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a b s t r a c t

We consider two types of graphs based on a family of proxim-
ity catch digraphs (PCDs) and study their edge density. In partic-
ular, the PCDs we use are a parameterized digraph family called
proportional-edge (PE) PCDs and the two associated graph types
are the ‘‘underlying graphs’’ and the newly introduced ‘‘reflexivity
graphs’’ based on the PE-PCDs. These graphs are extensions of ran-
dom geometric graphs where distance is replaced with a dissimi-
larity measure and the threshold is not fixed but depends on the
location of the points. PCDs and the associated graphs are con-
structed based on data points from two classes, sayX andY, where
one class (say class X) forms the vertices of the PCD and the De-
launay tessellation of the other class (i.e., class Y) yields the (De-
launay) cells which serve as the support of class X points. We
demonstrate that edge density of these graphs is a U-statistic,
hence obtain the asymptotic normality of it for data from any dis-
tribution that satisfies mild regulatory conditions. The rate of con-
vergence to asymptotic normality is sharper for the edge density of
the reflexivity and underlying graphs compared to the arc density
of the PE-PCDs. For uniform data in Euclidean plane where Delau-
nay cells are triangles, we demonstrate that the distribution of the
edge density is geometry invariant (i.e., independent of the shape
of the triangular support). We compute the explicit forms of the
asymptotic normal distribution for uniform data in one Delaunay
triangle in the Euclidean plane utilizing this geometry invariance
property. We also provide various versions of edge density in the
multiple triangle case. The approach presented here can also be ex-
tended for application to data in higher dimensions.

© 2016 Elsevier B.V. All rights reserved.

E-mail address: elceyhan@ku.edu.tr.

http://dx.doi.org/10.1016/j.stamet.2016.07.003
1572-3127/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.stamet.2016.07.003
http://www.elsevier.com/locate/stamet
http://www.elsevier.com/locate/stamet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stamet.2016.07.003&domain=pdf
mailto:elceyhan@ku.edu.tr
http://dx.doi.org/10.1016/j.stamet.2016.07.003


32 E. Ceyhan / Statistical Methodology 33 (2016) 31–54

1. Introduction

Proximity catch digraphs (PCDs) are a recently introduced digraph family and have applications
in pattern classification and spatial data analysis. PCDs are random digraphs (i.e., directed graphs) in
which each vertex corresponds to a data point, and arcs (i.e., directed edges) are defined in terms
of some bivariate relation on the data. One type of PCD is the class cover catch digraph (CCCD)
introduced by Priebe et al. [23] who gave the exact and the asymptotic distribution of its domination
number for uniform data on bounded intervals in R. Priebe et al. [25] and DeVinney and Priebe [13]
applied the concept in higher dimensions and demonstrated relatively good performance of it in
classification. Their methods involve data reduction (i.e., condensing) by using approximate minimum
dominating sets as prototype sets, since finding the exact minimum dominating set is an NP-hard
problem in general – e.g., for CCCDs in multiple dimensions – (see DeVinney and Priebe [13]). Our
PCDs are constructed in a two-class setting with points from the class of interest (i.e., target class)
that constitutes the vertices of the digraph. Let Xn and Ym be two data sets of size n and m from
classes X and Y, respectively, and let class X be the target class. Then the vertices of the PCD are Xn
and there is an arc from x1 ∈ Xn to x2 ∈ Xn, based on a binary relation which measures the relative
proximity of x1 and x2 with respect to the Y points. This relative proximity is determined based on
the Delaunay tessellation of Y points. The PCDs are also closely related to the class cover problem of
Cannon and Cowen [5] where the goal is finding a cover for the target class (i.e., finding a set of regions
that contain all the points from the target class). Ceyhan and Priebe [8] introduced a digraph family
called proportional-edge PCD (PE-PCD) and calculated the asymptotic distribution of its arc density and
used it in spatial pattern testing [10]. PE-PCDs are parameterized digraphs with an expansion and a
centrality parameter.

We consider two graph types defined based on the digraphs (in particular on PE-PCDs). The
underlying graph of a digraph is obtained when any arc (between two vertices) is replaced by an
edge disallowing multi-edges [11]. We introduce another graph type by replacing each symmetric or
reflexive arc (between two vertices) with an edge and removing the (nonsymmetric) single arcs, and
call it reflexivity graph. In a digraphD = (V , A)with vertex set V and arc set A, an arc (a, b) is symmetric
iff {(a, b), (b, a)} ⊂ A, i.e., the points a and b satisfy reflexivity with respect to the binary relation
defining the arcs. The reflexivity and underlying graphs based on the PE-PCDs are also generalized
versions of random geometric graphs (RGGs) (see, e.g., Penrose [22] for an extensive treatment of
RGGs). Applications of RGGs include modeling/understanding disease spread among trees scattered
in a forest, communication between a set of nests of animals or birds in a region of interest or between
stations in a country or nerve cells in a living organism. RGGs are based on vertices independently and
identically (iid) generated in Rk and an edge is inserted between two vertices if the distance between
them does not exceed a certain threshold value. On the other hand, in our graphs, the regions that
determine the edges would depend on the vertices, hence the threshold is adjusted based on the
location of the vertices; and instead of a distance, a dissimilarity measure is employed. PCDs might
also be applied in similar settings as those of RGGs, e.g., in testing spatial interaction (as in [10,9]);
and in similar settings as those of the CCCDs in pattern classification (as in [24]).

We investigate the properties of the graph invariant, called edge density, of the reflexivity and
underlying graphs of PCDs. Edge density of a graph is the ratio of number of edges to the total number
of edges possible with the same set of vertices. Hence for a graph Gn = (V , E) with vertex set of
size |V | = n and edge set E, edge density is 2|E|/(n(n − 1)). The maximal density is 1, which is
attained for complete graphs, while the minimal density is 0, which is attained when E = ∅. The
average degree of the graph Gn is defined as 2|E|/n, is closely related to edge density; it is simply a
scaled version of edge density. Edge density is also defined as |E|/n by Grünbaum [14] who studies
it for 4-critical planar graphs. In this article, we only use the quantity 2|E|/(n(n − 1)) as the edge
density for the graph Gn = (V , E). Arc density of a digraph Dn = (V , A) with |V | = n is defined
similarly as |A|/(n(n − 1)). Edge density is also instrumental in determining the density of higher
order structures in graphs, e.g., minimal density of triangles in graphs is provided in terms of edge
density by Razborov [26]. Michael [21] studies the edge density for another special type of geometric
graph called sphere of influence graph. A local version of edge density is also defined and investigated
for subgraphs [20]. Furthermore, Darst et al. [12] define another local version called internal edge
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density to determine communities (i.e., clusters) in networks, and show that their method is capable
of determining overlapping communities in both graphs and multi-graphs. Arc density also has uses
in network data, e.g., in large social networks. For example, Boullé [3] uses a Bayesian approach to
summarize the structure of a large directed multi-graph, based on non-parametric estimation of arc
density using a piecewise constant estimation of the density of the arcs across the clusters, thereby
automatically and reliably inferring the number of clusters.

Properly scaled, we demonstrate that the edge density of the reflexivity and underlying graphs
of PE-PCDs is a U-statistic, which has asymptotic normality by the general central limit theory of
U-statistics [15]. Furthermore, we derive the explicit form of the asymptotic normal distribution of
the edge density of these graphs based on uniform data in a bounded region in R2. In particular,
this bounded region is taken to be the convex hull of class Y points, and the arcs between class
X points are constructed using the Delaunay triangulation of class Y points. By construction, PE-
PCDs allow us to work with Delaunay triangles one at a time. Moreover, the distribution of the edge
density of the reflexivity and underlying graphs is shown to be geometry invariant for uniform data
in one (Delaunay) triangle. This geometry invariance property allows us to work with the standard
equilateral triangle, and utilize the inherent symmetry in such triangles, and thereby perform the
calculations for the mean and variance of the asymptotic normal distribution as a function of the
expansion parameter for once, and then conveniently extend the results to the more general case of
multiple Delaunay triangles, i.e., the full support which is the convex hull of the Y points. We also
compare the distributions of the edge density of the reflexivity and underlying graphs and that of the
arc density of PE-PCDs.

We provide some preliminaries and the theoretical framework for random graphs and digraphs in
Section 2, define PCDs and the associated reflexivity and underlying graphs and their edge densities
(in a general framework and then specifically for the PE-PCDs) in Section 3, provide the asymptotic
distribution of the edge density of the graphs associated with the PE-PCDs for uniform data in the one
triangle case in Section 4. We treat the multiple triangle case in Section 5, provide the discussion and
conclusions in Section 6, and the tedious calculations and long proofs are deferred to the Appendix
and/or the technical report by Ceyhan [7].

2. Preliminaries

Let Z+ be the set of positive integers, n ∈ Z+, and [n] := {1, 2, . . . , n}. Let also Gn (resp. Dn)
denote the set of all simple graphs Gn = (V , E) (resp. digraphs Dn = (V , A)) with vertex set V = [n]
and edge set E (resp. arc set A). A simple graph is an undirected graph with no loops and no parallel
edges. We often write the edge between i and j as the unordered pair ij for i ≠ j and say that i and
j are adjacent. On the other hand, a simple digraph is a directed graph with no loops and no parallel
arcs in the same direction. We write the arc from i to j as the ordered pair (i, j) for i ≠ j and say that j
is adjacent to i.

Technically, a random graph (resp. digraph) is a probability space of the form Gn = (Gn,F , P)
(resp. Dn = (Dn,F , P)) where n ∈ Z+ and P is the probability measure associated with Gn (resp.
Dn). In fact, one should define the random graph (resp. digraph) as a graph-valued (resp. digraph-
valued) random variable which is a measurable function from a probability space into Gn (resp.
Dn). However, all our concern is the distribution of some invariant of such random variables which
induces a probability measure on Gn (resp. Dn), hence the abuse of terminology. For random graphs
and digraphs as the probability spaces defined above, the corresponding σ -algebra, F , is the total
σ -algebra; i.e., we assume that all subsets of the sample space Gn (resp. Dn) are measurable. We will
drop F in the random graph and digraph notation when there is no concern of ambiguity.

The most popular and general random graphs are the Erdős–Rényi random graphs, G(n, p) =

(Gn, P)with

P(G) = pne(1 − p)(
n
2 )−ne , G ∈ Gn

where p ∈ [0, 1] is the probability that an edge occurs between any two vertices, and ne = |E|

(i.e., ne is the number of edges in G). That is, the
 n
2


possible edges occur each with probability p and



34 E. Ceyhan / Statistical Methodology 33 (2016) 31–54

independently of each other. Similarly the corresponding digraph can be defined asD(n, p) = (Dn, P)
with

P(D) = pnaa (1 − pa)n(n−1)−na , D ∈ Dn

where pa ∈ [0, 1] is the probability that an arc occurs from a vertex to another, and na = |A| (i.e., na
is the number of arcs in D). Hence, the Erdős–Rényi type random digraph is obtained when each of
n(n − 1) possible arcs occurs independently with probability pa. To make a distinction, we will call
p = P(ij ∈ E, i ≠ j) as the edge probability and pa = P((i, j) ∈ A, i ≠ j) as the arc probability.

