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Segregation indices for disease clustering

Elvan Ceyhan*"

Spatial clustering has important implications in various fields. In particular, disease clustering is of major
public concern in epidemiology. In this article, we propose the use of two distance-based segregation indices
to test the significance of disease clustering among subjects whose locations are from a homogeneous or an
inhomogeneous population. We derive the asymptotic distributions of the segregation indices and compare them
with other distance-based disease clustering tests in terms of empirical size and power by extensive Monte Carlo
simulations. The null pattern we consider is the random labeling (RL) of cases and controls to the given loca-
tions. Along this line, we investigate the sensitivity of the size of these tests to the underlying background pattern
(e.g., clustered or homogenous) on which the RL is applied, the level of clustering and number of clusters, or to
differences in relative abundances of the classes. We demonstrate that differences in relative abundances have
the highest influence on the empirical sizes of the tests. We also propose various non-RL patterns as alternatives
to the RL pattern and assess the empirical power performances of the tests under these alternatives. We observe
that the empirical size of one of the indices is more robust to the differences in relative abundances, and this
index performs comparable with the best performers in literature in terms of power. We illustrate the methods
on two real-life examples from epidemiology. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

Recently, spatial clustering has become a topic of extensive study in many fields such as geography,
ecology, astronomy, and epidemiology. Many books such as [1] and [2] have discussed the relevant
methodology; even special issues of journals are devoted to this topic; see, for example, [3] and [4]. In
particular, the significance of disease clustering in human or other populations has received considerable
attention ([5, 6] and [7]). Roughly speaking, a disease cluster is a region or neighborhood where the
number of cases substantially exceeds the expected number of cases at a specific time or for a specific
period [8]. There are many tests available for testing the significance of disease clustering. Among them
are tests for deviation from homogeneity like the usual Pearson’s chi-square statistic for quadrat data or
Potthoff—Whittinghill’s test [9]. Besag and Newell (1991) grouped clustering methods for detection of
disease clustering into two categories as general or focused [10]. In the former, presence of any clus-
ter over the entire region is of interest, whereas in the latter, presence of a cluster in the vicinity of a
given point is investigated. In this article, we are concerned with the general type of clustering. Cuzick—
Edwards’s k-nearest neighbor (NN) test [11] is an example of a method to test general clustering on the
basis of individual point data and has been frequently employed in epidemiology so that it is suggested
in the appendix of guidelines for disease clustering [12]. See [13] for a recent review on existing disease
clustering methods, their advantages, and disadvantages.

Regional count method is the procedure in which a square grid is overlaid over the region of interest,
and the number of events in each quadrat is counted. With this method, both general and focused
clustering can be tested. Assuming the points are from a homogeneous Poisson process (HPP), which
is the null pattern, the quadrat counts would be distributed as Poisson variates, and their departure
from the null case can be tested using an index of dispersion (like ratio of variance to mean), or y2
test for heterogeneity of the cell counts. This method has various shortcomings, especially for disease
clustering. For example, the quadrats would not be square cells, but administrative units determined
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by geographical limitations or human intervention. This problem can somewhat easily be overcome by
extending the quadrat method to other shapes or administrative units by simply employing the chi-square
goodness-of-fit test using the observed and expected numbers in each region. Other main problems are
the arbitrariness in the choice of grid size and obtaining correct expected quadrat counts on a sufficiently
fine grid structure [11].

Statistical methodology based on NN (or distance-based) methods include at least six different groups
[14]. Each of these methods assumes as a premise that similarity or dissimilarity between a point and its
NN provides useful information for statistical inference. The most straightforward dissimilarity measure
is the distance between a point and its NN, whereas other methods could be based on classifying the
types of points and their NNs. For example, in literature, there are spatial clustering tests based on
nearest neighbor contingency tables (NNCTs) due to [15] and [16] in a two-class setting, and due to
[17] in a multi-class setting. Ceyhan [18] also proposed various new segregation tests on the basis of
NNCTs. These tests comprise an overall test, a compound measure of deviation from the null pattern,
and cell-specific tests for pairwise comparisons after a significant overall test. Pielou [15] introduced
also a ‘coefficient of segregation’ in a two-class setting, and Dixon [17] proposed ‘segregation indices’
by in a multi-class setting. However, these indices were merely introduced in passing and not studied
in detail (e.g., their asymptotic distributions were not derived), nor they were applied for inferential
purposes. In this article, we study their distributional properties and also propose their use for testing
spatial clustering (especially of cases compared with controls).

Several indices measure spatial autocorrelation in given data, which could suggest clustering of a
disease, for example, Moran’s [ statistic [19] and Geary’s c¢ statistic [20]. Furthermore, there are meth-
ods, which provide a general clustering measure for the entire study area, such as Whittemore’s
statistic [21]. However, Tango [22] had showed this statistic to be inadequate, who also proposed a cor-
rected version of it. As the general clustering methods fail to identify localized clusters, the so-called scan
statistics are developed. In these methods, a rectangular or circular window scans the region to detect
any anomaly in disease occurrence or intensity. Examples of scan methods are Openshaw’s geographical
analysis machine [23], Besag and Newell’s method to detect clusters of size k, which comprise regions
containing exactly k observed cases [10], and Kulldorff & Nagarwalla’s scan statistic [24]. In litera-
ture, despite the lack of a comprehensive comparison of many available geographical disease clustering
tests, Kulldorff ez al. [25] performed an empirical comparison using spatial scan statistic, the maximized
excess events test, and the nonparametric M statistic. They showed all tests to have good power for
detection of disease clusters and the first having good performance in locating disease hot spots.

In literature, clustering not only in space but also in time is of interest, especially with applications in
climatology or ecology [26]. This type of clustering, called spatio-temporal clustering, is also of great
import in disease clustering research. Tango suggested an index for disease clustering in time [27], and
this index is assessed in detail for performance to detect disease clustering in time and space by [28].
Several other indices were also proposed in literature to capture spatial patterns and their evolution in
time. See [29] for an example in marine biology, which measures spatial patterns of fish populations
and [30] for an example in landscape ecology, where a new contagion index was proposed that also
corrects for an existing index.

In this article, we propose the use of Pielou’s coefficient of segregation and Dixon’s segregation
indices in detecting disease clustering against the RL of cases and controls to a set of given spatial
locations. Dixon’s segregation indices are not bounded for all possible realizations of NNCTs; hence,
we also suggest corrected versions of Dixon’s segregation indices, which are bounded for all cell counts
(zero or positive) in an NNCT. We derive their asymptotic distributions (more specifically asymptotic
normality) and compare these tests with various existing tests, namely, Cuzick—-Edwards’s k-NN and
combined tests, Dixon’s and type III cell-specific and overall tests in terms of empirical size and power.
For the RL, we investigate the effect of the clustering of the background points (on which RL is per-
formed), including the level of clustering and number of clusters, and the effect of differences in relative
abundances on the empirical sizes of the tests. We also propose various non-RL patterns as alternatives
and investigate the power performance of the tests under these alternatives via extensive Monte Carlo
simulations. To the best of our knowledge, we investigated for the first time in literature the influence of
the background pattern on the size performance, and we newly introduced the non-RL patterns used in
this article.

We present the null and alternative patterns and construction of NNCTs in Section 2. We provide the
two segregation indices for spatial and disease clustering in Section 3, where their asymptotic normality
are derived. We discussed other NN-based spatial clustering tests that are used for comparative purposes
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in Section 4. We provide an extensive empirical size comparison of the tests under RL of points from
various patterns of complete spatial randomness (CSR) or clustering in Section 5, propose four types
of non-RL patterns as alternatives and provide empirical power comparison of the tests under these
alternatives in Section 6, and illustrate the methodology on two real life data sets from epidemiology in
Section 7. We provide discussion and conclusions in Section 8.

2. Preliminaries

2.1. Null and alternative patterns

In a case-control setting, we consider the null pattern
H,:RL

which is the pattern where the class labels (i.e., case and control labels) are randomly assigned to a
given set of locations or points. In the two-class setting, deviations from the null hypothesis are toward
two major directions, namely, segregation and association. Segregation is the pattern in which NN of
an individual is more likely than expected to be of the same class as the individual than to be from a
different class. That is, the probability that this individual having a same-class NN is higher than the
relative frequency of this class (see, e.g., [15]). On the other hand, association is the pattern in which
NN of an individual is more likely to be from another class than expected compared with being of the
same class as the individual. That is, the probability that this individual having a NN from another class
is higher than the relative frequency of the other class.

