6, 1), (a)

𝑟 = 1/7, (b) 𝑟 = 1/8, and (c) 𝑟 = 1/9;
(iii) 𝑆

1
= (0, 3/4) × (0, 3/4) and 𝑆

2
= (1/4, 1) × (1/4, 1) (a)

𝑟 = 1/7, (b) 𝑟 = 1/8, and (c) 𝑟 = 1/9.

The means (±SD) of the off-diagonal entries, 𝑁
12
, 𝑁

21
,

and their difference 𝑁
12

− 𝑁
21

and the empirical rejection
rate estimates for Case IV patterns with 𝑛

1
= 𝑛

2
= 40 are

presented in Table 10. In this case, the off-diagonal entries,
𝑁
12
, 𝑁

21
, tend to be very similar but smaller than expected

under RL, indicating symmetry in mixed NN structure.
Furthermore, as pattern changes from (i) to (iii) 𝑁

12
, 𝑁

21

values tend to decrease, and, at each case IV pattern,𝑁
12
,𝑁

21

values tend to decrease, as 𝑟 (i.e., the level of self-reflexivity)
decreases. Variants of Pielou’s first type of symmetry test have
small rejection rates (with the asymptotic versions having
virtually zero rates and the exact version slightly higher rates);
Dixon’s symmetry test has rejection rates smaller than 0.05.
Hence, we conclude that, under these self-reflexivity patterns,
there is in fact symmetry in mixed NN structure, as the
expected difference𝑁

12
−𝑁

21
is zero, but the variance of this

difference is much smaller than that under RL. Hence, using
the asymptotic distribution under RL, these tests would be
extremely conservative. To get the desired level, one needs
the correct form of the variances and covariances for Dixon’s
symmetry test under these patterns. On the other hand,
Pielou’s second type of symmetry tests has rejection rates
about the nominal level of .05, indicating that these self-
reflexivity patterns can also be viewed as the null pattern for
symmetry in the shared NN structure.

Case V. In this case, first, we generate 𝑋
𝑖

iid
∼ U((0, 1) × (0, 1))

and then generate 𝑌
𝑗
as 𝑌

𝑗
= 𝑋

𝑖
+ 𝑟(cos𝑇

𝑗
, sin𝑇

𝑗
)
𝑡, where

𝑟 ∈ (0, 1) and 𝑇
𝑗

∼ U(0, 2 𝜋). In the pattern generated,
appropriate choices of 𝑟will cause𝑌

𝑗
and𝑋

𝑖
more associated.

That is, a 𝑌 point is more likely to be the NN of an 𝑋 point
and vice versa.The four values of 𝑟we consider constitute the
four association patterns:

(i) : 𝑟 =
1

2
, (ii) : 𝑟 =

1

4
, (iii) : 𝑟 =

1

7
,

(iv) : 𝑟 =
1

10
.

(36)

The patterns (i)–(iii) are also the association patterns
considered for Monte Carlo analysis in Ceyhan [12].

The means (±SD) of the off-diagonal entries, 𝑁
12
, 𝑁

21
,

and their difference𝑁
12
−𝑁

21
and the empirical rejection rate

estimates for Case V patterns with 𝑛
1
= 𝑛

2
= 40 are presented

in Table 11. Notice that the off-diagonal entries,𝑁
12
,𝑁

21
, tend

to be at or above the expected value under RL and tend to
increase as 𝑟 (i.e., level of association) increases. Furthermore,
𝑁
12

values tend to be slightly smaller than 𝑁
21

values and
the differences between 𝑁

12
and 𝑁

21
tend to decrease as 𝑟

decreases. Variants of Pielou’s first type of symmetry test have
virtually zero rejection rates, and, under stronger association
with 1/7 ≤ 𝑟 ≤ 1/10, Dixon’s symmetry test and exact and
asymptotic versions of Pielou’s second type of symmetry test
have rates around .05, and, under moderate association with
1/2 ≤ 𝑟 ≤ 1/4, these tests have rates mildly above .05. Hence,
stronger association with 1/7 ≤ 𝑟 ≤ 1/10 could serve as the
null pattern for both types of symmetry tests, while, under
moderate association with 1/2 ≤ 𝑟 ≤ 1/4, the expected values
are smaller in the negative direction compared to those under
RL, with the variances about those under RL.

Case VI. In this case, first, we generate𝑋
𝑖

iid
∼ U((0, 1) × (0, 1))

for 𝑖 = 1, 2, . . . , 𝑚
1
+ 𝑚

2
and, for each 𝑋

𝑖
generated, we

find the distance of NN 𝑋 point from 𝑋
𝑖
, denoted 𝑑

𝑥

𝑖
(i.e.,

𝑑
𝑥

𝑖
= min

𝑖 ̸= 𝑗
𝑑(𝑋

𝑖
, 𝑋

𝑗
)).Thenwe generate𝑌

𝑖
points as follows.

