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of a new family of parametrized random
digraphs1

Elvan Ceyhana,∗ and Carey E. Priebeb
aDepartment of Mathematics, Koc¸ University, Sarıyer, 34450, Istanbul, Turkey
bDepartment of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, MD, 21218, USA

Abstract. We derive the asymptotic distribution of the domination number of a new family of random digraph called proximity
catch digraph (PCD), which has application to statistical testing of spatial point patterns and to pattern recognition. The PCD we
use is a parametrized digraph based on two sets of points on the plane, where sample size and locations of the elements of one is
held fixed, while the sample size of the other whose elements are randomly distributed over a region of interest goes to infinity.
PCDs are constructed based on the relative allocation of the random set of points with respect to the Delaunay triangulation of the
other set whose size and locations are fixed. We introduce various auxiliary tools and concepts for the derivation of the asymptotic
distribution. We investigate these concepts in one Delaunay triangle on the plane, and then extend them to the multiple triangle
case. The methods are illustrated for planar data, but are applicable in higher dimensions also.
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1. Introduction

Theproximity catch digraphs(PCDs) are a special type ofproximity graphswhich were introduced by [19]. A
digraph is a directed graph with verticesV and arcs (directed edges) each of which is from one vertex to another
based on a binary relation. Then the pair(p, q) ∈ V × V is an ordered pair which stands for an arc (directed edge)
from vertexp to vertexq. For example, thenearest neighbor(di)graphof [15] is a proximity digraph. The nearest
neighbor digraph has the vertex setV and(p, q) as an arc iffq is a nearest neighbor ofp.

Our PCDs are based on the proximity maps which are defined in a fairly general setting. Let(Ω,M) be a
measurable space. Theproximity mapN(·) is defined asN : Ω → 2Ω, where2Ω is the power set ofΩ. The
proximity regionof x ∈ Ω, denotedN(x), is the image ofx ∈ Ω underN(·). The points inN(x) are thought of as
being “closer” tox ∈ Ω than are the points inΩ \N(x). Hence the term “proximity” in the nameproximity catch
digraph. Proximity maps are the building blocks of theproximity graphsof [19]; an extensive survey on proximity
maps and graphs is available in [12].

Theproximity catch digraphD has the vertex setV =
{
p1, . . . , pn

}
; and the arc setA is defined by(pi, pj) ∈ A

iff pj ∈ N(pi) for i 	= j. Notice that the proximity catch digraphD depends on theproximity mapN(·) and if
pj ∈ N(pi), then we callN(pi) (and hence pointpi) catchespj. Hence the term “catch” in the nameproximity
catch digraph. If arcs of the form(pj , pj) (i.e., loops) were allowed,D would have been called apseudodigraph
according to some authors (see, e.g. [7]).
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In a digraphD = (V ,A), a vertexv ∈ V dominatesitself and all vertices of the form{u : (v, u) ∈ A}. A
dominating setSD for the digraphD is a subset ofV such that each vertexv ∈ V is dominated by a vertex inSD.
A minimum dominating setS∗

D is a dominating set of minimum cardinality and thedomination numberγ(D) is
defined asγ(D) := |S∗

D| (see, e.g. [13]) where| · | denotes the set cardinality functional. See [7] and [20] for more
on graphs and digraphs. If a minimum dominating set is of size one, we call it adominating vertex.

Note that for|V| = n > 0, 1 � γ(D) � n, sinceV itself is always a dominating set.
In recent years, a new classification tool based on the relative allocation of points from various classes has

been developed. Priebe et al. [16] introduced theclass cover catch digraphs(CCCDs) and gave the exact and the
asymptotic distribution of the domination number of the CCCD based on two sets,X n andYm, which are of size
n andm, from classes,X andY, respectively, and are sets of iid random variables from uniform distribution on a
compact interval inR. Papers [9,10,14,17,18] applied the concept in higher dimensions and demonstrated relatively
good performance of CCCD in classification. The methods employed involvedata reduction(condensing) by using
approximate minimum dominating sets asprototype sets(since finding the exact minimum dominating set is an
NP-hard problem in general – e.g., for CCCD in multiple dimensions – (see [8]). DeVinney and Wierman [11] proved
a SLLN result for the domination number of CCCDs for one-dimensional data. Although intuitively appealing and
easy to extend to higher dimensions, exact and asymptotic distribution of the domination number of the CCCDs
are not analytically tractable inR2 or higher dimensions. As alternatives to CCCD, two new families of PCDs
are introduced in [2,4] and are applied in testing spatial point patterns (see [5,6]). These new families are both
applicable to pattern classification also. They are designed to have better distributional and mathematical properties.
For example, the distribution of the relative density (of arcs) is derived for one family in [5] and for the other family
in [6]. In this article, we derive the asymptotic distribution of the domination number of the latter family called
r-factor proportional-edge PCD. During the derivation process, we introduce auxiliary tools, such as,proximity
region (which is the most crucial concept in defining the PCD),Γ1-region, superset region, closest edge extrema,
asymptotically accurate distribution,and so on. We utilize these special regions, extrema, and asymptotic expansion
of the distribution of these extrema. The choice of the change of variables in the asymptotic expansion is also
dependent on the type of the extrema used and crucial in finding the limits of the improper integrals we encounter.
Our methodology is instructive in finding the distribution of the domination number of similar PCDs inR 2 or higher
dimensions.

