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Abstract Spatial pattern analysis of data from multiple

classes (i.e., multi-class data) has important implications.

We investigate the resulting patterns when classes are

generated from various spatial point processes. Our null

pattern is that the nearest neighbor probabilities being

proportional to class frequencies in the multi-class setting.

In the two-class case, the deviations are mainly in two

opposite directions, namely, segregation and association of

the classes. But for three or more classes, the classes might

exhibit mixed patterns, in which one pair exhibiting seg-

regation, while another pair exhibiting association or

complete spatial randomness independence. To detect

deviations from the null case, we employ tests based on

nearest neighbor contingency tables (NNCTs), as NNCT

methods can provide an omnibus test and post-hoc tests

after a significant omnibus test in a multi-class setting. In

particular, for analyzing these multi-class patterns (mixed

or not), we use an omnibus overall test based on NNCTs.

After the overall test, the pairwise interactions are analyzed

by the post-hoc cell-specific tests based on NNCTs. We

propose various parameterizations of the segregation and

association alternatives, list some appealing properties of

these patterns, and propose three processes for the two-class

association pattern. We also consider various clustering and

regularity patterns to determine which one(s) cause segre-

gation from or association with a class from a homogeneous

Poisson process and from other processes as well. We

perform an extensive Monte Carlo simulation study to

investigate the newly proposed association patterns and to

understand which stochastic processes might result in

segregation or association. The methodology is illustrated

on two real life data sets from plant ecology.

Keywords Complete spatial randomness � Nearest

neighbor contingency table � Random labeling �
Relative abundance � Spatial clustering

1 Introduction

The spatial interaction or clustering of points from multiple

classes has important implications in various fields. For

example, in ecology, the interaction between tree species

might be of interest, while in microbiology the interaction

between different cell types might be of concern. Spatial

interaction among species (including association of spe-

cies) also has important implications and potential for

applicability in biodiversity theory (Illian and Burslem

2007). We investigate the multi-class patterns with respect

to the null pattern of randomness in nearest neighbor (NN)

structure which causes NN probabilities proportional to the

class frequencies. This randomness could be resulting from

complete spatial randomness (CSR) independence or ran-

dom labeling (RL) among others. In the two-class case, the

deviations from this null pattern are mainly in two opposite

directions: segregation and association. Roughly defined,

association is the pattern in which points from different

classes are closer to each other, while segregation is the

spatial pattern in which points from the same class are

closer to each other. Also, in the presence of three or more

classes, the classes or species might exhibit mixed patterns,

where some classes could be segregated, while others are

associated or conforming to CSR independence or RL.

In literature, spatial association is used for both uni-

variate and multivariate spatial data, which could be from
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the same class or different classes. Among the types of

spatial association are point, line, and areal spatial asso-

ciation. In point spatial association a distance measure or

metric is employed; in line spatial association, distances

and paths are used; and in areal spatial association, distance

and contiguity are used. In literature there are various

measures of association between two classes. That is, in a

bivariate spatial process (X, Y), where both X and Y are

point processes, one can use bivariate counterparts of F-,

G-, K-, g-, and J statistics (Diggle 2003; Ripley 2004;

Stoyan 1984; van Lieshout and Baddeley 1999; Harkness

and Isham 1983). For example, Comas et al. (2009)

employ the univariate and bivariate versions of the (inho-

mogeneous) pair correlation function to assess the spatial

distribution of trees in a forest in Central Catalonia. Their

univariate analysis indicates that P. sylvestris trees tend to

be clustered at short distances, while P. nigra and P.

halepensis seem to exhibit some regularity. Furthermore,

they observe segregation between trees from different

species. The literature is not as rich when one class, say

X is a point process, while Y is a random set. Foxall and

Baddeley (2002) generalize van Lieshout and Baddeley’s

J-function for such a case motivated from a geological

application where Y is a set of ‘‘lineaments’’ (line segments

believed to represent geological faults). Berman (1986)

also proposes some (parametric) measures of association

between a point process and another stochastic process

(again motivated by an example from geology). Spatial

association between two variables (as opposed to two

classes) is also studied in literature (see, e.g., Waller et al.

(2007) where the authors use geographically weighted

regression and spatially varying coefficient models to

investigate the association between violence and alcohol

consumption). Spatio-temporal clustering also became a

topic of interest in literature recently. For instance, Meliker

and Jacquez (2007) investigate the spatio-temporal clus-

tering of cases and controls in a residential setting using

Q-statistics, which is developed by the authors’ group and

uses Monte Carlo randomization to attach significance to

the observed interaction between the two groups. However,

in this article, we are concerned with (non-temporal) point

spatial association for multi-class data.

Spatial segregation is relatively easy to parameterize

(see, e.g., Ceyhan 2008), while spatial association is not.

Among many types of spatial clustering tests (Kulldorff

2006), we will use tests based on nearest neighbor con-

tingency table (NNCTs) (Dixon 1994). We first state some

desirable properties for the segregation/association pat-

terns, and propose three bivariate association patterns and

then perform extensive Monte Carlo simulations to inves-

tigate these patterns by the cell-specific and overall seg-

regation tests based on NNCTs (Ceyhan 2008). Moreover,

we investigate the mixed alternatives, where the pattern

between classes in a pair could be segregation while the

pattern between classes in another pair could be association

or CSR independence (or RL). We also consider various

regularity and clustering patterns and explore which

one(s) result in segregation or association with respect to a

homogeneous Poisson process (HPP) and also with respect

to other processes. The proposed methodology provides

guidelines to assess the multi-class interaction (as segre-

gation or association with respect to CSR independence or

RL) by NNCT-tests and in the presence of significant

segregation/association provides guidelines to simulate the

underlying patterns that might account for or explain the

observed interaction between classes. A similar approach is

taken by Uria-Diez et al. (2013) to understand the depen-

dence (on abiotic and biotic factors) of spatial distribution

of a plant. The authors first fit both homogeneous and

inhomogeneous versions of spatial point process models to

assess the underlying generative process for the plant

cohorts over the 2 years (labeled as adults and seedlings,

respectively). They also evaluate the spatial interaction

between the adults and seedlings by Ripley’s bivariate

L-function which only suggested a weak positive associa-

tion between adults and seedlings at small distance values.

The fitted point process models for the three cohorts indi-

cate that the level of clustering decreases from seedlings to

adults. Our methodology in this article applies a process in

the reverse order (in our example data analysis): we first

assess the interaction by tests based on NNCTs and then

attempt fitting point process models to understand why a

particular multi-class interaction occurs.

We describe null and alternative patterns and tests based

on NNCTs in Sect. 2, provide desirable properties and

various parameterizations of the segregation and associa-

tion alternatives in Sect. 3, spatial patterns resulting from

various point processes in Sect. 4, discuss spatial patterns

between three classes in Sect. 5, illustrate the methodology

on two real life data sets from plant ecology in Sect. 6, and

provide discussion and conclusions in Sect. 7.

2 Preliminaries

2.1 Null and alternative patterns

In a multi-class setting, the null pattern we consider is

Ho: NN probabilities are proportional to class

frequencies

which may result from (among other patterns) RL or

complete spatial randomness (CSR) independence of points

from two classes. RL is the pattern where class labels are

randomly assigned to a given set of points; and under CSR

independence, each class satisfies CSR independently of
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other classes, i.e., each class is uniformly distributed in the

region of interest provided their sample sizes are fixed,

otherwise they are from a HPP. In the two-class case, there

are two major types of alternatives which are resulting

from deviations from this null hypothesis: segregation and

association. Segregation occurs if the NN of an individual

is more likely to be of the same class as the individual than

to be from a different class in the sense that the probability

that this individual has a NN from the same class is larger

than the relative frequency of the same class (see, e.g.,

Pielou 1961). Association occurs if the NN of an individual

is more likely to be from another class than to be of the

same class as the individual in the sense that the probability

that this individual has a NN from another class is larger

than the relative frequency of the other class in question.

See Ceyhan (2008) for more detail on the null and

alternative patterns.

2.2 Cell-specific and overall segregation tests based

on NNCTs

We employ tests based on NNCTs (referred to as NNCT-

tests, henceforth) to explore the spatial patterns in a multi-

class setting, since NNCT-tests provide an omnibus test of

overall deviation from the null pattern in a multi-class set-

ting (similar to an ANOVA F-test in a multi-group setting).

We then resort to cell-specific tests as post-hoc tests after a

significant overall test (as in pairwise t-tests after a signif-

icant F-test). To our knowledge, NNCT methodology is the

only one with this property in spatial data analysis (i.e.,

having an omnibus overall test in a multi-class setting and

then cell-specific tests as the pairwise post-hoc tests after

the overall test). Below we provide a brief description of

NNCTs, see Ceyhan (2008) for more details. NNCTs are

constructed using the NN frequencies of classes. For

k classes, we will have a k 9 k NNCT, which would have

Nij in cell (i, j) where Nij is the number of times the NN of a

class i point is from class j. We present the NNCT in

Table 1 where Cj is the sum of column j; i.e., number of

times class j points serve as NNs for j 2 f1; 2; . . .; kg and

ni is the sum of row i, i.e., sample size for class i for

i ¼ 1; 2; . . .; k: We adopt the convention that variables

denoted by upper case letters are random quantities, while

lower case letters represent fixed quantities. In a NNCT-

analysis, row sums are assumed to be fixed (i.e., class sizes

are given), while column sums are assumed to be random

and depend on the NN relationships between the classes.

Under segregation of class i from other classes, the diagonal

cell counts, Nii, would be larger than expected, while under

association of class j with class i with i 6¼ j; the off-diagonal

cell counts, Nij, would be larger than expected.

Dixon’s cell-specific segregation tests and four new cell-

specific tests together with the corresponding overall seg-

regation tests are defined and compared in Ceyhan (2008).

In the same article, it has been shown that among the cell-

specific and overall tests, Dixon’s and type III tests have

better size and power performance. Hence in this article,

we only use these tests in our investigations.

The test statistic suggested by Dixon for cell (i, j) is

given by

ZD
ij ¼ Nij � E½Nij�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½Nij�
p : ð1Þ

Under RL or CSR independence, the expected cell count

for cell (i, j) is

E½Nij� ¼
niðni � 1Þ=ðn � 1Þ if i ¼ j;
ninj=ðn � 1Þ if i 6¼ j;

�
ð2Þ

and the variance Var½Nij� is given in Ceyhan (2008).

The type III cell-specific test suggested by Ceyhan

(2008) is

ZIII
ij ¼

TIII
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var TIII
ij

h ir ; ð3Þ

where

TIII
ij ¼ Nii � ðni�1Þ

ðn�1Þ Ci if i ¼ j;

Nij � ni

ðn�1Þ Cj if i 6¼ j:

(

ð4Þ

The explicit forms of expectation and variance of TIII
ij

are provided in Ceyhan (2008).

In the multi-class case with k classes, Dixon (2002a)

suggests the following quadratic form combining the k2

cell-specific tests and obtains the overall segregation test:

CD ¼ ðN � E½N�Þ0R�
DðN � E½N�Þ ð5Þ

where N is the k2 9 1 vector of k rows of the NNCT

concatenated row-wise, E½N� is the vector of E½Nij�;RD is

the k2 9 k2 variance–covariance matrix for the cell count

vector N with diagonal entries equal to Var½Nij� and off-

diagonal entries being Cov½Nij;Nkl� for (i, j) = (k, l). The

explicit forms of the variance and covariance terms are

Table 1 The NNCT for k classes

NN class Total

Class 1 . . . Class k

Base class

Class 1 N11 . . . N1k n1

..

. ..
. . .

. ..
. ..

.

Class k Nk1 . . . Nkk nk

Total C1 . . . Ck n
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provided in Dixon (2002a). Also, R�
D is a generalized

inverse of RD (Searle 2006) and 0 stands for the transpose

of a vector or matrix. Then under RL, CD asymptotically

has a v2
kðk�1Þ distribution.

When we combine the type III cell-specific tests, we

obtain type III overall test as follows. Let TIII be the vector

of k2 TIII
ij values, i.e.,

TIII ¼ TIII
11 ; TIII

12 ; . . .; TIII
1k ; TIII

21 ;T
III
22 ; . . .; TIII

2k ; . . .; TIII
kk

� �0
;

and let E TIII
� �

be the vector of E TIII
ij

h i
values. Note that

E TIII
� �

¼ 0: As the type III overall segregation test, we use

the following quadratic form:

CIII ¼ TIII
� �0

R�
III TIII
� �

ð6Þ

where RIII is the k2 9 k2 variance–covariance matrix of

TIII.

Under RL, the explicit forms of the variance–covariance

matrix for Dixon’s and type III overall tests are provided in

Ceyhan (2008). Furthermore, under RL, CIII asymptotically

has a v2

ðk�1Þ2 distribution.

