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Abstract. We derive the asymptotic distribution of the domination number of a new family of random digraph called proximity
catch digraph (PCD), which has application to statistical testing of spatial point patterns and to pattern recognition. The PCD we
use is a parametrized digraph based on two sets of points on the plane, where sample size and locations of the elements of one is
held fixed, while the sample size of the other whose elements are randomly distributed over a region of interest goes to infinity.
PCDs are constructed based on the relative allocation of the random set of points with respect to the Delaunay triangulation of the
other set whose size and locations are fixed. We introduce various auxiliary tools and concepts for the derivation of the asymptotic
distribution. We investigate these concepts in one Delaunay triangle on the plane, and then extend them to the multiple triangle
case. The methods are illustrated for planar data, but are applicable in higher dimensions also.
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1. Introduction

The proximity catch digraph¢PCDs) are a special type pfoximity graphswvhich were introduced by [19]. A
digraphis a directed graph with verticd$ and arcs (directed edges) each of which is from one vertex to another
based on a binary relation. Then the pairg) € V x V is an ordered pair which stands for an arc (directed edge)
from vertexp to vertexq. For example, theearest neighbofdi)graphof [15] is a proximity digraph. The nearest
neighbor digraph has the vertex $&and(p, ¢) as an arc iffy is a nearest neighbor of

Our PCDs are based on the proximity maps which are defined in a fairly general setting(,l/et) be a
measurable space. Tipeoximity mapN(-) is defined asV : Q — 29, where2% is the power set of2. The
proximity regionof z € ), denotedV (z), is the image of: € 2 underN (-). The points inN (z) are thought of as
being “closer” tox € € than are the points i \ N(x). Hence the term “proximity” in the nanm@oximity catch
digraph Proximity maps are the building blocks of theximity graphsof [19]; an extensive survey on proximity
maps and graphs is available in [12].

Theproximity catch digraphD has the vertex sét = {p1,...,p, }; and the arc setl is defined by(p;, p;) € A
iff p; € N(p;) fori # j. Notice that the proximity catch digraph depends on thproximity map N (-) and if
p; € N(p;), then we callN (p;) (and hence poing;) catchesp,;. Hence the term “catch” in the nanpeoximity
catch digraph If arcs of the form(p ;, p;) (i.e., loops) were allowed) would have been called pseudodigraph
according to some authors (see, e.qg. [7]).
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In a digraphD = (V,.A), a vertexv € V dominatestself and all vertices of the fornfu : (v,u) € A}. A
dominating sefSp for the digraphD is a subset o¥ such that each vertex< V is dominated by a vertex iff p.

A minimum dominating sety, is a dominating set of minimum cardinality and tlemination numbety(D) is
defined asy(D) := |S7,| (see, e.g. [13]) wherp: | denotes the set cardinality functional. See [7] and [20] for more
on graphs and digraphs. If a minimum dominating set is of size one, we calbininating vertex

Note that for|V| = n > 0,1 < y(D) < n, sinceV itself is always a dominating set.

In recent years, a new classification tool based on the relative allocation of points from various classes has
been developed. Priebe et al. [16] introduceddlass cover catch digrap€CCDs) and gave the exact and the
asymptotic distribution of the domination number of the CCCD based on twosgtand),,,, which are of size
n andm, from classest and), respectively, and are sets of iid random variables from uniform distribution on a
compact interval irR. Papers[9,10,14,17,18] applied the concept in higher dimensions and demonstrated relatively
good performance of CCCD in classification. The methods employed indabzereductioncondensinyby using
approximate minimum dominating sets ai®totype setgsince finding the exact minimum dominating set is an
NP-hard problemin general —e.g., for CCCD in multiple dimensions — (see [8]). DeVinney and Wierman [11] proved
a SLLN result for the domination number of CCCDs for one-dimensional data. Although intuitively appealing and
easy to extend to higher dimensions, exact and asymptotic distribution of the domination number of the CCCDs
are not analytically tractable iR? or higher dimensions. As alternatives to CCCD, two new families of PCDs
are introduced in [2,4] and are applied in testing spatial point patterns (see [5,6]). These new families are both
applicable to pattern classification also. They are designed to have better distributional and mathematical properties.
For example, the distribution of the relative density (of arcs) is derived for one family in [5] and for the other family
in [6]. In this article, we derive the asymptotic distribution of the domination number of the latter family called
r-factor proportional-edge PCDDuring the derivation process, we introduce auxiliary tools, suclp@sjmity
region (which is the most crucial concept in defining the PCDj;region, superset region, closest edge extrema,
asymptotically accurate distributioand so on. We utilize these special regions, extrema, and asymptotic expansion
of the distribution of these extrema. The choice of the change of variables in the asymptotic expansion is also
dependent on the type of the extrema used and crucial in finding the limits of the improper integrals we encounter.
Our methodology is instructive in finding the distribution of the domination number of similar PCR$ or higher
dimensions.

In addition to the mathematical tractability and applicability to testing spatial patterns and classification, this new
family of PCDs is more flexible as it allows choosing an optimal parameter for best performance in hypothesis
testing or pattern classification.

The domination number of PCDs is first investigated for data in one Delaunay trian@l@)Yiand the analysis is
generalized to data in multiple Delaunay triangles. Some trivial proofs are omitted, shorter proofs are given in the
main body of the article; while longer proofs are deferred to the Appendix.

2. Proximity maps and the associated PCDs

We construct the proximity regions using two data setsand),,, from two classest’ and)/, respectively. Given
YV C 9, theproximity mapNy(-) : Q — 2% associates groximity regionNy(x) C Q with each pointz € (.
The regionNy (z) is defined in terms of the distance betwaeand),,,. More specifically, our-factor proximity
maps will be based on the relative positions of points ftimwith respect to the Delaunay tessellatior)gf,. In
this article, a triangle refers to the closed region bounded by its edges. See Fig. 1 for an example-\With X
points iid2/((0,1) x (0, 1)), the uniform distribution on the unit square and the Delaunay triangulation is based on
m = 10 ) which are points also it ((0, 1) x (0,1)).

If X, = {Xl, . ,Xn} is a set of2-valued random variables thé¥, (X ;) are random sets. X; are iid then so
are the random sef§y,(X;). We define the data-random proximity catch digrdph associated wittV y,(-) — with
vertex sett,, = {X1,---, X, } and arc se# by

(Xi,Xj) ceA — Xj S Ny(Xi).

Since this relationship is not symmetric, a digraph is used rather than a graph. The randomdigesg@nds on
the (joint) distribution ofX; and on the ma@Vy(-). Forx,, = {Xl, cee ,Xn}, a set of iid random variables from
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Fig. 1. A realization oR00 X points (crosses) and the Delaunay triangulation based ghfddints (circles).

F, the domination number of the associated data-random proximity catch digraph based on the proximity map
denotedy(X,,, V), is the minimum number of point(s) that dominate all pointsip.

The random variable(X,,, N) depends explicitly or,, and N (-) and implicitly onF'. Furthermore, in general,
the distribution, hence the expectatiéiry (X,,, N)|, depends om, F, andN; 1 < E [y(X,,, N)] < n. In general,
the variance ofy(X,,, V) satisfies,] < Var|y(X,,, N)] < n?/4.

For example, the CCCD of [16] can be viewed as an example of PCRsaind is briefly discussed in the next
section. We use many of the properties of the CCCR ims guidelines in defining PCDs in higher dimensions.

