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Abstract

Priebe et al. (2001. Statist. Prob. Lett. 55, 239–246) introduced the class cover catch digraphs and
computed the distribution of the domination number of such digraphs for one-dimensional data. In higher
dimensions these calculations are extremely difficult due to the geometry of the proximity regions; and only
upper-bounds are available. In this article, we introduce a new type of data-random proximity map and the
associated (di)graph in Rd : We find the asymptotic distribution of the domination number and use it for
testing spatial point patterns of segregation and association.
r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In a digraph D ¼ ðV;AÞ with vertex set V and arc (directed edge) set A; a vertex v dominates

itself and all vertices of the form fu : vu 2 Ag: A dominating set, SD; for the digraph D is a subset
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of V such that each vertex v 2 V is dominated by a vertex in SD: A minimum dominating set, S�
D;

is a dominating set of minimum cardinality; and the domination number, gðDÞ; is defined as
gðDÞ:¼jS�

Dj; where j 	 j is the cardinality functional (West, 2001). If a minimum dominating set is of
size one, we call it a dominating point.
Let ðO;MÞ be a measurable space and consider a function N : O
 2O ! 2O; where 2O

represents the power set of O: Then given Y � O; the proximity map NYð	Þ ¼ Nð	;YÞ : O ! 2O

associates with each point x 2 O a proximity region NYðxÞ 
 O: The region NYðxÞ depends on the
distance between x and Y: For B � O; the G1-region, G1ð	Þ ¼ G1ð	;NYÞ : O ! 2O associates the
region G1ðBÞ:¼fz 2 O : B � NYðzÞg with each set B � O: For x 2 O; we denote G1ðfxgÞ as G1ðxÞ:
If Xn ¼ fX 1;X 2; . . . ;X ng is a set of O-valued random variables, then the NYðX iÞ (and G1ðX iÞ),

i ¼ 1; . . . ; n are random sets. If the X i are independent and identically distributed, then so are the
random sets NYðX iÞ (and G1ðX iÞ). Furthermore, G1ðXnÞ is a random set. Notice that G1ðXnÞ ¼

\n
j¼1G1ðX jÞ; since x 2 G1ðXnÞ iff Xn � NYðxÞ iff X j 2 NYðxÞ for all j ¼ 1; . . . ; n iff x 2 G1ðX jÞ for

all j ¼ 1; . . . ; n iff x 2 \n
j¼1G1ðX jÞ:

Consider the data-random proximity catch digraph D with vertex set V ¼ Xn and arc set A
defined by ðX i;X jÞ 2 A () X j 2 NYðX iÞ: The random digraph D depends on the (joint)
distribution of the X i and on the map NY (see Priebe et al., 2001; Priebe et al., 2003a, b). The
adjective proximity—for the catch digraph D and for the map NY—comes from thinking of the
region NYðxÞ as representing those points in O ‘‘close’’ to x (see, e.g., Toussaint, 1980; Jaromczyk
and Toussaint, 1992).
For X 1; . . . ;X n �

iid
F the domination number of the associated data-random proximity catch

digraph D, denoted gðXn;F ;NYÞ; is the minimum number of points that dominate all points in
Xn: Note that, gðXn;F ;NYÞ ¼ 1 iff Xn \ G1ðXnÞa;:
The random variable gn:¼gðXn;F ;NYÞ depends onXn explicitly, and on F and NY implicitly. In

general, the expectation E ½gn�; depends on n, F, and NY; 1pE ½gn�pn; and the variance of gn

satisfies, 0pVar ½gn�pn2=4:
We can also define the regions associated with gn ¼ k for kpn: For instance, the G2-region for

proximity map NYð	Þ and set B 
 O is G2ðBÞ ¼ fðx; yÞ 2 ½OnG1ðBÞ�
2 : B � NYðxÞ [ NYðyÞg: In

general,

GkðBÞ ¼ fðx1; x2; . . . ;xkÞ 2 Ok : B � [k
j¼1 NYðxjÞ and all possible m-permutations

ðu1; u2; . . . ; umÞ of ðx1;x2; . . . ; xkÞ satisfy ðu1; u2; . . . ; umÞeGmðBÞ

for each m ¼ 1; 2; . . . ; k � 1g.

2. A class of proximity maps and the corresponding G1-regions

Let O ¼ R2 and let Y ¼ fy1; y2; y3g 
 R2 be three non-collinear points. Denote by TðYÞ the
triangle—including the interior—formed by these three points. The most straightforward
extension of the data random proximity catch digraph introduced by Priebe et al. (2001) is the
spherical proximity map NSðxÞ ¼ Bðx; rðxÞÞ which is the ball centered at x with radius rðxÞ ¼

miny2Y dðx; yÞ or the arc-slice proximity map NASðxÞ ¼ Bðx; rðxÞÞ \ TðYÞ: However, both cases
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suffer from the intractability of the G1-region and hence the intractability of the finite and
asymptotic distribution of gn: We propose a new class of proximity regions which does not suffer
from this drawback.
For r 2 ½1;1� define Nr