First generate 𝑅
𝑖
fromU(0, 𝜌𝑑

𝑥

𝑖
) and 𝜃

𝑖
fromU(0, 2𝜋). Then

set 𝑌
𝑖
= 𝑋

𝑖
+ 𝑅

𝑖
(cos(𝜃

𝑖
), sin(𝜃

𝑖
))
𝑡 for 𝑖 = 1, 2, . . . , 𝑚

1
. For

𝑗 = 1, 2, . . . , 𝑚
2
, we first generate 𝑅

𝑗
from U(0, 𝜌𝑑

𝑥

𝑗
) and 𝜃

𝑗

fromU(0, 2𝜋).Then set𝑋󸀠

𝑗
= 𝑋

𝑖
+𝑅

𝑗
(cos(𝜃

𝑗
), sin(𝜃

𝑗
))
𝑡 for 𝑖 =

𝑚
1
+1,𝑚

1
+2, . . . , 𝑚

1
+𝑚

2
and 𝑗 = 1, 2, . . . , 𝑚

2
.Thenwemerge

the 𝑋
𝑖
’s and 𝑋

󸀠

𝑗
’s to form the 𝑋 points (which would have

𝑛
1

= 𝑚
1
+ 2𝑚

2
many points). Moreover, we generate 𝑌

󸀠

𝑗

iid
∼

U((0, 1)× (0, 1)) for 𝑗 = 1, 2, . . . , 𝑚
2
. Let 𝑑𝑦

𝑗
be the distance of

NN 𝑌
󸀠 point to 𝑌

󸀠

𝑗
among the above generated 𝑌

󸀠 points. For
𝑘 = 1, 2, . . . , 𝑚

2
, we first generate 𝑅

𝑘
from U(0, 𝜌𝑑

𝑦

𝑘
) and 𝜃

𝑘

from U(0, 2𝜋). Then set 𝑌󸀠󸀠

𝑘
= 𝑌

󸀠

𝑗
+ 𝑅

𝑘
(cos(𝜃

𝑘
), sin(𝜃

𝑘
))
𝑡 for

𝑘 = 1, 2, . . . , 𝑚
2
.Thenwemerge the𝑌

𝑖
’s,𝑌󸀠

𝑗
’s, and𝑌

󸀠󸀠

𝑘
’s to form

the 𝑌 points (which would also have 𝑛
2

= 𝑚
1
+ 2𝑚

2
many

points). In the pattern generated, appropriate choices of 𝜌will
cause 𝑚

1
of the 𝑋 points to have NNs more from 𝑌 points

and 𝑚
2
of the 𝑋 points to have NNs more from 𝑋 points;

additionally, 𝑚
2
of 𝑌 points would have NNs more from 𝑌

points. Hence, in this way, the off-diagonal entries (i.e., 𝑁
12

and 𝑁
21
) would tend to be different, indicating asymmetry

in mixed NN structure. The three values of 𝜌 we consider
constitute the following patterns:

(i) : 𝜌 =
1

3
, (ii) : 𝜌 =

2

3
, (iii) : 𝜌 = 1. (37)

The means (±SD) of the off-diagonal entries, 𝑁
12
, 𝑁

21
,

and their difference 𝑁
12

− 𝑁
21

and the empirical rejection
rate estimates for these patterns are presented in Table 12.The
off-diagonal entries,𝑁

12
,𝑁

21
, tend to be different at or above

the expected value under RL and they tend to increase as
𝜌 increases. However, 𝑁

12
values tend to be much smaller

than 𝑁
21

values, and their difference tends to decrease as
𝜌 increases. The asymptotic versions of Pielou’s first type of
symmetry tests virtually have zero rejection rate, and the
exact version has small rates which are slightly larger than .05
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Table 10: The means (±SD) of the off-diagonal entries, 𝑁
12
, 𝑁

21
, and their difference 𝑁

12
− 𝑁

21
and the rejection rate estimates for Case IV

patterns with𝑁mc = 10000, 𝑛
1
= 𝑛

2
= 40 at 𝛼 = .05. The rejection rate labeling and superscripting for “<” and “>” are as in Table 6.

𝑟
Mean ± SD Rejection rate estimates for Case IV patterns

𝑁
12

𝑁
21

𝑁
12

− 𝑁
21 𝛽

𝑃

I 𝛽
𝑃
󸀠

I 𝛽
𝑃

bin 𝛽
𝐷

𝑆
𝛽
𝑃

II 𝛽
𝐹

II

IV-(i)
1/7 10.5 ± 3.2 10.5 ± 3.2 −.05 ± 3.12 .0012 .0055 .0256 .0361 .0565 .0525
1/8 9.3 ± 3.1 9.3 ± 3.1 −.03 ± 2.99 .0021 .0052 .0307 .0318 .0572 .0552
1/9 8.2 ± 3.0 8.2 ± 3.0 .00 ± 2.86 .0023 .0071 .0351 .0295 .0579 .0562

IV-(ii)
1/7 9.0 ± 3.0 9.0 ± 3.1 −.01 ± 2.78 .0014 .0039 .0235 .0176 .0526 .0509
1/8 8.1 ± 3.0 8.1 ± 3.0 −.02 ± 2.70 .0015 .0064 .0312 .0192 .0609 .0583
1/9 7.2 ± 2.9 7.2 ± 2.9 −.01 ± 2.63 .0028 .0075 .0395 .0172 .0616 .0601

IV-(iii)
1/7 6.9 ± 2.9 6.9 ± 2.8 .01 ± 2.42 .0014 .0039 .0286 .0070 .0496 .0470
1/8 6.3 ± 2.8 6.3 ± 2.7 .02 ± 2.37 .0020 .0061 .0345 .0094 .0539 .0518
1/9 5.6 ± 2.7 5.6 ± 2.6 .01 ± 2.30 .0027 .0074 .0392 .0070 .0590 .0565

Table 11: The means (±SD) of the off-diagonal entries, 𝑁
12
, 𝑁

21
, and their difference 𝑁

12
− 𝑁

21
and the rejection rate estimates for Case V

patterns with𝑁mc = 10000, 𝑛
1
= 𝑛

2
= 40 at 𝛼 = .05. Column labeling is as in Table 6.