3 Parameterizations of the alternative patterns

3.1 Desirable properties of an association/segregation

pattern

In a two-class setting with classes 1 and 2, let an association

(a segregation) alternative be parameterized by ma [ 0

(ms [ 0), where association (segregation) gets stronger as ma

(ms) gets larger and ma = ms = 0 corresponds to the null

hypothesis. In particular, ma could be the excess probability

of a class 2 point being a NN to a class 1 point than expected

under Ho, so with increasing ma, NNs of class 1 points would

be more and more likely to be from class 2, which would

imply stronger association of class 2 with class 1. Similarly,

ms could be the excess probability of a class 1 point being a

NN to a class 1 point than expected under Ho, so that with

increasing ms, NNs of class 1 points would be more and more

likely to be from class 1, which would imply stronger seg-

regation of class 1 from class 2. Although any increasing

function of the NN probabilities would parameterize these

alternatives equivalently, we will consider ma and ms as the

probabilities described above henceforth.

Let Tn1
;n2

be a consistent statistic used to test spatial

patterns of segregation/association against Ho. Under a

sensible association/segregation alternative, we would

observe the following properties:

(P1) As ma (ms) increases, the power estimate of the test

statistic, Tn1
;n2

; also increases.

(P2) Under an association (a segregation) alternative,

level of association (segregation) is independent of

the relative abundance of classes. That is, associa-

tion (segregation) is not confounded by the differ-

ences between the class sizes.

(P3) Under an association (a segregation) alternative, the

power estimate of the test statistic, Tn1
;n2

; would

increase as both n1, n2 with n1 & n2 increase.

(P4) Under an association (a segregation) alternative with

one class being of fixed size, say n1 is fixed, the

power estimate of the test statistic, Tn1
;n2

; increases

as n2 increases.

(P5) Under an association (a segregation) alternative, the

power estimate of the test statistic, Tn1
;n2

; increases

as the total sample size, n = n1 ? n2, increases.

In particular, NNCT-tests are consistent for testing

spatial patterns (see Ceyhan 2008). Hence, an association

(a segregation) pattern should enjoy the above properties

with respect to NNCT-tests. When checking the properties

of an alternative pattern, we calculate the power estimates

using the asymptotic critical values based on the standard

normal approximation for the cell-specific tests and the

corresponding v2-distributions for the overall tests. When

the asymptotic approximations fail, Monte Carlo random-

ized versions of the tests should be employed.

In a multi-class setting, the null pattern, segregation

and association can be characterized by the multi-class

extensions of the distributions of NN distances and dis-

tances between randomly selected points and points from

the class of interest i.e., ‘‘random point’’–‘‘class point’’

distance, which is also referred to as ‘‘point-event’’ dis-

tance in literature (Dixon 2002b). Let Xi be the distance

from a randomly selected point to the nearest point from

class i and Fi(x) be the corresponding cdf. Also let Wij be

the distance from a class i point to the nearest class

j point, and Gij(w) be its cdf. If the process of class i is

independent of the process of class j, then we have

Fi(x) = Gji(x) and Fj(x) = Gij(x) and Xi and Xj are

independent (Diggle and Cox 1983; Goodall 1965). Note

that the above equalities are not equivalent (i.e., one does

not necessarily imply the other) (see, e.g., Goodall 1965).

If Fi(x) = Fj(x), then the corresponding independence

structure would imply the null case of NN probabilities

being proportional to class frequencies. Furthermore, in

the two-class setting, if G11(x) [ G12(x), then W11 is

stochastically smaller than W12. Hence it is more likely

for a class 1 point to be a NN of a class 1 point, which

implies segregation of class 1 from class 2. Similarly, if

G22(x) [ G21(x), we have segregation of class 2 from

class 1. On the other hand, if G12(x) [ G11(x), then class

1 points are more likely to be NN of class 2 points, so

class 1 is associated with class 2. Likewise, if
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G21(x) [ G22(x), then class 2 tends to be associated with

class 1.

Remark 3.1 The properties introduced in this section are

useful as guiding principles to obtain ‘‘robust’’ (to differ-

ences in relative abundances) and ‘‘consistent’’ (the pattern

does not change, but maybe becomes more precise as the

class sizes increase) segregation/association patterns.

When a pattern is found to follow these properties, then we

can assess current or new methodology using generated

samples from them. Otherwise, e.g., the empirical size or

power performance of the methods can be confounded by

the defective properties of the pattern generated. h

3.2 A parametrization of the segregation patterns

Segregation pattern is relatively easy to parameterize. For

example, Ceyhan (2008) parameterizes a segregation alter-

native by generating Xi �iid UðS1Þ and Yj �iid UðS2Þ where

S1 = (0, 1 - s) 9 (0, 1 - s) and S2 = (s, 1) 9 (s, 1) for

i ¼ 1; . . .; n1 and j ¼ 1; . . .; n2 and s 2 ð0; 1Þ;UðSÞ stands

for uniform distribution on S, and ‘‘iid’’ stands for ‘‘inde-

pendent identically distributed as’’. Hence the segregation

alternative is

HS : s [ 0: ð7Þ

Here ‘‘s = 0’’ case corresponds to the CSR independence

pattern. Notice that, the level of segregation increases as

s increases; that is, ms(s) gets larger as s increases, and so does

the power of the (consistent) tests. Hence P1 is satisfied with

this segregation parameterization. Also properties P2–P5

hold, as shown in Ceyhan (2008). For example, the empirical

power estimates under HS: s = 1/6 for various sample size

combinations are presented in Fig. 1. For each sample size

combination, 10,000 Monte Carlo replications are performed.

The empirical power estimates for each sample size

combination are joined by solid or dotted lines for better

visualization (which is adopted throughout the article). Notice

that the properties P3–P5 are empirically verified for this type

of segregation. In particular, considering sample sizes (10,10),

(30,30), (50,50), and (100,100), we observe that as

n1 = n2 = n increases, the power estimates increase as

well, hence P3 follows. Considering sample sizes (10,10),

(10,30), (10,50), or (10,30), (30,30) or (30,30), (30,50), or

(30,50), (50,50) or (50,100), (100,100) we observe that P4

follows. Also, in the presented order of sample size

combinations, total sample size increases except from

(10,50) to (30,30), and power estimates increase as

n increases, hence P5 follows. Notice also that in Fig. 1, we

only present the cell-specific tests for cells (1,1) and (2,2) (and

we will stick to this choice in the two-class case henceforth),

because the cell-specific tests for the other cells essentially

carry the same information (but with opposite signs). That is,

for Dixon’s cell-specific test, we have ZD
i1 ¼ �ZD

i2 for i = 1,2

and for type III cell-specific test, we have ZIII
1j ¼ �ZIII

2j for

j = 1,2. Notice also that type III tests tend to have higher

power compared to Dixon’s test under this type of segregation.

This type of segregation pattern can be generalized as

follows. Let Fi be the distribution for class i and S(Fi) be

the corresponding support set for i ¼ 1; 2; . . .; k with k C 2.

For simplicity, consider k = 2 and supports being on the

real plane, R2: Clearly, if S(F1) and S(F2) are disjoint a.s.,

then classes 1 and 2 are segregated. Furthermore, let

S1 [ 2 ¼ fðx; yÞ 2 R
2 : F1ðx; yÞ[ F2ðx; yÞg and S2 [ 1 ¼

fðx; yÞ 2 R
2 : F2ðx; yÞ[ F1ðx; yÞg and let k be the Lebes-

gue measure in R
2: Then there is segregation between

classes 1 and 2, if k(S1[2) or k(S2[1) is positive. Then if

k(Si[j) [ 0 and k(Sj[i) = 0 for i 6¼ j; then class i is seg-

regated from class j; if k(Si[j) [ 0 and k(Sj[i) [ 0 for i 6¼ j;

then both classes i and j are segregated from each other.

Furthermore, letting X and Y are random variables from F1

and F2, respectively, if PðX 2 S1 [ 2Þ[ PðY 2 S2 [ 1Þ; then

class 1 is more segregated than class 2, and switching 1 and

2, we get the reverse relationship where the probabilities

are with respect to the corresponding distributions. In

particular, if, e.g., in the null case the classes have the same

distribution F1 = F2 = F with the same support, and when
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Fig. 1 The empirical power estimates for the cell-specific tests (left

and middle) and the overall tests (right) under the segregation

alternative HS:s = 1/6 in the two-class case. The horizontal axis labels

are for sample size combinations (n1,n2) with 1 = (10,10), 2 = (10,30), 3

=(10,50), 4 =(30,30), 5 = (30,50), 6 = (50,50), 7 = (50,100), 8 =

(100,100). The legend labeling: D Dixon’s, and III type III cell-specific

or overall tests
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we translate the support of one of the classes d units with

d 6¼ 0 in any direction, then the resulting distribution

would have the case that k(S1[2) [ 0 and k(S2[1) [ 0, so

the classes would be segregated. In particular, the larger the

value of |d|, the stronger the resulting segregation. Such a

segregation parametrization satisfies all properties, P1–P5,

for a consistent test.

In practice, segregation patterns might result (among

others) from niche specificity (with different niches for

different species), or inhibition of one species by another.

To generate robust and consistent (in the sense of Remark

3.1) segregation alternatives, we may start with different

supports or niches satisfying the above properties. On the

other hand, if a given multi-class data exhibits segregation,

the above properties together with support estimation

might help us understand the generative pattern behind the

data in question. This would be valuable for estimation and

inferential purposes as well.

3.3 Various parameterizations of the association

pattern

Association is not as easy to parameterize as the segrega-

tion pattern. For example, in literature Ceyhan (2008)

parameterizes a type of association, which will be referred

to as ‘‘Type C Association’’ in this article. We also propose

two new parameterizations.

3.3.1 Type C association

Type C association is parameterized as follows (see also

Ceyhan 2008): First generate Xi �iid Uðð0; 1Þ � ð0; 1ÞÞ for

i ¼ 1; 2; . . .; n1: Then generate Yj associated with X’s for

j ¼ 1; 2; . . .; n2 as follows. For each j, select an i randomly,

and set Yj ¼ Xi þ Rj cos Tj; sin Tj

� �0
where Rj �iid Uð0; rÞ

with r 2 ð0; 1Þ and Tj �iid Uð0; 2pÞ: Then the association

alternatives are as

HA : r 2 ð0; r0Þ ð8Þ

for r0 sufficiently small that ma(r) would be larger than

expected. In Ceyhan (2008), r = 1/4, 1/7, and 1/10 are

considered. By construction, the association of Y points

with X points is stronger, compared to the association of

X points with Y points.

Notice that association gets stronger as r decreases; and

as r decreases, ma(r) gets larger. So type C association

satisfies P1 and also Monte Carlo simulations suggest that

P3 holds. However, it is shown empirically that P3, P4 and

P5 fail for this association type. In particular, association is

shown to be confounded by the differences in relative

abundances of the classes (Ceyhan 2008).

In the two-class setting, we consider the following cases

for the type C association:

HI
A : r ¼ 1=4; HII

A : r ¼ 1=7; HIII
A : r ¼ 1=10;

HIV
A : r ¼ 1=20; HV

A : r ¼ 1

2
ffiffiffiffiffi
n1

p ; HVI
A : r ¼ 1

4
ffiffiffiffiffi
n1

p ;

and HVII
A : r ¼ 1

2
ffiffiffi
n

p : ð9Þ

Notice that association gets stronger as r decreases for

fixed n1 and n2; that is, association gets stronger from HI
A to

HIV
A and from HV

A to HVI
A : The same happens from HV

A to

HVII
A provided n2 [ 3n1. Under each of HI

A � HIV
A ; r is

fixed, and as r decreases the association parameter

ma(r) increases. Under each of HV
A and HVI

A ; r depends on

n1 and under HVII
A ; r depends on n. So under each of HV

A and

HVI
A ; if n1 increases, r decreases (so the level of association

depends on n1) and under HVII
A if n increases, r decreases

(so the level of association depends on the total sample

size, n).

The alternatives HV
A � HVII

A are motivated from the

expected distance between points from HPP. In particular,

let D be the distance from a randomly chosen point to the

nearest other point in a HPP with intensity q. Then E½D� ¼
1=ð2 ffiffiffi

q
p Þ and Var½D� ¼ ð4 � pÞ=ð4pqÞ (Dixon 2002b).