Y to be the r-factor proximity map and Gr
1 to be the corresponding G1-

region as follows; see also Figs. 1 and 2. Let ‘‘vertex regions’’ Rðy1Þ; Rðy2Þ; Rðy3Þ partition TðYÞ

using segments from the center of mass of TðYÞ to the edge midpoints. For x 2 TðYÞnY; let
vðxÞ 2 Y be the vertex whose region contains x; x 2 RðvðxÞÞ: If x falls on the boundary of two
vertex regions, we assign vðxÞ arbitrarily. Let eðxÞ be the edge of TðYÞ opposite vðxÞ: Let ‘ðvðxÞ;xÞ
be the line parallel to eðxÞ through x. Let dðvðxÞ; ‘ðvðxÞ; xÞÞ be the Euclidean (perpendicular)
distance from vðxÞ to ‘ðvðxÞ;xÞ: For r 2 ½1;1Þ let ‘rðvðxÞ;xÞ be the line parallel to eðxÞ such that
dðvðxÞ; ‘rðvðxÞ; xÞÞ ¼ rdðvðxÞ; ‘ðvðxÞ;xÞÞ and dð‘ðvðxÞ;xÞ; ‘rðvðxÞ; xÞÞodðvðxÞ; ‘rðvðxÞ; xÞÞ: Let TrðxÞ
be the triangle similar to and with the same orientation as TðYÞ having vðxÞ as a vertex and
‘rðvðxÞ; xÞ as the opposite edge. Then the r-factor proximity region Nr

YðxÞ is defined to be TrðxÞ \

TðYÞ:
To define the G1-region, let xjðxÞ be the line such that xjðxÞ \ TðYÞa; and rdðyj; xjðxÞÞ ¼

dðyj; ‘ðyj; xÞÞ for j ¼ 1; 2; 3: Then Gr
1ðxÞ ¼ [3

j¼1 ðG
r
1ðxÞ \ RðyjÞÞ where Gr

1ðxÞ \ RðyjÞ ¼ fz 2 RðyjÞ :
dðyj; ‘ðyj; zÞÞXdðyj; xjðxÞg; for j ¼ 1; 2; 3: Notice that rX1 implies x 2 Nr

YðxÞ and x 2 Gr
1ðxÞ:

Furthermore, limr!1 Nr
YðxÞ ¼ TðYÞ and limr!1 Gr

1ðxÞ ¼ TðYÞ for all x 2 TðYÞnY; and so we
define N1

Y ðxÞ ¼ TðYÞ and G1
1 ðxÞ ¼ TðYÞ for all such x. For x 2 Y; we define Nr

YðxÞ ¼ fxg for all
r 2 ½1;1�:
Notice that X i �

iid
F ; with the additional assumption that the non-degenerate two-dimensional

probability density function f exists with supportðf Þ � TðYÞ; implies that the special case in the
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Fig. 1. Construction of r-factor proximity region, N2
YðxÞ (shaded region).
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construction of Nr
Y—X falls on the boundary of two vertex regions—occurs with probability zero.

Note that for such an F, Nr
YðxÞ is a triangle a.s. and Gr

1ðxÞ is a star-shaped polygon (not necessarily
convex).
Let X e:¼argminX2Xn

dðX ; eÞ be the (closest) edge extremum for edge e. Then Gr
1ðXnÞ ¼

\3
j¼1 G

r
1ðX ej

Þ; where ej is the edge opposite vertex yj; for j ¼ 1; 2; 3: So Gr
1ðXnÞ \ RðyjÞ ¼ fz 2

RðyjÞ : dðyj; ‘ðyj; zÞXdðyj; xjðX ej
ÞÞg; for j ¼ 1; 2; 3:

Let the domination number be gnðrÞ:¼gnðXn;F ;Nr
YÞ and X ½j�:¼argminX2Xn\RðyjÞ

dðX ; ejÞ: Then
gnðrÞp3 with probability 1, since Xn \ RðyjÞ 
 Nr

YðX ½j�Þ for each j ¼ 1; 2; 3: Thus

1pE ½gnðrÞ�p3 and 0pVar ½gnðrÞ�p9=4.

3. Null distribution of domination number

The null hypothesis for spatial patterns have been a contraversial topic in ecology from the
early days. Gotelli and Graves (1996) have collected a voluminous literature to present a
comprehensive analysis of the use and misuse of null models in ecology community. They also
define and attempt to clarify the null model concept as ‘‘a pattern-generating model that is based
on randomization of ecological data or random sampling from a known or imagined
distribution. . . : The randomization is designed to produce a pattern that would be expected in
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Fig. 2. Construction of the G1-region, G2
1ðxÞ (shaded region).
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the absence of a particular ecological mechanism’’. In other words, the hypothesized null models
can be viewed as ‘‘thought experiments’’, which is conventionally used in the physical sciences,
and these models provide a statistical baseline for the analysis of the patterns. For statistical
testing, the null hypothesis we consider is a type of complete spatial randomness; that is,

H0 : X i �
iid
UðTðYÞÞ,

where UðTðYÞÞ is the uniform distribution on TðYÞ: If it is desired to have the sample size be a
random variable, we may consider a spatial Poisson point process on TðYÞ as our null hypothesis.
We first present a ‘‘geometry invariance’’ result which allows us to assume TðYÞ is the standard

equilateral triangle, Tðð0; 0Þ; ð1; 0Þ; ð1=2;
ffiffiffi
3

p
=2ÞÞ; thereby simplifying our subsequent analysis.