Mean ± SD Rejection rate estimates for Case V patterns
𝑁
12

𝑁
21

𝑁
12

− 𝑁
21 𝛽

𝑃

I 𝛽
𝑃
󸀠

I 𝛽
𝑃

bin 𝛽
𝐷

𝑆
𝛽
𝑃

II 𝛽
𝐹

II

V-(i) 19.5 ± 3.3 21.9 ± 3.2 −2.44 ± 3.52 .0004 .0019 .0076 .0982 .0805 .0982
V-(ii) 22.9 ± 3.3 24.5 ± 3.2 −1.61 ± 3.62 .0002 .0007 .0033 .0752 .0699 .0676
V-(iii) 25.9 ± 3.1 26.5 ± 3.1 −.60 ± 3.58 .0001 .0003 .0021 .0565 .0503 .0490
V-(iv) 27.8 ± 2.9 27.9 ± 3.0 −.01 ± 3.52 .0001 .0002 .0012 .0513 .0485 .0454

for 𝜌 = 1/3. On the other hand, Dixon’s test and versions
of Pielou’s second type of symmetry test have high rejection
rates (much higher than 0.05), which decrease as 𝜌 increases.
Hence, there is strong asymmetry in mixed and shared NN
structure, and the level of asymmetry is increasing with
decreasing 𝜌. Thus, these patterns can serve as alternative
patterns for both types of symmetry tests and the rejection
rates are power estimates. Notice also that the asymmetry in
the shared NN structure is stronger than the asymmetry in
the mixed NN structure.

6. Pairwise versus One-versus-Rest Tests

In the multiclass case with 𝑘 > 2, we first perform an
overall omnibus test (as in ANOVA 𝐹-test for multigroup
comparisons) and then, if the omnibus test is significant, then
we perform post hoc tests to determine the specifics of the
differences. These post hoc tests could be pairwise tests (as
in pairwise 𝑡-tests) or one-versus-rest tests, where one class
is compared with respect to all other classes combined. More
specifically, with 𝑘 > 2 classes, in the pairwise comparison,
we only consider classes 𝑖 ̸= 𝑗. The pairwise tests for Dixon’s
symmetry test and Pielou’s second type of symmetry test can
be defined in two different ways: (i) unrestricted pairwise
symmetry tests and (ii) restricted pairwise symmetry tests.
In the unrestricted version, for the pairwise test for classes
𝑖, 𝑗, 𝑖 ̸= 𝑗, we keep all the points in consideration. That is, for
Dixon’s symmetry test, we extract𝑁

𝑖𝑗
and𝑁

𝑗𝑖
from the overall

𝑘 × 𝑘 NNCT and, in computing 𝑄 and 𝑅 values, we do not
ignore but use all the other classes. In the restricted version,
we restrict our attention to two classes, 𝑖, 𝑗, with 𝑖 ̸= 𝑗, only,

and treat the classes as in the two-class case. That is, we only
consider classes 𝑖 and 𝑗 and ignore the remaining classes and
hence obtain a 2× 2NNCT just for classes 𝑖 and 𝑗 extract𝑁

12

and 𝑁
21
from this NNCT, and compute 𝑄 and 𝑅 for the data

consisting of classes 𝑖 and 𝑗 only. The unrestricted version of
Pielou’s second type symmetry is based on the contingency
table extracting only row 𝑖 and 𝑗 in the 𝑄-symmetry contin-
gency table. On the other hand, in the restricted version, we
compute a 2×3 𝑄-symmetry contingency table based on data
consisting of classes 𝑖 and 𝑗 only.

In the one-versus-rest type of test for class 𝑖, we pool the
remaining classes and treat them as the other class in a two-
class setting and hence the name one-versus-rest test. In a
multiclass setting with 𝑘 classes, there are 𝑘 one-versus-rest
type tests and ( 𝑘

2
) = 𝑘(𝑘 − 1)/2 pairwise tests. As 𝑘 increases,

performing one-versus-rest analysis is computationally less
intensive and easier to interpret.

Although Pielou’s first type of symmetry test and Dixon’s
symmetry test were designed only for the two-class case, we
have extended them to the multiclass case. Hence, if we have
more than 2 classes; for Pielou’s first type of symmetry, we
can perform Bowker’s test of symmetry in (4) (under the
appropriate sampling distribution framework) as the overall
test and use the test in (2) as the post hoc test. For Dixon’s
symmetry test, the overall test is performed with X2

𝐷
in

(18) and the post hoc tests are performed with 𝑍
𝐷
in (10)

for the restricted pairwise and one-versus-rest tests or 𝑍
𝑖𝑗

𝐷

for the restricted pairwise tests. For Pielou’s second type of
symmetry test, the overall test can be performed with X2

II
for the 𝑘 × 3 𝑄-symmetry contingency table and post hoc
tests with X2

II for the 2 × 3 𝑄-symmetry contingency table.



The Scientific World Journal 17

Table 12: The means (±SD) of the off-diagonal entries, 𝑁
12
, 𝑁

21
, and their difference 𝑁

12
− 𝑁

21
and the rejection rate estimates for Case VI

patterns with𝑁mc = 10000,𝑚
1
= 20,𝑚

2
= 10 (hence 𝑛

1
= 𝑛

2
= 40) at 𝛼 = .05. Column labeling is as in Table 6.

Mean ± SD Rejection rate estimates for Case VI patterns
𝑁
12

𝑁
21

𝑁
12

− 𝑁
21 𝛽

𝑃

I 𝛽
𝑃
󸀠

I 𝛽
𝑃

bin 𝛽
𝐷

𝑆
𝛽
𝑃

II 𝛽
𝐹

II

VI-(i) 20.3 ± .6 29.0 ± 2.6 −8.73 ± 2.58 .0019 .0091 .0629 .8883 .9911 .9907
VI-(ii) 21.6 ± 1.4 27.7 ± 2.8 −6.13 ± 2.89 .0003 .0012 .0073 .5460 .7782 .7730
VI-(iii) 23.1 ± 2.1 26.4 ± 3.0 −3.39 ± 3.25 .0000 .0000 .0009 .1860 .3029 .2980

In the mixed or shared NN structure, significant overall tests
indicate some formof deviation from symmetry for all classes
combined, while the post hoc tests suggest which classes
deviate significantly from symmetry. In particular, pairwise
tests indicatewhich pairs are asymmetric in theNN structure,
while one-versus-rest tests indicate which class is asymmetric
with respect to the remaining classes.