Then the choice r could be determined based on these

two quantities. For example, in our case, under CSR

independence intensity of class 1 with n1 points would be

bq1 ¼ n1; since area of the unit square is 1. Hence we have

set r ¼ 1=ð2 ffiffiffiffiffi
n1

p Þ and r ¼ 1=ð4 ffiffiffiffiffi
n1

p Þ for HV
A and HVI

A ;

respectively. That is, under HV
A ; the displacements of Yj

around Xi would be limited by the average distance

between X points under Ho, and under HVI
A ; the displace-

ments of Yj around Xi would be limited to half of the

average distance between X points under Ho. Under CSR

independence, combining both classes 1 and 2, we have

n many points from the same HPP (conditional on n). Hence

bqT ¼ 1=ð2
ffiffiffi
n

p
Þ; and we set r ¼ 1=ð2

ffiffiffi
n

p
Þ in HVII

A : That is,

under HVII
A ; the displacements of Yj around Xi would be

limited to the average distance (under Ho) between X and

Y points combined. In general, one can design type C asso-

ciation alternatives with r ¼ 1=ðk
ffiffiffiffiffiffi
bq1

p
Þ or r ¼ 1=ðk

ffiffiffiffiffiffi
bqT

p
Þ

with k C 2, so that on the average displacement of Y points

would be closer to X points compared to other X points. Also,

one can set r ¼ 1=ð2
ffiffiffiffiffiffi
bq1

p
Þ � k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4 � pÞð4pbqÞ

p
with 0 \ k

and k\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð4 � pÞ

p
; since larger k values would imply

r \ 0, an impossibility. Again, on the average, displacement

of Y points would be closer to X points compared to other

X points.

In Fig. 2, we present the average test statistics for the cell-

specific tests and the overall tests and the corresponding
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95 % empirical confidence intervals (CIs) based on 10,000

Monte Carlo replications for each case with n1 = n2 = 100.

The 100(1 - a) % empirical CIs are computed as follows:

Out of the obtained values of each test statistic, we find the

100 (a/2)th and 100(1 - a/2)th percentiles for the end points

of the CIs. In our Monte Carlo setup, this corresponds to

finding 250th and 9,750th values of the test statistics. Notice

that the most severe association occurs under HVI
A and HVII

A

with former being slightly stronger. For the cell-specific tests,

type III test seems to be more sensitive, while for the overall

tests Dixon’s test is slightly more sensitive against associa-

tion, but type III test has considerably less variation.

The sensitivity of the type C association to the balanced

but increasing sample sizes is investigated empirically

under HA:r = 1/10 and r ¼ 1=ð2
ffiffiffi
n

p
Þ with n1 ¼ n2 ¼ n ¼

10; 20; . . .; 100 in Fig. 3. Notice that the power estimates

increase with n, hence indicate that type C association

satisfies property P3. Notice also that HA : r ¼ 1=ð2
ffiffiffi
n

p
Þ

yields higher power estimates, since as n increases

r decreases and also precision increases, hence association

gets stronger since r decreases, and power increases since

both association gets stronger and sample sizes increase. So

we recommend type C association with r ¼ 1=ðk
ffiffiffi
q̂

p
Þ with

appropriate choice of k C 2 to get an association pattern

more robust to differences in relative abundances. Under

these alternatives, properties P3 and P5 can not be evalu-

ated for fixed r, since r depends on the sample sizes.

However P1 can be verified with these alternatives, since

ma increases (or r decreases) as n increases. On the other

hand, P2–P5 can be evaluated under a specific alternative

formulation as HA : r ¼ 1=ðkq̂Þ: However, it should be kept

in mind that the association parameter is not fixed, but only

the structure of the alternative is fixed.

The sensitivity of type C association to the differences

in relative abundances is investigated under HA:r = 1/10

and r ¼ 1=ð2
ffiffiffi
n

p
Þ with n1 = 10 and n2 ¼ 10; 20; . . .; 100:

In Fig. 4, we only present the power estimates under HA:

r = 1/10, as the power trend under HA : r ¼ 1=ð2
ffiffiffi
n

p
Þ is

very similar. Notice that as n2 increases (i.e., the differ-

ence in relative abundance increases) the power estimates

for cell-specific test for cell (2,2) and the overall test have

a concave down trend (with increasing first, reaching a

peak, and then decreasing). And the performance of

Dixon’s cell-specific test for cell (1,1) is severely affected

by the differences in sample sizes. Hence, this figure

suggests that properties P2, P4 and P5 fail for type C

association. However, for n1 = 10 and n2 from 10 to 100,

it is very likely that N11 gets smaller than the required

cell counts in a NNCT for asymptotic approximation to

be appropriate. In particular, it is recommended that cell

counts should be at least 10 for Dixon’s test and at least 5

for type III cell-specific tests (Ceyhan 2008). To avoid

this confounding effect of asymptotic approximation, we

try larger samples with n1 = 30 and n2 ¼ 30; 40; . . .; 100

for HA:r = 1/10 and r ¼ 1=ð2
ffiffiffi
n

p
Þ: The corresponding

power estimates are presented in Fig. 5. Notice that under

HA: r = 1/10, P2 and P4 seem to fail with Dixon’s tests,

but P2–P5 seem to hold with the type III tests. Hence

type C association sometimes fails to satisfy properties

P2, P4 and P5.

The sensitivity of type C association to the association

parameter r is investigated and the test statistics together

with 95 % empirical CIs for the NNCT-tests are plotted in

Fig. 6. Notice that depending on the values of n1 and n2

and r, this parametrization yields association, Ho, or seg-

regation. In particular, when n1 = n2 is large, the pattern

does not deviate significantly from Ho for r & 0.4, and the

pattern belongs to association for r B 0.3 and to segrega-

tion for r C 0.5. On the other hand, when n1 = 30 and

n2 = 100, the pattern does not deviate significantly from

Ho for r & 0.6 or 0.7, and the pattern implies association

for r B 0.5 and mild segregation for r C 0.8. Hence we
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Fig. 2 The average test statistic values and the 95 % empirical

confidence intervals for the cell-specific and overall NNCT-tests

under the type C association alternatives HI
A � HVII

A (labeled with the

corresponding arabic numerals 1–7 in the horizontal axis) in the two-

class case and legend labeling is as in Fig. 1. The dashed horizontal

lines are the critical values at a = 0.025 of the standard normal

distribution (i.e., -1.96 and 1.96) for the cell-specific tests, and

a = 0.05 critical values of the v2 distribution with 1 and 2 degrees of

freedom (i.e., 3.84 and 5.99, respectively) for the overall tests. The

power estimates are jittered for better visualization
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recommend to use r B 0.25 times length of the shorter

edge of a rectangular study region, or use r ¼ 1=ðk
ffiffiffiffi
bq

p
Þ

with the choice of k implying r B 0.25 times length of the

shorter edge to have alternative patterns more robust to

differences in sample sizes.

Under type C association, although Rj and hj are gen-

erated uniformly in their respective ranges, Yj are not

uniformly distributed in the circles centered at Xi with

radius r0. To see this, without loss of generality, assume a

given Xi = (0,0). In polar coordinates, we have

Ri �Uð0; r0Þ and hi �Uð0; 2pÞ: Then probability density

functions (pdfs) of Ri and hi are fRðrÞ ¼ 1
r0

and fhðhÞ ¼ 1
2p ;

respectively. Hence by independence, the joint density of

(R, h) is

fR;hðr; hÞ ¼
1

2pr0

for r 2 ½0; r0� and h 2 ½0; 2p�:

Given Yj = (t, v) with t ¼ r cos h and v ¼ r sin h; we have

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ v2

p
and h ¼ arctanðv=tÞ: Then Jacobian is

J ¼
or
ot

or
ov

oh
ot

oh
ov

�
�
�
�

�
�
�
� ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ v2

p :

Hence, jJj ¼ 1ffiffiffiffiffiffiffiffi
t2þv2

p : Therefore, joint pdf of (T, V) is
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Fig. 3 The empirical power estimates for the NNCT-tests under the

type C association alternatives HIII
A : r ¼ 1=10 (top row) and HVII

A :

r ¼ 1=ð2
ffiffiffi
n

p
Þ (bottom row) in the two-class case as a function of

n1 ¼ n2 ¼ n=2 ¼ 10; 20; . . .; 100: The horizontal axis labels and

legend labeling are as in Fig. 1
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Fig. 4 The empirical power estimates for the NNCT-tests under the type C association alternatives in the two-class case under HA:r = 1/10 with

n1 = 10 and n2 ¼ 10; 20; . . .; 100: The legend labeling is as in Fig. 1
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Fig. 5 The empirical power estimates for the NNCT-tests under the type C association alternatives HA:r = 1/10 (top row) and r ¼ 1=ð2
ffiffiffi
n

p
Þ

(bottom row) in the two-class case with n1 = 30 and n2 ¼ 30; 40; . . .; 100: The legend labeling is as in Fig. 1
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Fig. 6 The test statistics (means and 95 % empirical CIs) for the

NNCT-tests under the type C association with r ¼ 0:1; 0:2; . . .; 1:0 for

n1 = n2 = 100 (top row) and n1 = 30 and n2 = 100 (bottom row).

The dashed horizontal lines for the cell-specific tests are critical

z-scores for a two-sided test with a = 0.05 (i.e., at -1.96 and 1.96),

and the dashed horizontal lines for the overall tests are as in Fig. 2.

The legend labeling is as in Fig. 1

Stoch Environ Res Risk Assess (2014) 28:1277–1306 1285

123

Author's personal copy



fT ;Vðt; vÞ ¼ fR;h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; arctanðy=xÞ

	 

jJj

¼ 1

2pr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ v2

p for 0\t2 þ v2 � r2
0:

For Yj to be uniform in the circle centered at 0 with

radius r0, C(0, r0), the joint pdf of (T, V) would have

been 1/(p r0
2).

3.3.2 Type U association

Since Y points are not uniform around randomly selected

X points under type C association, we suggest another type

of association pattern called type U association (‘‘U’’ for

uniform distribution) where Y points are generated uni-

formly around the X points. First generate Xi �iid Uðð0; 1Þ �
ð0; 1ÞÞ for i ¼ 1; 2; . . .; n1: Then generate Yj associated with

X’s for j ¼ 1; 2; . . .; n2 as follows. For each j, select an

i randomly from f1; 2; . . .; n1g; and generate Uj �iid Uð0; 1Þ
and set Rj ¼ r0

ffiffiffiffiffi
Uj

p
: Then set Yj ¼ Xi þ Rj cos Tj; sin Tj

� �0

where Tj �iid Uð0; 2pÞ: Then the association alternatives are

as

HA : r 2 ð0; r0Þ ð10Þ

for r0 sufficiently small such that ma(r) would be larger than

expected. Again, by construction, the association of

Y points with X points is stronger, compared to the asso-

ciation of X points with Y points. Notice also that associ-

ation gets stronger as r decreases whence ma(r) gets larger.

So this type of association satisfies P1.

Under type U association, Yj are uniformly distributed in

the circles centered at Xi with radius r0. To see this, without

loss of generality, let Xi = (0,0). Since Uj �iid Uð0; 1Þ;
cumulative distribution function (cdf) of Rj is FRðrÞ ¼
Pðr0

ffiffiffiffi
U

p
� rÞ ¼ PðUj � r2=r2

0Þ ¼ r2=r2
0: Hence pdf of Rj is

fRðrÞ ¼ 2r
r2

0

and hj �iid Uð0; 2pÞ; and pdf of hi is fhðhÞ ¼ 1
2p :

By independence, the joint density of (R, h) is

fR;hðr; hÞ ¼
r

pr2
0

for r 2 ½0; r0� and h 2 ½0; 2p�:

Switching from polar coordinates to Cartesian coordinates

by letting t ¼ r sin h and v ¼ r cos h; the Jacobian is J ¼
1ffiffiffiffiffiffiffiffi

t2þv2
p : Therefore, joint pdf of (T, V) is

fT ;Vðt; vÞ ¼ fR;h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; arctanðy=xÞ

	 

jJj ¼ 1

pr2
0

for 0\t2 þ v2 � r2
0:

Hence it follows that Yj are uniform in C(0,r0) as claimed.

The sensitivity of the type U association to the balanced

but increasing samples sizes is investigated empirically

under HA:r = 1/10 and r ¼ 1=ð2
ffiffiffi
n

p
Þ with n1 ¼ n2 ¼

n=2 ¼ 10; 20; . . .; 100 and only the results for r ¼ 1=ð2
ffiffiffi
n

p
Þ

are presented in Fig. 7. Notice that the power estimates

increase with n, which supports our assertion that type U

association satisfies property P3.

The sensitivity of the type U association to the differ-

ences in relative abundances is investigated empirically

with HA:r = 1/10 and r ¼ 1=ð2
ffiffiffi
n

p
Þ with n1 = 30 and n2 ¼

30; 40; . . .; 100 in Fig. 8. Notice that under HA:r = 1/10,

properties P2, P4, and P5 seem to fail for both type III and

Dixon’s tests, however under HA : r ¼ 1=ð2
ffiffiffi
n

p
Þ; these

properties hold for type III tests.

The sensitivity of type U association to the association

parameter, r, is investigated and the mean test statistics

together with 95 % empirical CIs for the NNCT-test sta-

tistics are plotted in Fig. 9. Notice that depending on the

values of n1 and n2 and r, this parametrization yields

association, null, or segregation patterns. In particular,

when n1 = n2 is large, the pattern does not deviate sig-

nificantly from Ho for r & 0.2, and the pattern implies

association for r B 0.1 and segregation for r C 0.4.