2.1. Spherical proximity maps

Let Vi, = {Y;,---,¥,,} C R. Then the proximity map associated with CCCD is defined as the open ball
Ns(z) := B(z,r(z)) for all z € R, wherer(z) := minycy,, d(z,y) (see [16]) withd(x, y) being the Euclidean
distance between andy. That is, there is an arc frof¥ ; to X; iff there exists an open ball centeredXt which
is “pure” (or contains no elements) df,, in its interior, and simultaneously contains (or “catches”) pdint We
consider the closed balB(xz, r(x)) for Ng(z) in this article. Then for: € V,,, we haveNg(x) = {z}. Notice
that a ball is a sphere in higher dimensions, hence the notatian Furthermore, dependence d%, is through
7(z). Note that inR this proximity map is based on the intervdls= (Y ;_1.,,:Y;.,,) fOr j = 0,...,m + 1 with
Youm = —00 andy 1., = 00, Wherey; . is the j*" order statistic in),,. This interval partitioning can be
viewed as the Delaunay tessellatiogf, in R. Soin higher dimensions, we use the Delaunay triangulation based
onY,, to partition the support

A natural extension of the proximity regia¥s (z) to R? with d > 1 is obtained asVs(x) := B(x,r(z)) where
r(z) := minyey,, d(z,y) which is called thespherical proximity map The spherical proximity mapV s(z) is
well-defined for allz € R? provided thaty,, # 0. Extensions tdR? and higher dimensions with the spherical
proximity map — with applications in classification — are investigated by [9,10,14,17,18]. However, finding the
minimum dominating set of CCCD (i.e., the PCD associated Witl{-)) is an NP-hard problem and the distribution
of the domination number is not analytically tractabledas 1. This drawback has motivated us to define new types



234 E. Ceyhan and C.E. Priebe / Distribution of the domination number of a new family of parametrized random digraphs

of proximity maps. Ceyhan and Priebe [4] introdueef@dctor proportional-edge PCD, where the distribution of the
domination number of-factor PCD withr = 3/2 is used in testing spatial patterns of segregation or association.
Ceyhan et al. [6] computed the asymptotic distribution of the relative density of-faetor PCD and used it
for the same purpose. Ceyhan and Priebe [2] introduced the central similarity proximity maps and the associated
PCDs, and [5] computed the asymptotic distribution of the relative density of the parametrized version of the central
similarity PCDs and applied the method to testing spatial patterns. An extensive treatment of the PCDs based on
Delaunay tessellations is available in [1].

The following property (which is referred to as Property (1)) of CCCDR iplays an important role in defining
proximity maps in higher dimensions.

Property(1) Forz € I;, Ng(x) is a proper subset df; for almost allx € I;. Q)

In fact, Property (1) holds for alt € I; \ {(Y(;_1).n + ¥;.m)/2} for CCCDs inR. Forz € I;, Ns(z) = I;
iff = (y(j,l):m +Y,.m)/2. We define an associated region for such points in the general contexsupbeset
regionfor any proximity mapV (-) in Q is defined to be

RS(N) = {IC eN: N(:C) = Q}

For example, fol2 = I; ¢ R, RS(Ns) = {z € I; : Ns(z) = Li} = {(Yj—1)m + ¥;:m)/2} and for
Q =17, CRY RS(Ng) :={z € T; : Ns(x) = T;}, whereT; is thej" Delaunay cell in the Delaunay tessellation.
Note that forz € I;, A(Ng(z)) < A(I;) andA\(Ng(x)) = A(L;) iff © € Rg(Ng) where)(:) is the Lebesgue
measure ofR. So the proximity region of a pointiR s(Ng) has the largest Lebesgue measure. Note also that given
Ym. Rs(Ng) is not a random set, buitX € Rg(Ng)) is a random variable, whetg-) stands for the indicator
function. Property 1 also implies th&s(Ng) has zerdR-Lebesgue measure.

Furthermore, given a s& of sizen in [Y1.,,,; Yin.ml \ Vim. the number of disconnected components in the PCD
based onVs(-) is at least the cardinality of the st € {1,2,...,m} : BN I; # (0}, which is the set of indices of
the intervals that contain some point(s) fr@m

Since the distribution of the domination number of spherical PCD (or CCCD) is tractaR|ebint not inR ¢ with
d > 1, we try to mimic its properties if while defining new PCDs in higher dimensions.

3. Ther-factor proportional-edge proximity maps

First, we describe the construction of thdactor proximity maps and regions, then state some of its basic
properties and introduce some auxiliary tools.

3.1. Construction of the proximity map

LetYm = {Yy,--.,Y,,} bem points in general position iR¢ and7; be thejt" Delaunay cell fofj = 1, ..., J,,,
where.J,, is the number of Delaunay cells. Lat, be a set of iid random variables from distributiBrin R ¢ with
supportS(F) C Cu(Vm).

In particular, for illustrative purposes, we focusBA where a Delaunay tessellation is a triangulation, provided
that no more than three points J,, are cocircular (i.e., lie in the same circle). Furthermore, for simplicity, let
Vs = {Y1,¥s,Y5} be three non-collinear points iR? and7'(}s) = T'(y,,Y,,Y3) be the triangle with vertices
V3. Let X, be a set of iid random variables frofi with supportS(F) C T'(Vs3). If FF = U(T()s)), a
composition of translation, rotation, reflections, and scaling will take any given tridfgleto the basic triangle
T, = T((0,0), (1,0), (c1,c2)) With 0 < ¢1 < 1/2,¢2 > 0,and(1 — ¢1)? + ¢3 < 1, preserving uniformity. That is,
if X ~UT(Ys) is transformed in the same manner to, 38y then we haveX’ ~ U(T5).

Forr € [1,00], defineN} (-, M) := N (-, M;r,Y3) to be ther-factor proportional-edge proximity mawith
M-vertex regions as follows (see also Fig. 2 with= M andr = 2). Forz € T(Ys) \ Vs, letv(x) € Vs be
the vertex whose region containsi.e.,z € Ry (v(z)). In this articleM-vertex regionsre constructed by the
lines joining any pointV/ € R?2 \ )3 to a point on each of the edgesBfY;). Preferably,M is selected to be in
the interior of the triangl@’()’3)°. For such anV/, the corresponding vertex regions can be defined using the line
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Fig. 2. Construction of-factor proximity regionN;}Q(a:) (shaded region).

segment joining}/ to e;, which lies on the line joining ; to M; e.g. see Fig. 3 (left) for vertex regions based on
center of masd/, and (right) incenten/ ;. With M, the lines joininglM/ and); are themedian linesthat cross
edges at\/; for j = 1,2,3. M-vertex regions, among many possibilities, can also be defined by the orthogonal
projections fromM to the edges. See [1] for a more general definition. The vertex regions in Fig. 3 are center of
mass vertex regions @ M-vertex regions. lfz falls on the boundary of twd/-vertex regions, we assignx)
arbitrarily. Lete(z) be the edge of'()3) opposite ofv(z). Let ¢(v(zx),x) be the line parallel te(z) through

z. Letd(v(z),f(v(x),z)) be the Euclidean (perpendicular) distance frofa) to ¢(v(x),z). Forr € [1,00), let
¢.(v(x),x) be the line parallel te(x) such that

dv(z), br(v(z),2)) = rd(v(z), L(v(z),z))and d(l(v(z), z), L (v(x), x)) < d(v(x),l-(v(x), x)).

LetT,(z) be the triangle similar to and with the same orientatiofi@g;) havingu(x) as a vertexand.(v(z), z) as
the opposite edge. Then thé&actor proportional-edge proximity regioN J, . (x, M) is defined to b&. () NT'()s).
Notice that/(v(zx), x) divides the edges df,.(x) (other than the one lies of).(v(x), z)) proportionally with the
factorr. Hence the name-factor proportional edge proximity region

Notice thatr > 1 impliesz € Ny (z, M) for all z € T'(Ys). Furthermorelim, .o Nj(z, M) = T(Ys) for
allz € T(YVs) \ Vs, so we defineV g% (x, M) = T'(Vs) for all suchz. Forx € (Vs), we defineNjy o (z, M) = {z}
forall r € [1, c0].

Hence,r-factor proportional edge PCD has vertic€s and arcqx;, ;) iff ; € Njz(z;, M). See Fig. 4 for a
realization ofX,, with n = 7 andm = 3. The number of arcs is 12 and,(r = 2, M¢) = 1. By construction, note
that ase gets closer td\/ (or equivalently further away from the vertices in vertex regions}, , (z, M) increases
in area, hence it is more likely for the outdegree:@b increase. So if mor& points are around the cent&f, then
it is more likely for~,, to decrease. On the other hand, if méf¢oints are around the vertic@y, then the regions
get smaller, hence it is more likely for the outdegree for such points to be smaller, thereby implyiadncrease.
This probabilistic behaviour is utilized in [4] for testing spatial patterns.

Note also that N} . (x, M) is a homothetic transformatiofenlargementwith » > 1 applied on the region
NEZ (z, M). Furthermore, this transformation is alsoaffine similarity transformation

3.2. Some basic properties and auxiliary concepts

First, notice thatX; & F, with the additional assumption that the non-degenerate two-dimensional probability

density functionf exists with supporS(F) C T'(Y3), imply that the special case in the constructiom\gf ,—X
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Fig. 3. The vertex regions constructed with center of miags(left) and incentetM; (right) using the line segments on the line joinifg to
Vs.