In all the above cases, the post hoc tests can give different
and seemingly conflicting results (e.g., one class can be
symmetric with respect to the rest and at the same time it
can be asymmetric with respect to one of the other classes).
Even if the pairwise symmetry tests are used, the restricted
or unrestricted versions might yield different results. So extra
care should be exercised for which post hoc test is used and
how it should be interpreted.

7. Example Data: Lansing Woods Data

To illustrate the methodology, we use the Lansing Woods
data, which contains locations of trees (in feet (ft)) and
botanical classification of trees (according to their species) in
a 924 ft × 924 ft (19.6 acre) plot in Lansing Woods, Clinton
County, MI, USA [26].The data set is available in the spatstat
package in 𝑅 [25] and comprise of 2251 trees together with
their species as hickories, maples, red oaks, white oaks,
black oaks, and miscellaneous trees. In our analysis, we
only consider the black oaks, maples, and white oaks which
constitute a total of 1097 trees. The scatter plot of these tree
locations are presented in Figure 1.

7.1. Overall Symmetry Analysis. The NNCT for this data set
is presented in Table 13. Notice that the off-diagonal entries
(i.e., 𝑁

𝑖𝑗
and 𝑁

𝑗𝑖
values with 𝑖 ̸= 𝑗) are very similar for 𝑖 =

1, 𝑗 = 2 and 𝑖 = 1, 𝑗 = 3, indicating symmetry in the
mixed NN structure for black oaks versus maples and black
oaks versus white oaks. But 𝑁

23
and 𝑁

32
values seem to be

very different suggesting strong asymmetry in mixed NN
structure for maples versus white oaks. We will be formally
testing symmetry and attaching significance to it later in this
section.

The (reduced) 𝑄-symmetry contingency table is pre-
sented in Table 14, where the relative frequencies with respect
to row sums are provided in parentheses. Observe that the
column relative frequencies (i.e., column sums divided by the
grand sum or the overall ratios of shared NNs for 0, 1, and ≥2
sharedNNs) are 0.27, 0.50, and 0.24.The ratios of sharedNNs
for black oaks (i.e., the row entries for black oaks divided by
the row sum for black oaks) are 0.27, 0.50, and 0.23, the ratios
formaple trees are 0.22, 0.50, and 0.28, and the ratios forwhite
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Figure 1: The scatter plot of the locations of black oaks (circles
∘), maples (triangles 󳵻), and white oaks (pluses +) in the Lansing
Woods, Clinton County, MI, USA.

Table 13: The NNCT for the Lansing Woods data set containing
black oak, maple, and white oak trees.

NN species Total
Black oak Maple White oak

Base species
Black oak 53 35 47 135
Maple 28 366 120 514
White oak 50 161 237 448

Total 131 562 404 1097

oaks are 0.32, 0.49, and 0.19. Hence, the relative frequencies
for black oaks are very similar to the overall frequencies,
but those for other species (especially for white oaks) are
very different from the overall frequencies. This suggests that
there are differences in the shared NN structure for the three
species, suggesting asymmetry in the shared NN structure,
especially for white oaks compared to the other species.

We present the test statistics and the associated 𝑝 values
for the overall symmetry analysis in Table 15, whereX2

𝐷
,X2

I ,
andX2

II are as defined in the text, and the superscript 𝑢 stands
for “uncorrected for continuity” or “no Yates correction.”
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Table 14: The (reduced) 𝑄-symmetry contingency table for the
Lansing Woods data. The values in the parentheses are relative
frequencies of the cells in each row with respect to the row sums.

Number of times a point serving as a NN Total
0 1 ≥2

Classes
Black oak 37 (.27) 67 (.50) 31 (.23) 135
Maple 113 (.22) 259 (.50) 142 (.28) 514
White oak 143 (.32) 220 (.49) 85 (.19) 448

Total 293 (.27) 546 (.50) 258 (.24) 1097

Table 15:The test statistics and the p-values for the overall symmetry
analysis for the Lansing Woods data. TS stands for the test statistic,
𝑝asy for the p-values based on asymptotic critical values (except
for the exact tests), and 𝑝rand for the p-values based on Monte
Carlo randomization. ∗The p-values for the exact tests are not the
asymptotic p-values but computed as described in Section 3.

Overall test statistics and p-values
X2

𝐷
X2

I X2,𝑢

I X2

II 𝑇
𝐹

II

TS 13.482 5.694 6.182 16.595 —
𝑝asy .004 .128 .103 .002 .002∗

𝑝rand .006 .002 .002 .004 .004

Furthermore, 𝑇
𝐹

II stands for the table exclusive version of
two-sided Fisher’s exact test on the𝑄-symmetry contingency
table (which by definition only yields a 𝑝 value but not a test
statistic). Furthermore, in this table𝑝asy stands for the𝑝 value
based on the asymptotic approximation (i.e., asymptotic
critical value) except for the exact test;𝑝rand is based onMonte
Carlo randomization of the labels on the given locations of
the trees 1000 times. For the exact tests, the 𝑝 value written
for the 𝑝asy row is computed as in Section 3. Notice that
𝑝asy and 𝑝rand are very different for Pielou’s first type of
symmetry test with and without Yates correction. This is in
agreement with the fact that Pielou’s first type of symmetry
tests is not appropriate for NNCTs based on completely
mapped spatial data (yielding very conservative tests under
the null hypotheses). For the tests with the correct asymptotic
sampling distributions, 𝑝asy and 𝑝rand are very similar.