Moreover, when n1 = 30 and n2 = 100, we have a similar

trend. For type U association, we recommend to use

r B 0.10 times length of the shorter edge of a rectangular

study region, or use r ¼ 1=ðk
ffiffiffiffi
bq

p
Þ with the choice of

k satisfying r B 0.10 times length of the shorter edge to
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Fig. 7 The empirical power estimates for the NNCT-tests under the type U association alternatives HA : r ¼ 1=ð2
ffiffiffi
n

p
Þ with n1 ¼ n2 ¼ n=2 ¼

10; 20; . . .; 100: The horizontal axis labels and legend labeling are as in Fig. 1

1286 Stoch Environ Res Risk Assess (2014) 28:1277–1306

123

Author's personal copy



have alternative patterns more robust to differences in

sample sizes.

3.3.3 Type G association

We also introduce a type of association pattern, called type

G association (‘‘G’’ for Gaussian), where Y points are

generated according to bivariate normal distribution around

the X points. In particular, generate Xi �iid Uðð0; 1Þ �
ð0; 1ÞÞ for i ¼ 1; 2; . . .; n1: Then generate Yj associated with

X’s for j ¼ 1; 2; . . .; n2 as follows. For each j, select an

i randomly from f1; 2; . . .; n1g; and generate Uj * N(0,r)

and Vj * N(0, r), where N(l, r) stands for normal dis-

tribution with mean l and standard deviation r. Then set

Yj ¼ Xi þ Uj;Vj

� �0
: Then the association alternatives are as

HA : r 2 ð0; r0Þ ð11Þ

for r0 sufficiently small such that ma(r) would be larger

than expected. Again, by construction, the association of

Y points with X points is stronger, compared to the asso-

ciation of X points with Y points. Notice also that associ-

ation gets stronger as r decreases whence ma(r) gets larger.

So this type of association satisfies P1.

Under type G association, Yj are distributed according to

bivariate normal distribution with mean Xi and covariance

matrix r2 I2 where I2 is the 2-by-2 identity matrix. In polar

coordinates, to find the marginal distributions of Rj and

hj, without loss of generality, we let Xi = (0,0). Then the

joint density of Yj = (T, V) is fU;Vðt; vÞ ¼ 1
2pr2 expð� t2þv2

2r2 Þ:
Making the change of variables, t ¼ r cos h and v ¼ r sin h;
we get the joint density of R, h as

fR;hðr; hÞ ¼
r

2pr2
exp � r2

2r2

� �

for r 2 ð0;1Þ and h 2 ½0; 2pÞ:

So the marginal pdf of R is fRðrÞ ¼ r
r2 exp � r2

2r2

	 

for r C 0

and cdf of R is FRðrÞ ¼ 1 � exp � r2

2r2

	 

for r C 0. On the

other hand, the marginal pdf of h is fhðhÞ ¼ 1
2p ; for h 2

½0; 2pÞ hence h is uniformly distributed in (0,2 p).

The sensitivity of the type G association to the bal-

anced but increasing sample sizes is investigated empiri-

cally with HA:r = 1/10 and r ¼ 1=ð2
ffiffiffi
n

p
Þ with

n1 ¼ n2 ¼ n=2 ¼ 10; 20; . . .; 100 in Fig. 10. Notice that

under HA:r = 1/10, the power estimates tend not to

increase as n increases (in fact, it tends to decrease as

n increases), hence P3 fails with both tests. However,

under HA : r ¼ 1=ð2
ffiffiffi
n

p
Þ; P3 holds for both tests, and the

trend in the power is more in line with P3 for type III

tests.

The sensitivity of the type G association to the differ-

ences in relative abundances is investigated empirically

with HA:r = 1/10 and r ¼ 1=ð2
ffiffiffi
n

p
Þ with n1 = 30 and

n2 ¼ 30; 40; . . .; 100 in Fig. 11. Notice that under

HA:r = 1/10, P2, P4, and P5 seem to fail; however under

HA : r ¼ 1=ð2
ffiffiffi
n

p
Þ; these properties hold for type III tests.
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Fig. 8 The empirical power estimates for the NNCT-tests under the type U association alternatives HA:r = 1/10 (top row) and HA : r ¼
1=ð2

ffiffiffi
n

p
Þ (bottom row) with n1 = 30 and n2 ¼ 30; 40; . . .; 100: The horizontal axis labels and legend labeling are as in Fig. 1
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The sensitivity of type G association to the association

parameter r is investigated and the mean test statistics

together with 95 % empirical CIs for the NNCT-test

statistics are plotted in Fig. 12. Notice that depending on

the values of n1 and n2 and r, this parametrization yields

association, null, or segregation patterns. In particular,
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Fig. 9 The test statistics (means and 95 % empirical CIs) based on

10,000 Monte Carlo replications for the NNCT-tests under type U

association with r ¼ 0:1; 0:2; . . .; 1:0 for n1 = n2 = 100 (top row)

and n1 = 30 and n2 = 100 (bottom row). The dashed horizontal lines

are as in Fig. 6 and the legend labeling is as in Fig. 1
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Fig. 10 The empirical power estimates for the NNCT-tests under the type G association alternatives HA:r = 1/10 (top row) and HA : r ¼
1=ð2

ffiffiffi
n

p
Þ (bottom row) with n1 ¼ n2 ¼ n=2 ¼ 10; 20; . . .; 100: The horizontal axis labels and legend labeling are as in Fig. 1
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when n1 = n2 is large, the pattern does not deviate sig-

nificantly from Ho for r & 0.2, and the pattern belongs to

association for r B 0.1 and to segregation for r C 0.4.

Moreover, when n1 = 30 and n2 = 100, we have a similar

trend. For type G association, we recommend using

r B 0.10 times length of the shorter edge of a rectangular
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Fig. 11 The empirical power estimates for the NNCT-tests under the type G association alternatives HA:r = 1/10 (top row) and HA : r ¼
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Þ (bottom row) with n1 = 30 and n2 ¼ 30; 40; . . .; 100: The horizontal axis labels and legend labeling are as in Fig. 1
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Fig. 12 The test statistics (means and 95 % empirical CIs) based on

10,000 Monte Carlo replications for the NNCT-tests under type G

association with r ¼ 0:05; 0:1; 0:2; . . .; 1:0 for n1 = n2 = 100

(top row) and n1 = 30 and n2 = 100 (bottom row). The dashed

horizontal lines are as in Fig. 6 and the legend labeling is as in Fig. 1
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region, or using r ¼ 1=ðk
ffiffiffiffi
bq

p
Þ with the choice of k satis-

fying r B 0.10 times length of the shorter edge to have

alternative patterns more robust to differences in sample

sizes.

Remark 3.2 Among the above association pattern types,

type C was defined previously in Ceyhan (2008) (in fact,

only the alternatives HI
A � HIII

A in Eq. (10) were employed

previously), but types G and U are newly introduced in this

article. In practice, when a multi-class data set exhibits

association, one can fit the best association pattern to it, and

assess the goodness-of-fit of the proposed model to the real

data. Furthermore, the fitted model provides a means to

assess power and distribution of the test or estimated

parameters empirically. Furthermore, to generate robust

and consistent (in the sense of Remark 3.1) association

patterns, these association types provide useful alterna-

tives. h

4 Multi-class spatial patterns resulting from various

point processes

For simplicity, we consider the two-class case. The

extension of the discussion to three or more classes would

be similar, possibly with more complicated interactions

between the classes.

4.1 One class from HPP, the other from a clustering

or regularity process

We also investigate which stochastic point process results

in segregation or association with respect to a class of

points from CSR. For this purpose, we generate X points

from a HPP with intensity k = 100. Hence, a realization of

this process is from the CSR pattern. Then we generate

Y points from the following spatial point processes (see

Baddeley and Turner 2005 for more details):

(1) Matérn Model I: Y points are generated from the

Matérn Model I inhibition process, denoted Mat-

érnI(j, r). First a HPP with intensity j is generated.

Then any point that lies closer than a distance r from

another point is deleted. That is, pairs of points with

distance less than r are removed. The Y points that

remain constitute a realization of Matérn Model I

process. We use j = 100 and r ¼ 0:01; 0:02; . . .; 0:05

in our Monte Carlo simulations.

(2) Matérn Model II: Y points are generated from the

Matérn Model II inhibition process, denoted Matér-

nII(j, r). First a HPP with intensity j is generated as

in Matérn I case. Then each point is marked with an

‘‘arrival time’’, a number uniformly distributed in

[0,1] independently of other points. Any point that

lies closer than distance r from another point whose

arrival time is smaller is deleted. Hence Matérn

Model II has higher intensity for the same parameter

values compared to Matérn Model I. We use j = 100

and r ¼ 0:01; 0:02; . . .; 0:10 in our simulations.

(3) Simple Sequential Inhibition (SSI) Process:

Y points are generated from the SSI process, denoted

as SSI(r, n). In this case, we start with the unit square,

and add points as follows. Each new point is generated

independently uniformly in the unit square. If a new

point has distance less than r units from an existing

point, then it is not retained and another random point

is generated. The algorithm ends when the desired

number of points n is reached, or when the current

point allocation does not change for a sufficiently

large number of iterations. We use n = 100 and r ¼
0:01; 0:02; . . .; 0:10 in our simulations.

(4) Matérn Cluster Process (MCP), case 1: In this

process, Y points are generated from Matérn’s cluster

process in the unit square, denoted MCP(j, l, r).

First ‘‘parent’’ points are generated from a Poisson

process with intensity j and then each parent is

replaced by points independently uniformly generated

inside the circle centered at the parent point with

radius r, where number of these points follow a

Poisson(l) distribution. The parent points are not

restricted to lie in the unit square. Here we take

j = 5, l = 20 and r = 0.05 and r ¼ 0:1; 0:2; . . .; 1:0

in our simulations.

(5) MCP, case 2: This is the same process as above, but we

take r ¼ 0:1; j ¼ 1; 2; . . .; 10 and l = b100/jc, respec-

tively, where b x c stands for the floor of x. That is, we

take ðj; lÞ 2 fð1; 100Þ; ð2; 50Þ; ð3; 33Þ. . .; ð10; 10Þg in

our simulations.

(6) Thomas Cluster Process (TCP), case 1: This

clustering process, denoted TCP(j, l, r), is a special

case of Neyman–Scott process (NSP). In this process,

‘‘parent’’ points are independently uniformly gener-

ated from a Poisson process with intensity j. Then

each parent point is replaced by points whose

positions being isotropic Gaussian displacements

N(0, r2 I2), where number of these points follow a

Poisson(l) distribution. Here we take j = 5, l = 20

and r ¼ 0:1; 0:2; . . .; 1:0 in our simulations.

(7) TCP, case 2: In this process, we take r ¼ 0:1; j ¼
1; 2; . . .; 10 and l = b 100/j c, respectively. That is, we

take ðj; lÞ 2 fð1; 100Þ; ð2; 50Þ; ð3; 33Þ. . .; ð10; 10Þg in

our simulations.

(8) NSP, case 1: In this case, Y points are generated from a

NSP, denoted NS(j, r0, cluster(r1, r2, l)), where j is

the intensity of the Poisson process of cluster centers, r0

is the maximum radius of a random cluster, and
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cluster(r1, r2, l) is a function generating random clus-

ters. First, the ‘‘parent’’ points are generated from a

Poisson process with intensity j. Then each parent is

replaced by a random cluster of points from the cluster

function. In our case, we take the cluster function that

generates N uniform points, with N having a Poisson(l)

distribution, in the circles centered at the parent points

with radius r2, and remove points whose distance to the

parent points is less than r1. That is, cluster function

produces ring shaped clusters around the parent points.

In our simulations, we take j = 5 and l = 27 and

r0 = r, r2 = r, and r1 = r/2 where r ¼ 0:1; 0:2; . . .;
1:0 in our simulations. The choice of l = 27 is to have

the expected number of generated Y points to be

approximately 100.

(9) NSP, case 2: In this case, we take r0 = r, r2 = r, and

r1 = r/2 with r ¼ 0:1; j ¼ 1; 2; . . .; 10 and l = b
135/j c, respectively. That is, we take ðj; lÞ 2
fð1; 135Þ; ð2; 67Þ; ð3; 45Þ. . .; ð10; 13Þg in our simula-

tions. The choice of l = b 135/j c is to have the

expected number of generated Y points to be approx-

imately 100.

Remark 4.1 In all the above cases, Nmc = 10,000 repli-

cations are performed for each parameter value. For

example, in Matérn Model I, we generate 10,000 realiza-

tions of the process for each of r ¼ 0:01; 0:02; . . .; 0:05

with j = 100. Furthermore, in order to remove the influ-

ence of the relative abundance differences, the parameters

are chosen so that we have 100 points on the average for

the X points in all cases, and 100 points for the Y points

from the clustering processes.

Note that in the inhibition processes (i.e., cases (1)–(3), if

we take r = 0, the processes boil down to a HPP. Moreover,

in the usual NSP, if we take the cluster function that

generates n uniform points in the circles centered at the

parent points with radius r0 and choose j = 5 and n = 20

and r0 ¼ 0:1; 0:2; . . .; 1:0; we obtain the MCP, case 1 above.