Beer et al. [2] provide a classification of isomorphism-invariant random graphs according to
where the randomness resides. In particular, if only the edges occur randomly (but vertices are
deterministic), then the graph is called an edge random graph; if only the vertices occur randomly
(but edges are deterministic given the vertices), then the graph is a vertex random graph; and if both
edges and vertices occur randomly, then the graph is themost general form called vertex-edge random
graph. A random graph is isomorphism-invariant, if P(G) = P(H) when G and H are in Gn and are
isomorphic. The vertex-edge random graphs are defined as follows: Let (V , µ) be a probability space,
and ψ : V × V → [0, 1] a symmetric function. Then the vertex-edge random graph G(n, V , µ,ψ) is
the random graph (Gn, P)with

P(G) =


Pv(G)µ(dv) (1)

where Pv is the probability measure associated with the edges conditional on vertices, and µ(dv) is
the product integrator,µ(dv1)µ(dv2) . . . µ(dvn), on V n (associated with vertices). That is, the vertex-
edge random graph G(n, V , µ,ψ) is generated as follows: First n points are drawn iid from V with
distributionµ, denoted as V = {V1, . . . , Vn}. Then, conditional on V, an edge is inserted between each
pair of vertices i and j (i ≠ j) independently with probability ψ(Vi, Vj). If ψ(x, y) ∈ {0, 1}µ-almost
everywhere, then the vertex-edge random graph boils down to a vertex random graph. On the other
hand, if µ(V) = 1 (i.e., µ is a trivial probability measure on V ), then the vertex-edge random graph
reduces to an edge random graph. Hence, vertex random graphs and edge random graphs are special
cases of the more encompassing family of vertex-edge random graphs.

The above classification can easily be extended to the (isomorphism-invariant) randomdigraphs by
replacing edgeswith arcs and graphswith digraphs, but the functionψ would now be non-symmetric
and is denoted as ψd (if it were symmetric, one does not have to resort to digraphs, simply the
corresponding graph would be sufficient to work with).

A prominent example of vertex random graphs is the RGGs, which are extensively studied in
literature [22]. For RGGswe have V = Rk: n points are generated iid from the probability distribution,
µ, onRk, and an edge is inserted between twopoints (vertices)when they arewithin a certain distance
t of each other. Thus ψ(x, y) = I(d(x, y) ≤ t)where d(·, ·) is a distance in Rk and I(·) is the indicator
function.

The reflexivity and underlying graphs (which are the graphs of our concern in this article) of a
digraph are the graphs obtained by replacing arcs with edges. If each arc (i, j) ∈ A is replaced by an
edge avoidingmulti-edges, thenwe obtain the underlying graph of the digraph [11].We also introduce
a graph obtained by replacing each symmetric or reflexive arc, {(i, j), (j, i)} ⊂ A by the edge ij and
remove the arcs of the form (i, j) ∈ A but (j, i) ∉ A, and call the so-obtained graph reflexivity graph
of the digraph. More specifically, the underlying graph for Dn = (V , A) is the graph Gund

n = (V , Eund)
where Eund is the set of edges such that ij ∈ Eund iff (i, j) ∈ A or (j, i) ∈ A. The reflexivity graph of
digraph Dn = (V , A) is the graph Gref

n = (V , Eref) where Eref is the set of edges such that ij ∈ Eref
iff (i, j) ∈ A and (j, i) ∈ A. The sub- and super-scripting with ‘‘ref’’ and ‘‘und’’ are based on the
corresponding terms of reflexivity and underlying graphs, respectively.

The main characteristic that makes the asymptotic study of the distribution of edge and arc
densities related to the PCDs convenient is that these densities are U-statistics, whose asymptotic
distribution is first studied by Hoeffding [15]. Being loyal to his notation (when there is no conflict
with the ones in this article), in general, let X1, . . . , Xn be a sequence of iid random variables and
Φ(x1, . . . , xk) be a function of k(≤ n) variables. A statistic of the form

Un,k =


Φ(Xi1 , . . . , Xik)/n(k) (2)
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where summation is over all permutations of the k distinct indices i1, . . . , ik and n(k) = n(n −

1) . . . (n − k + 1) is called a U-statistic. Furthermore, if X1, . . . , Xn are from the same distribution
F , then Un,k is an unbiased estimate of the parameter θF =


. . .

Φ(X1, . . . , Xk)dF(x1) . . . dF(xk)

[15]. Hoeffding [15] shows that if X1, . . . , Xn are from the same distribution, F and Φ(x1, . . . , xk) is
independent of the sample size n, then

√
n(Un,k − θ) converges to a normal distribution provided

that E[Φ2(X1, . . . , Xk)] exists. He also provides the asymptotic variance of the U-statistics [15] and
a SLLN for them [16], and an exponential upper bound for the tail probabilities [17]. Letting Φ0 :=
1
k!


0Φ(Xi1 , . . . , Xik)where


0 is taken over all permutations (i1, . . . , ik) of (1, . . . , k), Un,k can also

be written as

Un,k =

n
k

−1
Φ0(Xi1 , . . . , Xik) (3)

where the summation is over 0 ≤ i1 < i2 < · · · < ik ≤ n. Notice that the kernel Φ0(x1, . . . , xk) is
symmetric function of k variables. We will mostly use the form in Eq. (3) in our analysis henceforth.

3. Edge density of underlying and reflexivity graphs based on PCDs

3.1. PCDs and the related graphs

Let (V , d) be a metric space equipped with a probability measure µ. Consider N : V → P (V ),
where P (·) represents the power set. Then, given Ym ⊂ V , the proximity map N(·) associates with
each point x ∈ V a proximity region N(x) ⊆ V . The region N(x) is defined in terms of the distance
between x and Ym. In what follows, we suppress the dependence on Ym till Section 3.4 for notational
convenience. Define the random PCD, Dn, with vertex set [n] and arc set A by (i, j) ∈ A ⇐⇒ Xj ∈

N(Xi)where point Xi is said to ‘‘catch’’ point Xj. Notice thatwe denote the vertices by [n] orXn for PCDs
interchangeably, since it is a simplematter to connect [n] toXn bymapping i → Xi for i = 1, 2, . . . , n.
The random digraph Dn depends on the (joint) distribution of the Xi points and on the map N(·). That
is, a PCD is a vertex random digraph D(n, V , µ,ψd)with ψd(x, y) = I(y ∈ N(x)) and

P(D) =


I(D(n, V , µ,ψd) = D)µ(dv), D ∈ Dn

where µ(dv) is as in Eq. (1). The adjective proximity – for the catch digraph Dn and for the map N(·)
– comes from thinking of the region N(x) as representing those points in V ‘‘close’’ to x [27,18]. The
Γ1-region Γ1(·,N) : V → P (V ) associates the region Γ1(x,N) := {z ∈ V : x ∈ N(z)} with each
point x ∈ V . A Γ1-region is sort of a ‘‘dual’’ of the corresponding proximity region and is closely
associated with domination number being equal to one [6]. Moreover, the PCD, D(n, V , µ,ψd), can
be represented equivalently as D(n, V , µ,ψd) with ψd(x, y) = I(x ∈ Γ1(y,N)). Hence, (i, j) ∈ A
iff Xi ∈ Γ1(Xj,N). If X1, X2, . . . , Xn are V -valued random variables, then the N(Xi) (and Γ1(Xi,N)),
i = 1, 2, . . . , n are random sets. If the Xi are iid, then so are the functionals of the random sets N(Xi)
(and Γ1(Xi,N)).

Consider the vertex random PCD, Dn. The reflexivity graph, Gref, of Dn with the vertex set V and
the edge set Eref is defined by ij ∈ Eref iff (i, j) ∈ A and (j, i) ∈ A. Likewise, the underlying graph,
Gund, of Dn with the vertex set V and the edge set Eund is defined by ij ∈ Eund ⇐⇒ (i, j) ∈

A or (j, i) ∈ A. Then ij ∈ Eref iff ‘‘Xj ∈ N(Xi) and Xi ∈ N(Xj)’’ iff ‘‘Xj ∈ N(Xi) and Xj ∈ Γ1(XiN)’’
iff Xj ∈ N(Xi) ∩ Γ1(Xi,N). Similarly, ij ∈ Eund iff Xj ∈ N(Xi) ∪ Γ1(Xi,N). Hence the reflexivity
and underlying graphs are generalized versions of random geometric graphs with the metric and
the threshold distance are implicit in the defining regions N(·) (and Γ1(·,N)). Furthermore, these
graphs are also vertex random graphs. In the vertex random graph notation of Section 2, we have
Gref(n, V , µ,ψref) with ψref(x, y) = I(y ∈ N(x) ∩ Γ1(x,N)) for the reflexivity graph; and we have
Gund(n, V , µ,ψund)with ψund(x, y) = I(y ∈ N(x) ∪ Γ1(x,N)) for the underlying graph.

Proposition 3.1. The PCDs and the associated reflexivity and underlying graphs are isomorphism-
invariant.
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Proof. Suppose D and D′ are two isomorphic PCDs. Since the n vertices are drawn iid from (V , P),
we would have P((i, j) ∈ A(D)) = P((i′, j′) ∈ A(D′)) for any i ≠ j and i′ ≠ j′. Therefore,
P(D) = P(D′). Similarly, the corresponding reflexivity (and underlying) graphs for D and D′ would
also be isomorphic, hence would have the same probability, hence are isomorphism-invariant. �

3.2. Arc density of the PCDs

The arc density of the PCD, Dn = (V , A) ∈ (Dn, P), is denoted as ρ(Dn). Recall that ψd(x, y) =

I(y ∈ N(x)). Then the arc density ρ(Dn) can be written as

ρ(Dn) =
|A|

n(n − 1)
=

1
n (n − 1)


i≠j

ψd(Xi, Xj) =
2

n (n − 1)


i<j

h(Xi, Xj) (4)

where 2 h(Xi, Xj) = ψd(Xi, Xj) + ψd(Xj, Xi) = I(Xj ∈ N(Xi)) + I(Xi ∈ N(Xj)) is the number of arcs

between vertices Xi and Xj in Dn. For Xi
iid
∼ F , i = 1, 2, . . . , n, with support of F being in V , h(x, y) is

a symmetric function of two variables. Moreover, ρ(Dn) is a random variable ρ : Dn → [0, 1] and
depends on n, F , and N(·). But E [ρ(Dn)] only depends on F and N(·). That is,

0 ≤ E [ρ(Dn)] =
2

n (n − 1)


i<j

E[h(Xi, Xj)] = E [h(X1, X2)] (5)

where 2 E [h(X1, X2)] = E[ψd(X1, X2) + ψd(X2, X1)] = 2 P(X2 ∈ N(X1)) = 2 pa. Hence E [ρ(Dn)] =