Fig. 4. Arealization of 7t points generated iitf'7'()3) (left) and the corresponding arcssefactor proportional edge PCD with= 3/2 and
M = Mc.

falls on the boundary of two vertex regions — occurs with probability zero. Note that for SuEh &}, (X)) is a
triangle a.s.

The similarity ratio of N, (z, M) to T()3) is given by min(d""(”)’?.55‘284"5,‘1&”5;*"""’“)7’””, that is, N (x, M)
is similar toT'()5) with the above ratio. Property (1) holds depending on the paandr. That is, there exists an
ro and a corresponding poidt (ro) € T'(Ys)° so thatN, (z, M) satisfies Property (1) for all < r, but fails
to satisfy it otherwise. Property (1) fails for all whenr = co. With C'M-vertex regions, for alt € [1, o],
the aread (N, (z, Mc)) is a continuous function ofl(¢,(v(x), z),v(x)) which is a continuous function of
d(¢(v(z), z),v(x)) which is a continuous function af.

Note that ifz is close enough td7, it is also possible to haw¥ I, ..z, M) = T'(Ys) for r = v/2.

In T'(Y3), drawing the linesy;(r, x) such thatd(y,,e;) = rd(y;, ¢;(r,z)) for j € {1,2,3} yields a triangle,
denotedZ,, forr < 3/2. See Fig. 5 fofT,. with r = /2.

The functional form off.. in the basic triangld’, is given by

7. :T(tl(r)th(T)vtii(r)) - {(xvy) €ETy:y= = (rr,«i 1); S 072“ 8 —21:?; ES = (T (35’1“211)+ 1)}
T(((r1)£1+cl)762(rr1)>7<2r+i1(r1)’62(7;1))’ 2

(61(2—7“)-1-7"—1,62(7“—2)))

There is a crucial difference between the trian@leandT'(M;, M2, M3). More specificallyl’ (M1, My, M3) C
Rs(r, M) for all M andr > 2, but(7,)° andRg(r, M) are disjoint for allM andr. So if M € (7,)°, then
Rs(r, M) = 0; if M € 9(7;), thenRg(r, M) = {M}; and if M & 7,, thenRgs(r, M) has positive area. Thus
N} (-, M) fails to satisfy Property (1) i/ ¢ 7,.. See Fig. 6 for two examples of superset regions Wittthat
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Fig. 5. The triangleZ,. with » = +/2 (the hatched region).
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Fig. 6. The superset regions (the shaded regions) constructed with circumbgntewith » = 1/2 (left) andr = 2 (right) with vertex regions
constructed with orthogonal projections to the edges.

correspondsto circumcentif ¢ in this triangle and the vertex regions are constructed using orthogonal projections.
Forr = 2, note thatZ,. = () and the superset region@¥ M, M, M3) (see Fig. 6 (left)), while for = /2, 7,° and
Rs(r = /2, M)° are disjoint (see Fig. 6 (right)).
The triangle7,. givenin Eq. (2) and the superset regiBnr (r, M) play a crucial role in computing the distribution
of the domination number of thefactor PCD.

3.3. Main result

Next, we present the main result of this article. ke{(r, M) := v (X,,, N}, M) be the domination number of
the PCD based oV} ; with X, a set of iid random variables frobh(T'()s)), with M -vertex regions.
The domination numbey,, (r, M) of the PCD has the following asymptotic distribution. As— oo,

2+ BER(1 —p,), forre[1,3/2) and M € {t1(r),t2(r), t5(r)},
n(r, M) ~ < 1, for r > 3/2, 3
3, forr € [1,3/2) and M € T, \ {t1(r),t2(r), ts(r)},

whereBER(p) stands for Bernoulli distribution with probability of successT,. andt¢;(r) are defined in Eq. (2),
and forr € [1,3/2) andM € {t1(r),t2(r), t3(r)},
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Fig. 7. Plotted is the probability, = limy,—oc P(vyn(r, M) = 2) given in Eq. (4) as a function effor r € [1,3/2) andM € {1 (r), t2(r),
ts(r)}.
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for example forr = 3/2 andM = M¢, p, =~ 0.7413. See Fig. 7 for the plot gf, for r € [1,3/2).

In Eq. (3), the first line is referred as the non-degenerate case, the second and third lines are referred as degenerate
cases with a.s. limits 1 and 3, respectively.

In the following sections, we define a region associated with 1 case in general. Then we give finite sample
and asymptotic upper bounds fgy (r, M). Then we derive the asymptotic distributionof(r, M).

4. TheT';-regionsfor Ny

First, we definel’;-regions in general, and describe the constructiofr pfegion of N}, for one point and
multiple point data sets, and provide some results concefhjaggions.

4.1. Definition ofl*;-regions

Let (2, M) be a measurable space and consider the proximity Map2 — 2. For any setB C (, the
I';-regionof B associated withV (), is defined to be the regidny (B) := {2 € Q: B C N(z)}. Forz € Q, we
denotel') ({«}) asI'}’ ().

If X, = {X1,Xs, -+, X,} is a set of2-valued random variables, thér’ (X;), i = 1,---,n, andl'}’ (X,,) are
random sets. If thé(; are iid, then so are the random sEtS(X;).

Note thaty(X,,, N) = 1iff X, "T'Y(X,) # 0. Hence the namE; -region

Itis trivial to see the following.

Proposition 1. For any proximity mapV and setB C Q, Rs(N) C T'V(B).
Lemma 1. For any proximity mapV andB C Q, T'¥(B) = Ny ().

Proof: Given a particular type of proximity may and subse3 C Q,y € TN(B) iff B C N(y) iff z € N(y)
forallz € Biff y € TV (x) forall z € Biff y € N,epl'Y (x). Hence the result follows]
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Fig. 8. Construction of th&; -region,I';=2(z, M¢) (shaded region).

A problem of interest is finding, if possible, a (proper) subsgtp$ayG C B, suchthal' ¥(B) = N,ecTV (2).
This implies that only the points i will be activein determiningl' & (B). For example, iR with Y, = {0, 1},
andJX,, a set of iid random variables of size> 1 from F' in (0, 1), F{VS (Xn) = (Xnn/2, (1 + X1:0)/2). Sothe
extrema (minimum and maximum) of the s&}, are sufficient to determine tH& -region; i.e..G = {X1.n, Xn:n}
for X, a set of iid random variables from a continuous distributiofi®n ). Unfortunately, in the multi-dimensional
case, there is no natural ordering that yields natural extrema such as minimum or maximum.

4.2. Construction of ;-region of a point forN;

For N} (-, M), theT';-region, denoted aBY (-, M) := FiV;E(-, M), is constructed as follows; see also Fig. 8.
Let §;(r,z) be the line parallel te; such that;(r,z) N T'(Vs) # 0 andrd(y,,§;(r,x)) = d(y;, (y;,»)) for
j€{1,2,3}. Then

(2, M) = Uj_ [T (2, M) N Rar(y;)]

wherel'] (z, M) N Ry (Y;) = {z € Ru(y;) : d(y;, €(Y;, 2)) = d(y,,§;(r,z)} for j € {1,2,3}.

Notice thatr > 1 implies thatr € I'}(x, M). Furthermorelim, . I'T (x, M) = T'(Ys) forall z € T(Y3) \ Vs
and so we defin€ = (z, M) = T'()%5) for all suchz. Forz € V3, I'f(x, M) = {z} forall r € [1, o0].

Notice thafl'} (x, M) is a convex hexagon for all > 2 andx € T'(Ys3) \ Vs, (since for such am, '} (z, M¢) is
bounded by ;(r, z) ande; for all j € {1,2,3}, see also Fig. 8) else it is eitheccanvex hexagoar anon-convex
but star-shaped polygodepending on the location afand the value of.

4.3. Thel';-region of a multiple point data set fav ;. ,

So far, we have described tfig-region for a point ine € T'()3). For a setX,, of sizen in T'())3), the region
I'7(X,, M) can be specified by the edge extrema only. The (closdgg extremaf a setB in T'()3) are the points
closest to the edges @f()3), denotedr., for j € {1,2,3}; thatis,z.; € arginf, . pd(x,e;). Note thatifB = X,
is a set of iid random variables of sizefrom F then the edge extrema, denot&d, (n), are random variables.
Below, we show that the edge extrema are the active points in defirii0j,, M).