If we take r ¼ 0:1; j ¼ 1; 2; . . .; 10 and l = b 100/j c,

respectively, we obtain the MCP, case 2 above. Furthermore,

in the NSP cases in (8) above, if we take r1 = 0

and l = 100, we also obtain MCP, case 1. h

With X points from a HPP and Y points generated from

the above spatial point processes, we expect to have vari-

ous patterns between X and Y points.

Processes (1)–(3) are inhibition processes, so the

Y points generated by these processes would deviate

towards regularity from CSR. Hence under these

processes, X points are from the CSR process, and

Y points are more regular than X points. As a result of

this, with increasing level of regularity probability of NN

of Y points being from Y points decreases, hence

probability of NN of Y points being from X points

increases. Thus we expect that as the level of inhibition

or regularity increase, the level of association between

X and Y points increases as well.

Processes (4)–(9) are cluster processes, so the Y points

generated by these processes would deviate towards

clustering from CSR. Hence under these processes,

X points are from the CSR process, and Y points are

more clustered than X points. With increasing level of

clustering, probability of a NN of Y points being from

Y points increases, hence we expect that as the level of

clustering increases, the level of segregation between

X and Y points increases as well.

The means and the 95 % empirical CIs around the

means for the cell (2,2) statistics under the Processes (1)–

(9) are presented in Fig. 13. Cell (1,1) statistics are very

similar to the cell (2,2) statistics, hence are omitted. Fur-

thermore, the overall test statistics do not provide the

direction of deviation from CSR independence, hence are

not presented either.

4.1.1 Comparison of cell (2,2) statistics for each point

process

(1) In Matérn Model I, test statistics tend to be negative

for r C 0.02, and get more negative as r increases

which imply an increasing level of association

between X and Y points. Hence as r increases, the

level of regularity of Y points increases, and the level

of association between X and Y points increases as

well. However, in this setup there is only mild to

moderate association, with strongest association

occurring around r & 0.05.

(2) In Matérn Model II, test statistics tend to be negative

which suggest association between X and Y points.

Furthermore, they have a concave up trend, i.e., they

decrease, reach a minimum, and then increase as

r increases. The reason for such a trend could be that

with increasing r, number of Y points tend to

decrease. With fixed n2, we expect that the level of

association should increase (i.e., the test statistics

should decrease) as r increases. The highest level of

association occurs around r = 0.06.

(3) In SSI Process, test statistics have a similar trend as in

Matérn Model II with the highest level of association

occurring at r = 0.08.

(4) In MCP, case 1, the test statistics tend to be positive

for r B 0.5 (hence are suggestive of segregation

between X and Y points), and for r [ 0.5, they are

within the null region which suggest no significant

deviation from Ho. So as r decreases, test statistics
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tend to increase in the positive direction. Hence as

r decreases, the level of clustering of Y points

increases, and thus level of segregation between

X and Y points increases.

(5) In MCP, case 2, as j increases, the number of clusters

tends to increase as well. The test statistics are all

significantly positive for the ranges of the parameters

we considered, hence there is strong segregation

between X and Y points. However, we also observe

that as j increases, test statistics tend to decrease.

Hence as the number of clusters tend to increase, the

level segregation decreases (provided we have the

same total number of points on the average in the

same support). That is, in our setup, when j increases,

the number of points per cluster tends to decrease

proportional with j. However, if j were increasing

with fixed l, we might have a different trend in the

level of segregation.

(6) In TCP, case 1, the test statistics have a similar trend

as in MCP, case 1, with smaller test statistic values

for the ranges of parameters considered. So as r
decreases, test statistics tend to increase in the

positive direction, and hence as r decreases, the

level of segregation between X and Y points increases.

(7) In TCP, case 2, the test statistics have a similar trend

as in MCP, case 2, with smaller test statistic values

for the ranges of parameters considered. Hence as the

number of clusters tend to increase, the level segre-

gation decreases (provided we have the same number

of points on the average).
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Fig. 13 The test statistics (means and 95 % empirical CIs) for cell

(2,2) with X points from a HPP with intensity j = 100 and Y points

from various other clustering and regularity patterns under cases (1)–

(9) of Sect. 4.1. The dashed horizontal lines are as in Fig. 6 and

legend labeling is as in Fig. 1. SSI simple sequential inhibition, MCP

Matérn cluster process, TCP Thomas cluster process, NSP Neyman–

Scott process
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(8) In NSP, case 1, the trend is as in the MCP, case 1 with

test statistics tending to be positive for r B 0.6.

(9) In NSP, case 2, the trend is as in the MCP, case 2.

4.2 Multi-class patterns with both classes

from clustering or regularity processes

We also investigate the case that both classes are from

stochastic point processes which result in clustering or

regularity in a one-class setting for the particular class. Our

goal is to understand which clustering or regularity patterns

in a one-class setting will result in segregation or associ-

ation in a multi-class setting. For convenience, we study

the two-class case. We generate X and Y points from the

following spatial point processes (see Baddeley and Turner

2005 for more details):

(1) Matérn Model II: Both X and Y points are indepen-

dently generated from the Matérn Model II inhibition

process, MatérnII(j, r). That is, first n1 = n2 = 100

points are generated from a HPP with intensity j.

Then each point is marked by an ‘‘arrival time’’, a

number uniformly distributed in [0,1] independently

of other points. Any X point that lies closer than

distance r from another X point whose arrival time is

smaller is deleted. Likewise a similar thinning is

applied to Y points. We use j = 100 and r ¼
0:01; 0:02; . . .; 0:10 in our simulations.

(2) MCP, case 1: In this case, both X and Y points are

generated independently from Matérn’s cluster pro-

cess in the unit square, MCP(j, l, r) with different

parent sets for X and Y points. That is, first ‘‘parent’’

points are generated for X points from a Poisson

process with intensity j and then each parent is

replaced by X points independently uniformly gener-

ated inside the circle centered at the parent point with

radius r, where number of these X points follows a

Poisson(l) distribution. Y points are generated sim-

ilarly. Here we take j = 5, l = 20 and r ¼
0:1; 0:2; . . .; 1:0 for both classes in our simulations.

(3) MCP, case 2: In this case, both X and Y points are

generated independently from Matérn’s cluster pro-

cess in the unit square, MCP(j, l, r), but with the

same parent set for both of X and Y points. That is,

first ‘‘parent’’ points are generated from a Poisson

process with intensity j and then X and Y points are

generated around these same parents as in case 1

above. Here we take j = 10, l = 20 and r ¼
0:1; 0:2; . . .; 1:0 for each class as well in our

simulations.

(4) MCP, case 3: In this case, both X and Y points are

generated independently from Matérn’s cluster pro-

cess in the unit square, MCP(j, l, r) with different

parent sets for X and Y points. Here we take j ¼
1; 2; . . .; 10; l ¼ b100=jc and r = 0.1 for both classes

in our simulations.

(5) MCP, case 4: This is the same as case 3 above but

with the same parent sets for both X and Y points, and

j ¼ 1; 2; . . .; 10; l ¼ b100=jc and r = 0.1 for each

class in our simulations.

(6) X points from Matérn II Process, Y points from

Matérn Clustering Process: In this case, X points

are generated from MatérnII(ji, ri) process which is a

regularity (or inhibition) process, while Y points are

from MCP(jc, l, rc) process which is a clustering

process. For MatérnII(ji, ri) process we take

ji = 100 and ri ¼ 0:01; 0:02; . . .; 0:10; and for

MCP(jc, l, rc) process we take jc = 5, l = 20, and

rc ¼ 0:05; 0:1; 0:2; 0:3; . . .; 1:0: That is, we have gen-

erated X and Y points for each combination of (ri, rc)

values in our simulations.

In cases (1)–(5), 10,000 Monte Carlo replications are

generated for each parameter value at each case, and in

case (6), we generate 1,000 Monte Carlo replications for

each combination of (ri, rc) values. Under case (1) above,

both classes X and Y are from the same regularity or

inhibition process, while under cases (2)–(5), both classes

are from the same clustering process, with same or dif-

ferent parents. Under case (6), we have a mixed process,

where class X is from a regularity process, while class Y is

from a clustering process.

The means and the 95 % empirical CIs around the

means for the cell (2,2) statistics under the processes (1)–

(5) are presented in Fig. 14. Cell (1,1) statistics are very

similar to the cell (2,2) statistics, hence are omitted. Fur-

thermore, the overall test statistics do not provide the

direction of deviation from the null hypothesis, hence are

not presented either.

4.2.1 Comparison of cell (2,2) statistics for each point

process

(1) In this case, the test statistics tend to be negative and

start to be significantly negative for r C 0.02. As

r increases the level of regularity for each class

increases, and we also observe that the level of

association between X and Y points increases as well.

That is, when both X and Y points are from the same

inhibition or regularity process, members of a class

tend to repel conspecifics (i.e., their own kind), but do

not repel members from the other class. Hence

indirectly, this causes mixed NN pairs to be more

likely in the pattern, hence the association between

the classes. In other words, the association between
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X and Y is not necessarily because of the attraction

between the classes, but because each class inhibits or

repels its own kind, which renders its NNs to be from

the other class more often than expected.

(2) In this case, the test statistics tend to be significantly

positive for r B 0.5, and not significantly different from

zero for the larger r values. Hence for r B 0.5, there is

significant segregation between the classes, and for larger

r values the pattern is not significantly different from the

null pattern. Also we observe that as r decreases the level

of segregation increases. By construction, as r decreases,

each class would be more strongly clustered. Hence,

when points are from the same clustering process with

different parents, as the level of clustering increases, so

does the level of segregation.

(3) In this case, both classes are from the same Matérn

cluster process as in case (2) but with the same parent

points. We observe that the test statistics are not

significant in either direction, hence the patterns do

not significantly deviate from the null hypothesis. The

reason behind this is that, when the classes share the

same parents, then it is as if the RL of points, after the

points are generated from a clustering process. Hence

the NN probabilities are expected to be proportional

to the class sizes, which is our Ho.

(4) In this case, the test statistics are all significantly

positive for all j values considered, which suggests

significant segregation between the classes. However,

we also observe that as j increases, the test statistics

tend to decrease, and so does the level of segregation.

Hence, when points are from the same clustering

process with different parents, as the number of

clusters increases, the level of segregation tends to

decrease provided the average number of points per

cluster, l, is proportionally decreasing with j to have

the total average number of points fixed.

(5) In this case, we have the same conclusion as in case

(3) above, since both classes are from the same

Matérn clustering process with the same parent

points.

(6) In this case, the mean test statistics for each combi-

nation of (ri, rc) values are presented in Fig. 15 as a

gray-scale picture, where only test statistics for

Dixon’s cell (1,1) and cell (2,2) statistics are presented;

the test statistics for type III cell-specific tests are

similar, hence are omitted. In this case, we observe

positive test statistics values for smaller rc values, and

negative test statistics for larger rc values. Hence for

smaller rc values, the clustering of Y points dominate

the pattern and causes segregation between the two

classes; and for larger rc values the clustering is weak,

and the inhibition of X points dominate the pattern and

suggest association between the two classes. However,

considering the test statistics, we observe that positive
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Fig. 14 The test statistics (means and 95 % empirical CIs) for cell (2,2) with X points and Y points from various clustering or regularity patterns

under cases (1)–(5) of Sect. 4.2. The dashed horizontal lines are as in Fig. 6 and legend labeling is as in Fig. 1. MCP Matérn cluster process
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test statistics are significant for cell (1,1) statistic for

rc B 0.3, while cell (2,2) statistics are positively

significant for rc B 0.2. The negative test statistics

are significant for cell (1,1) for rc C 0.5 and ri C 0.4,

but the negative statistics are not significant for cell

(2,2). Therefore, the simulation results suggest that

when there is strong clustering, it is reflected as

segregation at both cell-specific tests, and when

clustering is weak, but inhibition is strong, it is only

reflected at the cell corresponding to the class from the

inhibition process.

Remark 4.2 Segregation or association can result even if

each class is independently generated from a different

pattern. The discussion and investigation provided in this

section may help decide what to expect between classes if

the generative pattern is known or estimated fairly well for

each class. Furthermore, one can fit the best model for each

class, and assess various aspects (e.g., power, distribution

or estimation) for the current or new methods. If one

detects segregation or association in a multi-class setting,

then s/he can fit the generative pattern for each class. This

will help understand the causes of the observed pattern of

segregation or association. h

5 Spatial patterns between three classes

The two-class patterns of Sect. 4 are not so realistic in

practice, since usually marked point patterns in real life

consist of three or more classes. In the three-class case, we

consider various association patterns as well as mixed

patterns. Because, with three or more classes, patterns and

interactions may get very complicated, in the sense that

classes may exhibit different patterns or different levels of

the same pattern with respect to the other classes. Hence, a

complete analysis and interpretation in such multi-class

cases are more challenging compared to the two-class case.