In addition to the mathematical tractability and applicability to testing spatial patterns and classification, this new
family of PCDs is more flexible as it allows choosing an optimal parameter for best performance in hypothesis
testing or pattern classification.

The domination number of PCDs is first investigated for data in one Delaunay triangle (inR 2) and the analysis is
generalized to data in multiple Delaunay triangles. Some trivial proofs are omitted, shorter proofs are given in the
main body of the article; while longer proofs are deferred to the Appendix.

2. Proximity maps and the associated PCDs

We construct the proximity regions using two data setsXn andYm from two classesX andY, respectively. Given
Ym ⊆ Ω, theproximity mapNY(·) : Ω → 2Ω associates aproximity regionNY(x) ⊆ Ω with each pointx ∈ Ω.
The regionNY(x) is defined in terms of the distance betweenx andYm. More specifically, ourr-factor proximity
maps will be based on the relative positions of points fromXn with respect to the Delaunay tessellation ofYm. In
this article, a triangle refers to the closed region bounded by its edges. See Fig. 1 for an example withn = 200 X
points iidU((0, 1)× (0, 1)), the uniform distribution on the unit square and the Delaunay triangulation is based on
m = 10 Y which are points also iidU((0, 1)× (0, 1)).

If Xn =
{
X1, . . . , Xn

}
is a set ofΩ-valued random variables thenNY(Xi) are random sets. IfXi are iid then so

are the random setsNY(Xi). We define the data-random proximity catch digraphD – associated withNY(·) – with
vertex setXn = {X1, · · · , Xn} and arc setA by

(Xi, Xj) ∈ A ⇐⇒ Xj ∈ NY(Xi).

Since this relationship is not symmetric, a digraph is used rather than a graph. The random digraphD depends on
the (joint) distribution ofXi and on the mapNY(·). ForXn =

{
X1, · · · , Xn

}
, a set of iid random variables from
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Fig. 1. A realization of200 X points (crosses) and the Delaunay triangulation based on 10Y points (circles).

F , the domination number of the associated data-random proximity catch digraph based on the proximity mapN(·),
denotedγ(Xn, N), is the minimum number of point(s) that dominate all points inXn.

The random variableγ(Xn, N) depends explicitly onXn andN(·) and implicitly onF . Furthermore, in general,
the distribution, hence the expectationE [γ(Xn, N)], depends onn, F , andN ; 1 � E [γ(Xn, N)] � n. In general,
the variance ofγ(Xn, N) satisfies,1 � Var[γ(Xn, N)] � n2/4.

For example, the CCCD of [16] can be viewed as an example of PCDs inR and is briefly discussed in the next
section. We use many of the properties of the CCCD inR as guidelines in defining PCDs in higher dimensions.

2.1. Spherical proximity maps

Let Ym = {y1, . . . , ym} ⊂ R. Then the proximity map associated with CCCD is defined as the open ball
NS(x) := B(x, r(x)) for all x ∈ R, wherer(x) := miny∈Ym d(x, y) (see [16]) withd(x, y) being the Euclidean
distance betweenx andy. That is, there is an arc fromX i toXj iff there exists an open ball centered atXi which
is “pure” (or contains no elements) ofYm in its interior, and simultaneously contains (or “catches”) pointX j . We
consider the closed ball,B(x, r(x)) for NS(x) in this article. Then forx ∈ Ym, we haveNS(x) = {x}. Notice
that a ball is a sphere in higher dimensions, hence the notationNS . Furthermore, dependence onYm is through
r(x). Note that inR this proximity map is based on the intervalsIj = (y(j−1):m, yj:m) for j = 0, . . . ,m+ 1 with
y0:m = −∞ andy(m+1):m = ∞, whereyj:m is thejth order statistic inYm. This interval partitioning can be
viewed as the Delaunay tessellation ofYm in R. Soin higher dimensions, we use the Delaunay triangulation based
onYm to partition the support.