Proposition 2. Let B be any set of: distinct points inZ’()s). Forr-factor proportional-edge proximity maps with
M-vertex regionsl'; (B, M) = N} _, T'% (ze,, M).
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Y1t oz ola o.6 o.8 Y2 yit o2 ola o6 o.8 Y2

Fig. 9. Thel';-regions (the hatched regions) for= 2 with sevenX points iidZ/(7()3)) where vertex regions constructed with incemér
(left) and circumcenteM ¢ (right) with orthogonal projection.

Proof: GivenB = {x1,...,z,} in T()s). Note that
LB, M) N Rur(y;) = [Miey (s, M)] 0 Ra(y;),
but by definitionz.; € argmax,cgd(y;,&;(r, x)), SO
T7(B, M) N Rag(y,) = T (2e,, M) 0 Ras(y, for j € {1,2,3). 5)
Furthermorel'; (B, M) = U3_, [T} (z.,, M) N Ru(y,)], and
U (e, M) N Rr(Y;) = Moy [T1 (@, M) N Rar(y;)] for j € {1,2,3}. (6)

Combining these two results in Egs (5) and (6), we obEitB, M) = N3 _, T (z,,, M). O
From the above proposition, we see thatkheregion for B as in proposition can also be written as the union of
three regions of the form

LB, M) N Rar(y;) = {z € Raur(y;) : dly;, £y, 2)) = d(y;, &5(r,2e;))} for j € {1,2,3}.

See Fig. 9 fol';-region forr = 2 with sevenX’ points iidZ(7'()s)). In the left figure, vertex regions are
based on incenter, while in the right figure, on circumcenter with orthogonal projections to the edges. In either case
X, NT7=%(X,, M) is nonempty, hence, (2, M) = 1.

Below, we demonstrate that edge extrema are distinct with probabilitynl -asco. Hence in the limit three
distinct points suffice to determine tihg -region.

Theorem 1. Let X, be a set of iid random variables fra#{(7'()'3)) and letE. ;(n) be the event that (closest) edge
extrema are distinct. TheR(E. 3(n)) — 1 asn — oo.

We can also define the regions associated with',,, V) = k for k < n calledI';-regionfor proximity map
Ny,(-)andsetB C Qfork =1,...,n (see[l]).

5. Theasymptotic distribution of ~,,(r, M)

In this section, we first present a finite sample upper bound fér, M), then present the degenerate cases, and
the nondegenerate case of the asymptotic distribution,6f, M) given in Eq. (3).
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5.1. An upper bound foy,, (r, M)

Recall that by definitiony(X,,, N) < n. We will seek an a.s. least upper bound4¢#’,,, N). Let X,, be a set of
iid random variables from" onT'()3) and lety(X,,, N) be the domination number for the PCD based on a proximity
mapN. Denote the general a.s. least upper bound{dr,,, N) that works for alln > 1 and is independent of
(which is calleds-valuein [1]) asx(N) := min{k : v(X,, N) < k a.s. foraln > 1}.

In R with ), = {0, 1}, for &,, a set of iid random variables frobd(0, 1), v(X,, Ns) < 2 with equality holding
with positive probability. Hence(Ng) = 2.

Theorem 2. Let X, be a set of iid random variables fral(TY3)) and M € R? \ 5. Thenk (N5 ) = 3 for

Proof: For Npg(-, M), pick the point closest to edge; in vertex region Ry (y;); that is, pick
U; ¢ argminXeXnnRM(yj)d(X, ej) = argmaxXEXmRM(yj)d(é(y,X),yj) in the vertex region for which
Xn N Ru(y;) # 0forj € {1,2,3} (note that as — oo, U; is unique a.s. for eachi sinceX is fromU(T'(Vs)).
ThenX, N Ru(y;) C Npg(Uj, M). HenceX,, C U3_ Np(Uj, M). Sov,(r, Mc) < 3 with equality holding
with positive probability. Thus (Nj ) = 3. O

Below is a general result for the limiting distribution-ofX’,,, N) for X, from a very broad family of distributions
and for generalNV ().

Lemma 2. Let Rg(NN) be the superset region for the proximity m&jg-) and.X’,, be a set of iid random variables
from F with Pp(X € Rg(N)) > 0. Thenlim, o Pr(y(X,,N)=1) = 1.

Proof. SupposePr (X € Rs(N)) > 0. Recall that for any: € Rg(N), we haveN (z) = Q, soX,, C N(z),
hence ifX,, N Rs(N) # 0 theny(X,,N) = 1. ThenP(X, N Rs(N) # 0) < P(y(X,,N) = 1). But
P(X, NRs(N) #0) =1-P(X, NRs(N)=0) =1-[1-Pp(X € RS(N))]” — 1 asn — oo, since
Pr(X € Rs(N)) > 0. Hencelim,, .o P(y(X,,,N) =1) = 1. O

Remark 1. In particular, forF' = U(T'()3)), the inequalityPr (X € Rg(N)) > 0 holds iff A(Rs(N)) > 0, then
P(X,L NRs(N) # @) — 1.0

For), ={0,1} C R, Rs(Ng) = {1/2}, so Lemma 2 does not apply 15 in R.

Recall thats (N} ) = 3, then

1< E [ya(r,M)] <3and 0 < Var [y,(r, M)] < 9/4.

Furthermore, there is a stochastic orderingyfp(r, M).

Theorem 3. SupposeY,, is a set of iid random variables from a continuous distributibon 7°()3). Then for
ry < re, WE haVeVn(Tza M) SST '7 (Xnv N}—’lEa M)

Proof. Suppose; < ra. ThenP (v, (re, M) < 1) > P (v, (r1, M) < 1) sincel'7* (X, M) C T'1?(X,,, M) for
any realization oft,, and by a similar argumett (~,, (rz, M) < 2) > P (v (r1, M) < 2) SOP (7,,(r2, M) < 3) =
P (vn(r1, M) < 3) . Hence the desired result follows!

5.2. Geometry invariance

We present a “geometry invariance” result féf, , (-, M) whereM -vertex regions are constructed using the lines
joining V53 to M, rather than the orthogonal projections framto the edges. This invariance property will simplify
the notation in our subsequent analysis by allowing us to consider the special case of the equilateral triangle.

Theorem 4. (Geometry Invariance Property) Suppdgg is a set of iid random variables frobthT'()s)). Then for
anyr € [1, oo the distribution ofy,,(r, M) is independent of’; and hence the geometry 51Ys).

Proof. SupposeX ~ U(T(Ys3)). A composition of translation, rotation, reflections, and scaling will take any
given triangleT'(V3) = T'(y,,Ys,Y5) to the basic triangld;, = T'((0,0), (1,0), (c1,c2)) with 0 < ¢1 < 1/2,
c2 > 0,and(1 — ¢1)? + ¢ < 1. Furthermore, wheX is also transformed in the same manner, sa¥ tothenX’
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Table 1
The number ofy, (r, M) = k out of N = 1000 Monte Carlo replicates with/ = Mz andr = 2
(left) andr = 5/4 (right)

k\n 10 20 30 50 100 kK\n 10 20 30 50 100
1 961 1000 1000 1000 1000 1 9 0 0 0 0
2 34 0 0 0 0 2 293 110 30 8 0
3 5 0 0 0 0 3 698 890 970 992 1000

is uniform onTy, i.e., X' ~ U(T;). The transformation.. : R? — R? given by¢. (u,v) = (u + 1_\/2301

takesT;, to the equilateral trianglé. = ((0,0), (1,0), (1/2,v/3/2)). Investigation of the Jacobian shows that
also preserves uniformity. Thatis.(X’) ~ U(T.). Furthermore, the composition &t , with the scaling and rigid
body transformations, maps the boundary of the original triarigle to the boundary of the equilateral triangle,
Te, the lines joiningM toy, in T}, to the lines joiningp. (M) to ¢ (y;) in T¢, and lines parallel to the edgesbf
to lines parallel to the edges @t. Since the distribution of.,(r, M) involves only probability content of unions
and intersections of regions bounded by precisely such lines and the probability content of such regions is preserved
since uniformity is preserved; the desired result follofis.

Note that geometry invariance of(X,,, N5z, M) also follows trivially, since for- = oo, we havey, (r =
o0, M) =1 a.s. for allx,, from any F with supportinT'(YVs) \ Vs.

Based on Theorem 4 we may assume thaf)s;) is a standard equilateral triangle witQs
{(0,0),(1,0), (1/2,+/3/ 2)} for Nj (-, M) with M-vertex regions.