E [h(X1, X2)] = pa, which is the arc probability for the PCD, Dn, since pa = P(Xj ∈ N(Xi)) = P((i, j) ∈

A(Dn)) for i ≠ j. Furthermore,

0 ≤ Var [ρ(Dn)] =
4

n2 (n − 1)2
Var


i<j

h(Xi, Xj)


. (6)

Expanding this expression, we have

Var [ρ(Dn)] =
2

n (n − 1)
Var [h(X1, X2)] +

4(n − 2)
n (n − 1)

Cov [h(X1, X2), h(X1, X3)]

with

Var [h(X1, X2)] = (pa − p2a) = pa (1 − pa)

and

Cov [h(X1, X2), h(X1, X3)] = E [h(X1, X2)h(X1, X3)]
− E [h(X1, X2)] E [h(X1, X3)] = E [h(X1, X2)h(X1, X3)] − p2a,

where

4 E [h(X1, X2)h(X1, X3)]
= E[(ψd(X1, X2)+ ψd(X2, X1))(ψd(X1, X3)+ ψd(X3, X1))]

= E[I(X2 ∈ N(X1))I(X3 ∈ N(X1))+ I(X2 ∈ N(X1))I(X1 ∈ N(X3))

+ I(X1 ∈ N(X2)I(X3 ∈ N(X1))] + I(X1 ∈ N(X2))I(X1 ∈ N(X3))]

= E[I({X2, X3} ⊂ N(X1))+ I(X2 ∈ N(X1))I(X3 ∈ Γ1(X1,N))
+ I(X2 ∈ Γ1(X1)I(X3 ∈ N(X1))] + I(X2 ∈ Γ1(X1,N))I(X3 ∈ Γ1(X1,N))]

= P({X2, X3} ⊂ N(X1))+ 2 P(X2 ∈ N(X1), X3 ∈ Γ1(X1,N))
+ P({X2, X3} ⊂ Γ1(X1,N)).

The arc density of the PCDs converges weakly to a normal distribution as shown in the next
theorem.
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Theorem 3.2. Let Xi
iid
∼ F and Dn be the PCD which is based on the proximity map N(·) and has

vertex set Xn. The arc density, ρ(Dn), of the PCD, Dn, defined in Eq. (4) is a one-sample U-statistic of
degree 2 and is an unbiased estimator of pa. Additionally, if νa = Cov


h(Xi, Xj), h(Xi, Xk)


> 0 for all

i ≠ j ≠ k, i, j, k = 1, 2, . . . , n, then
√
n

ρ(Dn) − pa

 L
−→ N (0, 4 νa) as n → ∞ where

L
−→ stands

for convergence in law or distribution and N (µ, σ 2) stands for the normal distribution with mean µ and
variance σ 2.

Proof. The arc probability, pa, for the random digraph Dn is an estimable parameter of degree 2, since
E[h(X1, X2)] = pa (so h(X1, X2) is unbiased for pa) and h(x, y) is a symmetric function of two variables.
As seen in Eq. (4), ρ(Dn) is of the form

 n
2

−1 h(Xi, Xj)where the summation is over all integers (i, j)
with i < j from (1, 2, . . . , n). Hence ρ(Dn) is a U-statistic with the symmetric kernel h(x, y), and is
an unbiased estimator of pa (by Eq. (5)). Note also that Xi are iid from F for i = 1, . . . , n, and ψd(x, y)
is independent of n. Moreover, E[ψ2

d (X1, X2)] = E[I(X2 ∈ N(X1))] = P(X2 ∈ N(X1)) = pa ≤ 1 exists,

then by Theorem 7.1 of Hoeffding [15], it follows that
√
n

ρ(Dn)− pa

 L
−→ N (0, 4 νa) provided that

νa > 0 where 4 νa = Cov(h(X1, X2), h(X1, X3)). �

In the above theorem, νa > 0 iff P({X2, X3} ⊂ N(X1)) + 2 P(X2 ∈ N(X1)), I(X3 ∈ Γ1(X3,N)) +

P({X2, X3} ⊂ Γ1(X1,N)) > 4 p2a . We can also obtain the joint distribution of (h(X1, X2), h(X1, X3)) (see
Appendix 1).

Remark 3.3. Notice that for PCDs, the set of (place holders of) vertices V = Xn is a random sample
from a distribution F (i.e., the vertices directly result from a random process), and the arcs are defined
based on the random sets (i.e., proximity regions) N(Xi) as described in Section 3.1. Hence the set of
arcs A (indirectly) results from a random process such that ψd(Xi, Xj) are identically distributed and
ψd(Xi, Xj) andψd(Xk, Xl) are independent for distinct i, j, k, l. We have Cov


h(Xi, Xj), h(Xi, Xk)


< ∞,

since both E [h(X1, X2)h(X1, X3)] and pa are finite. Furthermore, asymptotic distribution of ρ(Dn) is
non-degenerate whenever νa > 0 and is degenerate with ρ(Dn) = pa a.s. whenever νa = 0. �

Remark 3.4. Showing ρ(Dn) is a U-statistic of degree 2 entails more than just asymptotic normality.
In particular:

(i) By Theorem 5.1 of Hoeffding [15], we have Cov[h(X1, X2), h(X1, X3)] ≤ Var[h(X1, X2)].
(ii) By Theorem 5.2 of Hoeffding [15], we have

4
n
Cov[h(X1, X2), h(X1, X3)] ≤ Var[ρ(Dn)] ≤

2
n
Var[h(X1, X2)],

and Var[ρ(Dn)] is a decreasing function of n as n increases, and if νa > 0,Var[ρ(Dn)] is of order
1/n.

(iii) If νa > 0, SLLN follows, since E[ψd(X1, X2)] = pa is finite [16]; that is, ρ(Dn)
a.s.

−→ pa as n → ∞.
(iv) Finally, since 0 ≤ ψd(X1, X2) ≤ 1, by Hoeffding [17], we have P(ρ(Dn)− pa > t) ≤ exp(−2kt2)

where k = ⌊n/2⌋, the largest integer less than or equal to n/2. �

3.3. Edge density of the graphs based on PCDs

Let Gref
n and Gund

n be the reflexivity and underlying graphs associatedwith the PCD,Dn, respectively.
Also let ρref

n and ρund
n be the corresponding edge densities of the graphs, Gref

n and Gund
n , respectively.

One can express the edge density of Gref
n as

ρref
n =

1
n (n − 1)


i≠j

ψref(Xi, Xj) =
2

n (n − 1)


i<j

ψref(Xi, Xj) (7)

where ψref(Xi, Xj) = I(Xj ∈ N(Xi) ∩ Γ1 (Xi,N)) is the indicator for the existence of an edge between
Xi and Xj in Gref

n or number of symmetric or reflexive arcs between Xi and Xj in Dn. Similarly, the edge
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density of Gund
n is

ρund
n =

1
n (n − 1)


i≠j

ψund(Xi, Xj) =
2

n (n − 1)


i<j

ψund(Xi, Xj) (8)

where ψund(Xi, Xj) = I(Xj ∈ N(Xi) ∪ Γ1 (Xi,N)) is the indicator for the existence of an edge between
Xi and Xj in Gund

n .

For Xi
iid
∼ F , i = 1, 2, . . . , n, ψref(x, y) (resp. ψund(x, y)) is a symmetric function of two variables.

Moreover, ρref
n and ρund

n are random variables that depend on n, F , and N(·). But E

ρref
n


and E


ρund
n


only depend on F and N(·). That is, we have

0 ≤ E

ρref
n


=

2
n (n − 1)


i<j

E[ψref(Xi, Xj)] = E [ψref(X1, X2)] = pref. (9)

Similarly,

0 ≤ E

ρund
n


=

2
n (n − 1)


i<j

E[ψund(Xi, Xj)] = E [ψund(X1, X2)] = pund. (10)

Notice that pref = P(Xj ∈ N(Xi) ∩ Γ1 (Xi,N)) for i ≠ j is edge probability for the reflexivity graph
Gref
n , and it is also the symmetric or reflexive arc probability for the PCD, Dn. Likewise, pund = P(Xj ∈

N(Xi) ∪ Γ1 (Xi,N)) for i ≠ j is the edge probability for the underlying graph Gund
n .

Moreover,

0 ≤ Var

ρref
n


=

4
n2 (n − 1)2

Var


i<j

ψref(Xi, Xj)


. (11)

Expanding this expression, we get

Var

ρref
n


=

2
n (n − 1)

Var [ψref(X1, X2)] +
4 (n − 2)
n (n − 1)

Cov [ψref(X1, X2), ψref(X1, X3)]

with
Var [ψref(X1, X2)] = pref − p2ref = pref (1 − pref)

and
Cov [ψref(X1, X2), ψref(X1, X3)] = E [ψref(X1, X2)ψref(X1, X3)] − E [ψref(X1, X2)] E [ψref(X1, X3)] .

Since E [ψref(X1, X2)] = E [ψref(X1, X3)] = pref and,
E [ψref(X1, X2)ψref(X1, X3)] = E[I(X2 ∈ N(X1) ∩ Γ1(X1,N)) . I(X3 ∈ N(X1) ∩ Γ1(X1,N))]

= P(X2 ∈ N(X1) ∩ Γ1(X1,N) , X3 ∈ N(X1) ∩ Γ1(X1,N))
= P({X2, X3} ⊂ N(X1) ∩ Γ1(X1,N)),

it follows that
Cov [ψref(X1, X2), ψref(X1, X3)] = P({X2, X3} ⊂ N(X1) ∩ Γ1(X1,N))− p2ref.

Similarly, we have,

0 ≤ Var

ρund
n


=

2
n (n − 1)

Var [ψund(X1, X2)] +
4 (n − 2)
n (n − 1)

Cov[ψund(X1, X2), ψund(X1, X3)]

(12)
with

Var [ψund(X1, X2)] = pund − p2und = pund (1 − pund)
and

Cov [ψund(X1, X2), ψund(X1, X3)] = P({X2, X3} ⊂ N(X1) ∪ Γ1(X1,N))− p2und.
The edge density of the reflexivity and underlying graphs also converge in distribution to normality

as proved below.
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Theorem 3.5. Let Xi
iid
∼ F and Dn be the PCD which is based on the proximity map N(·) and has vertex

set Xn. The edge density, ρref
n , of the reflexivity graph of the PCD Dn, G

ref
n , is a one-sample U-statistic of

degree 2 and is an unbiased estimator of pref . Additionally, if νref := Cov

ψref (Xi, Xj), ψref (Xi, Xk)


> 0

for all i ≠ j ≠ k, i, j, k = 1, 2, . . . , n, then
√
n (ρref

n − pref )
L

−→ N (0, 4 νref ) as n → ∞. The same
conclusions hold for the underlying graph with ‘ref’s being replaced with ‘und’s.