Notice that the test statistics and the corresponding 𝑝

values imply that the allocations of the tree species are asym-
metric in mixed and shared NN structure (as was suggested
in the NNCT and 𝑄-symmetry contingency table), since
the corresponding 𝑝 values for Dixon’s symmetry test and
Pielou’s second type of symmetry test and Fisher’s exact test
are significant (𝑝 values based onMonteCarlo randomization
are significant for all tests). Hence, we will perform post
hoc symmetry tests to determine which pair(s) of species or
which species when compared to the rest exhibit significant
asymmetry in the NN structure.

7.2. Post Hoc Symmetry Analysis

7.2.1. Unrestricted Pairwise Symmetry Analysis. For the unre-
stricted pairwise analysis, we use (parts of) the contingency

Table 16: The test statistics and the p-values for the unrestricted
pairwise symmetry analysis for the Lansing Woods data. Row
labelings and the asterisks are in Table 15.

Unrestricted pairwise test statistics and p-values
𝑍
𝑖𝑗

𝐷
X2

I X2,𝑢

I X2

II 𝑇
𝐹

II

Black oaks versus maples
TS .769 .246 .385 2.245 —
𝑝asy .442 .620 .535 .326 .331∗

𝑝rand .412 .311 .282 .331 .337
Black oaks versus white oaks

TS −.657 .092 .163 1.520 —
𝑝asy .511 .762 .686 .468 .466∗

𝑝rand .473 .483 .483 .481 .481
Maples versus white oaks

TS −3.470 5.356 5.634 16.554 —
𝑝asy <.001 .021 .018 <.001 <.001∗

𝑝rand <.001 <.001 <.001 <.001 <.001

tables in the overall symmetry analysis. For example, for the
unrestricted pairwise tests for Dixon’s symmetry test, we use
the off-diagonal entries 𝑁

𝑖𝑗
and 𝑁

𝑗𝑖
in the NNCT in Table 13

and the test statistic 𝑍
𝑖𝑗

𝐷
in (16). For the unrestricted pairwise

tests for Pielou’s second type of symmetry test for species 𝑖

and 𝑗, we use the 2 × 3 𝑄-symmetry contingency table which
is obtained by using rows 𝑖 and 𝑗 in Table 14.

We present the test statistics and the associated 𝑝 values
for the unrestricted pairwise symmetry tests in Table 16.
Notice that 𝑝asy and 𝑝rand are very different for Pielou’s first
type of symmetry test with and without Yates correction
and very similar for other tests. The test statistics and the
corresponding 𝑝 values imply that there is symmetry in NN
structure for black oaks versus maples and for black oaks
versus white oaks. However, maples versus white oaks exhibit
significant asymmetry in NN structure.

7.2.2. Restricted Pairwise Symmetry Analysis. For the rest-
ricted pairwise symmetry tests, we construct the contingency
tables for the two species in question (ignoring the other
species). The NNCTs for the three pairs of species are pre-
sented in Table 17. Notice that the off-diagonal entries are
very similar for black oaks versus maples and black oaks ver-
sus white oaks, indicating symmetry in the mixed NN struc-
ture for these pairs of species. The off-diagonal entries are
very different for maples versus white oaks indicating strong
asymmetry in mixed NN structure for these species.

The (reduced) 𝑄-symmetry contingency tables for each
pair of species in the restricted sense are presented in Table
18, where relative frequencies of cell counts with respect to
row sums are presented in parentheses. Relative frequencies
of black oaks andmaples seem to be very similar to the overall
frequencies for the column sums, and the same holds for
black oaks andwhite oaks, indicating symmetry in the shared
NN structure. On the other hand, the relative frequencies
for the maples and white oaks seem to be different from the
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Table 17: The restricted NNCTs for each pair of species in the
Lansing Woods data (i.e., only the points for the pair of species are
considered, the other species is ignored). B.O. stands for black oaks
and W.O. for white oaks.

(a)

NN species Total
B.O. Maple

Base species
B.O. 82 53 135
Maple 49 465 514

Total 131 518 649

(b)

NN species Total
B.O. W.O.

B.O. 78 67 135
W.O. 72 376 448
Total 140 443 583

(c)

NN species Total
Maple W.O.

Maple 379 135 514
W.O. 172 276 448
Total 551 411 962

overall frequencies, indicating asymmetry in the shared NN
structure.

We present the test statistics and the associated 𝑝 values
for the restricted pairwise symmetry analysis in Table 19.
Black oaks versus maples exhibit symmetry in the NN struc-
tures and likewise for black oaks versus white oaks. However,
maples versuswhite oaks exhibit significant asymmetry in the
NN structures.

7.2.3. One-versus-Rest Symmetry Analysis. For the one-
versus-rest type symmetry tests, we construct the contin-
gency tables for each species in question pooling the other
species in one class. The NNCTs for the three species are
presented in Table 20. Notice that the off-diagonal entries are
very similar for black oaks versus rest, indicating symmetry
in mixed NN structure. The off-diagonal entries for maples
versus rest and white oaks versus rest are very different
suggesting asymmetry in mixed NN structure.

The (reduced) 𝑄-symmetry contingency tables for each
species in the one-versus-rest sense are presented in Table 21
which also contains the relative frequencies with respect to
row sums in parentheses. The relative frequencies for black
oaks versus rest are similar to the overall frequencies indicat-
ing symmetry in the shared NN structure, while they are
different for maples versus rest and white oaks versus rest,
indicating asymmetry in the shared NN structure.