Notice that, we proved the geometry invariance property\gr,, wherel/-vertex regions are defined with the
lines joining); to M. On the other hand, if we use the orthogonal projections fidnto the edges, the vertex
regions, henc&Vy,  will depend on the geometry of the triangle. That is, the orthogonol projectionsffamthe
edges will not be mapped to the orthogonal projections in the standard equilateral triangle. Hence with the choice of
the former type of\/-vertex regions, it suffices to work on the standard equilateral triangle. On the other hand, with
the orthogonal projections, the exact and asymptotic distributien,ofill depend oncy, ¢o, SO one needs to do the
calculations for each possible combinatioreef cs.

U, 2co

2

5.3. The degenerate case with(r, M) > 1
Below, we prove that,, (r, M) is degenerate in the limit for > 3/2.

Theorem 5. SupposeY,, is a set of iid random variables from a continuous distributioon T'(Ys). If M & 7,
(see Fig. 5 and Eq. (2) fdF,.), thenlim,, o P (yn(r, M) = 1) = 1 forall M € R?\ )s.

Proof. SupposeM ¢ 7,. ThenRg (Ny g, M) is nonempty with positive area. Hence the result follows by
Lemma 2.

Corallary 1. SupposeY,, is a set of iid random variables from a continuous distributioon 7'()5). Then for
r>3/2,1im, oo P(yu(r,M)=1)=1forall M € R?\ )s.
Proof. Forr > 3/2,7, = 0, soM ¢ 7,. Hence the result follows by Theorem.
We estimate the distribution ef, (r, M) with » = 2 andM = M for variousn empirically. In Table 1 (left),
we present the empirical estimatesyqf(r, M) with n = 10, 20, 30, 50, 100 based on 1000 Monte Carlo replicates
in T.. Observe that the empirical estimates are in agreement with the asymptotic distribution given in Corollary 1.
The asymptotic distribution of,,(r, M) for » < 3/2 depends on the relative position bf with respect to the
triangle7,..

5.4. The degenerate case with(r, M) 2 3

Theorem 6. SupposeY,, is a set of iid random variables from a continuous distribufibon T'(Ys). If M € (7;)°,
thenP (v, (r, M) = 3) — 1 asn — .
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Table 2
The number ofy, (r, M) = k out of N = 1000 Monte Carlo

replicates with- = 5/4 andM = (3/5, \/5/10)

k\n 10 20 30 50 100 500 1000 2000
1 118 60 51 39 15 1 2 1
2 462 409 361 299 258 100 57 29
3 420 531 588 662 727 899 941 970

Table 3
The number ofy, (r, M) = k out of N = 1000 Monte Carlo

replicates withr = 5/4 and M = (7/10,/3/10)

k\n 10 20 30 50 100 500 1000 2000
1 174 118 82 61 22 5 1 1
2 532 526 548 561 611 617 633 649
3 294 35 370 378 367 378 366 350

We estimate the distribution af, (r, M) with » = 5/4 andM = M for variousn values empirically. In Table 1
(right), we present the empirical estimatesygfr, M) with n = 10, 20, 30, 50, 100 based on 1000 Monte Carlo
replicates inl,. Observe that the empirical estimates are in agreement with our result in Theorem 7.

Theorem 7. SupposeY,, is aset of iid randomvariables fraf(T'(V3)). If M € 0(7;),thenP (y,(r, M) > 1) — 1
asn — oo.
For M € 0(7,), there are two separate cases:

(i) M € 0(7,) \ {t1(r), t2(r), ts(r)} wheret;(r) with j € {1, 2,3} are the vertices dof,. whose explicit forms
are givenin Eq. (2).
(i) M e {ti(r), ta(r), ts(r)}.

Theorem 8. SupposeY,, is a set of iid random variables frobd(T'(Ys)). If M € 9(7,) \ {t1(r), t2(r),t3(r)},
thenP (v, (r, M) = 3) — 1 asn — .

We estimate the distribution of, (r, M) with r = 5/4 andM = (3/5,v/3/10) € O(T.) \ {t1(r), t2(r), ts(r)}
for variousn empirically. In Table 2 we present empirical estimates ofr, M) with n = 10, 20, 30, 50, 100, 500,
1000, 2000 based on 1000 Monte Carlo replicategin Observe that the empirical estimates are in agreement with
our result in Theorem 9.

5.5. The nondegenerate case

Theorem 9. Supposet,, is a set of iid random variables frotd(T(73)). If M € {¢t1(r), ta(r), t3(r)}, then
P (yo(r, M) = 2) — p, asn — oo wherep,. € (0,1) is provided in Eq. (4) but only numerically computable.

For examplep,—s,4 ~ 0.6514 andp,._ 5 ~ 0.4826.

So the asymptotic distribution ef, (r, M) with r € [1,3/2) andM € {t1(r), t2(r), t3(r)} is given by

PYn(TvM> ~ 2+BER(]— 7pr>' (7)

We estimate the distribution of,,(r, M) with » = 5/4 and M = (7/10,+/3/10) for variousn empirically.
In Table 3, we present the empirical estimates gfr, M) with n = 10, 20, 30, 50, 100, 500, 1000, 2000 based
on 1000 Monte Carlo replicates .. Observe that the empirical estimates are in agreement with our result
p’l‘=5/4 ~ 0.6514.

Remark 2. Forr = 3/2,asn — oo, P (y,(r, Mc) > 1) — 1 atrateO (n=1). O

Theorem 10. SupposeY,, is a set of iid random variables frof7'()3)). Then forr = 3/2, asn — oo,
Yn(3/2, M) ~ 2 + BER(p ~ 0.2487) (8)



244 E. Ceyhan and C.E. Priebe / Distribution of the domination number of a new family of parametrized random digraphs

Table 4
The number ofy, (3/2, M¢) = k out of N = 1000 Monte Carlo
replicates
k\n 10 20 30 50 100 500 1000 2000
1 151 82 61 50 27 2 3 1

2 602 636 688 693 718 753 729 749
3 247 282 251 257 255 245 268 250

For the proof of Theorem 10, see [3,4].
Using Theorem 10,

lim E [y,.(3/2, Mc)] = 3 — p3/2 ~ 2.2587 9
and
lim Vior [1,(3/2, Mc)] = 6+ psyz — P3je ~ 0.1917. (10)

Indeed, the finite sample distribution ¢f,(3/2, M) hence the finite sample mean and variance can also be
obtained by numerical methods.

We also estimate the distribution of,(3/2, M) for variousn empirically. The empirical estimates far =
10, 20, 30, 50, 100, 500, 1000, 2000 based onl000 Monte Carlo replicates are given in Table 4 observe that the
estimates are in agreement with our regullt 3, ~ 0.7413.

5.6. Distribution of they,, (r, M) in multiple triangles

So far we have worked with data in one Delaunay triangle,ie= 3 or J3 = 1. In this section, we present
the asymptotic distribution of the domination numben-efictor PCDs in multiple Delaunay triangles. Suppose
Ym = {Y1:Yas---»Y¥,n} C R? be a set ofn points in general position with, > 3 and no more than 3 points are
cocircular. Then there arg,, > 1 Delaunay triangles each of which is denotedZas Let M be the point inZ;
that corresponds td/ in T., 7,7 be the triangle that correspondsp in 7, andt{ (r) be the vertices of 7 that
correspond ta;(r) in T, for ¢ € {1,2,3}. Moreover, letn; := |X,, N 7|, the number ofX points in Delaunay
triangle7;. ForX,, C Cu(Vm), letyy, (r, M) be the domination number of the digraph induced by vertices;of
andX,, N 7;. Then the domination number of thefactor PCD inJ, triangles is

Im
'Yn(rv M, Jm) = Z Tn; (’I“, M7).
J=1

See Fig. 10 (left) for the 7 points that are i€ 5 (),,,) out of the 200Y points plotted in Fig. 1. Observe that 10
Y points yieldJ;o = 13 Delaunay triangles. In Fig. 10 (right) are the corresponding arck/fer M - andr = 3/2.
The corresponding,, = 22. SupposeY,, is a set of iid random variables frat(C i (),)), the uniform distribution
on convex hull ofy,,, and we construct the-factor PCDs using the poinfg/ 7 that correspond td/ in T.. Then for
fixedm (or fixedJ,,,), asn — oo, so does each;. Furthermore, as — oo, each component,,, (r, M) become
independent. Therefore using Eq. (3), we can obtain the asymptotic distributionaf}M, J,,,). Asn — oo, for
fixed J,,