Proof. For the reflexivity graph, Gref
n of the PCD Dn, the edge probability is an estimable parameter of

degree 2, since E[ψref(X1, X2)] = pref (soψref(X1, X2) is unbiased for pref) andψref(x, y) is a symmetric
function of two variables. As seen in Eq. (7), ρref

n is a U-statistic with the symmetric kernel ψref(x, y),
and is an unbiased estimator of pref (by Eq. (9)). Note also that Xi are iid from F for i = 1, . . . , n,
and ψref(x, y) is independent of n. Moreover, E[ψ2

ref(X1, X2)] = E[I(X2 ∈ N(X1) ∩ Γ1(X1,N))] =

P(X2 ∈ N(X1) ∩ Γ1(X1,N)) = pref ≤ 1 exists, then by Theorem 7.1 of Hoeffding [15], it follows that
√
n (ρref

n −pref)
L

−→ N (0, 4 νref) provided that νref > 0where 4 νref = Cov[ψref(X1, X2), ψref(X1, X3)].
The same arguments hold for the underlying graph, with ‘ref’s replaced with ‘und’s and ∩’s replaced
with ∪’s. �

In the above theorem, νref > 0 iff P({X2, X3} ⊂ N(X1) ∩ Γ1(X1,N)) > p2ref. Similarly, νund > 0 iff
P({X2, X3} ⊂ N(X1) ∪ Γ1(X1,N)) > p2und. The comments in Remark 3.3 and results in Remark 3.4 for
the arc density of the PE-PCDs hold for the edge density of the reflexivity and underlying graphs of
the PE-PCDs as well as with straightforward modifications.

Remark 3.6. In Theorem 3.2, we have E

|h(Xi, Xj)|

3

< ∞, since E


|h(Xi, Xj)|

3


≤ 1. Then for νa > 0,
lettingΦ(t)be the cumulative distribution function for standardnormal distribution, the sharpest rate
of convergence of ρ(Dn) to the asymptotic normality is

sup
t∈R

P √
n(ρ(Dn)− pa)

√
4 νa

≤ t


− Φ(t)
 ≤ 8 K pa (4 ν)−3/2 n−1/2

= K
pa
n ν3a

(13)

where K is a constant [4]. The sharpest rate for the reflexivity (resp. underlying) graphs in Theorem4.2
can be obtained by replacing pa with pref (resp. pund) and νa with νref (resp. νund). �

The joint distributions of (ψref(X1, X2), ψref(X1, X3)) and (ψund(X1, X2), ψund(X1, X3)) are also
available (see Appendix 1 for details).

Remark 3.7. Note that 2 h(Xi, Xj) = ψref(Xi, Xj)+ψund(Xi, Xj), since ifψ(Xi, Xj) = ψ(Xj, Xi) = 0, then
2 h(Xi, Xj) = 0, and ψref(Xi, Xj) = ψund(Xi, Xj) = 0; if ψ(Xi, Xj) = ψ(Xj, Xi) = 1, then 2 h(Xi, Xj) = 2,
and ψref(Xi, Xj) = ψund(Xi, Xj) = 1; and if ψ(Xi, Xj) = 0 and ψ(Xj, Xi) = 1, then 2 h(Xi, Xj) = 1,
and ψref(Xi, Xj) = 0 and ψund(Xi, Xj) = 1; by symmetry, the same holds when ψ(Xi, Xj) = 1 and
ψ(Xj, Xi) = 0.

Furthermore, based on Proposition 3.1, each PCD of order nwith the same number of arcs (i.e., with
equal arc densities) has the same probability of occurring. The same holds for the underlying (and
reflexivity) graphs with the same number of edges. �

3.4. Proportional-edge proximity maps and the associated regions

Nowwe introduce the PCD family for which we explicitly specify the form of the proximity region
N(·). Let V = R2 and Ym = {y1, y2, . . . , ym} ⊂ R2 be m points in general position such that no more
than three points are co-circular (i.e., lie on the same circle). Then the Delaunay triangulation based
on Ym is unique and the Delaunay triangles partition the convex hull of Ym. See Fig. 1 for 10 Y iid
points uniformly generated in the unit square and the corresponding Delaunay triangulation which
consists of 13 triangles. We will restrict our attention to iid uniform X points in the convex hull of Y
points. See Fig. 2 for the 200 X points iid generated in the unit square where 77 of the X points lie
inside the convex hull of Y points in Fig. 1.
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Fig. 1. A realization of 10 Y points generated iid uniformly on the unit square (left) and the corresponding Delaunay
triangulation which consists of 13 triangles.

Fig. 2. A realization of 200 X points (squares) generated iid uniformly on the unit square (left) and the X points restricted to
the convex hull of Y points (right) where the 10 Y points (filled circles) are from Fig. 1.

For simplicity, we first consider the m = 3 case, i.e., we let Y3 = {y1, y2, y3} ⊂ R2 be three non-
collinear points. Then Delaunay triangulation of Y points yields a single triangle. Denote this triangle
(including the interior) by T (Y3). For r ∈ [1,∞] defineNPE(x, r) to be the proportional-edge proximity
map with parameter r and Γ1(x, r) := Γ1 (x,NPE(·, r)) to be the corresponding Γ1-region as follows;
see also Figs. 3 and 4. Let ‘‘vertex regions’’ R(y1), R(y2), R(y3) partition T (Y3) using segments from
the center of mass of T (Y3) to the edge midpoints. For x ∈ T (Y3) \ Y3, let v(x) ∈ Y3 be the vertex
whose region contains x; x ∈ R(v(x)). If x falls on the boundary of two vertex regions, or at the center
of mass, we assign v(x) arbitrarily. Let e(x) be the edge of T (Y3) opposite v(x). Let ℓ(v(x), x) be the
line parallel to e(x) through x. Let d(v(x), ℓ(v(x), x)) be the Euclidean (perpendicular) distance from
v(x) to ℓ(v(x), x). For r ∈ [1,∞) let ℓr(v(x), x) be the line parallel to e(x) such that

d(v(x), ℓr(v(x), x)) = rd(v(x), ℓ(v(x), x)) and d(ℓ(v(x), x), ℓr(v(x), x)) < d(v(x), ℓr(v(x), x)).

Let Tr(x) be the triangle similar to and with the same orientation as T (Y3) having v(x) as a vertex and
ℓr(v(x), x) as the opposite edge. Then the proportional-edge proximity region NPE(x, r) is defined to
be Tr(x)∩ T (Y3). Notice that NPE(x, r) is parameterized by an expansion parameter r and is implicitly
depending on the center of mass of the triangle.

Furthermore, let ξi(x) be the line such that ξi(x) ∩ T (Y3) ≠ ∅ and r d(yi, ξi(x)) = d(yi, ℓ(yi, x))
for i = 1, 2, 3. Then Γ1(x, r) ∩ R(yi) = {z ∈ R(yi) : d(yi, ℓ(yi, z)) ≥ d(yi, ξi(x))}, for i = 1, 2, 3.
Hence Γ1(x, r) =

3
i=1(Γ1(x, r) ∩ R(yi)). Notice that r ≥ 1 implies x ∈ NPE(x, r) and x ∈ Γ1(x, r).

Furthermore, limr→∞ NPE(x, r) = T (Y3) for all x ∈ T (Y3) \ Y3, and so we define NPE(x,∞) = T (Y3)
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Fig. 3. Construction of proportional-edge proximity region, NPE(x, r = 2) (shaded region) for an x ∈ R(y1) where d1 =

d(v(x), ℓ(v(x), x)) and d2 = d(v(x), ℓ2(v(x), x)) = 2 d(v(x), ℓ(v(x), x)).

Fig. 4. Construction of the Γ1-region, Γ1(x, r = 2) (shaded region) for an x ∈ R(y1) where h1 = d(y1, ξ1(x)) and
h2 = d(y1, ℓ(y1, x)) = r h1 .

for all such x. For x ∈ Y3, we define NPE(x, r) = {x} for all r ∈ [1,∞]. Then, for x ∈ R(yi),
limr→∞ Γ1(x, r) = T (Y3) \ {yj, yk} for distinct i, j, and k.

Notice that Xi
iid
∼ F , with the additional assumption that the non-degenerate two-dimensional

probability density function f exists with support in T (Y3), implies that the special cases in the
construction of NPE(·, r) – X falls on the boundary of two vertex regions, or at the center of mass,
or X ∈ Y3 – occur with probability zero. Note that for such an F , NPE(x, r) is a triangle a.s. and Γ1(x, r)
is a convex or nonconvex polygon.

PE-PCDs can be viewed as a digraph version of (generalized) random geometric graphs. The
PE-PCD is based on a locally defined and restricted dissimilarity measure. In particular, the
dissimilarity dm(·, ·) between two points x and y is only defined if both x and y are in the same triangle.
More specifically, dm(x, y) := |d(v(x), ℓ(v(x), x)) − d(v(x), ℓ(v(x), y))| = d(ℓ(v(x), x), ℓ(v(x), y)).
But notice that dm(y, x) = d(ℓ(v(y), y), ℓ(v(y), x)) which may not equal dm(x, y). Indeed,
dm(x, y) = dm(y, x) iff v(x) = v(y)λ-almost everywhere where λ is the Lebesgue measure; that is,
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Fig. 5. Presented in the middle are the arcs for the PE-PCD with r = 3/2 for 7 X points iid uniformly generated in a triangle
based on 3 Y points. Plotted in the left are the edges for the associated reflexivity graph and right are for the underlying graph.

dm(x, y) = dm(y, x) when v(x) ≠ v(y) holds on a measure zero set in T (Y3). Hence symmetry fails
for dm(·, ·). Furthermore, dm(x, x) = 0 but dm(x, y) could be zero for x ≠ y (e.g., this would hold if
y ∈ ℓ(v(x), x)). Hence dm(x, y) = 0 does not necessarily imply x = y (although dm(x, y) = 0 for
x ≠ y holds on a measure zero set), hence coincidence axiom fails for dm(·, ·) as well. However,
non-negativity holds for dm(·, ·), since for all x, y ∈ T (Y3), dm(x, y) ≥ 0 and dm(y, x) ≥ 0.
Finally triangle inequality may also fail for dm, since dm(x, z) ≥ dm(x, y) + dm(y, z) may hold when
v(x) ≠ v(y). Here dm(x, y) = d(ℓ(v(x), x), ℓ(v(x), y)) and dm(y, z) = d(ℓ(v(y), y), ℓ(v(y), z)).
Hence dm(x, y) + dm(y, z) = d(ℓ(v(x), x), ℓ(v(x), y)) + d(ℓ(v(y), y), ℓ(v(y), z)) which can be less
than d(ℓ(v(x), x), ℓ(v(x), z)) = dm(x, z). However, dm locally satisfies more of the distance axioms.
In particular, if x, y ∈ R(yi) (i.e., v(x) = v(y)), then dm(x, y) = dm(y, x), hence symmetry holds. If
x, y, z ∈ R(yi) then the triangle inequality holds with dm(x, z) ≤ dm(x, y) + dm(y, z). The threshold
for this extension of random geometric graphs would be d(v(x), ℓr(v(x), x)) = rd(v(x), ℓ(v(x), x))
for x ∈ R(v(x)) if d(v(x), ℓ(v(x), y)) ≥ d(v(x), ℓ(v(x), x)) and d(v(x), ℓ(v(x), x)) otherwise. That is,

(x, y) ∈ A iff

dm(x, y) ≤ d(v(x), ℓr(v(x), x)) if d(v(x), ℓ(v(x), y)) ≥ d(v(x), ℓ(v(x), x)),
dm(x, y) ≤ d(v(x), ℓ(v(x), x)) otherwise.