5.1 Association between three classes

In the three-class case, we parameterize the association

alternatives as follows. Let X n1
be a random sample from

Uðð0; 1Þ � ð0; 1ÞÞ: Then generate Yj and Zk for j ¼
1; 2; . . .; n2 and k ¼ 1; 2; . . .; n3 as follows. For each

j, select an i randomly from f1; 2; . . .; n1g; and set Yj :¼

Xi þ RY
j ðcos Tj; sin TjÞ0 where RY

j �iid Uð0; ryÞ with ry 2

ð0; 1Þ and Tj �iid Uð0; 2pÞ: Similarly, for each k, select an i0

randomly from f1; 2; . . .; n1g; and set Zk :¼ Xi0 þ
RZ

k ðcos U‘; sin U‘Þ0 where RZ
k �iid Uð0; rzÞ with rz 2 ð0; 1Þ

and Uk �iid Uð0; 2pÞ:
We consider the following association alternatives:

H1
A : ry ¼ 1=7; rz ¼ 1=10; H2

A : ry ¼ 1=10; rz ¼ 1=20;

H3
A : ry ¼ 1=13; rz ¼ 1=30;H4

A : ry ¼
1

2
ffiffiffiffiffi
n1

p ; rz ¼ 1=10;

H5
A : ry ¼

1

2
ffiffiffiffiffi
n1

p ; rz ¼
1

4
ffiffiffiffiffi
n1

p ; H6
A : ry ¼

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2

p ;

rz ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n3

p ; H7
A : ry ¼

1

2
ffiffiffi
n

p ; rz ¼
1

4
ffiffiffi
n

p ð12Þ

As ry or rz or both decrease, the level of association

increases. That is, the association between classes X and

Y and association between classes X and Z get stronger

from H1
A to H7

A: By construction, classes Y and Z are

associated with class X, while classes Y and Z are not

associated, but perhaps mildly segregated for small ry and

rz. Furthermore, by construction, classes X and Z are more

associated compared to classes X and Y.

Similar to type C association, under these association

alternatives, although RY
j ;RZ

k ; h
Y
j and hZ

k are uniformly

distributed in their respective ranges, Yj are not uniformly

distributed in the circles centered at Xi with radius ry, and

Zk are not uniformly distributed in the circles centered at Xi0

with radius rz. In fact, letting Y = (T1,V1) and

Z = (T2, V2), joint pdf of (T1,V1) is fT1;V1
ðt1; v1Þ ¼
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Fig. 15 The means of the

Dixon’s cell (1,1) and cell (2,2)

test statistics under case (6) in

Sect. 4.2 for combinations of

rc ¼ 0:05; 0:1; 0:2; . . .; 1:0 and

ri ¼ 0:1; 0:2; . . .; 1:0 plotted as a

gray-scale image together with

the contours. The test statistics

decrease in value as gray level

gets darker
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1

2pry

ffiffiffiffiffiffiffiffi
t2
1
þv2

1

p for 0\t2
1 þ v2

1 � r2
y ; and joint pdf of (T2,V2) is

fT2;V2
ðt2; v2Þ ¼ 1

2prz

ffiffiffiffiffiffiffiffi
t2
2
þv2

2

p for 0\t2
2 þ v2

2 � r2
z :

Under the above association alternatives, we have var-

ious levels of association for each pair of classes.

Under H1
A � H3

A; Y points are associated with X points

and Z points are associated with X points with the level

of association increasing from H1
A to H3

A: In each

alternative, Z points are more strongly associated with

X points compared to Y points.

Under H4
A and H5

A;Y and Z points are associated with

X points with the level of association depending on n1.

With n1 = 100, under H4
A; Y points are more strongly

associated with X points, and under H5
A; Z points are

more strongly associated with X points.

Under H6
A; Y points are associated with X points with the

level of association depending on n1 ? n2 and Z points

are associated with X points with the level of association

depending on n1 ? n3. With n1 = n2 = n3 = 100, both

levels of association are same

Under H7
A; Y and Z points are associated with X points

with the level of association depending on n. With

n1 = n2 = n3 = 100, Z points are more strongly asso-

ciated with X points.

The means and the 95 % empirical CIs around the

means for the overall tests under the association alterna-

tives are presented in Fig. 16(left). Overall test statistics

are moderately significant in H1
A and are highly significant

for all other cases with H7
A having the most significant

values. This is in agreement with our construction that H1
A

contains the weakest association levels, and H7
A contains

the strongest association levels.

The means and the 95 % empirical CIs around the

means for the cell-specific tests under the association

alternatives are presented in Fig. 17. By symmetry in the

sample sizes, cells (i, j) and (j, i) for i 6¼ j have the same

cell-specific test statistics, hence only cells (1,1), (1,2),

(1,3), (2,2), (2,3), and (3,3) are presented in Fig. 17.

5.1.1 Comparison of test statistics for each cell (i, j)

Cell (1,1) statistics are negative under all association

cases and most significant under H7
A: This implies the

most significant lack of segregation of X points occurs

under H7
A; where we have the strongest association

pattern.

Cell (1,2) statistics are either mildly or highly positive

and the most significant value occurs under H4
A: This

suggests that H4
A contains the strongest association

between X and Y points. Indeed, in our construction,

only in this alternative we have the association of

Y points with X points is stronger than the association of

Z points with X points.

Cell (1,3) statistics are mildly or highly positive with the

most significant values occurring under H2
A;H3

A;H5
A; and

H7
A (highest test statistics occurs under H7

A). Under these

alternatives, in our construction, association of Z points

with X points is stronger than that of Y points with

X points, with rz being at least half of ry.

Cell (2,2) statistics are mildly or highly negative with the

most significant values occurring under H4
A � H7

A (lowest

statistics occur under H4
A and H7

A) which implies severe lack

of segregation of Y points under these alternatives. In our

construction, association of Y points with X points is stronger

under these alternatives compared to other alternatives.
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Fig. 16 The test statistics (means and 95 % empirical CIs) for the

overall tests based on 10,000 Monte Carlo replications under the

association alternatives (left) and mixed alternatives (right) in the

three-class case with n1 = n2 = n3 = 100. The dashed horizontal

lines are as in Fig. 2, legend labeling is as in Fig. 1, and the

horizontal axis contains the association case numbers 1–7 of Sect. 5.1

and mixed pattern numbers 1–7 of Sect. 5.2
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Cell (2,3) statistics are mildly or highly negative with the

most significant values occurring under H4
A which

implies severe lack of association between Y and

Z points. In our construction, Y and Z points are not

associated.

Cell (3,3) statistics are mildly or highly negative with the

most significant values occurring under H2
A;H3

A and

H5
A � H7

A (lowest statistics occurring under H3
A;H5

A; and

H7
A) which implies severe lack of segregation of Z points.

In our construction, Z points are strongly associated with

X points.

5.1.2 Comparison of cell-specific test statistics under each

association alternative

Under H1
A; cell (1,1) statistics are moderately negative,

and cell (2,2), (2,3), and (3,3) statistics are mildly neg-

ative. On the other hand, cell (1,2) statistics are mildly

positive and cell (1,3) statistics are moderately positive.

All these together imply that X points exhibit moderate

lack of segregation while Y and Z points have mild lack

of segregation; and there is mild lack of association

between Y and Z points; and there is mild association

between X and Y points, and moderate association

between X and Z points. In our construction, Y points are

associated with X points, and so are Z points but at a

higher level.

Under H2
A; we observe the same trends as in H1

A but at a

higher level and under H3
A we observe the same trends as

in H2
A but at a higher level.

Under H4
A; cell (1,1) statistics are highly significant in

the negative direction, cell (2,2) and (2,3) statistics are

moderately negative and cell (3,3) statistics are mildly

negative. On the other hand, cell (1,3) statistics are

mildly positive and cell (1,2) statistics are strongly

positive. All these considered imply severe lack of

segregation for X points, and mild lack of segregation for

Y and Z points, moderate lack of association between

Y and Z points, strong association between X and

Y points and mild association between X and Z points. In

our construction Y and Z points are associated with

X points where association of Y points is stronger.

Under H5
A cell (1,1) statistics are highly negative, cell

(2,2), (2,3), and (3,3) statistics are moderately negative.

On the other hand, cell (1,3) statistics are strongly

positive and cell (1,2) statistics are moderately positive.

All these considered imply severe lack of segregation for

X points, and moderate lack of segregation for Y and

Z points, moderate lack of association between Y and

Z points, strong association between X and Z points and

moderate association between X and Y points. In our
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Fig. 17 The test statistics (means and 95 % empirical CIs) for the cell

(1,1), (1,2), (1,3), (2,2), (2,3), (3,3) statistics based on 10,000 Monte

Carlo replications under the association alternatives in the three-class

case with n1 = n2 = n3 = 100. The dashed horizontal lines are as in

Fig. 6, legend labeling is as in Fig. 1, and the horizontal axis is

association case numbers 1–7 corresponding to H1
A � H7

A in Sect. 5.1
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construction Y and Z points are associated with X points

where association of Z points is stronger.

Under H6
A; we have a similar trend as in H5

A for cell (1,1),

(2,2), (2,3), and (3,3) statistics. On the other hand, cell

(1,2) and (1,3) statistics are moderately but equally

positive. All these considered imply moderate associa-

tion between X and Z points and the same level of

association between X and Y points. In our construction

Y and Z points are equally associated with X points.

Under H7
A; we have a similar trend as in H5

A with more

significant test statistics.

5.2 Mixed alternatives for three classes

In the k-class case with k C 3, it is possible to have seg-

regation between a pair of classes, or association between

another pair, or the null pattern in another one. We call

such patterns as ‘‘mixed’’ alternatives. We explore the

following mixed patterns:

Case 1: Let Xn1
be a random sample of size n1 from

Uðð0; 1Þ � ð0; 1ÞÞ and Y ¼d X; i.e., Yn2
is a

random sample of size n2 from Uðð0; 1Þ �
ð0; 1ÞÞ and Yn2

is independent of X n1
: Then

generate Zk for k ¼ 1; 2; . . .; n3 as follows. For

each k, select an i randomly, and set Zk :¼
Xi þ RZ

k ðcos U‘; sin U‘Þ0 where RZ
k �iid Uð0; rzÞ

with rz 2 ð0; 1Þ and Uk �iid Uð0; 2pÞ: For this

case, we select rz = 1/10. So in this case, X and

Y points follow CSR independence pattern, while

Z points are associated only with X points.

Case 2: Generate Xi �iid Uðð0; 3=4Þ � ð0; 3=4ÞÞ for i ¼
1; 2; . . .; n1; Yj �iid Uðð1=4; 1Þ � ð1=4; 1ÞÞ for j ¼
1; 2; . . .; n2; and generate Zk for k ¼ 1; 2; . . .; n3

as follows. For each k, select an i randomly, and

set Zk :¼ Xi þ Rkðcos Tk; sin TkÞ0 where Rk �iid

Uð0; rzÞ with rz = 1/10. In this case, X and

Y points are segregated, and X and Z are

associated, so it is expected that Y and Z are

(indirectly) segregated but at a lesser extent.

Case 3: Generate Xi and Yj as in Case 2. Combine X n1

and Yn2
to form a sample of size n1 ? n2, and

relabel as Wn1þn2
¼ fW1;W2; . . .;Wn1þn2

g: Then

generate Zk for k ¼ 1; 2; . . .; n3 as follows. For

each k, select an i0 randomly, and set Zk :¼
Wi0 þ Rkðcos Uk; sin UkÞ0 where Rk �iid Uð0; rzÞ
with rz = 1/10 and Uk �iid Uð0; 2pÞ: In this case,

X and Y points are segregated as in Case 2, and

Z points are associated with both X and Y points.

Case 4: Generate Xi �iid Uðð0; 2=3Þ � ð0; 2=3ÞÞ for i ¼
1; 2; . . .; n1; Yj �iid Uðð1=3; 1Þ � ð1=3; 1ÞÞ for j ¼
1; 2; . . .; n2; and generate Zk as in Case 2 with

rz = 1/20. In this case, X and Y points are

segregated (at a higher level than Cases 2 and 3),

and X and Z are associated, so it is expected that

Y and Z are (indirectly) segregated as well but at

a lesser extent.

Case 5: Generate Xi and Yj as in Case 4 and generate Zk

as in Case 3 with rz = 1/20. In this case, X and

Y points are segregated as in Case 4, and Z points

are associated with both X and Y points (at a

higher level than Cases 1–3).

Case 6: Generate Xi and Yj as in Case 4 and generate Zk

as in Case 2 with rz ¼ 1=ð2 ffiffiffiffiffi
n1

p Þ: In this case,

X and Y points are segregated as in Case 4, and

Z points are associated only with X points and so

it is expected that Y and Z points are segregated

but at a lesser extent.

Case 7: Generate Xi and Yj as in Case 4 and generate Zk

as in Case 3 with rz ¼ 1=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2

p
Þ: In this

case, X and Y points are segregated as in Case 4,

and Z points are associated with both X and

Y points at a higher level than Case 5.