A natural extension of the proximity regionNS(x) to Rd with d > 1 is obtained asNS(x) := B(x, r(x)) where
r(x) := miny∈Ym d(x, y) which is called thespherical proximity map. The spherical proximity mapNS(x) is
well-defined for allx ∈ Rd provided thatYm 	= ∅. Extensions toR2 and higher dimensions with the spherical
proximity map – with applications in classification – are investigated by [9,10,14,17,18]. However, finding the
minimum dominating set of CCCD (i.e., the PCD associated withNS(·)) is an NP-hard problem and the distribution
of the domination number is not analytically tractable ford > 1. This drawback has motivated us to define new types
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of proximity maps. Ceyhan and Priebe [4] introducedr-factor proportional-edge PCD, where the distribution of the
domination number ofr-factor PCD withr = 3/2 is used in testing spatial patterns of segregation or association.
Ceyhan et al. [6] computed the asymptotic distribution of the relative density of ther-factor PCD and used it
for the same purpose. Ceyhan and Priebe [2] introduced the central similarity proximity maps and the associated
PCDs, and [5] computed the asymptotic distribution of the relative density of the parametrized version of the central
similarity PCDs and applied the method to testing spatial patterns. An extensive treatment of the PCDs based on
Delaunay tessellations is available in [1].

The following property (which is referred to as Property (1)) of CCCDs inR plays an important role in defining
proximity maps in higher dimensions.

Property(1) Forx ∈ Ij , NS(x) is a proper subset ofIj for almost allx ∈ Ij . (1)

In fact, Property (1) holds for allx ∈ Ij \ {(y(j−1):m + yj:m)/2} for CCCDs inR. For x ∈ Ij , NS(x) = Ij
iff x = (y(j−1):m + yj:m)/2. We define an associated region for such points in the general context. Thesuperset
regionfor any proximity mapN(·) in Ω is defined to be

RS(N) :=
{
x ∈ Ω : N(x) = Ω

}
.

For example, forΩ = Ij � R, RS(NS) := {x ∈ Ij : NS(x) = Ij} = {(y(j−1):m + yj:m)/2} and for

Ω = Tj � Rd,RS(NS) := {x ∈ Tj : NS(x) = Tj},whereTj is thejth Delaunay cell in the Delaunay tessellation.
Note that forx ∈ Ij , λ(NS(x)) � λ(Ij) andλ(NS(x)) = λ(Ij) iff x ∈ RS(NS) whereλ(·) is the Lebesgue
measure onR. So the proximity region of a point inRS(NS) has the largest Lebesgue measure. Note also that given
Ym, RS(NS) is not a random set, butI(X ∈ RS(NS)) is a random variable, whereI(·) stands for the indicator
function. Property 1 also implies thatRS(NS) has zeroR-Lebesgue measure.

Furthermore, given a setB of sizen in [y1:m, ym:m] \ Ym, the number of disconnected components in the PCD
based onNS(·) is at least the cardinality of the set{j ∈ {1, 2, . . . ,m} : B ∩ Ij 	= ∅}, which is the set of indices of
the intervals that contain some point(s) fromB.

Since the distribution of the domination number of spherical PCD (or CCCD) is tractable inR, but not inR d with
d > 1, we try to mimic its properties inR while defining new PCDs in higher dimensions.

3. The r-factor proportional-edge proximity maps

First, we describe the construction of ther-factor proximity maps and regions, then state some of its basic
properties and introduce some auxiliary tools.

3.1. Construction of the proximity map

LetYm = {y1, . . . , ym} bem points in general position inRd andTj be thejth Delaunay cell forj = 1, . . . , Jm,
whereJm is the number of Delaunay cells. LetXn be a set of iid random variables from distributionF in Rd with
supportS(F ) ⊆ CH(Ym).