2 Jp + BIN(J,, 1 = p,.), for M7 € {t](r), t(r), t5(r)} and r € [1,3/2],
’)/n(rv M, Jm) ~ Jims for r > 3/27 . . . (11)
3 Jm; for M € T\ {1(r), t5(r), t4(r)} and r € [1,3/2),

whereBIN(n, p) stands for binomial distribution with trials and probability of succegs for r € [1,3/2) and
M € {t1(r),t2(r), t3(r)}, pr is given in Eq. (3) and for = 3/2 andM = M, p. ~ 0.7413 (see Eq. (8)).
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Table 5
The number ofy, (4/3, M) = k out of N = 1000 Monte Carlo replicates

10 20 30 40 50 100 200 500 1000 2000
52 18 5 5 4 0 0 0 0 0
385 308 263 221 219 155 88 41 31 19
348 455 557 609 621 725 773 831 845 862
215 219 175 165 156 120 139 128 124 119

B
-bwl\)l—‘g

0.0
1
0.0
1

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 10. The 77X points (crosses) in the convex hull f points (circles) given in Fig. 1 (left) and the corresponding arcs (right)}-fafctor
proportional edge PCD with = 3/2 andM = Mc.

5.7. Extension oN},,, to higher dimensions

The extension t®R? for d > 2 with M = M is provided in [4], but the extension for genefdlis similar.
Letv,(r, M,d) := v(X,, Np g, M, d) be the domination number of the PCD based on the extensiSrif -, M)
toR?. Then itis easy to see that,(r, M, 3) is nondegenerate as— oo for » = 4/3. In R, it can be seen that
vn(r, M, d) is nondegenerate in the limit only when= (d+ 1)/d. Furthermore, for largé, asymptotic distribution
of v,,(r, M, d) is nondegenerate at valuesro€loser tol. Moreover, it can be shown thitn ,,_, o, P(2 < Ynlr =

(d+1)/d,M,d) < d+1) =1and we conjecture the following.

Conjecture 1. Supposev,, is a set of iid random variables from the uniform distribution on a simplék n Then
the domination numbey,, (r, M) in the simplex satisfies
lim P(d< y((d+1)/d,M,d) <d+1)=1.

n—oo
For instance, withi = 3 we estimate the empirical distribution ¢{.x,,,4/3) for variousn. The empirical
estimates fon = 10, 20, 30, 40, 50, 100, 200, 500, 1000, 2000 based ori000 Monte Carlo replicates for each
are given in Table 5.

6. Discussion
The r-factor proportional-edge proximity catch digraphs (PCDs), when compared to class cover catch digraphs

(CCCDs), have some advantages. The asymptotic distribution of the domination nupibek/) of the r-factor
PCDs, unlike that of CCCDs, is mathematically tractable (but computable by numerical integration). A minimum
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dominating set can be found in polynomial time fefactor PCDs inR ¢ for all d > 1, but finding a minimum
dominating set is an NP-hard problem for CCCDs (excepRorThese nice properties offactor PCDs are due to
the geometry invariance of distribution @f, (r, M) for uniform data in triangles.

On the other hand, CCCDs are easily extendable to higher dimensions and are defined foralR?, while
r-factor PCDs are only defined far,, C Cy(),). Furthermore, the CCCDs based on balls use proximity regions
that are defined by the obvious metric, while the PCDs in general do not suggest a metric. In particuéactarr
PCDs are based on some sort of dissimilarity measure that has no underlying metric.

The finite sample distribution ef,, (r, M), although computationally tedious, can be found by numerical methods,
while that of CCCDs can only be empirically estimated by Monte Carlo simulations. Moreover, we had to introduce
many auxiliary tools to compute the distribution-of (r, M) in R2. Same tools will work in higher dimensions,
perhaps with more complicated geometry.

The r-factor PCDs have applications in classification and testing spatial patterns of segregation or association.
The former can be performed building discriminant regions for classification in a manner analogous to the procedure
proposed in [17]; and the latter can be performed by using the asymptotic distribution(afif) similar to the
procedure used in [4].
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Appendix

First, we begin with a remark that introduces some terminology which we will use for asymptotics throughout
this appendix.

Remark 3. SupposeY,, is a set of iid random variables frofi with supportS(F) C . If over a sequence

2, CQ, n=123,..., X restricted to2,,, X|q,, has distributionF,, with F,,(x) = F(z)/Pr(X € Q,)
andPp(X € Q,) — 1 asn — oo, then we callF;,, the asymptotically accurate distributioaf X and(2,, the
asymptotically accurate suppart F'. If F has density, thenf,, = f(z)/Pr(X € Q) is called theasymptotically
accurate pdbf X. In both cases, if we are concerned with asymptotic results, for simplicity we will, respectively,
useF' andf for asymptotically accurate distribution and pdf. Conditioning will be implied by statingXhats? ,,

with probability 1, ag» — oo or for sufficiently largen. O

Proof of Theorem 1

Without loss of generality, assum&)s) = T, = T'((0,0),(1,0), (c1,c2)) Note that the probability of edge
extrema all being equal to each otheAEX ., (n) = X,,(n) = X,,(n)) =1(n = 1). Let E. 2(n) be the event that
there are only two distinct (closest) edge extrema. Then forl,

P(qu(n)) = P(X¢,(n) = Xe,(n)) + P(Xe, (n) = Xeg(n)) + P(Xe, (n) = Xey(n))

since the intersection of the eveRty ., (n) = X, (n)} and{X,, (n) = X, (n)} for distincti, j, k is equivalent to
the even{ X, (n) = X.,(n) = X¢,(n)}. Notice also thaP(E.2(n = 2)) = 1. So, forn > 2, there are two or
three distinct edge extrema with probability 1. Hel& . 3(n)) + P(E.2(n)) = 1 forn > 2.

By simple integral calculus, we can show t4tE . »(n)) — 0 asn — oo, which will imply the desired result]
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Proof of Theorem 6

??

Note that(7,.)° # 0 iff r < 3/2. SupposeV € (7,.)°. Then for any point in Ras(Y;), Npg(u, M) € T(Vs),
because there is a tiny strip adjacent to eeg@ot covered byV} ,(u, M), for eachj € {1,2,3}. Then,N},
(u, M) U Np (v, M) C T(¥5) for all (u,v) € Rar(yy) x Rar(Ya). PICKSUD (. ue s (v, )¢ Ras (y) N (1 M) U

Npg(v, M) € T(Ys). ThenT'(Vs) \ [SUD (. v)e Ras (v, ) x Rar (yq) NpE (U M) U N g(v, M)} has positive area. So

Xo N |T(Vs)\

sup N};E(uvM)UNITDE(vaM) #@
(w,v)ERM (Y1) X R (¥2)

with probability 1 for sufficiently large:. (The supremum of a set functiond(x) over a rangeB is defined as
the setS := sup,p A(z) such thatS is the smallest set satisfying(«z) C S for all z € B.) Then at least three
points—one for each vertex region — are required to domifrgteHence for sufficiently large, v, (r, M) > 3 with
probability 1, buts (N} ) = 3 by Theorem 2. Thetim,,_,oc P (Yo (r, M) =3) = 1forr < 3/2. O

Proof of Theorem 7

Let M = (m1,m2) € 9(7;), sayM € g3(r,z) (recall thatg;(r, ) are defined such that(y,,e;) = r -
d(q;(r,x),y;) for j € {1,2,3}), thenmy = ‘65727*” andm; € [3(“1) 3”}. Let X, (n) be one of the closest

2r 7 2r
point(s) to the edgey; i.e., X, (n) € argminy,y, d(X,e;) for j € {1,2,3}. Note thatX., (n) is unique a.s. for
eachj.
Notice that for allj € {1,2,3}, X¢,(n) ¢ Npg(X) forall X € X, N Ry (y;) implies thaty,(r, M) > 1
with probability 1. For sufficiently large, X (n) ¢ Np,(X) forall X € &, N R (y;) with probability 1, for
j € {1,2}, by the choice of\/. Hence we consider onl¥ ., (n). The asymptotically accurate pdf &f., (n) is

A(Su<x,y>>>“ 1
A(T(s)) A(T(s))’

where Sy (x,y) is the unshaded region in Fig. 11 (left) (for a givéh.,(n) = z., = (z,y)) whose area
is A(Su(z,y) = V3 (2y—v3)°/12. Note thatX,,(n) ¢ Ni,(X) for all X € X, N Rauly,) iff
X, N7 (Xn, M) N Ra(Ys)] = 0. Then givenX, (n) = (z,y),

A(Sy(z,y)) — A(T] (X, M) RM(y3>>>“
A(SU(xay)) ’

whereA (I'] (X, M) N Rar(Ys)) = 3 2{‘;’_*/12; - (see Fig. 12 (right) where the shaded regioRjg X,,, M) N Ry (ys)

fora givenX., (n) = (z,y)), then for sufficiently large:

A(Su(@,y)) — A(T] (X, M) N RM(y3>>>“
A(SU (l‘, y))

B n A(Sy(,y)) — A(T] (X, M) 0 Rag(y;)\"
foo (2,) dy di: = / FYxa ( FVa 3 )

Let

fes (@,y) n(

P (3, 0[] (X 30 1 Rar )] =0) = (

P (X V[T (s M) 0 Rar(y,) @)z/(

dy dzx.