(14)

The reflexivity and underlying graphs of PE-PCDs can also be viewed as generalizations of random
geometric graphs with the dissimilarity measure dm(·, ·). For example, in the reflexivity graph, we
insert an edge between x and y iff {(x, y), (y, x)} ⊂ A. That is, dm(x, y) and dm(y, x) satisfy the threshold
condition in Eq. (14).

3.5. Edge density of the graphs based on PE-PCDs

Let Xn = {X1, X2, . . . , Xn} be a random sample from a distribution F with support in T (Y3).
Let Dn(r) be the PE-PCD with vertex set V = Xn and arc set A defined by


Xi, Xj


∈ A ⇐⇒

Xj ∈ NPE(Xi, r). Consider the reflexivity and underlying graphs of Dn(r). Recall that ij ∈ Eref iff
Xj ∈ NPE(Xi, r) ∩ Γ1(Xi, r) and XiXj ∈ Eund iff Xj ∈ NPE(Xi, r) ∪ Γ1(Xi, r). See Fig. 5 for the arcs of the
PE-PCD and the edges for the associated graphs with r = 3/2 for 7 X points iid uniformly generated
in the triangle based on 3 Y points. In the general vertex random graph notation of Section 2, we have
V = T (Y3) and µ = U(T (Y3)).

The edge density ρref
n (r) := ρref(Dn(r)) depends on n explicitly, and on F and NPE(·, r) implicitly.

Let pref(F , r) := E [ψref(X1, X2, r)] and νref(F , r) := Cov [ψref(X1, X2, r), ψref(X1, X3, r)] where
ψref(X1, X2, r) = I(X2 ∈ NPE(X1, r) ∩ Γ1(X1, r)). Then E


ρref
n (r)


= pref(F , r). By Theorem 3.5, it

follows that
√
n

ρref
n (r)− pref(F , r)

 L
−→ N (0, 4 νref(F , r)) (15)

provided νref(F , r) > 0. The asymptotic variance of ρref
n (r) is 4 νref(F , r) and depends on only F

and NPE(·, r). Thus we need only determine pref(F , r) and νref(F , r) in order to obtain the normal
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Fig. 6. Result of Theorem 4.2: asymptotic null means p(r), pref(r), and pund(r) (left) and variances 4 ν(r), 4 νref(r), and 4 νund(r)
(right) for r ∈ [1, 5].

approximation

ρref
n (r)

approx
∼ N


pref(F , r),

4 νref(F , r)
n


. (16)

The above statements hold for ρund
n (r) := ρund(Dn(r)) also with ‘ref’s being replaced with ‘und’s

and ∩’s with ∪’s.
Let Fc be a continuous distribution on T (Y3) and F be any distribution on T (Y3). For r = 1, we have

NPE(x, 1) ∩ Γ1(x, 1) = ℓ(v(x), x) ∩ T (Y3)which has zero R2-Lebesgue measure. Then for Fc we have

E

ρref
n (r = 1)


= E [ψref(X1, X2, r = 1)] = pref(Fc, r = 1)
= PFc (X2 ∈ NPE(X1, 1) ∩ Γ1(X1, 1)) = 0.

Similarly, PFc ({X2, X3} ⊂ NPE(X1, 1) ∩ Γ1(X1, 1)) = 0. Thus, νref(Fc, r = 1) = 0. Furthermore, for
r = ∞, NPE(x, r = ∞) ∩ Γ1(x, r = ∞) = T (Y3) for all x ∈ T (Y3) \ Y3. Then

E

ρref
n (r = ∞)


= E [ψref(X1, X2,∞)] = pref(F ,∞)

= PF (X2 ∈ NPE(X1,∞) ∩ Γ1(X1,∞)) = PF (X2 ∈ T (Y3)) = 1.

Similarly, PF ({X2, X3} ⊂ NPE(X1,∞) ∩ Γ1(X1,∞)) = 1. Hence νref(F ,∞) = 0. Therefore, the CLT
result in Eq. (16) does not hold for r = 1 if F is continuous, and for r = ∞ for any F . Furthermore,
ρref
n (r = 1) = 0 a.s. for a continuous distribution Fc and ρref

n (r = ∞) = 1 a.s. for any distribution F .
For r ∈ (1,∞), ψref(X1, X2, r) tends to be high if the intersection region is large, since ψref(X1, X2, r)
is the number of edges between vertices 1 and 2 in the reflexivity graph. In such a case,ψref(X1, X3, r)
tends to be high also. That is, ψref(X1, X2, r) and ψref(X1, X3, r) tend to be high and low together. So,
for r ∈ (1,∞), we have νref(F , r) > 0. See also Fig. 6 (right) and Appendix 2.

For r = 1,NPE(x, 1)∪Γ1(x, 1) has positiveR2-Lebesguemeasure. Then PFc ({X2, X3} ⊂ NPE(X1, 1)∪
Γ1(X1, 1)) > 0. Thus, νund(Fc, r = 1) ≠ 0. On the other hand, for r = ∞, NPE(X1,∞) ∪ Γ1(X1,∞) =

T (Y3) for all X1 ∈ T (Y3). Then

E

ρund
n (r = ∞)


= E [ψund(X1, X2,∞)] = PF (X2 ∈ NPE(X1,∞) ∪ Γ1(X1,∞))

= pund(Fc,∞) = PF (X2 ∈ T (Y3)) = 1.

Similarly, PF ({X2, X3} ⊂ NPE(X1,∞) ∪ Γ1(X1,∞)) = 1. Hence νund(F ,∞) = 0. Therefore, the
CLT result for the underlying graph does not hold for r = ∞ for any distribution F . Moreover
ρund
n (r = ∞) = 1 a.s. for such F . For r ∈ [1,∞), since ψund(X1, X2, r) is the number of edges in

the underlying graph and tends to be high if the union region is large. In such a case, ψund(X1, X3, r)
tends to be high also. That is,ψund(X1, X2, r) andψund(X1, X3, r) tend to be high and low together. So,
for r ∈ [1,∞), we have νund(F , r) > 0 for continuous F . See also Fig. 6 (right) and Appendix 3.

Remark 3.8 (Arc Density of PE-PCDs). Let 2 h(Xi, Xj, r) := I((Xi, Xj) ∈ A) + I((Xj, Xi) ∈ A) = I(Xj ∈

NPE(Xi, r))+ I(Xi ∈ NPE(Xj, r)) for i ≠ j and the arc density ρn(r) := ρ(Dn(r)). Let pa(r) := E [ρn(r)]
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and 4 ν(r) := Cov [h(X1, X2, r), h(X1, X3, r)]. By Theorem 3.2, we have

√
n (ρn(r)− pa(r))

L
−→ N (0, 4 ν(r)) (17)

provided ν(r) > 0. The explicit forms of asymptotic mean p(r) and variance 4 ν(r) for uniform data
are provided in [10]. �

4. Asymptotic distribution of edge density for uniform data

Let Xi
iid
∼ U(T (Y3)) for i = 1, 2, . . . , n, where U(T (Y3)) is the uniform distribution on the triangle

T (Y3). We first present a ‘‘geometry invariance’’ result which will simplify our subsequent analysis
by allowing us to consider the special case of the equilateral triangle. Let ρref

n (r) := ρref(U(T (Y3)), r)
and ρund

n (r) := ρund(U(T (Y3)), r).

Theorem 4.1 (Geometry Invariance). Let Y3 = {y1, y2, y3} ⊂ R2 be three non-collinear points. For

i = 1, 2, . . . , n, let Xi
iid
∼ U(T (Y3)). Then for any r ∈ [1,∞], the distribution of ρref

n (r) and ρund
n (r) is

independent of Y3, and hence the geometry of T (Y3).

Proof. For r = 1, ρref
n (1) is degenerate, i.e., ρref

n (1) = 0 a.s. for any continuous F in T (Y3) and
ρref
n (∞) = 1 a.s. for any distribution F in T (Y3) regardless of the geometry of T (Y3). Similarly,
ρund
n (∞) = 1 a.s. for any distribution F in T (Y3) regardless of the geometry of T (Y3). Hence geometry

invariance follows for these r values for uniform data in T (Y3) as well. A composition of translation,
rotation, reflections, and scaling will take any given triangle To = T (y1, y2, y3) to the ‘‘basic’’ triangle
Tb = T ((0, 0), (1, 0), (c1, c2)) with 0 < c1 ≤ 1/2, c2 > 0 and (1 − c1)2 + c22 ≤ 1, preserving

uniformity. The transformationΦ : R2
→ R2 given byΦ(u, v) =


u +

1−2 c1
2 c2

v,
√
3

2 c2
v

takes Tb to the

equilateral triangle Te = T

(0, 0), (1, 0),


1/2,

√
3/2


. Investigation of the Jacobian shows thatΦ

also preserves uniformity. Furthermore, the composition ofΦ with the rigid motion transformations
and scaling maps the boundary of the original triangle To to the boundary of the equilateral triangle
Te, the median lines of To to the median lines of Te, and lines parallel to the edges of To to lines
parallel to the edges of Te. (A median line in a triangle is the line joining a vertex with the center
of mass.) Since the joint distribution of any collection of theψref(Xi, Xj, r) andψund(Xi, Xj, r) involves
only probability content of unions and intersections of regions bounded by precisely such lines, and
the probability content of such regions is preserved since uniformity is preserved, the desired result
follows for r ∈ (1,∞) for the reflexivity graphs and for r ∈ [1,∞) for the underlying graphs. �

Based on Theorem 4.1, for our proportional-edge proximity map and the uniform data, we
may assume that T (Y3) is a standard equilateral triangle, Te, with vertices Y3 =


(0, 0), (1, 0),

1/2,
√
3/2


, henceforth.

In the case of the (proportional-edge proximity map, uniform data) pair, the asymptotic
distribution ofρref

n (r) andρ
und
n (r) canbederived as a function of r bydetailed geometric computations.

Recall that pref(r) = E [ψref(X1, X2, r)] = P(X2 ∈ NPE(X1, r) ∩ Γ1(X1, r)) and pund(r) =

E [ψund(X1, X2, r)] = P(X2 ∈ NPE(X1, r) ∪ Γ1(X1, r)) are the edge probabilities in the reflexivity and
underlying graphs, respectively.