We present the test statistics and the associated 𝑝 values
for the one-versus-rest symmetry analysis in Table 22. There
is symmetry inNN structures for black oaks versus rest, while

Table 18: The (reduced) Q-symmetry contingency tables for the
restricted pairwise analysis for the LansingWoods data.The relative
frequencies in parentheses are with respect to the row sums. B.O.
stands for black oaks, M. for maples, and W.O. for white oaks.

(a)

Number of times a point serving as a NN Total
0 1 ≥2

Classes
B.O. 38 (.28) 65 (.48) 32 (.24) 135
M. 142 (.28) 242 (.47) 130 (.25) 514

Total 180 (.28) 307 (.47) 162 (.25) 649

(b)

Number of times a point serving as a NN Total
0 1 ≥2

B.O. 36 (.27) 64 (.47) 35 (.26) 135
W.O. 135 (.30) 203 (.45) 110 (.25) 448
Total 171 (.29) 267 (.46) 145 (.25) 583

(c)

Number of times a point serving as a NN Total
0 1 ≥2

M. 117 (.23) 258 (.50) 139 (.27) 514
W.O. 136 (.30) 224 (.50) 88 (.20) 448
Total 253 (.26) 482 (.50) 227 (.24) 962

Table 19: The test statistics and the p-values for the unrestricted
pairwise symmetry analysis for the Lansing Woods data. Row
labelings and the asterisks are in Table 15.

Restricted pairwise test statistics and p-values
𝑍
𝑖𝑗

𝐷
X2

I X2,𝑢

I X2

II 𝑇
𝐹

II

Black oaks versus maples
TS .246 .010 .038 .144 —
𝑝asy .806 .922 .845 .930 .937∗

𝑝rand .819 .778 .773 .932 .945
Black oaks versus white oaks

TS −.597 .115 .180 .603 —
𝑝asy .551 .734 .671 .740 .759∗

𝑝rand .598 .497 .455 .764 .778
Maples versus white oaks

TS −2.923 3.717 3.939 10.806 —
𝑝asy .003 .054 .047 .005 .005∗

𝑝rand <.001 <.001 <.001 .004 .004

significant asymmetry inNN structures formaples versus rest
and white oaks versus rest.

8. Interpoint Dissimilarity Measures

A dissimilarity measure, 𝜌, on a set of objects𝐸 is theR valued
function on 𝐸 × 𝐸 such that 𝜌

∗

𝑥
= 𝜌(𝑥, 𝑥) ≤ 𝜌(𝑥, 𝑦) =

𝜌(𝑦, 𝑥) < ∞ for all 𝑥, 𝑦 ∈ 𝐸. A similarity measure, 𝑠, on 𝐸
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Table 20: The NNCTs for the one-versus-rest type of symmetry
analysis for the Lansing Woods data (i.e., the species in question is
taken as class 1 and the others combined is treated as class 2). B.O.
stands for black oaks and W.O. for white oak.

(a)

NN species Total
B.O. Rest

Base species
B.O. 53 82 135
Rest 78 884 964

Total 131 966 1097

(b)

NN species Total
Maple Rest

Maple 352 150 514
Rest 196 387 583
Total 560 537 1097

(c)

NN species Total
W.O. Rest

W.O. 236 212 448
Rest 167 482 649
Total 403 694 1097

is the R valued function on 𝐸 × 𝐸 such that 𝑠∗
𝑥

= 𝑠(𝑥, 𝑥) ≥

𝑠(𝑥, 𝑦) = 𝑠(𝑦, 𝑥) ≥ 0 for all 𝑥, 𝑦 ∈ 𝐸. Generally, 𝜌∗
𝑥

= 𝜌
∗ and

𝑠
∗

𝑥
= 𝑠

∗ for all 𝑥 ∈ 𝐸. In particular, if 𝑠∗ = 0, then 𝜌
∗

= 1.
We focus on dissimilarity measures only, since any similarity
measure can easily be converted to a dissimilarity measure
[27]. Any distance metric is by definition a dissimilarity
measure. In practice, the term distance is often used to
describe precisely the differences of actual measurements,
while “dissimilarity” might be an estimation of a distance
we can not measure physically. Among the widely used
distances are Euclidean, Minkowski, Mahalanobis, and taxi-
cab distances; among the nonmetric dissimilarity measures
are maximum coordinate difference, minimum coordinate
difference, dot product, Pearson’s linear dissimilarity, and
Spearman’s rank dissimilarity.

In the literature usually NN relationships defined with
distance metrics are used. In particular, Euclidean distance
in R2 is the only metric used in this paper. The use of
distances for obtaining the NN relations can be generalized
to dissimilarity measures in such a way that the NN of an
object, 𝑥, refers to the object with the minimum dissimilarity
to 𝑥. We assume that the objects (events) lie in a finite or
infinite dimensional space satisfying the symmetry condi-
tions. Under RL, the objects are fixed in the sense that they
yield fixed interpoint dissimilaritymeasures, but the labels are
assigned randomly.

The spatial patterns have broader interpretations in this
extension. Symmetry occurs when the classes have similar
NN structures with respect to each other. The extension
of Pielou’s first type of symmetry test is straightforward.

Table 21: The (reduced) 𝑄-symmetry contingency tables for the
one-versus-rest analysis for the Lansing Woods data. The relative
frequencies in parentheses are with respect to row sums. B.O. stands
for black oaks, M. for maples, W.O. for white oaks, and R. for rest.