In a case-control setting, segregation of cases from controls would be equivalent to clustering of cases
relative to the controls. In other words, segregation of cases would imply a larger level of clustering of
cases compared with the level of clustering of the healthy controls in the society. Furthermore, if, for
some reason, controls are segregated, then this would also imply an (indirect) clustering of cases, but
in this case, the underlying dynamics behind the disease clustering would be different. The association
of the cases and controls would mean significant lack of disease clustering; moreover, it would mean
clustering of points from both classes (i.e., attraction of controls by cases or vice versa). This may not be
practical either, hence is not pursued in detail in the rest of the article. However, the association pattern
could still be relevant to disease clustering in epidemiology in other settings. For example, one class
could be the ‘sources’ of a contaminant or some other pollutant or disease-causing agent, and the other
class could be the ‘cases’. The accumulation of cases around the sources more often than expected would
mean clustering of a disease around these sources, which is a form of association between the classes.
But we will not pursue this type of association in this article either.

2.2. Construction of nearest neighbor contingency tables

The segregation indices and most of the tests we consider for comparative purposes in this article are
in some way related to NNCTs. We provide a brief description of NNCTs in the succeeding text. In a
sample of size n, there are n NN pairs, and each NN pair consists of the point labeled as ‘base’ point
and its ‘NN’ point. According to the labels of the base and NN points, NN pairs can be classified into
various categories, and NNCTs are constructed using these categories. For m classes, we will have a
m x m NNCT whose rows represent class labels of base points and columns represent class labels of the
corresponding NN points. In the NNCT, the count in cell (or entry) (i, j) is N;;, which is the number of
times the NN of a (base) class i point being from class j. See also Table I (left) where C; is the sum of
column j; that is, number of times class j points serve as NNs for j € {1,2,...,m}, and n; is the sum
of row i; that is, number of times class i points serve as base class or size of class i fori = 1,2,...,m.
In what follows, we adopt the convention that lower case letters represent fixed quantities, whereas upper
case letters represent random variables. Notice that in a NNCT analysis, row sums are assumed to be
fixed (i.e., class sizes are given), whereas column sums are random variables depending on the NN
relationship between the classes.

In a case-control setting, we have two classes (i.e., m = 2), and we reserve class label 1 for cases and
class label 2 for controls. Hence, the case-control setting yields a 2 x 2 NNCT (Table I (right)).
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Table I. The nearest neighbor contingency tables for m classes (left) and for two classes in a case-control
setting (right).
NN
class1 ... classm total NN
class 1 Nii ... Nim ny case control total
base . . . . . ba case Ny Nio n1
: : : : : control Ny Ny ng
classm Ny o Num N, total c, C n
total 4 ... Cm n

NN, nearest neighbor.

3. Segregation indices for spatial and disease clustering

3.1. Pielou’s coefficient of segregation

In a two-class setting (i.e., for m = 2), we define Pielou’s coefficient of segregation as

N N
Sp=1-— 12 + V21 1)
E[N12] + E[N3;]

where E[N;;] is the expected value of N;; [15]. Notice that the numerator in the second part of Sp is

n
Nip + Ny = Z I(point i is from class 1 with an NN from class 2
i=1

or point 7 is from class 2 with an NN from class 1)

where I() stands for the indicator function. In general, a m x m contingency table may result from two
multinomial frameworks: row-wise and overall multinomial frameworks.

3.1.1. The row-wise multinomial framework. In this framework, the rows of a contingency table
result from independent multinomial distributions. In particular, in the two-class case, each row has
a binomial distribution independent of the other rows (so this framework is also referred to as the
binomial framework).

Let 7r;; be the probability of a point from class j serving as NN to a point from class i for i, j € {1,2}.
In this framework, we assume that N; = n; are given and N;; ~ BIN(n;, m;;), the binomial distribution
with n; independent trials and probability of success being 7;;. Hence, in the two-class case, we assume
(N11, N12) and (N1, N22) to be independent and so are the individual trials (which are base-NN pairs).
Hence this framework would be appropriate for an NNCT analysis, provided that we have an independent
set of (base-NN) pairs; that is, each (base-NN) pair is independent of other pairs. In what follows, when
we say data are from sparse sampling, we also assume that (base-NN) pairs constitute an (almost) inde-
pendent sample. Thus, with sparse sampling under the null hypothesis of ‘random assignment of case and
control labels to any given point being proportional to the class sizes’, we would have N;; ~ BIN(n;, v;),
fori, j = 1,2 where v; is the population proportion of class j points. Thus

Ni2 + Naj Ni2 + Nay

SP = 1 —_— = _—
E[N12] + E[N21] niva +navy
Clearly E[Sp] = 0 and under H,, Var[Ni,] = niviv, and Var[N,;] = npvqv;, and Nip and No; are
nvivo
(nyva+navy)?
need to be estimated. Given a sample of size n; from class i, we estimate v; as V; = n; /n fori = 1,2.

independent. Hence, Var[Sp]| = . However, in practice, v; would not be known and, hence,

Then for large n;, E[N12] & niny/n and E[Ny1] & nonq/n,s0 Sp ~ 1 — % Furthermore, we
have Var[Sp] & A‘rl”m. Then for large n;, i = 1,2, under sparse sampling, Sp//Var[Sp] approxi-

mately has N(0, 1) distribution where N (i, o) stands for normal distribution with mean p and standard
deviation 0.
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3.1.2. The overall multinomial framework. 1In this setting, we assume the cell counts (or the entries) to
arise from multinomial trials. That is, in the two-class case,

N = (N11, N12, N1, Na3) ~ A (n,v1K1, V1 K2, V2 K1, V1 K2)

where vi + v, = 1 and x; + ko = 1. As in the row-wise multinomial framework, this framework
would be appropriate for an NNCT-analysis, provided we have sparsely sampled data. In this framework,
Nij ~BIN (n,vik;) fori, j =1,2.Using kp = 1 —ky and v, = 1 — vy, we have E[N15] = nvy (1 — k)
and E[N»;] = n(1 — vy)ky, which yields

Ni2 + N2y

Sp=1-—
P n (v + k1) —2nvik;

Furthermore, Var[Niz] = nvi(1 — «1)(1 — vy + viky), Var[Na] = n(1 — v (1 — 1 +
vik1), and Cov[Niz, No1] = —nvikavaky = —nvi(l1 — k1)(1 — vy)ky. So Var [Nz + Noy] =
n(1—vy —k1 +2v1k1) (v1 + k1 — 2v1K7), which implies Var[Sp] = % Under H,, we
have v; = k1, and so

1
Var[Sp] = o (V—2 + v—l)

n V1 V2

Hence, for large n;, i = 1,2, Var[Sp] ~ % (:’l—f + :—;) and under sparse sampling Sp/+/Var[Sp]

approximately has N (0, 1) distribution.

Remark

Both of the aforementioned multinomial frameworks require that we have an independent sample of n
(base-NN) pairs from the appropriate multinomial distribution. However, for completely mapped data,
this assumption does not hold because of the inherent spatial dependence. For example, a base point
would be more likely to be an NN of its own NN compared with being an NN of an arbitrarily selected
point. However, if we have data obtained by sparse sampling, this dependence would be nonexistent or
negligible, then this framework would be appropriate for the corresponding NNCT. But, in a case-control
setting, sparse sampling may not be a feasible procedure, especially when the disease in question is rare.
Hence, sparse sampling in general is not advisable for detection of disease clustering. On the other hand,
these frameworks would work when there is a substantial amount of data from both classes in the region
of interest, and sparse sampling would be a feasible practice to capture the actual interaction between
the classes.