Theorem 4.2. For r ∈ (1,∞),
√
n

ρref
n (r)− pref (r)

 L
−→ N (0, 4 νref (r))

and for r ∈ [1,∞),
√
n

ρund
n (r)− pund(r)

 L
−→ N (0, 4 νund(r))
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where the asymptotic means are

pref (r) =



(1 − r)(5 r5 − 148 r4 + 245 r3 − 178 r2 − 232 r + 128)
54 r2(r + 2)(r + 1)

for r ∈ [1, 4/3),
−101 r5 + 801 r4 − 1302 r3 + 732 r2 + 536 r − 672

216 r(r + 2)(r + 1)
for r ∈ [4/3, 3/2),

r8 − 13 r7 + 30 r6 + 148 r5 − 448 r4 + 264 r3 + 288 r2 − 368 r + 96
8 r4(r + 2)(r + 1)

for r ∈ [3/2, 2),
(r3 + 3 r2 − 2 + 2 r)(1 − r)2

r4(r + 1)
for r ∈ [2,∞)

(18)

and

pund(r) =



47 r6 − 195 r5 + 860 r4 − 846 r3 − 108 r2 + 720 r − 256
108 r2(r + 2)(r + 1)

for r ∈ [1, 4/3),
175 r5 − 579 r4 + 1450 r3 − 732 r2 − 536 r + 672

216 r (r + 2)(r + 1)
for r ∈ [4/3, 3/2),

−3 r8 + 7 r7 + 30 r6 − 84 r5 + 264 r4 − 304 r3 − 144 r2 + 368 r − 96
8 r4(r + 2)(r + 1)

for r ∈ [3/2, 2),
r5 + r4 − 6 r + 2

r4(r + 1)
for r ∈ [2,∞),

(19)

and the asymptotic variances are

νref (r) =

11
i=1

ϑ
ref
i (r) I(Ii) and νund(r) =

11
i=1

ϑund
i (r) I(Ii). (20)

The explicit forms ofϑ ref
i (r) andϑ

und
i (r) are provided inAppendix Sections 2 and3, and the derivations

of pref(r), νref(r), pund(r), and νund(r) are provided in [7].
The expectation E [ψref(X1, X2, r)] = pref(r) is as in Eq. (18); and E [ψund(X1, X2, r)] = pund(r)

is as in Eq. (19). See Fig. 6 for the plots of the asymptotic means and variances. Some values of
note on this plot are p(1) = 37/216, pref(1) = 0, and pund(1) = 37/108, limr→∞ p(r) =

limr→∞ pref(r) = limr→∞ pund(r) = 1, 4 νref(r = 1) = 0 and limr→∞ 4 νref(r) = 0, 4 νund(r =

1) = 1/3240 and limr→∞ 4 νund(r) = 0, and argsupr∈[1,∞]4 ν(r) ≈ 2.045 with supr∈[1,∞] 4 ν(r) ≈

.1305, argsupr∈[1,∞]4 νref(r) ≈ 2.69 with supr∈[1,∞] 4 νref(r) ≈ .0537, argsupr∈[1,∞]4 νund(r) ≈

1.765 with supr∈[1,∞] 4 νund(r) ≈ .0318. Notice that pref(r = 1) = 0 and limr→∞ pref(r) = 1 (at
rate O


r−1

); and pund(r = 1) = 37/108 and limr→∞ pund(r) = 1 (at rate O


r−1

).

By construction of the reflexivity and underlying graphs, there is a natural ordering of the means
of arc and edge densities.

Lemma 4.3. The means of the edge densities and arc density (i.e., the edge and arc probabilities) have
the following ordering: pref (r) < p(r) < pund(r) for all r ∈ [1,∞). Furthermore, for r = ∞, we have
pref (r) = p(r) = pund(r) = 1.

Proof. Recall that pref(r) = E[ρref
n (r)] = P(X2 ∈ NPE(X1, r) ∩ Γ1(X1, r)), p(r) = E[ρn(r)] =

P(X2 ∈ NPE(X1, r)), and pund(r) = E[ρund
n (r)] = P(X2 ∈ NPE(X1, r) ∪ Γ1(X1, r)). Additionally,

[NPE(X1, r) ∩ Γ1(X1, r)] ⊆ NPE(X1, r) ⊆ [NPE(X1, r) ∪ Γ1(X1, r)] with probability 1 for all r ≥ 1 with
equality holding for r = ∞ only. Then the desired results follow (see also Fig. 6). �
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Fig. 7. Depicted are ρref
n (2)

approx
∼ N

 11
24 ,

58901
362880 n


for n = 10, 20, 100 (left to right). Histograms are based on 1000 Monte

Carlo replicates. Solid lines are the corresponding normal densities. Notice that the axes are differently scaled.

Note that the above lemma holds for all Xi that has a continuous distribution on T (Y3). There is
also a stochastic ordering for the edge and arc densities as follows.

Theorem 4.4. For sufficiently small r, ρref
n (r)<st ρn(r)<st ρund

n (r) as n → ∞ where <st stands for
‘‘stochastically smaller than’’.

Proof. Above we have proved that pref(r) < p(r) < pund(r) for all r ∈ [1,∞). For small r
(i.e., r . 1.8) the asymptotic variances have the same ordering, i.e., 4 νref(r) < 4 ν(r) < 4 νund(r).
Since ρref

n (r), ρn(r), and ρ
und
n (r) are asymptotically normal, then the desired result follows (see also

Fig. 6). �

To illustrate the limiting distribution, for example, r = 2 yields
√
n(ρref

n (2)− pref(2))
√
4 νref(2)

=


362880 n
58901


ρref
n (2)−

11
24


L

−→ N (0, 1)

and
√
n(ρund

n (2)− pund(2))
√
4 νund(2)

=


120960 n
13189


ρund
n (2)−

19
24


L

−→ N (0, 1);

or equivalently,

ρref
n (2)

approx
∼ N


11
24
,

58901
362880 n


and ρund

n (2)
approx
∼ N


19
24
,

13189
120960 n


.

We assess the accuracy of the normal approximation for finite sample data based on Monte Carlo
simulations. We generate nX points independently uniformly in the standard equilateral triangle Te.
For each data set generated, we calculate the edge density of the reflexivity and underlying graphs
based on the PE-PCD with r = 2. We replicate the above process Nmc = 1000 times for each of
n = 10, 20, and 100. We plot the histograms of the edge density values of these graphs using the
simulated data and the corresponding (asymptotic) normal curves in Figs. 7 and 8, respectively. Notice
that, for r = 2, the normal approximation is accurate even for small n although skewness may be
indicated for n = 10 in both reflexivity and underlying graph cases. In particular, the edge density is
skewed right (resp. left) for the reflexivity (resp. underlying) graph.

Recall that the upper bounds of the sharpest rates of convergence provided in Remark 3.6 is K pa√
n ν3a

for a vertex random digraph. To compare the rates of convergence bounds, we consider the version of
these upper bounds scaled by

√
n/K , i.e., pa(r)√

ν3a (r)
for the PE-PCD, pref(r)

ν3ref(r)
, and pund(r)

ν3und(r)
for the reflexivity

and underlying graphs, respectively. Then, the smaller this bound, the faster the rate of convergence
to normality. We plot these rates in Fig. 9 for r ∈ [1, 5] in two panels for better visualization. Notice
that sharpest rate occurs at r ≈ 1.88 for the arc density of PE-PCDs, and at r ≈ 2.35 (resp. r ≈ 1.69)
for the edge density of reflexivity (resp. underlying) graph. Furthermore, the rate of convergence is
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Fig. 8. Depicted are ρund
n (2)

approx
∼ N

 19
24 ,

13189
120960 n


for n = 10, 20, 100 (left to right). Histograms are based on 1000 Monte

Carlo replicates. Solid lines are the corresponding normal densities. Notice that the axes are differently scaled.

Fig. 9. The upper bounds for the convergence rates (multipliedwith
√
n/K ) for the arc density of PE-PCD and the edge densities

of the associated graphs. The plots are divided into two panels for better visualization: left one is for the range of r ∈ [1.2, 2]
and right one is for r ∈ [2, 5]. Notice that x-axes are differently scaled. ‘‘dg’’ stands for the arc density of the PE-PCDs, ‘‘ref’’
(resp. ‘‘und’’) for the reflexivity (resp. underlying) graph.

lower for the edge density of reflexivity and underlying graphs at each r value compared to the arc
density of PE-PCDs. In particular, for r / 1.59, the rate is sharpest for the underlying graph, while for
r ' 1.59, the rate is sharpest for the reflexivity graph. For the entire range of the r values, the sharpest
rate occurs for the reflexivity graph at r ≈ 2.35.

The finite sample variance and skewness may be derived analytically in much the same way as
was 4 νref(r) (resp. 4 νund(r)) for the asymptotic variance. In fact, the exact distribution of ρref

n (r) (resp.
ρund
n (r)) is, in principle, available by successively conditioning on the values of the Xi. Alas, while the

joint distribution of ψref(X1, X2, r), ψref(X1, X3, r) (resp. ψund(X1, X2, r), ψund(X1, X3, r)) is available
(see Figs. 10 and 11), the joint distribution of {ψref(Xi, Xj, r)}1≤i<j≤n (resp. {ψund(Xi, Xj, r)}1≤i<j≤n), and
hence the calculation for the exact distribution of ρref

n (r) (resp. ρ
und
n (r)), is extraordinarily tedious and

lengthy even for small values of n. Hence, this aspect is not pursued any further.
Let γn(r) be the domination number of the PE-PCD based on Xn which is a random sample from

U(T (Y3)). Additionally, let γ ref
n (r) and γ und

n (r) be the domination numbers of the reflexivity and
underlying graphs based on the PE-PCD, respectively. Then we have the following stochastic ordering
for the domination numbers of the PE-PCD and the associated graphs.

Theorem 4.5. For all r ∈ [1,∞) and n > 1, γ und
n (r)<st γn(r)<st γ

ref
n (r).