Theorem 1. Let Y ¼ fy1; y2; y3g 
 R2 be three non-collinear points. For i ¼ 1; . . . ; n; let X i �
iid

F ¼

UðTðYÞÞ; the uniform distribution on the triangle TðYÞ: Then for any r 2 ½1;1� the distribution of
gðXn;UðTðYÞÞ;Nr

YÞ is independent of Y; and hence the geometry of TðYÞ:

Proof. A composition of translation, rotation, reflections, and scaling will take any given triangle
To ¼ Tðfy1; y2; y3gÞ to the ‘‘basic’’ triangle Tb ¼ Tðfð0; 0Þ; ð1; 0Þ; ðc1; c2ÞgÞ with 0oc1p1=2; c240
and ð1� c1Þ

2
þ c22p1; preserving uniformity. The transformation fe : R

2 ! R2 given by
feðu; vÞ ¼ ðu þ 1�2c1ffiffi

3
p v;

ffiffi
3

p

2c2
vÞ takes Tb to the equilateral triangle Te ¼ Tðfð0; 0Þ; ð1; 0Þ;

ð1=2;
ffiffiffi
3

p
=2ÞgÞ: Investigation of the Jacobian shows that fe also preserves uniformity.

Furthermore, the composition of fe with the rigid motion transformations maps the boundary
of the original triangle, To; to the boundary of the equilateral triangle, T e; the median lines of To

to the median lines of T e; and lines parallel to the edges of To to lines parallel to the edges of T e:
Since the distribution of gðXn;UðTðYÞÞ;Nr

YÞ involves only probability content of unions and
intersections of regions bounded by precisely such lines, and the probability content of such
regions is preserved since uniformity is preserved, the desired result follows. &

Based on Theorem 1 and our uniform null hypothesis, we may assume that TðYÞ is a standard
equilateral triangle with Y ¼ fð0; 0Þ; ð1; 0Þ; ð1=2;

ffiffiffi
3

p
=2Þg henceforth.

For our r-factor proximity map and uniform null hypothesis, the asymptotic null distribution
of gnðrÞ:¼gðXn;UðTðYÞÞ;Nr

YÞ can be derived as a function of r. We denote by Br
Y:¼fz 2 TðYÞ :

Nr
YðzÞ ¼ TðYÞg the superset region associated with Nr

Y in TðYÞ: Notice that Br
Y � Gr

1ðXnÞ for all r

and Xn \ Br
Ya; implies that gnðrÞ ¼ 1:

Proposition 1. The expected area of the G1-region, E ½AðGr
1ðXnÞÞ�; converges to the area of the

superset region, AðBr
YÞ; as n ! 1: In particular, E ½AðG3=2

1 ðXnÞÞ�; goes to zero at rate Oðn�2Þ as

n ! 1:

Proof. See Appendix. &

As a corollary to the above proposition, we have that E ½AðGr
1ðXnÞÞ� ! AðBr

YÞ ¼ 0 for r 2

½1; 3=2� as n ! 1: Additionally, E ½AðGr
1ðXnÞÞ� ! AðBr

YÞ ¼ ð1� 3=ð2 rÞÞ2
ffiffiffi
3

p
for r 2 ð3=2; 2�; and

E ½AðGr
1ðXnÞÞ� ! AðBr

YÞ ¼
ffiffiffi
3

p
=4 ð1� 3=r2Þ for r 2 ð2;1�; as n ! 1:

Theorem 2. The domination number gnðrÞ ¼ gðXn;UðTðYÞÞ;Nr
YÞ is degenerate in the limit for r 2

½1;1�nf3=2g as n ! 1:
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Proof. For r 2 ½1; 3=2Þ; Br
Y ¼ ; and TðYÞnNr

YðX ½j�Þ has positive area for all j ¼ 1; 2; 3:
Furthermore, TðYÞnðNr

YðX ½j�Þ [ Nr
YðX ½k�ÞÞ has positive area for all pairs fj; kg 
 f1; 2; 3g: Recall

that gnðrÞp3 with probability 1 for all n and r. Hence gnðrÞ ! 3 in probability as n ! 1:
For r 2 ð3=2;1�; Br

Y has positive area, so gnðrÞ ! 1 in probability as n ! 1: &

Theorem 3. For r ¼ 3=2; limn!1 gnðrÞ41 a.s. In particular

lim
n!1

gnð3=2Þ ¼
2 wp � 0:7413;

3 wp � 0:2487:

(
Thus E ½gnð3=2Þ� ! m � 2:2587 as n ! 1; and Var ½gnð3=2Þ� ! s2 � 0:1918 as n ! 1:

Proof. See Appendix. &

The finite sample distribution of gnð3=2Þ; and hence the finite sample mean and variance, can be
obtained by numerical methods. We estimate the distribution of gnð3=2Þ for various fixed n

empirically. In Table 1, we present empirical estimates for n ¼ 10; 20; . . . ; 100; 200; 300 with 1000
Monte Carlo replicates. See also Fig. 3.