3.1.3. Pielou’s coefficient of segregation under random labeling. Under RL of n cases and n, controls
ton = ny + ny given locations, we have E[N15] = E[N2;] = 7*2. So under H,,

Niz + Naj

=112t
Se niny/(n—1)

and E[Sp] = 0. Furthermore,
Var[Ni;] = n pij + Q piij + (> —3n— Q + R) piijj — (npij)*
and
Cov [Nij. Nji] = Rpij + (n — R) (piij + pijs) + (n* = 3n— Q + R) piijj —n’pij pji
_ njnj . _ ni(ni=n, ninj(n;—1) njnj—n;j(n;—1)

where pij = J5=T Piij = aaeneo2e P T amede— 4 Pij = T aaene—p > foF
(i,j) = (1,2) and (i,j) = (2,1), R is twice the number of reflexive pairs and Q is the num-
ber of points with shared NNs, which occurs when two or more points share an NN. Then Q0 =
2(02+3034+604+1005+ 15Q¢), where Qy is the number of points that serve as a NN to

other points k times. Then Var [N, + N3] = Var[N1,] + Var[N,1] + 2 Cov [Ny2, N»1], and for large
ni, Zp = Sp/+/Var[Sp] has approximately N (0, 1) distribution.
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Suppose we know the population proportion, v;, for class i, i = 1, 2. Then, for large n;, we would

_ ~ ~ Ni2+N>y s D — D21 P —
have E[N12] = E[N31] &~ nviv, and Sp &~ I—W.Furthermore, Dij = ViVj, Piij = ViV, Pijj =

viv7, and piij; = v7v3; hence,

It
Var[N;;] ~nv;vj + Q viv; +(—3n—Q—|—R)vl~2v]2~ 2)
and
Cov[Nij. Nji] ~ Rvjv; + (n — R) (v}v; 4+ viv?) + (=3n — Q + R)v}v7
for(i,j)=(1,2)and (i, j) = (2, 1).
3.2. Dixon’s segregation indices

In a multi-class setting, Dixon [17] proposed the following indices, which are similar to the log
odds-ratios in an NNCT:

Nii/(n;i—Nii) ea
log ((n,»—l)/(n—n,:)) ifi =j

SUD ) (3)
Nij/(ni=Ni;) if i i
IOg (W) if i #J
Let
ii — mr =y
Zj;= 87 "’
ij ifi #j

Under RL, as ny and n, go to infinity, (N;; —E[Nj;]) //Var[N;;] converges in law to N(0,1)
distribution. Then by an appropriate application of central limit theorem and the delta method, Z 5
approximately has N(0, 1) distribution for large n;,n; forall i, j.

For a derivation of this asymptotic result and the asymptotic approximations of Dixon’s segregation
indices when the population proportion, v;, of class i, i = 1, 2 are known; see the technical report [31].

3.2.1. A correction for Dixon’s segregation indices. Dixon’s segregation indices may be unbounded in
either direction depending on the cell counts in the NNCT. Let 0 < n; < n for all i. Then if N;; = 0, we
obtain S2 = —oo provided n; > 1; and if N;; = 0, we obtain Si]D- = —oo provided n; <n — 1. Also, if
N;; = n;, we obtain Si? = oo; and if N;; = n;, we obtain Sil.) = oo provided n; < n — 1. To make the
segregation indices bounded for all possible cell counts, we suggest the following corrected versions:

(Nii +1)/(n;i—N;;+1) e s
log ((n(ni—1)+(n—1)>/n<n,~(n—ni)+(n—1))) ifi=j

SD,c

N (Nij +1)/(n;=Nij +1) o ©)
log (ninj+n;l)/(ni(n—n_,'.—l)+(n—1)) ifi # j

where denominators are chosen in this way so that they have simpler asymptotic approximations.
Let

D.c
Sii

Var(V; 1] 1212 iti=J
L\ (nj (n—np)+m—D)(n; (n—n;)+(n—1))
S,c
Z,’j - sD.c (6)
- ifi #j
Nar[N 7] (n; +2)(n—1?
I\ (nin j+n—1)(n;a—n ; +D+@—-1)

Again, by central limit theorem and the delta method, Zfi’c approximately has N (0, 1) distribution for
large n;,nj forall i, j. '
For the derivation of asymptotic distribution of these corrected versions, see the technical report [31].
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4. Other nearest neighbor tests for spatial clustering

Although there are many tests available for spatial clustering of points from one class or multiple classes
in the literature ([2] and [32]), one-class tests are not comparable with the segregation indices nor very
useful in disease clustering. Some of the tests like Moran’s I and Whittemore’s tests are shown to
perform poorly in detection of some kind of clustering [33], and most of the tests require Monte Carlo
simulation or randomization methods to attach significance to their results. Hence, we only consider
cell-specific and overall NNCT tests due to [16] and [18] and Cuzick—Edwards’s k-NN tests and their
combined versions [11], and compare the segregation indices with these tests in an extensive Monte
Carlo simulation study in terms of size and power performance.

4.1. Cell-specific and overall segregation tests based on nearest neighbor contingency tables

Dixon’s cell-specific and overall tests [16] and type III cell-specific and overall tests [18] are based on
NNCTs. Ceyhan discussed these tests in detail in [34]; here, we only provide a brief description for
completeness. For cell (i, j), Dixon [16] and Ceyhan [18] suggested

(7

111
p_Ny—EWNyl o Ty
1
4 Var [Tij ]

as the cell-specific tests, respectively. Under RL, the expected cell counts are E[N;;] = n;(n; — 1)/
(n—=DI{ = j)+n;n;/(n—1I( # j), and Ceyhan gave the variance Var[N;;] in [18]. Furthermore,
Ti§” = (N,-,- - ((n;f—_1l)) C,-) I =j)+ (Ni- - ﬁCj) I(i # j). Ceyhan presented the explicit forms
of expectation and variance of Tlfl I in [34]. In the multi-class case with m classes, combining the m?

cell-specific tests, Dixon [17] and [18] suggested the following quadratic forms:
Cp=(N—EN) S, (N—EN]) and Crrr = (T™) =7, (T™) )

as overall tests, respectively. Here, N is the m? x 1 vector of m rows of the NNCT concatenated row-
wise, E[N] is the vector of E[N;;], Zp is the m? x m? variance-covariance matrix for the cell count
vector N with diagonal entries being equal to Var[N;;] and off-diagonal entries being Cov [Ni s Nkl]
for (i, j) # (k. ). Dixon provided the explicit forms of the variance and covariance terms in [17]. Also,
¥, is a generalized inverse of X p [35], and " stands for the transpose of a vector or matrix. Similarly,
T is the vector of m? Tlfl I values, that is,
W _ (plII pII1 111 111 7111 111 1508%
T = (T TS T T Ty T Ton)
and E [T™] is the vector of E [TJ I ] values. Note that E [T™] = 0 where 0 is the vector of m? zeros

and X777 is the m? x m? variance-covariance matrix of T, Under RL, Ceyhan provided the explicit

forms of the variance-covariance matrix in [34]. Then under RL, Cp approximately has a )(fn(m_l)

distribution, and Cyy; approximately has a X%m distribution for large n;.

_1)2
4.2. Cuzick—Edwards’s k nearest neighbor and combined tests

For disease clustering, Cuzick and Edwards [11] suggested a k NN test on the basis of number of cases
among k NNs of the case points. Let z; be the i** point and dik be the number cases among k NNs of

2;. Then Cuzick-Edwards’s k NN test is Ty = Y '_, 8;d¥, where

1 ifz; isacase
i = e ©)
0 if z; is a control
Because the correct choice of k is not known in practice, [11] also suggested combining various T
tests. Let S = {k1, ko, ..., kn} be a set of indices for k, and assume T} with k € S being a mixture of
shifts all in the same direction under an alternative. Assuming further that 7} has multivariate normal
distribution, the combined test statistic is given by

Ts =13 '/2T (10)
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where T = (Tkl Thss e Tkm)/ (i.e., Ts is the test obtained by combining T} tests whose indices are
inS), 1 =(1,1,...,1), ¥ = Cov[T] is the variance-covariance matrix of T. Under RL of n cases

and n, controls to the given locations in the study region, T} approximately has N (E[T%], Var[T}]/n1)
distribution for large ny; similarly, T's approximately has N (E[Ts], Var[Ts]) distribution for large ;.
Cuzick and Edwards provided the expected values E[T}] and E[Ts] and variances Var[7%] and Var[7s]
in [11].

Notice that T; is identical to the count for cell (1, 1) in the NNCT of Table I (right). Hence, the
corresponding tests (7} — E[T1]) //Var[T;] and Z P, are identical. Hence, we only consider 7 and Ts
with § = {1, 2} for Cuzick—Edwards’s tests in our comparisons.

Remark

Note that under H,, expected values of Sp, Si? ,Z l.? , Ty —E[Ty], and Ts —E[Ts] are all zero. They tend
to be positive under segregation and negative under association. On the other hand, under segregation,
the diagonal cell counts, N;;, would be larger, whereas under association, the off-diagonal cell counts,
Ni;, with i # j, would be larger than expected. Hence, Si? and Zilj) fori # j tend to be negative
under segregation and positive under association. Hence, all these tests can be employed to test spatial
clustering in either direction against H, in a two-class setting. In a case-control setting, segregation of

cases from the controls would be our primary interest.