Proof. For all x ∈ T (Y3), we have [NPE(x, r) ∩ Γ1(x, r)] ⊆ NPE(x, r) ⊆ [NPE(x, r) ∪ Γ1(x, r)]. For
X ∼ U(T (Y3)), we have [NPE(X, r) ∩ Γ1(X, r)] ( NPE(X, r) ( [NPE(X, r) ∪ Γ1(X, r)] a.s. Moreover,
γn(r) = 1 iff Xn ⊂ NPE(Xi, r) for some i; γ ref

n (r) = 1 iff Xn ⊂ NPE(Xi, r) ∩ Γ1 (Xi, r) for some i; and
γ und
n (r) = 1 iff Xn ⊂ NPE(Xi, r) ∪ Γ1 (Xi, r) for some i. So it follows that P(γ ref

n (r) = 1) < P(γn(r) =

1) < P(γ und
n (r) = 1). Similarly, for all x, y ∈ T (Y3), we have


[NPE(x, r) ∩ Γ1(x, r)] ∪ [NPE(y, r)
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Fig. 10. The plots for the joint distribution ofψref(X1, X2, r), ψref(X1, X3, r) for r ∈ [1, 5]. Plotted are P(ψref(X1, X2, r), ψref(X1,

X3, r) = (0, 0)) (left), P(ψref(X1, X2, r), ψref(X1, X3, r) = (1, 0)) = P(ψref(X1, X2, r), ψref(X1, X3, r) = (0, 1)) (middle), and
P(ψref(X1, X2, r), ψref(X1, X3, r) = (1, 1)) (right).

Fig. 11. The plots for the joint distribution of ψund(X1, X2, r), ψund(X1, X3, r) for r ∈ [1, 5]. Plotted are P(ψund(X1, X2, r),
ψund(X1, X3, r) = (0, 0)) (left), P(ψund(X1, X2, r), ψund(X1, X3, r) = (1, 0)) = P(ψund(X1, X2, r), ψund(X1, X3, r) = (0, 1))
(middle), and P(ψund(X1, X2, r), ψund(X1, X3, r) = (1, 1)) (right).

∩ Γ1(y, r)]


⊆ (NPE(x, r) ∪ NPE(y, r)) ⊆


[NPE(x, r) ∪ Γ1(x, r)] ∪ [NPE(y, r) ∪ Γ1(y, r)]


. For X, Y

iid
∼

U(T (Y3)), we have

[NPE(X, r) ∩ Γ1(X, r)] ∪ [NPE(Y , r) ∩ Γ1(Y , r)]


( (NPE(X, r) ∪ NPE(Y , r)) (

[NPE(X, r)∪Γ1(X, r)]∪[NPE(Y , r)∪Γ1(Y , r)]

a.s.Moreover,γn(r) ≤ 2 iffXn ⊂ NPE(Xi, r)∪NPE(Xj, r)

for some i ≠ j; γ ref
n (r) ≤ 2 iff Xn ⊂


[NPE(Xi, r) ∩ Γ1 (Xi, r)] ∪ [NPE(Xj, r) ∩ Γ1


Xj, r


]


for some

i ≠ j; and γ und
n (r) ≤ 2 iff Xn ⊂


[NPE(Xi, r) ∪ Γ1 (Xi, r)] ∪ [NPE(Xj, r) ∪ Γ1


Xj, r


]


for some i ≠ j.

So it follows that P(γ ref
n (r) ≤ 2) < P(γn(r) ≤ 2) < P(γ und

n (r) ≤ 2). Since P(γn(r) ≤ 3) = 1 [8], it
follows that P(γ und

n (r) ≤ 3) = 1 also holds since P(γn(r) ≤ 3) ≤ P(γ und
n (r) ≤ 3). Hence the desired

stochastic ordering follows. �

Note the stochastic ordering in the above theorem holds for any continuous distribution F with
support being in T (Y3). For r = ∞, we have γ und

n (r) = γn(r) = γ ref
n (r) = 1 a.s.

5. Multiple triangle case

Suppose Ym is a finite set ofm > 3 points in R2. Consider the Delaunay triangulation (assumed to
exist) of Ym. Let Ti denote the ith Delaunay triangle, Jm denote the number of triangles, and CH(Ym)

denote the convex hull ofYm. For Xi
iid
∼ U(CH(Ym)), i = 1, 2, . . . , n, we construct the PE-PCD,Dn,m(r),

using NPE(·, r) as described in Section 3.4, where for Xi ∈ Tj, the three points in Ym defining the
Delaunay triangle Tj are denoted as Y[j]. Here we have V = CH(Ym) and µ = U(CH(Ym)) in the
vertex random graph notation of Section 2. See Fig. 12 for the arcs of the PE-PCD and the edges for
the reflexivity and underlying graphs with r = 3/2 and the X and Y points from Figs. 1 and 2.
We investigate the edge densities of the graphs based on the PE-PCD. We consider various versions
of the edge density in the multiple triangle case. Observe that by construction, the PE-PCD has Jm



E. Ceyhan / Statistical Methodology 33 (2016) 31–54 49

Fig. 12. Presented in the middle are the arcs for the PE-PCD with r = 3/2 for the 77 X points from Fig. 2 and the 10 Y points
from Fig. 1. Plotted in the left are the edges for the associated reflexivity graph, and right are for the underlying graph.

components, each of which might be void, connected, or disconnected, since the arcs do not cross
the boundaries of the Delaunay triangles, and neither do the edges of the reflexivity and underlying
graphs. Furthermore, by geometry invariance for uniform data (see Theorem 4.1), the arc probability
for the PE-PCD, and edge probability for the underlying graphs (and the reflexivity graphs) are same
for each triangle and equal to the ones in the standard equilateral triangle. The same holds for the
asymptotic variance of arc and edge density values. Hence, for themultiple triangle case, we use these
parameters of the asymptotic normality from the one-triangle case.

5.1. First version of edge density in the multiple triangle case

For Jm > 1, as in Section 3.5, let ρref
I,n
(r) = 2 |Eref| /(n (n − 1)) and ρund

I,n
(r) = 2 |Eund| /(n (n − 1)).

Let Eref
[i] be the set of edges andρref

[i]
(r) be the edge density for triangle i in the reflexivity graph, and Eund

[i]

and ρund
[i]
(r) be similarly defined for the underlying graph. Then clearly we have |Eref| =

Jm
i=1

Eref
[i]


and |Eund| =

Jm
i=1

Eund
[i]

. Let ni be the number of X points in Ti for i = 1, 2, . . . , Jm. Letting
wi = A(Ti)/A(CH(Ym)) with A(·) being the area function, we obtain the following as a corollary to
Theorem 4.2.

Corollary 5.1. For r ∈ (1,∞), the asymptotic distribution for ρref
I,n
(r) conditional on Ym is given by

√
n

ρref

I,n
(r)−pref (m, r) L

−→ N

0, 4νref (m, r) , (21)

as n → ∞, wherepref (m, r) = pref (r)
Jm

i=1w
2
i


and

νref (m, r) = νref (r)


Jm
i=1

w3
i


+ p2ref (r)

 Jm
i=1

w3
i −


Jm
j=1

w2
i

2


with pref (r) and νref (r) being as in Eqs. (18) and (20), respectively. The asymptotic distribution of ρund
I,n (r)

with r ∈ [1,∞) is similar.

The proof is provided in Appendix 4. By an appropriate application of the Jensen’s inequality, we

see that
Jm

i=1w
3
i ≥

Jm
i=1w

2
i

2
. So the covariance above is zero iff νref(r) = 0 and

Jm
i=1w

3
i =Jm

i=1w
2
i

2
, so asymptotic normality may hold even though νref(r) = 0. That is, ρref

I,n
(r) has the

asymptotic normality for r ∈ {1,∞} also provided that
Jm

i=1w
3
i >

Jm
i=1w

2
i

2
. The same holds

for the underlying graph for r = ∞.
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5.2. Other versions of edge density in the multiple triangle case

Let Ξ ref
n (r) :=

Jm
i=1

ni (ni−1)
n (n−1) ρ

ref
[i]
(r) and Ξund

n (r) :=
Jm

i=1
ni (ni−1)
n (n−1) ρ

und
[i]
(r). Then Ξ ref

n (r) = ρref
I,n
(r),

since Ξ ref
n (r) =

Jm
i=1

ni (ni−1)
n (n−1) ρ

ref
[i]
(r) =

Jm
i=1 2

Eref
[i]


n (n−1) =

2 |Eref|
n (n−1) = ρref

I,n
(r). Similarly, we have Ξund

n (r) =

ρund
n (r).
Furthermore, let Ξ ref

n :=
Jm

i=1w
2
i ρ

ref
[i]
(r)wherewi is as in Section 5.1. So Ξ ref

n a linear combination
of the ρref

[i]
(r) values. Since the ρref

[i]
(r) are asymptotically independent, Ξ ref

n (r) and ρ
ref
I,n
(r) are asymp-

totically normal; i.e., for large n their distribution is approximately N (pref(m, r), 4νref(m, r)/n). A
similar result holds for the underlying graph case.

In Section 5.1, the denominator of ρref
I,n
(r) has n(n − 1)/2 as the maximum number of edges

possible. However, by definition, given the ni values, we can have a graph with at most Jm complete
components, each with order ni for i = 1, 2, . . . , Jm. Then the maximum number of edges possible
is nt :=

Jm
i=1 ni (ni − 1)/2 which suggests another version of edge density, namely, ρref

II,n
(r) :=

|Eref|
nt

.

Then ρref
II,n
(r) =

Jm
i=1

Eref
[i]


nt

=
Jm

i=1
ni (ni−1)

2 nt
ρref

[i]
(r). Since ni (ni−1)

2 nt
≥ 0 for each i, and

Jm
i=1

ni (ni−1)
2 nt

= 1,

it follows that ρref
II,n
(r) is a mixture of the ρref

[i]
(r). Then E


ρref

II,n
(r)


= pref(r). A similar result holds for
the underlying graph as well.

Theorem 5.2. The asymptotic distribution for ρref
II,n
(r) conditional on Ym for r ∈ (1,∞) is given by

√
n

ρref

II,n
(r)− pref (r)


L

−→ N

0, 4 ν̆ref (m, r)


, (22)

as n → ∞, where ν̆ref (m, r) = νref (r)
Jm

i=1w
3
i


/
Jm

i=1w
2
i

2
with pref (r) and νref (r) being as in

Eqs. (18) and (20), respectively. The asymptotic distribution of ρund
II,n (r) with r ∈ [1,∞) is similar.

The proof is provided in Appendix 5. Notice that the covariance ν̆ref(m, r) is zero iff νref(r) = 0. The
underlying graph case is similar.

Remark 5.3 (Comparison of Versions of Edge Density in the Multiple Triangle Case). Among the versions
of the edge density we considered, we have Ξ ref

n (r) = ρref
I,n
(r) for all n > 1, and Ξ ref

n (r) and ρ
ref
I,n
(r)

are asymptotically equivalent (i.e., they have the same asymptotic distribution). However, ρref
I,n
(r) and

ρref
II,n
(r)donot have the samedistribution for finite or infiniten. Butwehaveρref

I,n
(r) =

2 nt
n(n−1)ρ

ref
II,n
(r) and

since
Jm

i=1w
2
i < 1, it follows thatpref(m, r) < pref(r). Furthermore, since 2 nt

n(n−1) =
Jm

i=1
ni(ni−1)
n(n−1) −→Jm

i=1w
2
i as ni → ∞, we have limni→∞ Var


√
nρref

I,n
(r)


=

Jm
i=1w

2
i

2 
limni→∞ Var


√
nρref

II,n
(r)


.