The means and the 95 % empirical CIs around the

means for the overall tests under the mixed alternatives are

presented in Fig. 16(right). Observe that the overall tests

are highly significant for all cases except Case 1, in which

case overall tests are moderately significant. This is in

agreement with the fact that in Case 1, X and Y points

follow CSR independence, and Z points are associated with

X points only with rz = 1/10, so, Case 1 contains the

weakest deviation from the null pattern. But in all other

cases, X and Y points are segregated, and Z points are

associated with either X points or with both of X and

Y points combined. Also overall tests are mostly significant

in cases 4 and 6, which include the highest levels of

deviation from the null pattern.

The means and the 95 % empirical CIs around the

means for the cell-specific tests under the mixed alterna-

tives are presented in Fig. 18. Notice that by symmetry,

cells (i, j) and (j, i) for i 6¼ j have the same test statistic

values, hence only cell (1,1), (1,2), (1,3), (2,2), (2,3), and

(3,3) statistics are presented in Fig. 18.

5.2.1 Comparison of test statistics for each cell (i, j)

Cell (1,1) tests are most significant for Cases 3, 5, and 7

all of which are in the positive direction (with Case 5

being slightly higher). This is in agreement with our

setup that in these cases, we have the strongest
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segregation between X and Y and association of Z with

these points is weaker compared to the other cases,

where Z is associated only with X points, which reduces

the observed N11 value.

Cell (1,2) tests are most significant for Cases 4–7 all of

which are in the negative direction suggesting either

strongest lack of association or strongest segregation

between classes X and Y; and in these cases X and

Y points are strongly segregated compared to other cases.

Cell (1,3) tests are most significant for Cases 4 and 6

both of which are in the positive direction suggesting

strongest association between classes Z and X; and in

these cases Z points are more strongly associated only

with X points with rz = 1/20.

Cell (2,2) tests are most significant for Cases 4 and 6

both of which are in the positive direction suggesting

strongest segregation of Y points from other classes. In

these cases X and Y points are more strongly segregated

and Z points are associated only with X points with

rz = 1/20. So Y points are directly segregated from

X points and indirectly segregated from Z points.

Therefore, segregation between X and Y is reflected in

cell (2,2) but not in cell (1,1).

Cell (2,3) tests are most significant for Cases 4 and 6 in

the negative direction suggesting strongest segregation

between Y and Z; and in these cases Y points are more

strongly segregated from X points and Z points are

associated with X points but not with Y points, and

hence Y and Z points are indirectly segregated. More-

over, cell (2,3) statistics are most significant for Cases 5

and 7 in the positive direction suggesting strongest

association between Y and Z; and in these cases Z points

are strongly associated with Y points (in addition to

X points).

Cell (3,3) tests are most significant for Cases 5 and 7 in

the negative direction (with Case 7 being more negative)

suggesting strongest lack of segregation for class Z; and

in these cases Z points are more strongly associated with

both X and Y points together.

5.2.2 Comparison of cell-specific test statistics under each

mixed alternative

Under mixed case 1, cell (1,3) statistic is the most sig-

nificant one, and this being in the positive direction

verifies the association between X and Z points. Cell

(1,1) and (3,3) statistics are slightly negative suggesting

slight lack of segregation for these classes, which might

result from the association between X and Z points. Cell

(1,2) and (2,3) are almost within the null region (i.e.,

within (-1.96,1.96)), but closer to the negative end,

suggesting a very mild lack of association between

classes X and Y and between classes Y and Z.
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Fig. 18 The test statistics (means and 95 % empirical CIs) for the cell

(1,1), (1,2), (1,3), (2,2), (2,3), (3,3) statistics based on 10,000 Monte

Carlo replications under the mixed alternatives in the three-class case

with n1 = n2 = n3 = 100. The legend labeling is as in Fig. 1 and the

horizontal axis is mixed pattern numbers 1–7 of Sect. 5.2
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Under mixed case 2, cell-specific test statistics are within

the null region for cells (1,1) and (3,3), significantly

negative for cells (1,2) and (2,3), and significantly

positive for cells (2,2) and (1,3). All these taken together

suggest significant lack of association or significant

segregation between X and Y points and between Y and

Z points and significant association between X and

Z points and significant segregation of Y points from

others; which seem to result from the construction that

we have segregation between X and Y and since Z points

are associated with X points, they are also segregated

from Y points.

Under mixed case 3, cell (1,1) statistic is highly

significant in the positive direction, cell (2,2) statistic

is moderately significant in the positive direction and

cell (3,3) statistics is mildly significant in the negative

direction, which implies significant segregation of

X points and moderately significant segregation of

Y points and lack of segregation for Z points. Also cell

(1,2) statistic is highly significant in the negative

direction implying lack of association between X and

Y points, and cell (1,3) and (2,3) statistics are mildly

significant in the positive direction implying mild

association of class Z with classes X and Y. All these

are in agreement with the construction that we have

segregation between X and Y, and Z points are mildly

associated with both X and Y points.

Under mixed case 4, cell (1,3) and (2,2) statistics are

highly significant in the positive direction, cell (1,2) and

(2,3) statistics are highly significant in the negative

direction, and cell (1,1) and (3,3) statistics are within the

null region. All these considered together imply that

X and Z points are associated, and there is lack of

association between X and Y points and between Y and

Z points, and Y points are segregated from X and

Z points. All these are in agreement with the construc-

tion that we have segregation between X and Y, and

Z points are associated only with X points.

Under mixed case 5, cell (1,1), (2,2), (1,3), and (2,3)

statistics are moderately significant in the positive

direction, cell (3,3) statistic is moderately significant in

the negative direction, and cell (1,2) statistic is highly

significant in the negative direction. All these considered

together imply that there is moderate segregation and

severe lack of association between X and Z points, and

moderate association between X and Z and between

Y and Z points, and mild lack of segregation of Y points

from other classes. All these are in agreement with the

construction that we have segregation between X and

Y, and Z points are associated with both X and Y points.

Under mixed case 6, cell (2,2) and (1,3) statistics are

highly significant in the positive direction, cell (1,1) and

(3,3) statistics are within the null region, and cell (1,2)

and (2,3) statistics are highly significant in the negative

direction. All these considered together imply that there

is severe segregation of Y points, and severe association

of X and Z points, and severe lack of association between

X and Y and between Y and Z points. All these are in

agreement with the construction that we have segrega-

tion between X and Y, and Z points are associated only

with X points.

Under mixed case 7, cell (1,1), (2,2), (1,3), and (2,3)

statistics are moderately significant in the positive

direction, cell (1,2) statistic is highly significant in the

negative direction, and cell (3,3) statistic is moderately

significant in the negative direction. All these considered

together imply that there is moderate segregation of

X and Y points, and moderate association between X and

Z points and between Y and Z points, and severe lack of

association between X and Y points. All these are in

agreement with the construction that we have segrega-

tion between X and Y, and Z points are associated with

both X and Y points.

6 Example data sets

We apply the methodology on part of the Lansing Woods

data and on bramble canes data for illustrative purposes.

Both data sets are also available in the spatstat package in

R (Baddeley and Turner 2005).

6.1 Lansing Woods data

This data set contains the locations of 2,251 trees in feet

(ft) together with their species classification in a

924 9 924 ft (19.6 acre) plot in Lansing Woods, Clinton

County, MI, USA (Gerrard 1969). The species of the trees

are hickory, maple, red oak, white oak, black oak and

miscellaneous trees. In our analysis, for brevity, we only

consider black oaks, hickories, and maples which consti-

tute a total of 1,352 trees. That is, we analyze the spatial

patterns for the above three species as if only they exist in

the area, so we ignore the possible effects of other species

on the spatial interaction between these species. Thus, we

first perform a 3 9 3 NNCT-analysis on this data set. See

Fig. 19 for the location of the trees in this plot and Table 2

for the associated 3 9 3 NNCT together with cell per-

centages based on class sizes, and marginal percentages

based on the grand total, n. For example, when black oak is

the base species and hickory is the NN species, we observe

that the cell count is 68 which is 50 % of the 135 black

oaks (i.e., 50 % of the NNs of black oaks are from hick-

ories and hickories are 52 % of all trees). Figure 19 and

percentages in Table 2 suggest that tree species are seg-

regated from each other since the observed percentages of
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species in the diagonal cells are much larger than the row

percentages (or species relative frequencies).

For a NNCT analysis, the null pattern depends on the

particular ecological setting (Goreaud and Pélissier 2003).

More specifically, under RL, the individuals of a single

population are affected by some processes a posteriori

(e.g., diseased vs. non-diseased individuals of a single

species). On the other hand, under CSR independence,

different processes generate the two classes a priori (e.g.,

individuals of different species or age cohorts). So for the

Lansing Woods data, the more appropriate null hypothesis

is the CSR independence pattern, since different processes

seem to be generating the locations of the tree species a

priori. For this data set, Q = 528 and R = 938 and our

inference is conditional on these values. Dixon’s and type

III overall and cell-specific tests and the associated

p-values are presented (in parentheses) in Table 3, where

the first p-value in the parenthesis is based on the asymp-

totic approximation and the second is based on Monte

Carlo randomization of the labels on the given locations of

the trees 10,000 times. Notice that p-values are all signif-

icant. Moreover, both p-values in Table 3 are similar for

each cell-specific test.

The overall segregation tests are both highly significant,

implying a significant deviation from the CSR indepen-

dence pattern for some of the tree species. As post-hoc

tests, we resort to the cell-specific tests to determine which

species exhibit segregation or association. In the NNCT,

the diagonal cell statistics are all positive and significant at

0.05 level, hence each species seems to exhibit segregation

from the others. Furthermore, the off-diagonal cell statis-

tics are all negative and significant, implying lack of

association between any pair of species, which is also

reflected in the strong segregation of each species.

To understand the underlying patterns which cause or

account for the segregation in the current data set, we

perform point pattern fitting for locations of each species.

In particular, the locations of the trees in Fig. 19 suggest

that the species might be from clustering processes. Along

this line, we fit Thomas and Matérn cluster processes to

each species (see Baddeley and Turner 2005 for more

detail). The model fitting is performed using the method of

minimum contrasts (see Diggle 2003). We only present the

fit for TCP, since it is a slightly better fit for the data

compared to the MCP fit. In particular, the K-function for

TCP with parameters h = (j, l, r) is

KhðrÞ ¼ pr2 þ 1

j
1 � exp

�r2

4r2

� �� �
:

The model is fit by determining the values of h that min-

imizes
R b

a
jbK qðrÞ � K

q
hðrÞj

p
dr where a and b are ranges of

r values considered and p, q are indices (we use p = 2 and

q = 1/4, which are the defaults in spatstat package (Wa-

agepetersen 2007)). We choose stationary point processes

in our model fitting, if needed non-stationary versions are

also available (Baddeley and Turner 2005). The estimated

parameter values for the TCP models for each tree species

are presented in Table 4. The fitted K-function for the TCP

process and the observed K-function (with Ripley’s iso-

tropic correction for edge effects) are plotted in Fig. 20. In

the same figure, plotted also are theoretical K-function

under HPP together with a 95 % empirical confidence

interval around it. Observe that the fitted and observed K-

functions are almost a perfect match. Furthermore, the

observed K-function is significantly above the theoretical

K-function for all distances considered (i.e., for r 2
ð0; 235Þ ft). Thus, there is significant clustering for each
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Fig. 19 The scatter plot of the locations of black oaks (circles),

hickories (triangles), and maples (pluses) in the Lansing Woods,

Clinton County, MI, USA

Table 2 The NNCT for Lansing Woods data and the corresponding

percentages (in parentheses), where the cell percentages are with

respect to the size of the base species, and marginal percentages are

with respect to the total size

NN Sum

BO H M

Base

BO 36 (27 %) 68 (50 %) 31 (23 %) 135 (10 %)

H 79 (11 %) 502 (71 %) 122 (17 %) 703 (52 %)

M 25 (5 %) 130 (25 %) 359 (70 %) 98 (38 %)

Sum 140 (10 %) 700 (52 %) 512 (38 %) 1,352 (100 %)

BO black oaks, H hickories, M maples

Stoch Environ Res Risk Assess (2014) 28:1277–1306 1301

123

Author's personal copy



species. Hence we can assume that the current allocation of

the trees for each species is a realization of the respective

TCP. The significant segregation between the species

seems to be accounted for by the Thomas type clustering

with different parameters and different parent points.

6.2 Bramble canes data

This data set contains the locations of 823 bramble canes in

meter (m) together with their ages in a 9 m2 plot in a field

(Hutchings 1979). These canes were further classified

according to their ages as ‘‘newly emergent, 1 or 2 years

old’’. The data were also analyzed by Diggle (2003) and

van Lieshout and Baddeley (1999). It was found in each of

the analyses that newly emergent canes exhibit spatial

clustering, which is attributed to ‘‘vigorous vegetative

reproduction’’ by Hutchings (1979).