G(z,y) = A(T()s)) - 12 3(r—=1)r

which is independent on, so we denote it a&'(y).
Lete > 0 be sufficiently small, then for sufficiently large

il

A(Su(2,y)) — AT} (X, M) N Raslys)) 4 <x/§(2y—¢§>2 V3y? )
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3= (1/2,3/2) 3= (1/2,3/2)

K&
N Ty

M6 Np (¥3)

Yi|— (0, 0J 3 Y2 = (1 07 Vi|= (0, 0) o3 * 2= (1 0)

Fig. 11. A figure for the description of the pdf &, (n) (left) andT'] (X, M) (right) given X, (n) = ey = (2, ).
1— y/\f
P (X, N [T (X, M) N Ras(ys)] = 0) ~ / / )"t 4/V/3dy dx
0 y/

- (1 - 2y/\/§) A nG(y)" 1 4/v3 dy.

The integrand is critical at= 0, sinceG(0) = 1 (i.e., when., € e3). Furthermore(Z(y) = 1-4y/v/3+0 (y?)
aroundy = 0. Then lettingy = w/n, we get

PN X0 Runl] =0~ (1- Z2) 2 [T (125X o) aw.

oo
letting n — oo, %4/\/§/ exp (—4w/\/§) dw = 1.
0
Hencelim,, oo P (7, (r, M) > 1) = 1. ForM € ¢;(r,z) N7, with j € {1, 2} the result follows similarly]
Proof of Theorem 8

V3 (r—=1)
2r

Let M = (m1,m2) € O(7;) \ {t1(r), ta(r), t3(r)}, sayM € gz(r,z). Thenms = . Without loss of

generality, assumg < m; < 3-L. See also Fig. 12.
Whenevert,, N Ry (y;) # 0, let

Qj(n) € argminXeX,,mRM(yj)d(Xa ej) = argmaxXeXnﬂRM(yj)d(g(yja X),y;) for j € {1,2,3}.

Note that at least one of tr@j (n) uniquely exists w.p. 1 for finite. and as» — oo, Qj(n) are unique w.p. 1.
Then

(i, M) < 2iff X, C [N;;E (@1(n),M) UND, (@Q(n),Mﬂ or
%, € [Npg (Qa(m), M) UNpg (Qa(n), M) | or X, < [Npg (Qu(m), M) U Npg (@3<n>, M)} .
Let E:7 be the event that,, ¢ Nj, (@,-,M) U {NPE" (@j(n),Mﬂ for (4, 5) € {(1,2),(1,3),(2,3)}. Then
P(y(r,M)<2)=P(EL?) + P (EX?)+ P(EY®) - P(EVNEX) — P (E)YN E}ﬁ)
—P(E}M¥NEM)+P(ENERNEL?).

But note thatP (E}?) — 0 asn — oo by the choice of\/ since
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3= (1/2,J3/2) 3= (1/2, J3/2)

"3 el
7,
&)
""""" e B
g q1 N
Vi|= (0, 0) 3 ; Y= (1, ) Vi|= (G, 0) 3 ; Y= (1 0)

Fig. 12. A figure for the description of the pdf@f, (n) andQs(n) (left) and the unshaded region, (g1, M) U N}, (43, M) (right).

sup  Npg(u, M)UNpg(v, M) C T(Ys),
u € Rar(yq)
v € Ry (Ys)

and
P X, NnT(Ys)\ sup Npgu, MYUNpg(v,M)| #0 | — 1lasn — occ.
u € Ru(y,)
v € Ry(Y,)
Then,
P(E}?) - P (B’ nE2?) —P(EY*NEY) +P(EYNEZNEY) <4P(EY?) — 0asn — oo.
Therefore,
lim P (y,(r,M)<2) = lim (P (E2%) +P(E}?)).

Furthermore, observe th&t(E}-3) > P (E2?) by the choice of\/. Thenwe first findim,, ... P (E}?). Given

a realization oft,, with @1(n) =q1 = (x1,91) andég(n) = g3 = (x3,y3), the remaining: — 2 points should fall,
for example, in the undshaded region in Fig. 12 (left). Then the asymptotically accurate joint@dfof, Qs(n) is

$r(9(Q) )H

fus @* n(n—1) <AT Vi) —

T(¥s)? AT(y )

where { = (ml,yl,xg,yg Sr(¢) is the shaded region in Fig. 12 (left) whose areaAgSr()) =

\/5(2'r~y3—\/§(r 1)) \/_[2\/§ry1 3(r—1)467 (z1— ml)]
127 (r—1) 727 (1—r (2m1—1)) '

GivenQ;(n) = ; = (z;,y;) for j € {1,3},
P(E}Lf?’) — <A(N1TDE (Z]\I;M)UN};E ((/]\57 ) A(SR(E))>TL_2

AT (V) — A(Sr(Q))

)= A(N;E@’MWNFE@M»A(sR(®>>“ I
e /"< AT (Vs) — A(Sr(C)) fi3 (€) d¢,
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:/ n(n—1) [ A(Npg(q1, M)U Npg (g3, M)) — A(SR@)) n—2 .
ATO)? AT (%)

where

A(Np @ M) U Np s (@3, 0M) = 22 - <<*/§7"y1+3”1 ) (VS 1>2ry3>> .

See Fig. 12 (right) foV ;. (1, M) U N5 (g3, M). Let

A (N5 (@, M)UNb L (G3, M) — A(S
a(0) = Ak (@ )Uﬁof) ) — AS(S)).

Note that the integral is critical at; = z3 = my andy; = y3 = ma, sinceG(f) = 1. SinceN} g(z, M¢)
depends on the distandgr, e;) for x € Ry (y;), we make the change of variables, y1) — (d(M, e1) + 21, 91)
whered(M, e;) = W and(z3,y3) — (x3,m2 + 23) thenG({) depends only omy, z3, we denote it
G(Zl, 23) which is

8rz? drz3 2rzs (V3(3—1)) +71 (421 —2v3my)

G(zl,23)=1—3(1+r(1,2m1))_3(7«71)_ 3

The new integrand |SIZT~(7(LTI)G(21,23)”_2. Integrating with respect ta:z and y; yields 2‘/523)’“ and

4V3rz respectively. Hence for sufficiently large

n_l 2\/§Z3T 4\/37"21 n—2
/ / AT yd < (7“1)) <3(2rm1r1) G(ZI7Z3) d21d23.

Note that the new integral is critical when = z3 = 0, so we make the change of variablas= w;/+/n and
zg = ws/n thenG(z1, z3) becomes

237 (r—342rmy) 8r 9 _3/2
G(wl,wd) 1+7’L < 3 U}3+3(7“+1—27“m1)w1 +O(TL ),

so for sufficiently large:

2 V3 1Vr
—4 2 2
/ / <3(r1)> <3(2rm1r1)> (—4my + 2 + V2)w; w3
n—2
1 2\/§r(7“—3+27“m1) 8r 9 _
1= O( 3/2) d ,
n( 3 S —zrmy 1) O o
[e%e] [ee] 2 — 2 B 2
~ 0 (nil)/ / w1 w3 exp | — \/57"(7“ 3+ rml)w5 — 81wy dwswy
A 3 3(r+1—2rmy)
:O(nfl)
in 0o (oo _2VBr(r—342rmy) 8r d = —— 3 __ whichi
since [, [, wiws exp 3 W3 = gqi—grmy) Wi ) OWsW1 = gr@E—r(am 1) WHICh IS a

finite constant. TherP (E!3) — 0 asn — oo, which also |mpI|esP (E23) — 0asn — oo. Then
P (y,(r, M) < 2) — 0. Hence the desired result followsl
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3= (1/2,J3/2) 3= (1/2, J3/2)

e el

S 57} AN

""""" R ,"Tl"""""""l" =1yttt

V=T 3 ; B =10 Vi~ oo — 3 ; Y= (1 0)

Fig. 13. A figure for the description of the pdf &f; (n) andQ3(n) (left) and the unshaded region My, (g1, M) U NE, (g3, M) (right)
givenQ;(n) = g; forj € {1,3}.