Remark

With m = 2 classes (or in a case-control setting), Sp, Si? R Zi[i’ , Cp, T, and Cyyy can detect the spatial
interaction at small scales (at around the average NN distance), whereas T} with k > 1 can detect at
larger scales (at around k-th NN distance), and so can T's with S having indices other than 1 (at around
£-th NN distance with £ = mink; to £ = maxk; for k; € S). Hence, Sp, Si?, Zi’?, Cp, Ty, and Cyyy
can be used to test the same type of interaction at the same smaller scales, whereas Cuzick—Edwards’s
tests, 7> and Ts, can be used to do the same at larger scales.

5. Empirical size analysis of the tests

Let 2, = {Z1,Z>,..., Zy,} be the given set of locations for n points (called the background pattern).
We consider RL of cases and controls to points in Z, generated from various homogeneous or clustered
patterns. The particular realization of the background pattern might influence the distribution of the tests.
For example, although the expected values of Dixon’s and type III cell-specific tests depend only on the
class sizes, the corresponding variances and covariances depend on Q and R, which depend on the rela-
tive allocation of the points in the background pattern. To remove the effect of one particular realization
of the Z; points on the tests, we consider 100 different realizations of Z, on which RL will be applied.
For each background realization, we label n; of the points as class X (for cases) and the remaining
n, = n —nj points as class Y (for controls).

Types of the background patterns:

Case 1: We generate Z, points independently uniformly in the unit square (0, 1) x (0, 1), that is,
Z; id U(0,1)x(0,1)) fori =1,2,...,n. We consider (i) n; = n, = 10, 20,..., 100 to determine
the effect of increasing but equal sample sizes; (ii) n; = 30 and n, = 30,40, ..., 120 to determine
the effect of the differences in the sample sizes with number of cases fixed and number of controls
increasing; and (iii) n, = 30 and n; = 30,40, ..., 120 to determine the effect of the differences
in the sample sizes with number of controls fixed and number of cases increasing. We perform
the aforementioned RL scheme 1000 times for each (n;,7n,) combination at each background
realization. N

Case 2: We generate Z; id U(S]) fori =1,2,...,n where S§ = ((0,1) x (0,1)) U (5,1 +
8) x (8,1 + 8)). We consider § = 0.2,0.4.,...,2.0, so that as § increases, the level of clustering
of background points increases. We perform the aforementioned RL 1000 times for each § at each
background realization with n; = n, = 100.

Case 3: We generate Z; ey (SSII) fori =1,2,...,n where SsH =((0,1)x (0, 1)U((1+5,2+
8) x (0,1)). We consider 6 = 0.0,0.2,0.4., ..., 1.4, so that as § increases, the level of clustering of
background patterns increases. We perform the aforementioned RL 1000 times for each § at each
background realization with n; = n, = 100.

- _______________________________________________________________________________________________|
Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1662-1684




Statistics

Case 4: We generate Z; id U(Ss k) fori =1,2,...,n where S5 = ((0,1) x (0, 1)) U((1+36,2+
8)x(0,1))...U((k —1)(1 +68),k + (k—1)8) x (0, 1)), which yields k squares along the x-axis
for the support of Z;, with successive squares being § units apart. We consider § = 0.5, so that each
square is clearly separated, and k = 1,2, ..., 10 so that the sensitivity of the empirical sizes of the
tests to the number distinct clusters could be assessed. We perform the aforementioned RL 1000
times for each k at each background realization with n; = n, = 100.

Case 5: In this case, we generate Z; points from Matérn’s cluster process in the unit square, denoted
MatClust(k, r, u) [36]. First, we generate ‘parent’ points from a Poisson process with intensity «,
and then each parent is replaced by N points independently uniformly generated inside the circle
centered at the parent point with radius r, where N ~ Poisson(u). For each background realization,
we generate one realization of Z,, from MatClust(k, r, it), and let n be the number of points in this
realization. Then, we label n; = |n/2] of these points as cases, and n, = n — n; as controls,
where | x| stands for the floor of x. Here, we take x = 1,2,...,10, u = [200/« ], and r = 0.1
in our simulations. That is, we take (k, u) € {(1, 200), (2, 100), (3, 66) ..., (10, 20)}, so that on the
average, we would have about 200 Z points of which 100 are X and 100 are Y points.

We plot sample realizations from these background cases in Figure 1. At each Monte Carlo replication
of RL in each of the aforementioned cases, we compute the following test statistics: Pielou’s coefficient
of segregation, Sp, Dixon’s segregation indices, Si]D. ,fori, j = 1,2, and the corrected versions, SUD.’C,
for i, j = 1,2, Dixon’s cell-specific tests, Zl?, for i, j = 1,2 type III cell-specific tests, ZinI I for
i,j = 1,2, Dixon’s overall test, Cp, type III overall test, Cyr;, Cuzick-Edwards’s k NN tests, T,
for k = 1,2, and combined test, Ts, for S = {1, 2} (which is denoted as T} 5 in short). However, the
case-control setting corresponds to a two-class case. Hence, in our further analysis, we only consider and

present Sili) for i = 1,2 among Dixon’s segregation indices, because SID1 = —SlD2 and Szg = _SzD1§ Zi?
fori = 1,2 among Dixon’s cell-specific tests, because Z5 = —Z P and Z2 = —z2; 2111 fori = 1,2
among type III cell-specific tests, because Z11! = —ZH1 and 7111 = —7IIT Furthermore, among

Cuzick—Edwards’s k NN tests, we only consider and present 75, and combined test for S = {1,2},
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Figure 1. Sample plots of the realizations of the background (BG) pattern cases 1-5 with n = 200. The random

labeling of n; = 100 cases and n, = 100 is applied on each background realization. The cases are denoted with

pluses (4) and controls with circles (o). We take § = 0.6 in case 2, § = 0.4 in case 3, k = 3 in case 4, and
(k, ) = (5,40) in case 5.
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because we have (Ty — E[T}]) /+/Var[T1] = ZZ, in the two-class case. Also, Si]D fori,j = 1,2 and

the corrected versions, SUD.’C, for i, j = 1,2 provide very similar empirical size estimates, hence we
presented only the former. In our empirical size analysis (and also in the power analysis in Section 6),
we use standardized forms of Pielou’s coefficient of segregation and Cuzick—Edwards’s tests. That is,
we use Zp = Sp/Var[Sp], and (T} — E[Ty])/+/Var[T;] for k = 1,2, and (Ts — E[Ts]) /+/ Var[Ts]
for S = {1, 2}.

In case 1, we have the background pattern from an HPP; that is, each realization of Z,, is from the CSR
pattern. In this case, we investigate the effect of equal but increasing sample sizes, and differences in the
relative abundances (in both directions, with fixed number of cases and increasing number of controls
and vise versa). In case 2, we consider an increasing level of clustering along the diagonal y = x with
increasing §, the two clusters intersect for § < 1 and the clusters become disjoint for § > 1. In case 3, we
already have two disjoint clusters along the x-axis, and the level of clustering increases with increasing
8. Hence in cases 2 and 3, the effect of clustering level on the empirical sizes is assessed. In case 4, we
already have k disjoint clusters with § = 0.5 and assess the effect of number of clusters on the empirical
sizes. In case 5, we have clusters where the size and location of the clusters are random according to a
Matérn clustering process. In this case, we assess the effect of such clustering on the empirical sizes.