(a)

Number of times a point serving as a NN Total
0 1 ≥2

Classes
B.O. 37 (.27) 67 (.50) 31 (.23) 135
R. 256 (.27) 479 (.50) 227 (.24) 962

Total 293 (.27) 546 (.50) 258 (.24) 1097

(b)

Number of times a point serving as a NN Total
0 1 ≥2

M. 112 (.22) 259 (.50) 148 (.29) 514
R. 181 (.31) 286 (.49) 116 (.20) 583
Total 293 (.27) 545 (.50) 259 (.24) 1097

(c)

Number of times a point serving as a NN Total
0 1 ≥2

W.O. 143 (.32) 219 (.49) 86 (.19) 448
R. 150 (.23) 327 (.50) 172 (.27) 649
Total 293 (.27) 546 (.50) 258 (.24) 1097

Table 22: The test statistics and the p-values for the unrestricted
pairwise symmetry analysis for the Lansing Woods data. Row
labelings and the asterisks are in Table 15.

One-versus-rest test statistics and P-values
𝑍
𝑖𝑗

𝐷
X2

I X2,𝑢

I X2

II 𝑇
𝐹

II

Black oak versus rest
TS .118 .000 .006 .049 —
𝑝asy .906 1.000 .938 .976 .970∗

𝑝rand .889 1.000 .866 .968 .968
Maples versus rest

TS −3.471 5.547 5.802 16.125 —
𝑝asy <.001 .019 .016 <.001 <.001∗

𝑝rand <.001 <.001 <.001 <.001 <.001
White oaks versus rest

TS 3.447 4.840 5.068 13.832 —
𝑝asy <.001 .028 .024 <.001 <.001∗

𝑝rand .001 <.001 <.001 .002 .002

However, Pielou’s second type of symmetry test and Dixon’s
tests are constructed assuming that data are in R2 in the
literature. In Dixon’s tests, the term 𝑄 which is the number
of points with shared NNs needs to be updated for higher
dimensional data. The general form of 𝑄 is defined as 𝑄 :=

2∑
𝑛

𝑗=1
( 𝑗
2
)𝑄

𝑗
. In practice, usually 𝑄 ≈ 𝑄. One may check

the appropriateness of this assumption by using the interpoint
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dissimilarity matrix in the classical multidimensional scaling
of the data to R2. If the NN relations do not change
considerably, it might be more practical to just use 𝑄 instead
of 𝑄 for computational reasons. Furthermore, with non-
Euclidean distances or dissimilarity measures, a point can
serve as a NN to more than 6 points, so the 𝑄-symmetry
contingency table should be updated accordingly.

Here is a possible example for whichwe have dissimilarity
measures between objects that lie in a high or infinite
dimensional space. In medical image analysis the differences
in morphometry (shape and size) of tissues are measured by
a distance metric called LDDMM (see, e.g., [28]). Based on
the distances measured between certain brain tissues (like
hippocampus), one is interested, say, in the symmetry of the
shapes of the tissues with respect to NN relationships. This
aspect of spatial dependence in the (abstract) morphometric
space is a topic of prospective research.

9. Discussion and Conclusions

In this paper, we investigate tests of symmetry in mixed and
shared nearest neighbor (NN) structures using contingency
tables based on theNNrelations between classes.We consider
Pielou’s two types of symmetry tests and Dixon’s symmetry
test and determine their appropriate null hypotheses and the
underlying assumptions. Pielou’s first type of symmetry test
and Dixon’s symmetry tests are for symmetry in mixed NN
structure and are based on the nearest neighbor contingency
table (NNCT), while Pielou’s second type of symmetry test is
for symmetry in shared NN structure and is based on the 𝑄-
symmetry contingency table.We derive the asymptotic distri-
bution of Dixon’s symmetry test under RL, which is also valid
under CSR independence conditional on spatial allocation of
the points in the study region.We extend Pielou’s and Dixon’s
symmetry tests to multiclass case and prove the consistency
of these tests under their appropriate null hypotheses. In
particular, we prove consistency for Pielou’s first type of
symmetry test under the appropriate sparse sampling in the
overall multinomial framework, for Pielou’s second type of
symmetry test under the appropriate sparse sampling in the
row-wise multinomial framework and for Dixon’s symmetry
test under RL patterns with completely mapped data.

Among the symmetry tests, we demonstrate that versions
of Pielou’s first type of symmetry test are extremely conser-
vative when used with the asymptotic critical value for the
McNemar’s test, due to dependence between base-NN pairs
and the underlying framework for the NNCT. Hence, these
tests should be avoided in practicewith the asymptotic critical
values but can be used with Monte Carlo randomization.
On the other hand, Pielou’s second type of symmetry test
and Dixon’s symmetry test are about the desired level under
complete spatial randomness (CSR) independence and ran-
dom labeling (RL). We also consider the use of Fisher’s exact
test for the 𝑄-symmetry contingency table. In particular,
we demonstrate that the table exclusive version of the two-
sided exact test has the desired level under CSR indepen-
dence and RL. It is also desirable for a test not only to be
consistent but also powerful; hence, determining appropriate
alternatives for these tests is an important task. We consider

various patterns for assessing the finite sample performance
of symmetry tests and discover other patterns under which
the null hypotheses for these types of symmetry tests are
satisfied. However, the variances and covariances (and hence
the asymptotic distributions) should be adjusted to have
the desired level for these patterns, because the asymptotic
distribution of Dixon’s symmetry test is only derived under
CSR independence and RL. With the critical values based on
the asymptotic distribution under CSR independence or RL,
the tests are either extremely conservative or liberal (although
the null hypotheses are satisfied). We also find that some of
the patterns can serve as alternatives for symmetry in shared
NN structure or for symmetry inmixed NN structure. Under
these alternatives, we observe that Pielou’s second type of
symmetry test has higher power compared to Dixon’s test of
symmetry. Furthermore, Pielou’s second type of symmetry
test is only empirically shown to be appropriate under CSR
independence and RL by Monte Carlo simulations. Finding
the distribution of Dixon’s symmetry test under the null
hypothesis of symmetry inmixed NN structure in general (as
CSR independence and RL are only two special cases in this
setting) and finding the distribution of Pielou’s second type of
symmetry under the null hypothesis of symmetry in shared
NN structure (even under CSR independence or RL) are still
open problems.