Hence νref(m, r) =

Jm
i=1w

2
i

2
ν̆ref(m, r). Since

Jm
i=1w

2
i

2
< 1, it follows that ν̆ref(m, r) >νref(m, r) which implies that the rate of convergence to normality is sharper for ρref

II,n
(r). Moreover,

asymptotic normality might hold for ρref
I,n
(r) or Ξ ref

n (r) even if νref(r) = 0. The same conclusions hold
for the edge density of the underlying graph as well. �

5.3. Extension to higher dimensions

The extension to Rd with d > 2 is straightforward. Let Yd+1 = {y1, y2, . . . , yd+1} be d + 1 non-
coplanar points. Denote the simplex formed by these d+1 points asS(Yd+1). A simplex is the simplest
polytope in Rd having d + 1 vertices, d (d + 1)/2 edges and d + 1 faces of dimension (d − 1). For
r ∈ [1,∞], define the proportional-edge proximity map as follows. Given a point x in S(Yd+1), let
y := argminy∈Yd+1 volume(Qy(x)) where Qy(x) is the polytope with vertices being the d (d + 1)/2
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midpoints of the edges, the vertex y and x. That is, the vertex region for vertex v is the polytope with
vertices given by v and the midpoints of the edges. Let v(x) be the vertex in whose region x falls. If x
falls on the boundary of two vertex regions or at the center ofmass, we assign v(x) arbitrarily. Let ϕ(x)
be the face opposite to vertex v(x), and η(v(x), x) be the hyperplane parallel to ϕ(x)which contains x.
Let d(v(x), η(v(x), x)) be the Euclidean distance from v(x) to η(v(x), x). For r ∈ [1,∞), let ηr(v(x), x)
be the hyperplane parallel to ϕ(x) such that

d(v(x), ηr(v(x), x)) = r d(v(x), η(v(x), x)) and
d(η(v(x), x), ηr(v(x), x)) < d(v(x), ηr(v(x), x)).

Let Sr(x) be the polytope similar to and with the same orientation as S having v(x) as a vertex and
ηr(v(x), x) as the opposite face. Then the proportional-edge proximity region NPE(x, r) := Sr(x) ∩

S(Yd+1). Furthermore, let ζi(x) be the hyperplane such that ζi(x)∩ S(Yd+1) ≠ ∅ and r d(yi, ζi(x)) =

d(yi, η(yi, x)) for i = 1, 2, . . . , d+1. ThenΓ1(x, r)∩R(yi) = {z ∈ R(yi) : d(yi, η(yi, z)) ≥ d(yi, ζi(x))},
for i = 1, 2, 3. Hence Γ1(x, r) =

d+1
j=1 (Γ1(x, r) ∩ R(yi)). Notice that r ≥ 1 implies x ∈ NPE(x, r) and

x ∈ Γ1(x, r).
Theorem 4.1 generalizes, so that any simplex S in Rd can be transformed into a regular polytope

(with edges being equal in length and faces being equal in volume) preserving uniformity. Delaunay
triangulation becomesDelaunay tessellation inRd, provided nomore than d+1 points being cospheri-
cal (lying on the boundary of the same sphere). In particular, with d = 3, the general simplex is a tetra-
hedron (4 vertices, 4 triangular faces and 6 edges), which can bemapped into a regular tetrahedron (4
faces are equilateral triangles) with vertices (0, 0, 0) (1, 0, 0) (1/2,

√
3/2, 0), (1/2,

√
3/4,

√
3/2).

Asymptotic normality of the edge density holds for d > 2 in both reflexivity and underlying graph
cases.

6. Discussion and conclusions

We consider two families of random graphs based on proximity catch digraphs (PCDs) introduced
recently by Ceyhan and Priebe [8]. PCDs are vertex-random graphs in the classification of Beer
et al. [2] and have applications in pattern recognition and spatial data analysis. A PCD is a random
digraph which is defined using proximity regions based on the relative positions of the points from
various classes. Different PCDs result from different definitions of the proximity region associated
with each data point. We consider the following two types of graphs associated with a given digraph:
(i) underlying graph, which is obtained when any arc is replaced with an edge without allowing
multi-edges [11], (ii) reflexivity graph, which is introduced in this article and is obtained when only
symmetric or reflexive arcs are replaced with edges. We study the graph invariant called edge density
for these graphs.

We derive the asymptotic distribution of the edge density of the graphs associated with
(parameterized) proportional-edge proximity catch digraphs (PE-PCDs). In particular, we consider the
reflexivity and underlying graphs associated with the PE-PCD; and derive the asymptotic distribution
of their edge density using the central limit theory of U-statistics [15]. Given two classes, X and Y, of
points inR2, PE-PCDs are definedwithX points being the vertices, and arcs being based on the relative
position of X points with respect to Delaunay triangulation of Y points. In particular, PE-PCDs are
defined for X points that lie in the convex hull of Y points. Hence we compute the asymptotic means
and variances of the limiting normal distribution of the reflexivity andunderlying graphs for uniformly
distributed X points in the convex hull of Y points based on detailed geometric calculations. We also
compare the asymptotic distributions of the edge densities of these graphs and that of the arc density
of the PCDs. We observe that the rates of convergence to normality are sharper for the edge density
of the reflexivity and underlying graphs compared to that of the arc density of the PE-PCDs. Although
the calculations of the asymptotic means and variances of the arc density of the PE-PCDs and the
edge density of the associated graphs are extremely tedious, the PE-PCDs have appealing properties
in theory andpractice. The PE-PCD (resp. the associated graphs) restricted to aDelaunay triangle forms
a subdigraph (resp. subgraphs) which is not connected to the subdigraph (resp. subgraphs) restricted
to any otherDelaunay triangle, since the arcs (resp. the edges) of the PCDs (resp. the associated graphs)
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donot cross the boundaries of the triangles by construction. Hence in our calculations,we can consider
each triangle separately, rather than the entire convex hull of Y points. Furthermore, for uniform
data in one triangle, the arc density of the PCD and the edge density of the associated reflexivity and
underlying graphs do not depend on the geometry of the triangle; i.e., they are geometry invariant (see
Theorem 4.1). Therefore, it suffices to compute the asymptotic mean and variance once for uniform
data in the standard equilateral triangle (in whichwe can also exploit the inherent symmetry) andwe
can then extend the results to the multiple triangle case. We consider various extensions of the edge
density to the multiple triangle case, and determine that one of the extensions has a sharper rate of
convergence to normality (see Section 5).

Ceyhan et al. [10] showed that the (relative) arc density of the PE-PCDs is a U-statistic, and here it
is also shown that the edge densities of the reflexivity and underlying graphs associated with the
PE-PCD are also U-statistics. U-statistics in general are also closely connected to martingales and
reversedmartingales (see, e.g., Jurecková et al. [19]), but such connections for the arc or edge densities
are not pursued here. Ceyhan et al. [10] applied the arc density of PE-PCDs for testing bivariate
spatial patterns; in a similar fashion, edge densities of the associated graphs can be employed for
the same purpose as well. For example, in a two-class setting, X and Y points might represent trees
or plants from two different species, where former being much more abundant than the latter. So
by construction, species X points represent the vertices of the PCD, and species Y points are used to
construct theDelaunay triangulationwhich is auxiliary to define the proximity regions around species
X points, thereby used to determine the presence or absence of an arc between any twoX points. The
arc density of the constructed PCD or the edge density of the associated graphs can be employed to test
for spatial interaction between species X and Y (mostly in the direction of dependence of X on Y).
More specifically, the arc/edge densities can be employed for testing the complete spatial randomness
(CSR) of two or more classes of points against the segregation or association of the points from the
classes. CSR is roughly defined as the lack of spatial interaction between the points in a given study
area. In particular, the null hypothesis can be assumed to be CSR of X points, i.e., the uniformness of
X points in the convex hull of Y points. Segregation is the pattern in which points of one class tend
to cluster together, i.e., form one-class clumps. On the other hand, association is the pattern in which
the points of one class tend to occur more frequently around points from the other class. Under the
segregation alternative,X pointswill tend to be further away fromY points and under the association
alternative X points will tend to cluster around the Y points. Such patterns can be detected by the
test statistics based on the arc/edge densities, since under segregation we expect them to be smaller,
and under association they tend to be larger. Moreover, the reflexivity and underlying graphs can also
be used in pattern classification as outlined in [24]. These areas are topics of ongoing research.

Having the explicit forms of the parameters of the asymptotic normal distribution of the edge
density of the reflexivity and underlying graphs for uniform data allows one to perform testing
uniformity of data points in the Euclidean plane. Furthermore, having the covariance structure
on edges allows one to generate random graphs/digraphs that exceed the traditional random
graphs/digraphs. Classical random graphs/digraphs such as Erdős–Rényi graphs/digraphs fail to
approximate real life networks (such as social networks, power networks, the internet, or email traffic
etc.), due to major limitations of the classical modeling. In particular, in Erdős–Rényi graphs/digraphs
the edges/arcs are assumed to be iid. However, in practice, there usually is dependence between
edges/arcs, at least for the ones in close vicinity (e.g., for edges/arcs sharing a vertex). Such dependence
can be simulated using the parameterized PCDs or reflexivity and underlying graphs described in this
article. The classical graph modeling of networks also fails in presence of clustering, triadic closure,
and hubs which are commonly seen in real-life networks. As a result, alternative models such as
Watts–Strogatz model [28] which aims to model the small-world properties, and the Barabási–Albert
model [1], which generates scale-free networks via preferential connections, are proposed. By
carefully designing the PCDs, one can replicate or simulate some of the known aspects of a network;
in particular, clustering and local dependence between the arcs/edges can be conveniently accounted
for. For example, in a social network, individuals may constitute vertices of the graph or the digraph,
and edges or arcs between themmight be inserted using some type of binary relation based on certain
characteristics. However, spatially or socially ‘‘closer’’ individuals might be more likely to satisfy the
criterion to have an edge or arc between them, but these edges or arcs aremore likely to be dependent



E. Ceyhan / Statistical Methodology 33 (2016) 31–54 53

rather than independent. If the level of connection between individuals or nodes (i.e., arc or edge
probability) of the network digraph or graph is known (or approximately estimated) and most of the
dependence between any two pairs of edges/arcs occurswhen one vertex is shared, the corresponding
network can be simulated (at least approximately) by using a PE-PCD or a related graph. Here, one
can even simulate the disconnected or weakly connected clusters as components. Each disconnected
component might be represented by the points generated in one triangle; and weakly connected
components (i.e., components connected by few edges/arcs compared to the number of edges/arcs
in the components) might be simulated by points generated in as many triangles as the number of
components, with randomly inserting edges/arcs that cross one triangle to another (i.e., edges/arcs
between vertices residing in different possibly neighboring triangles) at the desired numbers. These
aspects are among the topics of prospective research. Finally, the methodology described here is also
applicable to PCDs in higher dimensions.
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