In our analysis, first we perform a 3 9 3 NNCT-ana-

lysis. See Fig. 21 for the locations of the canes in the study

plot and Table 5 for the associated NNCT together with

cell and marginal percentages as obtained in Sect. 6.1.

Figure 19 and percentages in Table 2 suggest that newly

emergent canes are neither segregated from nor associated

with the other groups (as the percentage of newly emergent

NNs of itself is exactly the same as the relative frequency

of the newly emergent canes in the data), 1 year old canes

seem to be associated with newly emergent ones, and

2 year old canes seem to be segregated.

As in the Lansing Woods data, the more appropriate null

hypothesis is the CSR independence pattern for the bram-

ble canes data as well. Hence our inference is conditional

on Q = 550 and R = 558 (which are computed for this

data). Dixon’s and type III overall and cell-specific tests

and the associated p-values are presented in Table 6. The

p-values for the cell-specific tests are provided for the two-

sided alternatives, hence we need to divide them by 2 to get

the correct p-value for the appropriate one-sided alterna-

tive. Notice that although the overall tests agree, the cell-

specific tests tend to give different results (not conflicting

in direction, but different in significance). The overall tests

are both highly significant, suggesting a significant devia-

tion from the CSR independence pattern for at least one

group of bramble canes. Considering the post-hoc cell-

specific tests, along the diagonal we observe that only the

cell for (TY, TY) is significant in the positive direction

implying segregation of 2 year old canes from the other

groups. On the other hand, the only significant off-diagonal

cells are in row 1 and column 1 in the NNCT. Thus, we

conclude that 1 year old canes are significantly associated

with newly emergent ones, and newly emergent ones are

Table 3 Test statistics and p-values for the overall and cell-specific tests and the corresponding p-values (in parentheses)

CD CIII

Overall tests

249.86 (\0.0001, \0.0001) 249.67 (\0.0001, \0.0001)

BO H M

Dixon’s cell-specific tests

BO 5.23 (\0.0001, \0.0001) -0.30 (0.7675, 0.7810) -3.65 (0.0003, 0.0003)

H 1.11 (0.2689, 0.2669) 9.67 (\0.0001, \0.0001) -11.05 (\0.0001, \0.0001)

M -4.11 (\0.0001, \0.0001) -11.41 (\0.0001, \0.0001) 13.30 (\0.0001, \0.0001)

Type III cell-specific tests

BO 5.26 (\0.0001, \0.0001) -0.25 (0.7998, 0.7965) -3.77 (0.0002, 0.0002)

H 1.08 (0.2814, 0.2761) 11.84 (\0.0001, \0.0001) -13.63 (\0.0001, \0.0001)

M -5.16 (\0.0001, \0.0001) -12.91 (\0.0001, \0.0001) 14.98 (\0.0001, \0.0001)

The first p-value is based on the asymptotic approximation and the second on the randomization of the tests. CD stands for Dixon’s overall test

and CIII for type III overall test

BO black oaks, H hickories, M maples

Table 4 The estimates of the parameters (j, l, r), for the TCP fit-

ting for Lansing Woods data (top) and bramble Canes data (bottom)

Species bj (per acre) bl br

Lansing Woods data

Black oaks 0.75 9.14 51.83

Hickories 1.65 21.71 66.93

Maples 1.11 23.64 62.40

Age* bj (per m2) bl br

Bramble canes data

New 13.79 2.89 0.0348

One 9.19 4.66 0.0762

Two 7.31 1.20 0.0426

* ‘‘New’’ stands for ‘‘newly emergent’’, ‘‘one’’ stands for ‘‘one year

old’’, and ‘‘two’’ stands for ‘‘two years old’’ brambles
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moderately associated with 1 year old canes. On the other

hand, (TY, NE) and (NE, TY) cells are significant in the

negative direction which is caused by the significant seg-

regation of 2 year old canes from newly emergent ones.

Two year old canes and 1 year old canes do not exhibit

significant deviation from CSR independence.

To discover the underlying patterns which account for

the segregation/association among the bramble canes, we

fit point pattern models to the locations of each group. The

locations of the canes in Fig. 21 suggest that there is

clustering for each group in the data. We first fit TCP to

each group as described in Sect. 6.1. The estimated

parameter values for the TCP models for each cane group

are presented in Table 4. The fitted K-function for the TCP

process, the K-function for the HPP (together with 95 %

simulation envelopes), and the observed K-function (with

Ripley’s isotropic correction for edge effects) are plotted in

Fig. 22(top). The observed K-function is significantly

above the theoretical K-function for all distances consid-

ered (i.e., for r 2 ð0; 0:75Þ m), which suggests significant

clustering for each group. Observe also that the fitted and

observed K-functions seem to be different especially for

large r values suggesting that the pattern may not be from a

stationary Thomas clustering type with homogeneous par-

ents. The model fit with various inhomogeneous parents is

also investigated, but the fit does not seem to improve

(results not presented). However, when we compute the

simulation envelopes based on the fitted TCP model we see

that the observed K-function curve lies within the 95 %

simulation envelope (see Fig. 22, bottom). Thus the models

we fit are not that different from the reality after all.

One might also attempt fitting various inhomogeneous

Poisson patterns by playing with the trend function. For

example, for the 2 year old bramble canes, the simulation

envelope for the fitted curve is very wide, and the plot is

suggestive of an inhomogeneous Poisson process. Let

k(x, y) is the intensity of the Poisson process as a function
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Fig. 20 The fitted K-function for the TCP process (fit), the observed K-function with Ripley’s isotropic correction for edge effects (obs), and

theoretical K-function under HPP (theo) together with a 95 % empirical confidence interval around it for each species in the Lansing Woods data
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Fig. 21 The scatter plot of the locations of bramble canes where

newly emergent ones are plotted as circles, 1 year olds as triangles,

and 2 year olds as pluses in a field

Table 5 The NNCT for bramble canes data and the corresponding

percentages (in parentheses) computed as in Table 2

NN Sum

NE OY TY

Base

NE 158 (44 %) 186 (52 %) 15 (4 %) 359 (44 %)

OY 187 (49 %) 163 (42 %) 35 (9 %) 385 (47 %)

TY 26 (33 %) 39 (49 %) 14 (18 %) 79 (10 %)

Sum 371 (45 %) 388 (47 %) 64 (8 %) 823 (100 %)

NE newly emergent, OY one year old, TY two years old canes
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of the coordinates. We fit a linear trend for the log intensity

of the Poisson process, and obtain the estimated model as

kðx; yÞ ¼ expð1:87 þ 0:48x � 0:37yÞ: We check the model

fit by the usual v2 goodness-of-fit test with a 3 9 3 grid,

and obtain v2 = 8.94, df = 6, and p = 0.3529, suggesting

the acceptability of our inhomogeneous Poisson fit. This fit

suggests that the intensity of 2 years old canes increase as

one moves toward the lower end corner of the study area

which explains the segregation of 2 year old canes.

Remark 6.1 In both of the above examples, the more

appropriate null hypothesis turned out to be the CSR

independence pattern. If it were RL, a different strategy

should be followed. For example, under RL, the locations

of bramble canes would have been given in advance, and

we would have assigned group labels to the points inde-

pendently and randomly with probabilities proportional to

the group sizes. In such a case, the alternative would be a

non-RL pattern and the current data set would be a reali-

zation of that pattern. Then the model fitting would be

concerned with assigning each point with a group label

according to this non-RL pattern. In particular, one can

perform the following steps: Pick a point, say p1, randomly

Table 6 Test statistics and

p-values for the overall and

cell-specific tests and the

corresponding p-values

(in parentheses)

The p-values and test statistics

abbreviations are as in Table 3

NE newly emergent, OY one

year old, TY two years old

bramble canes

CD CIII

Overall tests

17.78 (0.0068, 0.0503) 14.25 (0.0065, 0.0080)

NE OY TY

Dixon’s cell-specific tests

NE 0.00 (1.000, 1.000) 1.90 (0.0576, 0.0509) -3.59 (0.0003, \0.0001)

OY 1.68 (0.0929, 0.0879) -1.50 (0.1341, 0.1611) -0.18 (0.8534, 0.8173)

TY -2.03 (0.0429, 0.0488) 0.44 (0.6625, 0.7058) 2.16 (0.0305, 0.0291)

Type III cell-specific tests

NE -0.38 (0.7037, 0.7060) 1.95 (0.0507, 0.0509) -3.06 (0.0022, 0.0021)

OY 1.55 (0.1209, 0.1235) -1.98 (0.0478, 0.0478) 1.14 (0.2564, 0.2538)

TY -2.27 (0.0234, 0.0239) 0.34 (0.7329, 0.7358) 2.59 (0.0096, 0.0104)
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Fig. 22 Plotted at top row are the fitted K-function for the TCP

process (fit), the observed K-function with Ripley’s isotropic correc-

tion for edge effects (obs), and theoretical K-function under HPP

(theo) together with a 95 % empirical confidence interval around it for

each group in the bramble cane data. Plotted in the bottom row are the

same K-functions with a 95 % simulation envelope around the fitted

K-function
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and assign it with a group label randomly according to the

relative frequencies of the groups. Then start labeling the

NN of p1, say p2, according to the observed percentages in

the NNCT in Table 5, and label the NN of p2, say p3, in the

same manner, and keep going (i.e., assign a label to the NN

of pk, say pk?1, in the same manner). In case of a reflexive

NN or if the NN is one of the already labeled points, then

start over to execute the same steps among the unlabeled

points. The labeling algorithm terminates until each and

every point is labeled. With such an algorithmic labeling

process, we would obtain non-RL patterns that are of the

same type as the observed data. h

7 Discussion and conclusions

In this article, we provide characterizations and various

parameterizations of the segregation and association pat-

terns. We first list some appealing properties a segregation

or an association pattern should enjoy, and discuss various

parameterizations of them in light of these properties.

Segregation is relatively easy to parameterize and simulate,

but association is not. We propose three types of associa-

tion patterns, and investigate their properties. Based on

these properties and extensive Monte Carlo simulations,

these alternatives behave as expected when the alternative

parameter depends on the estimated intensity in the study

region under the null case. In particular, in these alterna-

tives the association parameter could be 1=ðkq̂Þ with the

appropriate choice of k (usually k C 2 would work) where

bq is the estimated intensity of one or all classes in question

under Ho (see Sect. 3.3.1)

In our evaluations of the alternatives, we employ tests

based on NNCTs (i.e., NNCT-tests), since in the multi-

class case, they provide an omnibus test for any deviation

from the null case and then provide various post-hoc tests

after the omnibus test is significant (which is analogous to

ANOVA F-test and post-hoc t-tests in a multi-group

comparison setting). Among the NNCT-tests, type III tests

tend to perform better under various alternatives.

We also consider various spatial point processes with

respect to homogeneous Poisson process (HPP) or with

respect to clustering or regularity patterns to see which

patterns cause segregation or association in a two-class

setting. In particular, we observed that if one class is from

HPP and the other from a regularity pattern, as the level of

regularity increases, the level of association between the

classes increases; also if one class is from HPP and the

other from a clustering pattern, as the level clustering

increases, the level segregation between the classes

increases as well. Furthermore, if the number of clusters

increase, the level of segregation tends to decrease,

provided the number of points per cluster is inversely

proportional to the number of clusters within the same

support. If both classes are from an inhibition/regularity

process, then as the level of regularity increases, the level

of association between the classes tends to increase. Also if

both classes are from a Matérn clustering process with

different parents, then as the level of clustering increases,

the level of segregation increases as well. On the other

hand, if they have the same parent points, then the pattern

does not significantly deviate from the null pattern. We

also consider the multi-class patterns, with the three-class

case as our example. In these cases, we investigate various

types of association and mixed patterns, and observe that

NNCT-tests provide a good summary of the patterns and

describe all types of interaction between each pair of

classes when all statistics are simultaneously considered

for all cells of the NNCT.

Segregation and association may result when the classes

are from dependent or independent patterns which may be

regular, CSR, or clustering patterns. The proposed meth-

odology provides some tools and guidelines for under-

standing which underlying generative pattern might be

causing or explaining the observed segregation or associ-

ation. Along this line, one can take two opposing approa-

ches in practice:

(I) For a given data,

(a) first fit the best model for the generative pattern

for each class, and

(b) hypothesize which multi-class pattern might

occur based on the fitted patterns and

(c) perform an inferential analysis (e.g., apply

NNCT-tests) to formally identify the patterns

of segregation/association or lack of them by

also attaching significance to the results.

(II) Alternatively, for a given data,

(a) one can start with I(c), i.e., discovering and

testing the current multi-class patterns using,

say, NNCT-tests, then

(b) s/he can hypothesize (based on the test results

and the scatter plots of the classes in the study

region) about the type of the generative pattern,

and

(c) finally, s/he can fit the best pattern to each class

formally and tries interpreting and/or under-

standing the underlying generative patterns

behind the observed segregation or association.

Either approach has some practical appeal and the

approach to be taken depends on the particular data set

and the research objectives.
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