Theorem 4. Let gnðrÞ ¼ gðXn;UðTðYÞÞ;Nr
YÞ: Then r1or2 implies gnðr2ÞoSTgnðr1Þ:

Proof. Suppose r1or2: Then Pðgnðr2Þ ¼ 1Þ4Pðgnðr1Þ ¼ 1Þ and Pðgnðr2Þ ¼ 2Þ4Pðgnðr1Þ ¼ 2Þ and
Pðgnðr2Þ ¼ 3ÞoPðgnðr1Þ ¼ 3Þ: Hence the desired result follows. &

4. The null distribution of the mean domination number in the multiple triangle case

Suppose Y is a finite collection of points in R2 with jYjX3: Consider the Delaunay
triangulation (assumed to exist) of Y; where Tj denotes the jth Delaunay triangle, J denotes the
number of triangles, and CHðYÞ denotes the convex hull of Y (Okabe et al., 2000). We wish to
investigate

H0 : X i �
iid
UðCHðYÞÞ

against segregation and association alternatives (see Section 5).
Fig. 4 presents a realization of 1000 observations independent and identically distributed

according to UðCHðYÞÞ for jYj ¼ 10 and J ¼ 13:
The digraph D is constructed using Nr

Yj
ð	Þ as described above, where for X i 2 Tj the three

points in Y defining the Delaunay triangle Tj are used as Yj: Let gnj
ðrÞ be the domination number

of the component of the digraph in Tj; where nj ¼ jXn \ Tjj:
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Table 1

The number of gnð3=2Þ ¼ k out of N ¼ 1000 replicates

knn 10 20 30 40 50 60 70 80 90 100 200 300

1 151 82 61 67 50 24 29 21 15 27 10 7

2 602 636 688 670 693 714 739 708 723 718 715 730

3 247 282 251 263 257 262 232 271 262 255 275 263
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Theorem 5 (Asymptotic Normality). Suppose njb1 and J is sufficiently large. Then the null
distribution of the mean domination number GJ :¼ 1

J

PJ
j¼1gnj

ð3=2Þ is given by

GJ �
approx

Nðm; s2=JÞ,

where m and s2 are given in Theorem 3 above.

Proof. For fixed J sufficiently large and each nj sufficiently large, gnj
ð3=2Þ are approximately

independent identically distributed as in Theorem 2. &
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Fig. 4. A realization of H0 for jYj ¼ 10; J ¼ 13; and n ¼ 1000:
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Fig. 5 indicates that, for J ¼ 13 with the realization ofY given in Fig. 4 and n ¼ 100 the normal
approximation is not appropriate, even though the distribution looks symmetric, since not all nj

are sufficiently large, but for n ¼ 1000 the histogram and the corresponding normal curve are
similar indicating that this sample size is large enough to allow the use of the asymptotic normal
approximation, since all nj are sufficiently large. However, larger J values require larger sample
sizes in order to obtain approximate normality.
For finite n, let GJðrÞ be the mean domination number associated with the digraph based on

Nr
Y: Then as a corollary to Theorem 3 it follows that for r1or2; we have GJðr2ÞoSTGJðr1Þ; that is,

ḠJðr2Þ stochastically smaller than ḠJðr1Þ:

5. Alternatives: segregation and association

In a two class setting, the phenomenon known as segregation occurs when members of one class
have a tendency to repel members of the other class. For instance, it may be the case that one type
of plant does not grow well in the vicinity of another type of plant, and vice versa. This implies, in
our notation, that X i are unlikely to be located near any elements of Y: Alternatively, association
occurs when members of one class have a tendency to attract members of the other class, as in
symbiotic species, so that the X i will tend to cluster around the elements of Y; for example. See,
for instance, Dixon (1994), Coomes and Rees (1999).
We define two simple classes of alternatives, HS

e and HA
e with e 2 ð0;

ffiffiffi
3

p
=3Þ; for segregation and

association, respectively. Let Ye ¼ fð0; 0Þ; ð0; 1Þ; ð1=2;
ffiffiffi
3

p
=2Þg and T e ¼ TðYeÞ: For y 2 Ye; let eðyÞ

denote the edge of Te opposite vertex y; and for x 2 T e let ‘yðxÞ denote the line parallel to eðyÞ

through x. Then define Tðy; eÞ ¼ fx 2 Te : dðy; ‘yðxÞÞpeg: Let HS
e be the model under which

X i �
iid
UðT en[y2Y Tðy; eÞÞ and HA

e be the model under which X i �
iid
Uð[y2Y Tðy;

ffiffiffi
3

p
=3� eÞÞ: Thus

the segregation model excludes the possibility of any X i occurring near a yj; and the association
model requires that all X i occur near yj’s. The

ffiffiffi
3

p
=3� e in the definition of the association

alternative is so that e ¼ 0 yields H0 under both classes of alternatives.
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Histograms are based on 1000 Monte Carlo replicates and the curves are the associated approximating normal curves.
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Remark. These definitions of the alternatives are given for the standard equilateral triangle. The
geometry invariance result of Theorem 1 still holds under the alternatives, in the following sense.
If, in an arbitrary triangle, a small percentage d 	 100% where d 2 ð0; 4=9Þ of the area is carved
away as forbidden from each vertex using line segments parallel to the opposite edge, then under
the transformation to the standard equilateral triangle this will result in the alternative HS ffiffiffiffiffiffiffi

3d=4
p :

This argument is for segregation; a similar construction is available for association.