In Figures 2 and 3, we present the empirical size estimates for the right-sided alternative (i.e., toward
segregation) only. We deferred the sizes for left-sided alternative (i.e., toward association) to the technical
report [31], because association is not the relevant direction for the disease clustering considered. The
empirical size estimates are computed as follows. For each Monte Carlo replication, we computed test
statistics, and the size is estimated on the basis of the asymptotic critical values. For (standardized ver-
sions of) Pielou’s coefficient of segregation, Dixon’s segregation indices, Dixon’s cell-specific tests,
type 11 cell-specific tests, and Cuzick—-Edwards’s kK NN and combined tests, we use the critical value
Z.95 = 1.96 for the right-sided (clustering or segregation) alternative (and z g5 = —1.96 would have been
used for the left-sided (association) alternative). For example, the empirical size of Sp is calculated for

case 1(a), cell (1,1), r-s case 1(a), cell (2,2), r-s case 1(a), others, r-s
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Figure 2. The empirical size estimates for the tests under the random labeling of points from background cases
1(a) and 1(c) for the right-sided alternative. In case 1(a) (top row), we take n; = np» = n/2 = 20,30,..., 100,
and in case 1(c) (bottom row), we take n1 = 30,40, ..., 100 and no = 30. In the plot titles, r-s stands for ‘right-
sided’, and in the legends, D stands for Dixon’s cell-specific tests, I1I for type III cell-specific tests, SI for Dixon’s
segregation indices, S p for Pielou’s coefficient of segregation, 7> for Cuzick—Edwards’s 2 NN test, and 77 » for
Cuzick—Edwards’s combined test, T's, for S = {1, 2}. The dashed horizontal lines are at 0.04887 and 0.05113,
the lower and upper bounds for significant deviation from 0.05. Also, empirical size estimates for each test are
joined by straight lines for better visualization.
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Figure 3. The empirical size estimates of the tests for the right-sided alternative under the random labeling case 2

(top row) with n; = np = 100, and we take § = 0.2,0.4, ..., 1.4, and under the random labeling case 5 (bottom
row) with n1 and n being about half the number of generated points from the Matérn cluster process, and we
use k = 1,2,...,5. The dashed horizontal lines and legend labeling are as in Figure 2.

the right-sided alternative as N;mc Zfi’"f I(Zp,; > 1.96) where we have 1000 Monte Carlo replications
for each of background realizations, and because there are 100 different realizations, we would have
Npe = 100000 and Z p; is the standardized version of Pielou’s coefficient of segregation for the sample
in i*" replication. On the other hand, for Dixon’s overall test, we use 95th percentile of x? distribution,

which is )(%5_95 = 3.84, and for type III overall test, we use X%,.95 =5.99.

We present the empirical significance levels under cases 1(a) and 1(c) for the right-sided alterna-
tive in Figure 2. In case 1(a), we have equal but increasing sample sizes (i.e., ny = np, = n/2 =
10, 20, ..., 100), and as expected, the size performance gets better (i.e., empirical sizes tend to approach
to the nominal size of 0.05) as n increases. Furthermore, all the tests have empirical size estimates
around the null region (i.e., around the band between 0.04887 and 0.05113). These bounds for the null
region are estimated as follows. With N,,. = 100000, an empirical size estimate larger than 0.05113 is
deemed liberal, whereas an estimate smaller than 0.04887 is deemed conservative at 0.05 level (based
on binomial critical values with n = 100000 trials and probability of success 0.05).

Among the cell-related tests (i.e., cell-specific tests and Dixon’s segregation indices), size estimates of
type III test are closer to the nominal level of 0.05. When all the tests considered type III tests, Pielou’s
test and Cuzick—Edwards’s tests have less fluctuation around 0.05, and T » is closest to the nominal
level and has the least fluctuation. For the left-sided alternative (i.e., toward association), Dixon’s cell-
specific tests fluctuate more around 0.05, compared with other tests, and Dixon’s segregation indices are
extremely liberal. Among cell-related tests, type III has the best size performance. Furthermore, 75 is
mostly conservative, and Sp fluctuates around the null region but is close to it. All tests considered, 77 »
is closest to the nominal level and has the least fluctuation, then comes type III cell-specific test and Sp.
It should be noted at this point that it is not quite fair to compare 7, and T > with the tests related to
NNCTs. T tests the spatial interaction at around second NN distance, and T » tests the spatial interac-
tion around the first and second NN distances (and is expected to perform better because it uses more
information), whereas tests based on NNCTs test the interaction around the first NN distance. Thus, the
tests based on NNCTs and 77 test the interaction at the same scale; however, T; is equivalent to Dixon’s
cell (1, 1) test.

In case 1(c), we have n, = 30 and ny = 30,40,...,120; that is, the difference in relative abun-
dance increases as nj increases, and in this case, with increasing n, the disease incidence rate is
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increasing. Hence, in this case, we investigate the effect of increasing incidence rate (starting from 50%
and increasing to 80%) on the empirical sizes. For the right-sided alternatives, among cell (2, 2) statistics,
Dixon’s test fluctuates between liberalness and conservativeness, Dixon’s segregation index tends to be
conservative (with level of conservativeness increasing with 1), and type III statistic is closest to the null
region, but its size estimate seems to increase with n;. Among cell (1, 1) statistics, Dixon’s segregation
indices tend to be liberal (with level of liberalness increasing with n7), and type III cell-specific test has
the same performance as in cell (2, 2), and Dixon’s cell-specific test is closest to the nominal level. Sp,
T, and T} » are much closer to the null region, with 77 » being closest. All tests considered, Sp, T3, and
T1 » have best performance, with T » having slightly better performance. For the left-sided alternatives,
among cell (2, 2) statistics, Dixon’s test fluctuates between conservativeness and the desired level (and
tends to get more conservative with increasing 11 ), Dixon’s segregation index tends to be extremely lib-
eral (although fluctuating, the level of liberalness tends to increase with 71), and type III cell-specific test
is close to the null region, but its size estimate seems to decrease to become conservative with ;. Among
cell (1, 1) statistics, Dixon’s segregation indices are starting liberal and getting conservative eventually
with increasing n, and type III has the same performance as in cell (1, 1). Sp, 71, and T} » are closest
to the null region (and slightly conservative for some values of n7). All tests considered, Sp, 75, and
T1,> have best performance, with T; , having slightly better performance. Hence, the differences in the
relative abundances increasing in favor of cases (i.e., increasing incidence rate of the disease) confounds
most test statistics. Among the tests considered, 77 > seems to be the most robust to such differences in
sample sizes, whereas cell-related tests are severely confounded by such differences. Among the tests for
small scale interaction, Sp is most robust to differences in relative abundances. The better performance
of Cuzick—Edwards’s tests in this case is no coincidence, because these tests are designed to detect the
clustering of cases (i.e., class 1 points), and the number of class 1 points increases in this case.

In case 1(b), we have n; = 30 and n, = 30,40,...,120; that is, the difference in relative abun-
dance increases as np increases, and in this case, with increasing n,, the disease incidence rate is
decreasing. Hence, in this case, we investigate the effect of decreasing incidence rate (starting from
50% and decreasing to 20%) on the empirical sizes. The trends in Sp and type III tests are as in case
1(c); with the roles of classes switched, the tests yield the same results for a given data. Furthermore,
Dixon’s cell (7,7) statistics and segregation indices behave similar to those for cell (j, j) of case 1(c)
for i # j switching also ny with n,. Hence, case 1(b) empirical sizes are not presented. However,
in this case, the performance of 7, and 7}, deteriorate, and they tend to become more liberal as n,
increases, and Sp has the best performance. Hence, the differences in the relative abundances increasing
in favor of controls (i.e., decreasing incidence rate of the disease) confound most test statistics. Among
the tests considered, Sp seems to be the most robust statistics to such differences in sample sizes (i.e.,
for decreasing incidence rates) in both directions, whereas 7, and T » are more robust to differences in
favor of cases (i.e., for increasing incidence rates).

We presented the empirical size estimates under cases 2 and 5 for the right-sided alternative in
Figure 3. The size estimates under cases 3 and 4 are similar to case 2, hence are omitted. In case 2,
we have equal sample sizes with n; = n, = 100, but with increasing 8, the level of clustering of the
two clusters in the background pattern increases (in fact, with § > 1, the clusters get disjoint). For the
right-sided alternative, all tests are almost within the null region with Dixon’s cell (1, 1) statistics clos-
est to the nominal level. Furthermore, Dixon’s cell-specific tests and segregation indices exhibit almost
identical size performance; 7, and 77, tend to be slightly liberal, whereas others tend to be slightly
conservative. For the left-sided alternative, all tests except Dixon’s segregation indices are almost within
the null region, but 73, T2, Sp, and type III tests tend to slightly conservative, whereas Dixon’s cell-
specific tests are slightly liberal and Dixon’s segregation indices are severely liberal with size estimates
being about 0.06. Hence, with sample sizes being equal and large, most tests are unaffected seriously
with increasing level of clustering in the background realizations, and Dixon’s segregation indices are
most severely confounded by increasing §; 7, and 7 » have better size performance for both alternatives
(with Ty » being the best). There is no clear (increasing or decreasing) trend in the size estimates of the
tests with increasing 4. In case 4, we also observe that with sample sizes being equal and large, the sizes
of the tests are not affected by the increasing number of clusters in the background realizations.