In a multiclass setting, first an overall symmetry test can
be conducted as an omnibus test. If significant, then either
one-versus-rest or pairwise type post hoc tests can be applied.
If the interest is in the symmetry of one class with respect
to the remaining classes, then a one-versus-rest type analysis
should be performed. On the other hand, if the interest is in
determining which pair(s) significantly deviate from symme-
try, then pairwise symmetry tests can be employed. When
we are doing the pairwise tests after an overall symmetry
test, we recommend the unrestricted pairwise version, which
takes all the data into account (indeed the significant overall
test was based on all the data considered). But if the interest
is only on two of the classes, then a restricted pairwise test
(considering only the classes in question) can be employed.
For symmetry in shared NN structure (with 𝑄-symmetry
contingency table), we recommend the use of one-versus-
rest type post hoc tests, as they are more consistent with the
overall symmetry test.

Throughout the paper, we assumed that the total sample
size 𝑛 is a fixed quantity. To make it a random variable, one
may consider that data are from a Poisson point process
over the (bounded) region of interest. The generalizations
of the tests to high dimensional data and NNCTs based on
general dissimilaritymeasuresmake this methodology useful
for other fields as well.

Finally, the tests in this paper are not adjusted for the
influence of the edges or boundary of the support, which
usually causes the tests to be slightly liberal or conservative.
Such an adjustment is only necessary when the spatial
allocation of the points is not fixed but results from a
stochastic process whose support contains the study region
(as in the CSR independence case). To make the size of the
test appropriate, the tests need to be adjusted for boundary
effects, which is also a topic of prospective research.
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Appendix

Proof of Theorem 7

Let 𝐶2
∼ 𝜒

2

] (𝜆). Then the pdf of 𝐶2 is

𝑓] (𝑥, 𝜆) =
exp (− (] + 𝜆) /2) 𝑥

]/2−1

2]/2

∞

∑

𝑗=0

(𝑥𝜆/4)
𝑗

Γ (]/2 + 𝑗) 𝑗!
(A.1)

for 𝜆 > 0, ] a positive integer, and 𝑥 > 0with the conventions
of 0! = 0

0
= 1. Then E[𝐶2

] = ] + 𝜆 and Var[𝐶2
] = 2(] + 2 𝜆).

The power at level 𝛼 is

𝛽 (𝜆, ], 𝛼) = 𝑃 (𝐶
2
> 𝜒

2

] (𝜆 = 0, 1 − 𝛼))

= ∫

∞

𝜒
2

] (0,1−𝛼)

𝑓] (𝑥, 𝜆) 𝑑𝑥.
(A.2)

The Taylor series expansion of 𝛽(𝜆, ], 𝛼) around 𝜆 = 0 for
fixed 𝛼 and ] is given by

𝛽 (𝜆, ], 𝛼) =

∞

∑

𝑘=0

𝜆
𝑘
𝛽
(𝑘)

(𝜆 = 0, ], 𝛼)
𝑘!

= 𝛽 (0, ], 𝛼) + 𝜆𝛽
󸀠
(0, ], 𝛼) + 𝑅 (𝜆, ], 𝛼) ,

(A.3)

where 𝑅(𝜆, ], 𝛼) = 𝑂(𝜆
2
) as 𝜆 → 0. Note that

𝛽 (0, ], 𝛼) = ∫

∞

𝜒
2

] (0,1−𝛼)

𝑓] (𝑥, 𝜆) 𝑑𝑥 = 𝛼, (A.4)

since under𝐻
𝑜
power equals the level of the test. Next,

𝛽
󸀠
(0, ], 𝛼) = ∫

∞

𝜒
2

] (0,1−𝛼)

𝜕𝑓] (𝑥, 𝜆)

𝜕𝜆
𝑑𝑥 (A.5)

(see, e.g., [29]), where

𝜕𝑓] (𝑥, 𝜆)

𝜕𝜆
= −

1

2
𝑓] (𝑥, 𝜆) +

exp (− (𝑥 + 𝜆) /2) 𝑥
]/2−1

2]/2

×

∞

∑

𝑘=0

𝑘(𝑥/4)
𝑘
𝜆
𝑘−1

Γ (]/2 + 𝑘) 𝑘!
.

(A.6)

Substituting 𝜆 = 0, we get

𝜕𝑓] (𝑥, 𝜆)

𝜕𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆=0
= −

1

2
𝑓] (𝑥, 0) +

exp (−𝑥/2) 𝑥
]/2−1

2]/2
⋅
𝑥

4

= −
1

2
𝑓] (𝑥, 0) +

1

2
𝑓]+2 (𝑥, 0) .

(A.7)

So 𝛽
󸀠
(0, ], 𝛼) = −(𝛼/2) + (1/2)[1 − 𝐹]+2(𝜒

2

] (0, 1 − 𝛼))]. Thus,
for small 𝜆 > 0,

𝛽 (𝜆, ], 𝛼) ≈ 𝛼 + 𝜆 (−
𝛼

2
+

1

2
[1 − 𝐹]+2 (𝜒

2

] (0, 1 − 𝛼))]) .

(A.8)
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