In particular, for illustrative purposes, we focus onR2 where a Delaunay tessellation is a triangulation, provided
that no more than three points inYm are cocircular (i.e., lie in the same circle). Furthermore, for simplicity, let
Y3 = {y1, y2, y3} be three non-collinear points inR2 andT (Y3) = T (y1, y2, y3) be the triangle with vertices
Y3. Let Xn be a set of iid random variables fromF with supportS(F ) ⊆ T (Y3). If F = U(T (Y3)), a
composition of translation, rotation, reflections, and scaling will take any given triangleTY 3 to the basic triangle
Tb = T ((0, 0), (1, 0), (c1, c2)) with 0 < c1 � 1/2, c2 > 0, and(1 − c1)2 + c22 � 1, preserving uniformity. That is,
if X ∼ UT (Y3) is transformed in the same manner to, sayX ′, then we haveX ′ ∼ U(Tb).

For r ∈ [1,∞], defineN r
PE(·,M) :=N(·,M ; r,Y3) to be ther-factor proportional-edge proximity mapwith

M -vertex regions as follows (see also Fig. 2 withM = MC andr = 2). Forx ∈ T (Y3) \ Y3, let v(x) ∈ Y3 be
the vertex whose region containsx; i.e., x ∈ RM (v(x)). In this articleM -vertex regionsare constructed by the
lines joining any pointM ∈ R2 \ Y3 to a point on each of the edges ofT (Y3). Preferably,M is selected to be in
the interior of the triangleT (Y3)◦. For such anM , the corresponding vertex regions can be defined using the line
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Fig. 2. Construction ofr-factor proximity region,Nr=2
PE (x) (shaded region).

segment joiningM to ej , which lies on the line joiningyj toM ; e.g. see Fig. 3 (left) for vertex regions based on
center of massMC , and (right) incenterMI . WithMC , the lines joiningM andY3 are themedian lines, that cross
edges atMj for j = 1, 2, 3. M -vertex regions, among many possibilities, can also be defined by the orthogonal
projections fromM to the edges. See [1] for a more general definition. The vertex regions in Fig. 3 are center of
mass vertex regions orCM -vertex regions. Ifx falls on the boundary of twoM -vertex regions, we assignv(x)
arbitrarily. Lete(x) be the edge ofT (Y3) opposite ofv(x). Let #(v(x), x) be the line parallel toe(x) through
x. Let d(v(x), #(v(x), x)) be the Euclidean (perpendicular) distance fromv(x) to #(v(x), x). For r ∈ [1,∞), let
#r(v(x), x) be the line parallel toe(x) such that

d(v(x), #r(v(x), x)) = r d(v(x), #(v(x), x))and d(#(v(x), x), #r(v(x), x)) < d(v(x),#r(v(x), x)).

LetTr(x)be the triangle similar to and with the same orientation asT (Y3)havingv(x)as a vertex and#r(v(x), x)as
the opposite edge. Then ther-factor proportional-edge proximity regionN r

PE(x,M) is defined to beTr(x)∩T (Y3).
Notice that#(v(x), x) divides the edges ofTr(x) (other than the one lies on#r(v(x), x)) proportionally with the
factorr. Hence the namer-factor proportional edge proximity region.

Notice thatr � 1 impliesx ∈ N r
PE(x,M) for all x ∈ T (Y3). Furthermore,limr→∞N r

PE(x,M) = T (Y3) for
all x ∈ T (Y3) \ Y3, so we defineN∞

PE(x,M) = T (Y3) for all suchx. Forx ∈ (Y3), we defineN r
PE(x,M) = {x}

for all r ∈ [1,∞].
Hence,r-factor proportional edge PCD has verticesXn and arcs(xi, xj) iff xj ∈ N r

PE(xi,M). See Fig. 4 for a
realization ofXn with n = 7 andm = 3. The number of arcs is 12 andγn(r = 2,MC) = 1. By construction, note
that asx gets closer toM (or equivalently further away from the vertices in vertex regions),N r

PE(x,M) increases
in area, hence it is more likely for the outdegree ofx to increase. So if moreX points are around the centerM , then
it is more likely forγn to decrease. On the other hand, if moreX points are around the verticesY 3, then the regions
get smaller, hence it is more likely for the outdegree for such points to be smaller, thereby implyingγ n to increase.
This probabilistic behaviour is utilized in [4] for testing spatial patterns.

Note also that,N r
PE(x,M) is a homothetic transformation(enlargement) with r � 1 applied on the region

N r=1
PE (x,M). Furthermore, this transformation is also anaffine similarity transformation.

3.2. Some basic properties and auxiliary concepts

First, notice thatXi
iid∼ F , with the additional assumption that the non-degenerate two-dimensional probability

density functionf exists with supportS(F ) ⊆ T (Y3), imply that the special case in the construction ofN r
PE–X
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Fig. 3. The vertex regions constructed with center of massMC (left) and incenterMI (right) using the line segments on the line joiningM to
Y3.