We presented the empirical size estimates under case 5 for the right-sided alternative in Figure 3. In
this case, we have sample sizes n; = n, = 100 on the average, and random number of clusters « (with
increasing k, the number of clusters tend to increase), and the locations of the clusters are also ran-
dom. For the right-sided alternative, all tests are almost within the null region, but Dixon’s segregation
indices for cell (1, 1) and 75 tend to be slightly liberal for some of the x values, whereas other tests are
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around 0.05. Type III tests, Dixon’s cell-specific tests, and Sp seem to have the best performance. For
the left-sided alternative, all tests except Dixon’s segregation indices are almost within the null region,
but Dixon’s segregation indices tend to be liberal, and 7, and T » are slightly conservative. Type III
tests, Sp, and 77 » seem to have the best performance. Hence, with randomly occurring and randomly
increasing number of clusters, most tests are not affected seriously. Dixon’s segregation indices have the
worst size performance under RL of this type of background clustering.

We presented the empirical size estimates for the overall NNCT tests under cases 1-5 in Figure 4.
Dixon’s overall test is severely liberal in cases 2-5, and conservative for small samples and liberal for
large samples in case 1(a), and conservative or within the null region in cases 1(b) and (c). On the other
hand, type III overall test is slightly conservative or within the null region for all cases and has better
performance compared with Dixon’s overall test. Furthermore, there is no clear trend in the size esti-
mates as the equal sample sizes increase, or level and number of clusters increase. On the other hand, as
the discrepancy between the sample sizes (i.e., differences in relative abundances) in cases 1(b) and (c)
increases, the size estimates of the overall tests tend to decrease eventually.

6. Empirical power analysis of the tests under non-random labeling alternatives

We propose various non-RL alternatives where case and control labels are assigned (with a pattern
deviating from RL pattern) to the points generated from various homogeneous or clustering processes.
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Figure 4. The empirical size estimates of the overall nearest neighboring contingency table tests under the

random labeling of points from background cases 1(a)—(c) (top row in that order from left to right), and cases 2-5

(starting at second row and ordered from left to right). The dashed horizontal lines are as in Figure 2, and in the
legends, D stands for Dixon’s overall test, and III stands for type III overall test.
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In all these alternatives, we generated the background points in Z, independently uniformly in the unit
square (0,1) x (0, 1), that is, Z; i U0,1) x (0,1)) fori = 1,2,...,n. To remove the effect of
one particular realization of the points on the test, we consider 100 different realizations. We only use
realizations from HPP pattern for the background, because the level and number of clusters seem not
to affect the size performance of the tests. Hence, in the non-RL alternatives, we only consider various

non-RL schemes on the points from HPP.

Types of the non-RL patterns:
Case 1: Select a Z; randomly from Z,,, label it as a case. Find its k¥ NNs and label them as cases

with probabilities proportional to 2L + p (1 —2L) | 2L+ £ (1 —2L) .. 2L 4 2 (1 — 21) until the
number of cases first exceeds ;. We use (a) p = —0.2,0.0,0.2,0.4,0.6,0.8 and k = 1, which only
assigns the first NN and (b) p = 0.0,0.2,0.4,0.6,0.8 and k = 3, which assigns the first three NNs
according to the aforementioned probabilities.

Case 2: In this case, we have an initial proportion, r;, and an ultimate proportion, 7, with ,, > ;.
First, label the initial proportion, 7;, of points as cases randomly and pick a case among them ran-
domly. Then find the k NNs of this case and label them as cases with probabilities proportional to
0, p/2,...,p/k. Select a point randomly among these k NNs, find its k NNs, and assign them as
cases with the aforementioned probabilities until we have the proportion of cases first exceeding y,.
We use ; = 0.3, 7, = 0.5, and p = 0.2,0.4,0.6,0.8 and consider (a) k = 1, which only assigns
the first NN, and (b) k = 3, which assigns the first three NNs according to the aforementioned
probabilities.

Case 3: Pick a Z; randomly from Z,,, mark it as a case and label others as a case with probabilities
inversely proportional to their distances to Z;. More specifically, we use probabilities proportional

N
to % (1 - j#) where d j; is the distance from Z; to Z; for j # i, dmax is the maximum of d;;

values, k, > 0 and k; > 1. We stop when we first exceed 7 cases. In our simulations, we employ

the usual Euclidean distance and use (a) p = 0.2,0.4,....,1.0, ks = 1,and k, = 3; (b) p = 0.8,
kgq=3.,6,....15andk, =3;and (c) p=0.8, kg =1, andk, =1,2,...,5.
Case 4: Pick k¢ points ZII,Z/Z, . ’Z;co from Z, randomly as sources. Let ¢ be the PDF of

BVN(u,o1 =0, =0, p=0) where BVN(u, 01,02, p) stands for the bivariate normal distribution
with mean vector u = (@1, 2), standard deviations of univariate components are o; and o3, and
the correlation between the components is p. Then for each j = 1,2, ..., ko, compute ¢g,;(z;) for

alli =1,2,...,n where ¢g,; is the PDF of BVN (u =z/]-,01 = 0, = 0, p = 0) and add these PDF

values. That is, find pg(z;) = 1;0=1 ¢G,j(z;) foreach i = 1,2,...,n. Then label the points as
cases with probabilities proportional to the value of the PDF sums at these points. More specifically,
we use probabilities ﬁ(pg (1), p6(22), ..., pG(zn)) Where pmax = max!_, pg(z;). We stop
when we first exceed n; cases. We use (a) ko = 3 and 07 = 0, = 0 = 0.1,0.2,...,0.8; and (b)
ko=1,2,...,8and oy =0, =0 = 0.4.

We plot sample realizations from these non-RL cases in Figure 5. We simulate 1000 Monte Carlo
replications for each parameterization in each case at each background realization. For example, with a
particular background realization, in case 3(a), we simulate 1000 replications for k, = 3, and k; = 1
andeachof p=0.2,0.4,....,1.0 withny = n, = 100.

We computed the empirical power estimates similar to the empirical sizes. Furthermore, SiJD. for

i,j = 1,2, and the corrected versions, Si? “ for i, j = 1,2, provide very similar empirical power
estimates; hence only the former are presented.

We plotted the power estimates based on z-scores in Figures 6-9. In all these cases, Dixon’s cell-
specific test and segregation index for cell (i, i) provide very similar power estimates. Furthermore, we
only consider right-sided alternatives, because by design, the non-RL alternatives are for segregation (or
clustering) of class 1, and the power estimates for the left-sided alternatives are virtually zero.

We presented the empirical power estimates under cases 1(a) and (b) in Figure 6. Notice that as p
increases, the power estimates tend to increase as well. That is, when the probability of assigning the
same label (i.e., class 1 label) to NNs increases, the level of segregation; hence, the power of the tests
increases. Furthermore, the power estimates are higher for k = 1 (case 1(a)) compared with kK = 3 (case
1(b)) for each test. Hence, in this type of non-RL with p, n, n, being fixed, as the number of NNs to
be labeled increases, the power estimate tends to decrease, that is, the level of segregation decreases. In

- _______________________________________________________________________________________________|
Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1662-1684




Statistics

E. CEYHAN
_________________________________________________________________________________________________________________________|
non-RL case 1(b) non-RL case 2 non-RL case 3
o o o
= oxm R < OH- o 1 < 7 +H- 4 +o
2rBot PUET nopted M TN
¥ Fio™ © - 08 o © % 4 o
g Oﬁpﬁq Q ° S OC&%#+$ o o + ##+i o o
Ho 2T T+ B O+ 4ot t oo 4 e HHQ T R 2 e
o | *o®g° © o 4% P o | O4%et
S ] 0080 s +o ®°§++ = 7+°20 §°8+ %%+o S oo i %t ﬂ§°+
> ++¢‘E§ 2, © OQ+4¢6 ° > | o Oﬁi Gt 49 + > < o 0046’ o, + +°o% +
S1H 585 o9 SRty Te S G Poef s T
oo ® 0,00 oo &+ 00 +0 § 4,00
304 §¢o~3‘++ 3% §¢9+%¢+ 0 $&+$0°
gfoo%ﬁ#omoog +O# S—J@@Ow%ﬁ 00#@ g*o°ﬁ§°¢;°°°+o@ Oocb
o | +7 ot8 4t + ?0 o +9 o9 +°§0Q+ ot o | 0% % o°§ob° ?0
° 5 T T T T T s 4 T T T T T s 4 T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
X X X

1.0

|

+

#

+

40

Jo
+
o

00 02 04 06 08

Figure 5. Sample plots of the realizations of non-random labeling cases 1-4 with n; = n, = 100 with the same

background pattern from homogeneous Poisson process. The cases are denoted with pluses (+) and controls with

circles (o). We take p = 0.8 and k =3 incase l; p=0.8and k = lincase2; p =0.4, kg = l,and k, =3 in
case 3; and ko = 3 and 0 = 0.4 in case 4.
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Figure 6. Empirical power estimates under the non-random labeling cases 1(a)—(b). In case 1(a) (top row), we
take p = —0.2,0.0,0.2,...,0.8 and k = 1, and in case 1(b) (bottom row), we take p = 0.0,0.2,...,0.8 and
k = 3. The dashed horizontal lines are at 0.05 and 1.0, and legend labeling is as in Figure 2.