Theorem 6 (Stochastic ordering). Let gn;eðrÞ be the domination number under the segregation

alternative with e40: Then with ej 2 ð0;
ffiffiffi
3

p
=3Þ; j ¼ 1; 2; e14e2 implies that gn;e1ð3=2Þo

STgn;e2ð3=2Þ:

Proof. Note that Pðgn;e1ð3=2Þ ¼ 1Þ4Pðgn;e2ð3=2Þ ¼ 1Þ and Pðgn;e1ð3=2Þ ¼ 2Þ4Pðgn;e2ð3=2Þ ¼ 2Þ;
hence the desired result follows. &

Note that for Theorem 5 to hold in the limiting case, e1 2 ð0;
ffiffiffi
3

p
=4� and e2 2 ð

ffiffiffi
3

p
=4;

ffiffiffi
3

p
=3Þ

should hold. For e 2 ð0;
ffiffiffi
3

p
=4�; gn;eð3=2Þ ! 2 in probability as n ! 1; and for e 2 ð

ffiffiffi
3

p
=4;

ffiffiffi
3

p
=3Þ;

gn;eð3=2Þ ! 1 in probability as n ! 1:
Similarly, the stochastic ordering result of Theorem 5 holds for association for all e and no1;

with the inequalities being reversed.

Notice that under segregation with e 2 ð0;
ffiffiffi
3

p
=4Þ; gn;eðrÞ is degenerate in the limit except for

r ¼ ð3�
ffiffiffi
3

p
eÞ=2: With e 2 ð

ffiffiffi
3

p
=4;

ffiffiffi
3

p
=3Þ; gn;eðrÞ is degenerate in the limit except for r ¼

ffiffiffi
3

p
=e� 2:

Under association with e 2 ð0;
ffiffiffi
3

p
=4Þ; gn;eðrÞ is degenerate in the limit except for r ¼ 3

2 ð1�
ffiffi
3

p
eÞ
:

The mean domination number of the proximity catch digraph, GJ :¼ 1
J

PJ
j¼1gnj

ð3=2Þ; is a test
statistic for the segregation/association alternative; rejecting for extreme values of GJ is
appropriate, since under segregation we expect GJ to be small, while under association we expect
GJ to be large. Using the equivalent test statistic

S ¼
ffiffiffi
J

p
ðGJ � mÞ=s, (1)

the asymptotic critical value for the one-sided level a test against segregation is given by

z1�a ¼ F�1ðaÞ, (2)

where Fð	Þ is the standard normal distribution function. The test rejects for Soz1�a: Against
association, the test rejects for S4za:
Depicted in Fig. 6 are the segregation with d ¼ 1=16 and association with d ¼ 1=4 realizations

for jYj ¼ 10 and J ¼ 13; and n ¼ 1000: The associated mean domination numbers are
2:308; 1:923; and 3:000; for the null realization in Fig. 4 and the segregation and association
alternatives in Fig. 6, respectively, yielding p-values 0:660; 0:003 and 0:000: We also present a
Monte Carlo power investigation in Section 6 for these cases.

Theorem 7 (Consistency). Let

J�ða; eÞ:¼
s 	 za

m� GJ

� �2
& ’

where d	e is the ceiling function and e-dependence is through GJ under a given alternative. Then the
test against HS

e which rejects for Soz1�a is consistent for all e 2 ð0;
ffiffiffi
3

p
=3Þ and JXJ�ð1� a; eÞ; and

the test against HA
e which rejects for S4za is consistent for all e 2 ð0;

ffiffiffi
3

p
=3Þ and JXJ�ða; eÞ:
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Proof. Let e40: Under HS
e ; gn;eð3=2Þ is degenerate in the limit as n ! 1; which implies GJ is a

constant a.s. In particular, for e 2 ð0;
ffiffiffi
3

p
=4�; GJ ¼ 2 and for e 2 ð

ffiffiffi
3

p
=4;

ffiffiffi
3

p
=3Þ; GJ ¼ 1 a.s. as

n ! 1: Then the test statistic S ¼
ffiffiffi
J

p
ðGJ � mÞ=s is a constant a.s. and JXJ�ð1� a; eÞ implies

that Soz1�a a.s. Hence consistency follows for segregation.
Under HA

e ; as n ! 1; GJ ¼ 3 for all e 2 ð0;
ffiffiffi
3

p
=3Þ; a.s. Then JXJ�ða; eÞ implies that S4za a.s.,

hence consistency follows for association. &

6. Monte Carlo power analysis

In Fig. 7, we observe empirically that even under mild segregation we obtain considerable
separation between the kernel density estimates under null and segregation cases for moderate J
and n values suggesting high power at a ¼ 0:05: A similar result is observed for association. With
J ¼ 13 and n ¼ 1000; under H0; the estimated significance level is ba ¼ 0:09 relative to segregation,
and ba ¼ 0:07 relative to association. Under HS ffiffi

3
p

=8
; the empirical power (using the asymptotic

critical value) is bb ¼ 0:97; and under HAffiffi
3

p
=21

; bb ¼ 1:00: With J ¼ 30 and n ¼ 5000; under H0; the
estimated significance level is ba ¼ 0:06 relative to segregation, and ba ¼ 0:04 relative to association.
The empirical power is bb ¼ 1:00 for both alternatives.
We also estimate the empirical power by using the empirical critical values. With J ¼ 13 and

n ¼ 1000; under HS ffiffi
3

p
=8
; the empirical power is bbmc ¼ 0:72 at empirical level bamc ¼ 0:033 and under