Fig. 4. A realization of 7X points generated iidUT (Y3) (left) and the corresponding arcs ofr-factor proportional edge PCD withr = 3/2 and
M = MC .

falls on the boundary of two vertex regions – occurs with probability zero. Note that for such anF , N r
PE(X) is a

triangle a.s.
The similarity ratio ofN r

PE(x,M) to T (Y3) is given by min(d(v(x), e(x)),r d(v(x), �(v(x),x)))
d(v(x), e(x)) , that is,N r

PE(x,M)
is similar toT (Y3) with the above ratio. Property (1) holds depending on the pairM andr. That is, there exists an
r0 and a corresponding pointM(r0) ∈ T (Y3)◦ so thatN r0

PE(x,M) satisfies Property (1) for allr � r0, but fails
to satisfy it otherwise. Property (1) fails for allM whenr = ∞. With CM -vertex regions, for allr ∈ [1,∞],
the areaA (N r

PE(x,MC)) is a continuous function ofd(#r(v(x), x), v(x)) which is a continuous function of
d(#(v(x), x), v(x)) which is a continuous function ofx.

Note that ifx is close enough toM , it is also possible to haveN r
PE(x,M) = T (Y3) for r =

√
2.

In T (Y3), drawing the linesqj(r, x) such thatd(yj , ej) = r d(yj , qj(r, x)) for j ∈ {1, 2, 3} yields a triangle,

denotedTr, for r < 3/2. See Fig. 5 forTr with r =
√
2.

The functional form ofTr in the basic triangleTb is given by

Tr = T (t1(r), t2(r), t3(r)) =
{
(x, y) ∈ Tb : y � c2 (r − 1)

r
; y � c2 (1− r x)

r (1 − c1)
; y � c2 (r (x− 1) + 1)

r c1

}

= T

((
(r − 1) (1 + c1)

r
,
c2 (r − 1)

r

)
,

(
2− r + c1 (r − 1)

r
,
c2 (r − 1)

r

)
, (2)

(
c1 (2 − r) + r − 1

r
,
c2 (r − 2)

r

))
There is a crucial difference between the trianglesTr andT (M1,M2,M3). More specificallyT (M1,M2,M3) ⊆

RS(r,M) for all M andr � 2, but (Tr)◦ andRS(r,M) are disjoint for allM andr. So ifM ∈ (Tr)◦, then
RS(r,M) = ∅; if M ∈ ∂(Tr), thenRS(r,M) = {M}; and ifM 	∈ Tr, thenRS(r,M) has positive area. Thus
N r

PE(·,M) fails to satisfy Property (1) ifM 	∈ Tr. See Fig. 6 for two examples of superset regions withM that
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corresponds to circumcenterMCC in this triangle and the vertex regions are constructed using orthogonalprojections.
Forr = 2, note thatTr = ∅ and the superset region isT (M1,M2,M3) (see Fig. 6 (left)), while forr =

√
2, T ◦

r and
RS(r =

√
2,M)◦ are disjoint (see Fig. 6 (right)).

The triangleTr given in Eq. (2) and the superset regionRS(r,M) play a crucial role in computing the distribution
of the domination number of ther-factor PCD.

3.3. Main result

Next, we present the main result of this article. Letγn(r,M) := γ (Xn, N
r
PE ,M) be the domination number of

the PCD based onN r
PE with Xn, a set of iid random variables fromU(T (Y3)), withM -vertex regions.

The domination numberγn(r,M) of the PCD has the following asymptotic distribution. Asn→∞,

γn(r,M) ∼


2 + BER(1− pr), for r∈ [1, 3/2] andM ∈ {t1(r), t2(r), t3(r)},
1, for r > 3/2,
3, for r ∈ [1, 3/2) andM ∈ Tr \ {t1(r), t2(r), t3(r)},

(3)

whereBER(p) stands for Bernoulli distribution with probability of successp, T r andtj(r) are defined in Eq. (2),
and forr ∈ [1, 3/2) andM ∈ {t1(r), t2(r), t3(r)},
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pr =
∫ ∞

0

∫ ∞

0

64 r2

9 (r − 1)2
w1 w3 exp

(
4 r

3 (r − 1)
(w2

1 + w
2
3 + 2 r (r − 1)w1 w3)

)
dw3w1; (4)

for example forr = 3/2 andM =MC , pr ≈ 0.7413. See Fig. 7 for the plot ofpr for r ∈ [1, 3/2).
In Eq. (3), the first line is referred as the non-degenerate case, the second and third lines are referred as degenerate

cases with a.s. limits 1 and 3, respectively.
In the following sections, we define a region associated withγ = 1 case in general. Then we give finite sample

and asymptotic upper bounds forγn(r,M). Then we derive the asymptotic distribution ofγn(r,M).