case 1(a), among cell (1, 1) statistics, Dixon’s cell-specific test and segregation index have slightly higher
power compared with type III cell-specific test; among cell (2, 2) statistics, type III statistics have much
higher power than Dixon’s tests; and among other test statistics, Pielou’s coefficient of segregation and
T1 > have higher power (with the latter having highest power). In case 1(b), among cell-specific tests,
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both rows are as in Figure 6.
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Figure 8. Empirical power estimates under the non-RL cases 3(a)-(c). In case 3(a), we take p = 0.2,0.4, ..., 1.0,

kp =3, and k; = 1; in case 3(b), we take p = 0.8, k, = 3, and k; = 3,6,...,15; and in case 3(c), we take
p=08k,=1,2,...,5 and ks = 1. The dashed horizontal line and legend labeling are as in Figure 6.

type III test has higher power; and among others, Cuzick—Edwards’s tests, 7,, and 77, have higher
power (with the former having highest power).

We presented the empirical power estimates under cases 2(a) and (b) in Figure 7. In case 2(a), the
power estimates are almost constant, with Cuzick—Edwards’s tests having power around 0.80, Dixon’s
cell (2, 2) test and segregation index having power around 0.50, and all others having power around 0.70.
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Figure 10. Empirical power estimates for the overall nearest neighbor contingency table tests under the
non-random labeling cases 1-4. D stands for Dixon’s overall test, and III stands for type III overall test.

In case 2(b), the power estimates are higher compared with case 2(a), and they increase as p increases.
Among the cell-related tests, type I1I test has higher power (and Sp has about the same power as the type
IIT tests). Cuzick—Edwards’s tests have the higher power estimates, with 7, having the highest power.
In this type of non-RL, the power seems not to depend on p if only the first NN is labeled according to
the probabilities.
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We presented the empirical power estimates under cases 3(a)—(c) in Figure 8. In cases 3(a) and (b),
notice that the power estimates slightly increase as p increases, but it seems that the power estimates
(hence, the level of segregation) does not crucially depend on k4 or p. In case 3(c), the power estimates
tend to increase as k, increases. Hence, as k, increases, the probability of assigning the same label
to NNs increases. In all these cases, among cell-specific tests, type III test has the highest power, and
among others 75 has highest power.

We presented the empirical power estimates under cases 4(a) and (b) in Figure 9. In case 4(a), notice
that as o increases, the power estimates tend to decrease. That is, when o increases (with n1, n,, and kg
being fixed), the probability of assigning the same label to NNs of the source points decreases, hence,
the level of segregation; thereby, the power of the tests decreases as well. In case 4(b), as number of
source points, kg, increases, the power estimates tend to decrease. That is, when the number of source
points increases (with 1, n,, and o being fixed), the (relative) probability of assigning the same label to
NN of the source points decreases, hence, the level of segregation and the power of the tests decrease
as well. In both cases, among cell-related tests, type III test has higher power, and among others, 75 has
higher power estimates.

The empirical power estimates of the NNCT overall tests under cases 1-4 are presented in Figure 10.
The power estimates for cases 1(b), 2(b), and 3(b) are similar to those for cases 1(a), 2(a), and 3(a),
respectively, hence are not presented. In all these cases, type III overall test has higher power estimates
compared with Dixon’s overall test. In cases 1(a) and (b), cases 2(a) and (b), the power estimates increase
with increasing p (in all cases, the power estimates are higher with & = 1 compared to k = 3). In case
3(a) (respectively, (b)), the power estimates does not seem to depend on the parameter p (respectively,
kq). In case 3 (c), power estimates increase as k, increases; in case 4(a) (respectively, (b)), power
estimates decrease as o (respectively, k¢) increases.

Remark

We also compute empirical power estimates based on Monte Carlo critical values. Under case 1(a) of
RL pattern with n; = n, = 100, we compute the 95 empirical percentiles of the test statistics com-
puted in the Monte Carlo simulations and use these as the Monte Carlo critical values. For example, the
empirical power (based on Monte Carlo critical value) for Sp is calculated for the right-sided alterna-
tive as ﬁ Zf\’:’"{' I(Sp; > S}?’ccm) where we have N, = 100000 and S;ﬂfcm is the 95" empirical
percentile of Pielou’s coefficient of segregation under RL case 1(a) with n; = n, = 100. The power
estimation for the other tests is similar. We observed that the power estimates using the asymptotic criti-
cal values and those using the Monte Carlo critical values are very similar for all tests. Hence, we only
present the power estimates with the asymptotic critical values.

7. Example data sets

7.1. Childhood leukemia data

This data set consists of spatial locations of 62 cases of childhood leukemia in the North Humberside
region of the UK, between the years 1974 and 1982 inclusive [11]. From the same region, we selected
a random sample of 143 controls using the completely randomized design. We analyze the spatial clus-
tering of leukemia cases with respect to controls in this data with the tests considered earlier. We plotted
the locations of the points in the study region in Figure 11, and the segregation indices (together with
standard errors) are provided in Table II. The figure is suggestive of mild clustering of leukemia cases,
and the indices together with their standard errors suggest only mild segregation (if any). Here, the
indices and their standard errors are sufficient for an initial clustering assessment, because either the
indices have zero expected value (as in Sp) or their expectation is approximately zero (and tending to
zero with increasing class sizes) as in Dixon’s segregation indices.

The appropriate null hypothesis is the RL pattern, because it is reasonable to assume that some pro-
cess affects a posteriori the population of North Humberside region so that some of the individuals get
to be cases, while others continue to be healthy (i.e., they are controls) [37]. In Table III, we present
the test statistics and the associated p-values based on of asymptotic critical values and on Monte Carlo
randomization. The latter is estimated as follows. We compute the test statistics for the original data, and
the labels are randomly assigned to the points 10,000 times. At each random assignment, we compute
the test statistics and find how many times they equal or exceed the test statistics in the original data.
This number divided by 10000 yields the p-values based on Monte Carlo randomization. Notice that
both versions of p-values are similar for each test (except for 7> and 77 ). Observe that only 7> and
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Figure 11. The scatter plots of the locations of cases (crosses x) and controls (circles o) in North Humberside
leukemia data set.

Table II. Pielou’s coefficient of segregation and Dixon’s segregation indices (4 standard errors) for
the right-sided alternatives for North Humberside leukemia data.

Segregation indices for leukemia data

D D D,c D,c
Sp St S22 St S22

0.1348 (£0.090) 0.3548 (£0.314) 0.2362 (£.175) 0.3420 (£0.272) 0.2317 (£0.251)

Table III. The corrected versions and the test statistics and the associated p-values for the right-sided
alternatives for North Humberside leukemia data.

D D 11 111 S S
Zh 2% it 7y % 2y Zp T T, Cp Cypp

5

Test statistics
for leukemia data 1.2021 1.2829 1.4568 1.4590 1.1292 1.3482 1.4983 2.6263 2.1206 2.2604 2.1254

Associated p-values,
with asymptotic 0.1147 0.0998 0.0726 0.0723 0.1294 0.0888 0.0670 0.0043 0.0170 0.3230 0.1449
critical values

Associated p-values,
with Monte Carlo 0.1365 0.0743 0.0784 0.0780 0.1294 0.1100 0.0726 0.0211 0.0696 0.4460 0.1462
randomization

Z i? z iIiI Ty is Dixon’s (type II) cell-specific test for cell (i,7), Z zSz is the standardized version of Dixon’s segregation
indices for cell (i,7), i = 1,2, Zp is the standardized version of Pielou’s coefficient of segregation, 75 is Cuzick—
Edwards’s 2 NN test, 77> is Cuzick—Edwards’s combined test for k = 1,2, Cp, and Cyy are Dixon’s and type III
overall tests, respectively.

T are significant at 0.05 level, while all others are not. Hence, we conclude that there is no significant
segregation of cases at small scales (about the first NN distances), but cases tend to cluster significantly
at larger scales (about the second NN distances). The standardized versions of the corrected segrega-
tion indices are Z 3’6 = 1.2591 and Z 2%’6 = 1.076 with the p-values for the right-sided alternative are
0.1040 and 0.1410, respectively. The corresponding p-values based on Monte Carlo randomization are
0.1294 and 0.1100, respectively.