HAffiffi
3

p
=21

the empirical power is bbmc ¼ 1:00 at empirical level bamc ¼ 0:03: With J ¼ 30 and n ¼ 5000;
under HS ffiffi

3
p

=8
; the empirical power is bbmc ¼ 1:00 at empirical level bamc ¼ 0:034 and under HAffiffi

3
p

=21
the empirical power is bbmc ¼ 1:00 at empirical level bamc ¼ 0:04:

7. Extension to higher dimensions

The extension to Rd for d42 is straightforward. Let Y ¼ fy1; y2; . . . ; ydþ1g be d þ 1 non-
coplanar points. Denote the simplex formed by these d þ 1 points as SðYÞ: (A simplex is the
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simplest polytope in Rd having d þ 1 vertices, d ðd þ 1Þ=2 edges, and d þ 1 faces of dimension
ðd � 1Þ:) For r 2 ½1;1�; define the r-factor proximity map as follows. Given a point x in SðYÞ; let
y:¼argminy2YvolumeðQyðxÞÞ where QyðxÞ is the polytope with vertices being the d ðd þ 1Þ=2
midpoints of the edges, the vertex y and x. That is, the vertex region for vertex v is the polytope
with vertices given by v and the midpoints of the edges. Let vðxÞ be the vertex in whose region x

falls. If x falls on the boundary of two vertex regions, we assign vðxÞ arbitrarily. Let jðxÞ be the
face opposite to vertex vðxÞ; and ZðvðxÞ;xÞ be the hyperplane parallel to jðxÞ which contains x. Let
dðvðxÞ; ZðvðxÞ;xÞÞ be the (perpendicular) Euclidean distance from vðxÞ to ZðvðxÞ; xÞ: For r 2 ½1;1Þ;
let ZrðvðxÞ; xÞ be the hyperplane parallel to jðxÞ such that dðvðxÞ; ZrðvðxÞ;xÞÞ ¼ r dðvðxÞ; ZðvðxÞ;xÞÞ
and dðZðvðxÞ; xÞ; ZrðvðxÞ;xÞÞodðvðxÞ; ZrðvðxÞ;xÞÞ: Let SrðxÞ be the polytope similar to and with the
same orientation as S having vðxÞ as a vertex and ZrðvðxÞ; xÞ as the opposite face. Then the r-factor
proximity region Nr

YðxÞ:¼SrðxÞ \ SðYÞ: Also, let zjðxÞ be the hyperplane such that zjðxÞ \

SðYÞa; and r dðyj; zjðxÞÞ ¼ dðyj; Zðyj;xÞÞ for j ¼ 1; 2; . . . ; d þ 1: Then Gr
1ðxÞ ¼ [dþ1

j¼1 ðGr
1ðxÞ \

RðyjÞÞ where Gr
1ðxÞ \ RðyjÞ ¼ fz 2 RðyjÞ : dðyj; Zðyj; zÞÞXdðyj; zjðxÞg; for j ¼ 1; 2; 3:

Theorem 1 generalizes, so that any simplex S in Rd can be transformed into a regular polytope
(with edges being equal in length and faces being equal in volume) preserving uniformity.
Delaunay triangulation becomes Delaunay tessellation in Rd ; provided that no more than d þ 1
points being cospherical (lying on the boundary of the same sphere). In particular, with d ¼ 3; the
general simplex is a tetrahedron (4 vertices, 4 triangular faces and 6 edges), which can be mapped
into a regular tetrahedron (4 faces are equilateral triangles) with vertices
ð0; 0; 0Þ; ð1; 0; 0Þ ð1=2;

ffiffiffi
3

p
=2; 0Þ; ð1=2;

ffiffiffi
3

p
=6;

ffiffiffi
6

p
=3Þ: Let gnðr; dÞ be the domination number for the

extension to Rd : Then it is easy to see that gnðr; 3Þ is nondegenerate as n ! 1 for r ¼ 4=3; and
otherwise degenerate. In Rd ; it can be seen that gnðr; dÞ is nondegenerate in the limit only for
r ¼ ðd þ 1Þ=d: Moreover, it can be shown that limn!1 Pð2pgnððd þ 1Þ=d; dÞpd þ 1Þ ¼ 1; and we
conjecture that

lim
n!1

Pðdpgnððd þ 1Þ=d; dÞpd þ 1Þ ¼ 1.
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(right) under the null (solid) and alternative (dashed).
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7.1. Discussion

In this article we investigate the mathematical properties of a domination number method for
the analysis of spatial point patterns.
The first proximity map related to r-factor proximity map, Nr