Proof of Theorem 9

Let M =
2—r+4cq (r—

(m1,mz2) € {t1(r), ta(r), t5(r)}. Without loss of generality, assume = ¢o(r) thenm; =
Y andm, = 201 see Fig. 13.

Let @j(n) and the event&’,’ be defined as in the proof of Theorem 8 forj) € {(1,2),(1,3),(2,3)}. Then
as in the proof of Theorem 8,

P(yu(r,M)<2)=P(E)?) +P(E2®) + P(E) — P(Ey>NE2?) —

Observe that the choice 8f implies thatP (E3) > P (E2*) and by symmetry (iff".) P( 1,
So first we findP (E};3) As in the proof of Theorem 8 asymptotically accurate joint deqf(n) Q3(n)is

P(E*NEN) —P(EM¥NEZ) + P (ENERNNEY?).

2 =P

(ER)-

_n(n—1) [AT(Ms) - A(Sr())
i3 (€)= AT(y) < AT (Ys) )

where( =

A(Sr(Q)) =

(x1,Y1,3,Y3) andSR(Q is the shaded region in Fig. 13 (left) whose area is

\/§(2ry3—\/§(r—1)2) \/§(\/§7“y1+3m1r—3)2
12(r—1)r * 36(r—1)r '

GivenQ,;(n) = g; = (z;,y;) for j € {1,3},

P (1) = <A (i 3. M) U N 321 A(SR@))“

AT (V3) — A(Sr(C))

then for sufficiently large:

)= | (AmE (@) UNp . 1) A<SR<®>)"1B Qi

where

AT(V3) — A(Sgr(C))

_ [n—1) (ANE @, M)UNp @, M) - ASe())) " i
AT (Y5)? AT ()5)
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@ B (27“3/3—\/5(7“—1)) (3—\/§7“y1 —37“301).

A(Npg (@, M)U Npg (g3, M)) =

4 6
See Fig. 13 (right) foN 5. (¢, M) U N} (g3, M). Let
G(0) = 5 (@1, M) UNE g (@3, M) — A(Sr(C))

AT (Ys)
Note that the integral is critical whery = 23 = my andy; = y3 = mo, sinceG(E) =1.
As in the proof of Theorem 8, we make the change of varialesy,) — (d(M, e1) + z1, y1) whered(M, e1) =
% and(z3,ys) — (3, m2 + 23). ThenG (¢) becomes

4r 4r 812
G =1- 2 _ 2 _
(21,25) 3(r—1) “ 3(r—1) “s 3

The new integral is

Z1 23.

n(n—1)

AT (Y3)?
Note thatG:(z1, 23) is independent of 1, 3, SO integrating with respect to; andy; yields 5 2 ‘/3’” 21 and2 ‘/frff ,

respectively. The new integral is criticalat = z3 = 0. Hence, for sufficiently large and sufﬁuently smalt > 0,
the integral becomes,

e —1) [ 122 ,
p(ELS %/ n(n o |
(B o Jo AT(V3)? \9(r—1)2 2123 G(21,23)" " dzadzs

Since the new integral is critical when = 2z, = 0, we make the change of variables= w; /\/n for j € {1, 3};
thenG(z1, 23) becomes

G(Zl, Z3)n72d$3dy1d23d21.

4r

G(wl,wg):1—m(w%+w§+2r(r—1)w1w3)),
SO
. / / ne 16 122
Pr = 9(r—1) w1 W3
1 L S 1) y letti
e o — ingn —
Sl = 1) wi 4+ wi + 27 (r — 1) wy w3)) wswy, letting n — oo,

o[ 64 g 4
z/o /o n <ri1) w, W3 exp (Til) (w%+w§+2r(r1)w1w3)> dwswn

which is not analytically integrable, byt. can be obtained by numerical integration, ezg.. .5 ~ 0.4826 and
Prs/a ~ 0.6514.
Next, we findlim,, . P (E2?). The asymptotically accurate joint pdf f2(n), Qs(n) is

1) (AT(V3) — A(S%(C))
() = o ( AT(3%) )

Wherefz (22,2, 73,y3) andS% 5) is the shaded region in Fig. 14 (left) whose area is

(27“y3+\/_(1—r) \/g(\/gTy2—3T$2—3T+6)
(SR Q) 127 (r—1) + 36(2—r)r '

As before,
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5= (172, J3/2) = (1/2, J3/2)

‘,‘.\‘t3 el

ISEVAYES 3 * V.= (L, 0) Vi|= (0, U) 3 * V.= (1, 0)

Fig. 14. Afigure for the description of the pdf@f (n) andQ3(n) (left) and unshaded regioniéy,  (¢2) UNT 1 (43) (right) givean (n) =gy
forj € {2,3}.

AT(Y5) — A(S%(C))

= / TL(TL— 1) A(NJTDE (a\Q,M) UNITDE (E]},,M)) _A(SR(E)) n—2 dz
AT(Ys)? AT(Vs) 7

/ <A (Np (@2, M) U Npy (@, M)) A<SR©>>7L_2 fas () d

whered (N, (G2, M) U Ny (33, M) = % — CrosySei) OovBrusioresor),

See Fig. 14 (right) foN ;, ; (q2) U Np (g3, M). Let

A(N? . (Go, M) U N (G3, M)) — A(S
(0 = Ak (@ )UA%ESQ) ) = ASr(S)

Note that the integral is critical whery, = 23 = m; andys = y3 = mo, sinceG(E) =1.
We make the change of variabless, y3) — (3, ma+23) and(za, y2) — (d(M, e2)+ 22, y2) Whered(M, ex) =

%. ThenG (¢) becomes

4r23 B 4r 23 _4\/§7“23(3—2r) 872 29 23
32—r) 3(r—2) 3 3
The new integral is

G(ZQ,Z3) =1-

-1
/MG(ZQ,Z3)n72d,f3dy2d23d22.

AT(Y3)?
The integrand is independent.of andy,, so integrating with respect to; andy- yields 23‘(/5’12)3 and 23‘(/23’72)2,

respectively. Hence, for sufficiently large

-1 472
E2 3 / / (n o |
AT()2 \B3r—1(@2—n ) 2™ G(z2,23)" “dzadzs

Note that the new integral is critical when = 23 = 0, so we make the change of variables= w./+/n and
z3 = ws/n thenG(z2, z3) becomes
~o ().

1 [ 4rw3 43 rws (3 —27)

=1—- — _
G (wa, ws) n|3(2-r) 3

so for sufficiently large:
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Vne pne 1 472
P (Eflg) %/ / (n ) Gdr W W3
0 0 n2 9(7"_1)(2—7”)

since

n—2
1( 4rw3 4/3rws (3 —27) _3
_ - — dw-
w\32-n 3 +O(” 2) WstW2;
o[ 4rwi 43 3—2
~0 (n_l) /0 /0 wpwy exp | —3 (;fi) - \/_ru33( ) dwswy = O (n_l)
/°°/°° 4rwd  4v3ruz(3—27) 27(2 )
wo W3 €xXp | — — dwswyg = ————F——
o Jo 3(2-r) 3 38413 (3 —2r)2

which is a finite constant.
Thus we have shown thd@t (E%3) — 0 asn — oo, which implies that as — oo,

P (B%) + P (Ey®) = P(Ey* N E7°) = P (E,* N Ey°)
—P(E)’NEY)+P(EY’NEPNEY) <5P(EX) —0.

Hencelimy, oo P (v, (r, M) < 2) = limy, .o P (EX?) andlim,, oo P(7,(r, M) > 1) = 1 together imply that

lim P(v,(r,M)=2)=p,.0
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