On the basis of the tests discussed earlier, we conclude that the cases and controls do not exhibit
significant clustering (i.e., segregation) at small scales. On the basis of Cuzick—-Edwards’s tests, we find
that the cases are significantly segregated around & NN distances for k = 2. In particular, average NN
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distance for leukemia data is 700 m (£1400 m), and the aforementioned analysis summarizes the pattern
for about = 1000 m, except for T, and 7 » where 7, summarizes the pattern at about 1350 m (because
the average 2-NN distance is 1342 m), and 77 » for distances between 1000 and 1350 m.

7.2. Liver data

This data set consists of spatial locations of 761 cases of a liver disease in a region of interest and 3044
controls in the same region [2]. We analyze the spatial clustering of liver disease cases with respect to the
healthy controls. The locations of the points are plotted in Figure 12 and the segregation indices (together
with standard errors) are provided in Table I'V. Observe that the plot of locations is suggestive of strong
clustering of cases, and the indices together with the standard errors support this initial assessment.

As in the leukemia data set, the appropriate null hypothesis is again the RL pattern. In Table V, we
present the test statistics and the associated p-values based on asymptotic critical values and on Monte
Carlo randomization where the latter is estimated as in Section 7.1. Both versions of p-values are simi-
lar for each test. Observe that all tests except Z2, and Z5, are significant at 0.05 level (but their Monte
Carlo randomized versions are significant), implying significant segregation of cases at small scales
(about the first NN distances) and at larger scales about the second NN distances. That is, cases tend
to cluster significantly at smaller scales. The standardized versions of the corrected segregation indices
are Z ﬁ’c = 2.9077 and Z%c = 1.3813 with the p-values for the right-sided alternative are 0.0018 and
0.0836, respectively. The corresponding p-values based on Monte Carlo randomization are 0.0004 and
0.0348, respectively.

The aforementioned tests indicate a significant segregation of cases and controls, and segregation of
cases from controls seems to be much stronger compared with that of controls from cases. This implies a
significant clustering of cases at smaller scales around the average first NN distance. Similarly, Cuzick—
Edwards’s tests also imply significant segregation of cases and controls around k& NN distances for
k = 2. In particular, average NN distance for liver data is 34.24 (4 61.20), and the aforementioned
analysis summarizes the pattern for about 1 = 35, except for 7> and 77> where T, summarizes the
pattern at about 50 (because the average 2-NN distance is 52.20) and 77 » for distances between 35 and
50 units. Notice that by construction, Cuzick—Edwards’s tests for 7 with k > 1 and Ts with {1} € S
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Figure 12. The scatter plots of the locations of cases (pluses +) and controls (dots -) in Diggle’s liver data set.

Table IV. Pielou’s coefficient of segregation and Dixon’s segregation indices (£ standard errors) for
the right-sided alternatives for Diggle’s liver data.

Segregation indices for liver data

D D D,c D,c
Sp St 532 St S22

0.0654 (£ 0.025) 0.3410 (£ 0.117) 0.0712 (£ 0.051) 0.3393 (£ 0.117) 0.0711 (£ 0.051)
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Table V. The corrected versions and the test statistics and the associated p-values for the right-sided
alternatives for Diggle’s liver data.

D D 111 111 S s
I Zyp Ly Zynt Zn Zy Zp T2 Ti2 Cp Crir

Test statistics
for liver data 3.2024 1.3520 3.2732 3.2729 2.9055 1.3814 2.5737  9.1854  7.7709 10.9096 10.7134

Associated p-values,
with asymptotic 0.0007 0.0882 0.0005 0.0005 0.0018 0.0836 0.0050 < 0.0001 < 0.0001 0.0043 0.0011
critical values

Associated p-values,
with Monte Carlo ~ 0.0004 0.0348 0.0004 0.0004 0.0004 0.0348 0.0020 < 0.0001 < 0.0001 0.0007 0.0007
randomization

The labels of the tests are as in Table III.

provide information not available by the other tests considered. However, this comes with a huge com-
putational cost, because for liver data, it took about 7 h to compute the Cuzick—Edwards tests 77, 715,
and 77 » in a HP Pavilion dv6 (Core 17 3720QM Processor 2.6 GHz, 8-GB RAM) laptop, but the other
NNCT-based tests took only about 5 min. The time difference was not that crucial for leukemia data as
Cuzick—Edwards’s test took about 8 s, whereas NNCT-tests took only about 0.5 s. Our simulations indi-
cate that NNCT tests have O(n?) computing time, but Cuzick—-Edwards’s tests 77, T, and T » together
have O(n°/?) computing time. Hence, when the number of cases or controls is large (more than a few
hundred), Cuzick—Edwards’s tests are not computationally feasible, but the NNCT tests still are.

8. Discussion and conclusions

In this article, we propose the use of two segregation indices, namely, Pielou’s coefficient of segregation
[15] and Dixon’s segregation indices [17] as tests to detect segregation between two classes, in particular
to detect significance of disease clustering. We derive their asymptotic distributions under RL of cases
and controls to given locations, and compare these tests with some other distance-based tests (such as
Dixon’s and type III cell-specific and overall tests, and Cuzick—Edwards’s £ NN and combined tests) in
terms of empirical size and power via extensive Monte Carlo simulations. The tests related to NNCTs
(i.e., Pielou’s coefficient of segregation, Dixon’s segregation indices, Dixon’s and type III cell-specific,
and overall tests) are for testing interaction at smaller scales about the first NN distance, and 77 is
equivalent to Dixon’s cell (1, 1) test while 75 is for the interaction at about the second NN distance, and
T1,» combines the interaction information at the first and second NN distances.

We investigate the effect of the clustering (i.e., level of clustering and number of clusters) of the
background points (on which RL is applied) and the effect of the differences in relative abundances on
the size of these tests. Our simulation results suggest that there is no increasing or decreasing trend in
size when the number of clusters or level of clustering increases. On the other hand, the differences in
relative abundances have a much stronger influence on the size performance of the tests. For the tests of
small-scale interaction (around the first NN distance), we observe that Pielou’s coefficient of segregation
and type III overall tests seem to be robust to differences in relative abundances with Pielou’s coefficient
of segregation being more robust. On the other hand, for tests of higher-scale interaction (around or up
to the second NN distance), 7> and T; > are both robust, with 77, being more robust. Furthermore,
among cell-related and overall tests, type III tests have better size performance, and when all tests are
considered, Pielou’s coefficient of segregation and 75 and T » have better size performance.

We introduce four new non-RL algorithms yielding clustering of cases (or segregation between the
classes) after the algorithm is executed on the background points. With these non-RL alternatives, we
assess the power performance of the tests and see that type III tests and Cuzick—Edwards’s tests have
higher power than others (also we notice that Pielou’s coefficient of segregation has power estimates
close to Cuzick—Edwards’s tests, although slightly lower). As for the computational complexity, Cuzick—
Edwards’s tests require much longer time and hence not so feasible for large sample sizes; on the
other hand, the tests based on NNCTs require reasonable times even if sample sizes are on the order
of thousands.

- _______________________________________________________________________________________________|
Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1662-1684



Statistics

The methodology introduced in this article can also be used to test the deviations from CSR
independence. But in this setting, the tests would be conditional on the values of O and R, which
are no longer fixed, but random quantities. Furthermore, the methodology is also applicable to test the
spatial interaction at other contexts (e.g., the spatial interaction between plant species in ecology). In
these contexts, the left-sided (or association) alternative could also be of practical interest.

Our simulation study suggests that Dixon’s segregation indices do not fare well in testing spatial
clustering. Hence, Dixon’s segregation indices should not be employed with the asymptotic critical
values in testing spatial clustering, but its Monte Carlo randomized version can be used. On the other
hand, Pielou’s coefficient of segregation performs similar to the best performing tests based on NN dis-
tances (at the scale, it is intended to work, i.e., at about the first NN distance). Considering both size
and power performance of the tests together, for the interaction at small scales (around the first NN
distance), we recommend Pielou’s coefficient of segregation. In fact, if the relative abundances of the
classes are similar, either type III tests or Pielou’s coefficient of segregation can be employed, but if the
relative abundances of the classes are different, Pielou’s coefficient of segregation is recommended. For
the interaction at higher scales, we recommend Cuzick—Edwards’s k& NN test with £ > 1 and combined
tests Ts with {1} € S for testing segregation (or disease clustering) against RL with the caveat of their
computational cost in time.
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