Y; in literature is the spherical

proximity map, NSðxÞ:¼Bðx; rðxÞÞ; (which is called CCCD in the literature, see Priebe et al. (2001),
DeVinney et al. (2002), Marchette and Priebe (2003), Priebe et al. (2003a), and Priebe et al.
(2003b)). A slight variation of NS is the arc-slice proximity map NASðxÞ:¼Bðx; rðxÞÞ \ TðxÞ where
TðxÞ is the Delaunay cell that contains x (see Ceyhan and Priebe, 2003a, b). Furthermore, Ceyhan
and Priebe introduced the central similarity proximity map, NCS; in Ceyhan and Priebe (2003a).
The r-factor proximity map, when compared to the others, has the advantages that the asymptotic
distribution of the domination number gnðrÞ is tractable (see Theorem 3). The distribution of the
domination number of the proximity catch digraphs based on NS or NAS is not tractable, and that
of NCS is an open problem. Furthermore, NCS and Nr

Y enjoy the geometry invariance property
over triangles for uniform data. Moreover, while finding the exact minimum dominating sets is an
NP-Hard problem for NS; NAS; and Nt

CS; the exact minimum dominating sets can be found in
polynomial time for Nr

Y: Additionally, NASðxÞ; Nr
YðxÞ; and Nt

CSðxÞ are well defined only for
x 2 CHðYÞ; the convex hull of Y; whereas NSðxÞ is well defined for all x 2 Rd :
The NS (the proximity map associated with CCCD) is used in classification in the literature, but

not for testing spatial patterns between two or more classes. We develop a technique to test the
patterns of segregation or association. There are many tests available for segregation and
association in ecology literature. See Dixon (1994) for a survey on these tests and relevant
references. Two of the most commonly used tests are Pielou’s w2 test of independence and Ripley’s
test based on KðtÞ and LðtÞ functions. However, the test we introduce here is not comparable to
either of them. Our method deals with a slightly different type of data than most methods to
examine spatial patterns. The sample size for one type of point (type X points) is much larger
compared to the other (type Y points).
The null hypothesis we consider is considerably more restrictive than current approaches, which

can be used much more generally. The null hypothesis for testing segregation or association can
be described in two slightly different forms (Dixon, 1994):

(i) complete spatial randomness, that is, each class is distributed randomly throughout the area of
interest. It describes both the arrangement of the locations and the association between classes.

(ii) random labeling of locations, which is less restrictive than spatial randomness, in the sense
that arrangement of the locations can either be random or non-random.

Our test is closer to the former in this regard.

Appendix

Proof of Proposition 1. To prove Proposition 1, we show that the expected locus of the boundary
of the G1-region, qðGr

1ðXnÞÞ; goes to qðBr
YÞ as n ! 1 by showing that the expected loci of X ej

are ej

for j ¼ 1; 2; 3: See Ceyhan and Priebe (2003b) for the details.
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For sufficiently large n and given X ej
¼ ðxj; yjÞ for j ¼ 1; 2; 3;

AðG3=2
1 ðXnÞÞ ¼

ffiffiffi
3

p
=9ð3x2

2 � 6x2 þ 2
ffiffiffi
3

p
y2x2 � 2

ffiffiffi
3

p
y2 þ y22 þ 3þ y23 � 2

ffiffiffi
3

p
y3x3 þ 3x2

3 þ 4y2
1Þ.

The asymptotically accurate joint pdf of X ej
’s is

f 3ðzÞ ¼ nðn � 1Þðn � 2Þð
ffiffiffi
3

p
=36ð�2

ffiffiffi
3

p
y1 þ

ffiffiffi
3

p
y3 � 3x3 þ

ffiffiffi
3

p
y2 þ 3x2Þ

2
Þ
n�3=ð

ffiffiffi
3

p
=4Þn

with the support DS ¼ fz ¼ ðx1; y1;x2; y2; x3; y3Þ 2 R6 : ðxj; yjÞ’s are distinctg: Then for sufficiently

large n, E ½AðG3=2
1 ðXnÞÞ� �

R
DS

AðG3=2
1 ðXnÞÞf 3ðzÞdz; which goes to 0 as n ! 1 at the rate Oðn�2Þ:

See Ceyhan and Priebe (2003b) for the details.

Proof of Theorem 3. We know that gnðrÞp3 a.s. for all r 2 ½1;1� and all n. First we show that
limn!1 Pðgnð3=2Þ41Þ ¼ 1:

Note that Pðgnð3=2Þ41Þ ¼ PðXn \ G3=2
1 ðXnÞ ¼ ;Þ: Then we find PðXn \ G3=2

1 ðXnÞ ¼ ;; E2ðn; eÞÞ
where E2ðn; eÞ is the event such that 2effiffi

3
p pX 1p1� 2effiffi

3
p and 0pZ1pe; and 1=2pX 2p1� 2effiffi

3
p ;ffiffiffi

3
p

ð1� X 2Þ � epZ2p
ffiffiffi
3

p
ð1� X 2Þ; and 2effiffi

3
p pX 3p1=2; and

ffiffiffi
3

p
X 3 � epZ3p

ffiffiffi
3

p
X 3: First letting

n ! 1; then e ! 0; yields the desired result. See Ceyhan and Priebe (2003b) for the details.
Next, limn!1 Pðgnð3=2Þp2Þ ¼ limn!1 Pðgnð3=2Þ ¼ 2Þ; since limn!1 Pðgnð3=2Þ ¼ 1Þ ¼ 0: Let

Qj:¼ argmin
x2Xn\RðyjÞ

dðx; ejÞ ¼ argmax
x2Xn\RðyjÞ

dð‘ðyj; xÞ; ejÞ,

where ej is the edge opposite vertex yj for j ¼ 1; 2; 3 and let qj ¼ ðxj; yjÞ be the realization of Qj for

j ¼ 1; 2; 3: Then gnð3=2Þp2 iff Xn 
 N
3=2
Y ðQ1Þ [ N

3=2
Y ðQ2Þ or Xn 
 N

3=2
Y ðQ1Þ [ N

3=2
Y ðQ3Þ or Xn 


N
3=2
Y ðQ2Þ [ N

3=2
Y ðQ3Þ:

Let the events Ei;j:¼Xn 
 N
3=2
Y ðQiÞ [ N

3=2
Y ðQjÞ for ði; jÞ ¼ fð1; 2Þ; ð1; 3Þ; ð2; 3Þg: Then

Pðgnð3=2Þp2Þ ¼ PðE1;2Þ þ PðE1;3Þ þ PðE2;3Þ � PðE1;2 \ E1;3Þ

� PðE1;2 \ E2;3Þ � PðE1;3 \ E2;3Þ þ PðE1;2 \ E1;3 \ E2;3Þ.

By symmetry, PðE1;2Þ ¼ PðE1;3Þ ¼ PðE2;3Þ and PðE1;2 \ E1;3Þ ¼ PðE1;2 \ E2;3Þ ¼ PðE1;3 \ E2;3Þ:
Hence

Pðgnð3=2Þp2Þ ¼ 3½PðE1;2Þ � PðE1;2 \ E1;3Þ� þ PðE1;2 \ E1;3 \ E2;3Þ.

We find PðE1;2Þ; by finding the asymptotically accurate joint pdf of Q1; Q2: Let TðQjÞ be the
triangle formed by the median lines at yk and yl for k; laj and ‘ðyj;QjÞ; and let e40 be small
enough such that TðQjÞ 
 RðyjÞ; for j ¼ 1; 2; 3: Then the asymptotically accurate joint pdf of
Q1; Q2 is

f 1;2ðx1; y1;x2; y2Þ ¼ n ðn � 1Þ
1

AðTðYÞÞ
2

AðTðYÞÞ � AðTðq1ÞÞ � AðTðq2ÞÞ

AðTðYÞÞ

� �n�2

,

where AðTðq1ÞÞ ¼
ffiffiffi
3

p
=36ð�2

ffiffiffi
3

p
þ 3y1 þ 3

ffiffiffi
3

p
x1Þ

2 and AðTðq2ÞÞ ¼
ffiffiffi
3

p
=36ð�3y2 �

ffiffiffi
3

p
þ 3

ffiffiffi
3

p
x2Þ

2

with domain DI ¼ fðx1; y1Þ 2 Rðy1Þ : y1X�
ffiffi
3

p

3
þ

ffiffiffi
3

p
x1 þ

ffiffiffi
3

p
e; ðx2; y2Þ 2 Rðy2Þ : y2p�

ffiffi
3

p

3
þffiffiffi

3
p

x2 �
ffiffiffi
3

p
eg with e40 be small enough such that TðQjÞ 
 RðyjÞ; for j ¼ 1; 2; 3:
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Then PðE1;2Þ � 0:4126 (which is found numerically). See Ceyhan and Priebe (2003b) for the
details.
Similarly we find PðE1;2 \ E1;3Þ; by finding the joint pdf of Q1; Q2; Q3; where Tðq3Þ is the

triangle with vertices 1
3
ð

ffiffiffi
3

p
� 3y3Þ

ffiffiffi
3

p
; y3Þ; ð1=2;

ffiffiffi
3

p
=6Þ; ð

ffiffiffi
3

p
y3; y3Þ: Then the asymptotically

accurate joint pdf of Q1; Q2; Q3 is

f 123ðx1; y1;x2; y2; x3; y3Þ ¼ n ðn � 1Þ ðn � 2Þ
1

AðTðYÞÞ
3



AðTðYÞÞ � AðTðq1ÞÞ � AðTðq2ÞÞ � AðTðq3ÞÞ

AðTðYÞÞ

� �n�3

,

where AðTðq3ÞÞ ¼
ffiffi
3

p

36
ð�

ffiffiffi
3

p
þ 6 y3Þ

2 with domain DI ¼ fðx1; y1Þ 2 Rðy1Þ : y1X�
ffiffi
3

p

3
þ

ffiffiffi
3

p
x1 þffiffiffi

3
p

e; ðx2; y2Þ 2 Rðy2Þ : y2X�
ffiffi
3

p

3
þ

ffiffiffi
3

p
x2 �

ffiffiffi
3

p
e; ðx3; y3Þ 2 Rðy3Þ : y3p

ffiffi
3

p

6
þ eg:

Then PðE1;2 \ E1;3Þ � 0:2009 (see Ceyhan and Priebe (2003b) for the details).
Likewise, we find PðE1;2 \ E1;3 \ E2;3Þ � 0:1062 (see Ceyhan and Priebe (2003b) for the details).
Hence we get limn!1 PðgðXn;N

3=2
Y Þ ¼ 2Þ � 0:7413; and limn!1 PðgðXn;N

3=2
Y Þ ¼ 3Þ � 0:2587:
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