4. The Γ1-regions forN r
PE

First, we defineΓ1-regions in general, and describe the construction ofΓ 1-region ofN r
PE for one point and

multiple point data sets, and provide some results concerningΓ 1-regions.

4.1. Definition ofΓ1-regions

Let (Ω,M) be a measurable space and consider the proximity mapN : Ω → 2Ω. For any setB ⊆ Ω, the
Γ1-regionof B associated withN(·), is defined to be the regionΓN

1 (B) := {z ∈ Ω : B ⊆ N(z)}. Forx ∈ Ω, we
denoteΓN

1

(
{x}

)
asΓN1 (x).

If Xn =
{
X1, X2, · · · , Xn

}
is a set ofΩ-valued random variables, thenΓN

1 (Xi), i = 1, · · · , n, andΓN
1 (Xn) are

random sets. If theXi are iid, then so are the random setsΓN
1 (Xi).

Note thatγ(Xn, N) = 1 iff Xn ∩ ΓN
1 (Xn) 	= ∅. Hence the nameΓ1-region.

It is trivial to see the following.

Proposition 1. For any proximity mapN and setB ⊆ Ω,RS(N) ⊆ ΓN
1 (B).

Lemma 1. For any proximity mapN andB ⊆ Ω, ΓN
1 (B) = ∩x∈BΓN

1 (x).
Proof: Given a particular type of proximity mapN and subsetB ⊆ Ω, y ∈ ΓN

1 (B) iff B ⊆ N(y) iff x ∈ N(y)
for all x ∈ B iff y ∈ ΓN

1 (x) for all x ∈ B iff y ∈ ∩x∈BΓN
1 (x). Hence the result follows.�
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Fig. 8. Construction of theΓ1-region,Γr=2
1 (x, MC) (shaded region).

A problem of interest is finding, if possible, a (proper) subset ofB, sayG � B, such thatΓN
1 (B) = ∩x∈GΓN

1 (x).
This implies that only the points inG will be activein determiningΓN

1 (B). For example, inR with Y2 = {0, 1},
andXn a set of iid random variables of sizen > 1 from F in (0, 1), ΓNS

1 (Xn) = (Xn:n/2, (1 +X1:n)/2). So the
extrema (minimum and maximum) of the setXn are sufficient to determine theΓ1-region; i.e.,G = {X1:n, Xn:n}
forXn a set of iid random variables from a continuous distribution on(0, 1). Unfortunately, in the multi-dimensional
case, there is no natural ordering that yields natural extrema such as minimum or maximum.

4.2. Construction ofΓ1-region of a point forN r
PE

ForN r
PE(·,M), theΓ1-region, denoted asΓr

1(·,M) := ΓNr
PE

1 (·,M), is constructed as follows; see also Fig. 8.
Let ξj(r, x) be the line parallel toej such thatξj(r, x) ∩ T (Y3) 	= ∅ andr d(yj , ξj(r, x)) = d(yj , #(yj , x)) for
j ∈ {1, 2, 3}. Then

Γr
1(x,M) = ∪3

j=1

[
Γr

1(x,M) ∩RM (yj)
]

whereΓr
1(x,M) ∩RM (yj) = {z ∈ RM (yj) : d(yj , #(yj , z)) � d(yj , ξj(r, x)} for j ∈ {1, 2, 3}.

Notice thatr � 1 implies thatx ∈ Γr
1(x,M). Furthermore,limr→∞ Γr

1(x,M) = T (Y3) for all x ∈ T (Y3) \ Y3

and so we defineΓr=∞
1 (x,M) = T (Y3) for all suchx. Forx ∈ Y3, Γr

1(x,M) = {x} for all r ∈ [1,∞].
Notice thatΓr

1(x,MC) is a convex hexagon for allr � 2 andx ∈ T (Y3) \ Y3, (since for such anx, Γr
1(x,MC) is

bounded byξj(r, x) andej for all j ∈ {1, 2, 3}, see also Fig. 8) else it is either aconvex hexagonor anon-convex
butstar-shaped polygondepending on the location ofx and the value ofr.

4.3. TheΓ1-region of a multiple point data set forN r
PE

So far, we have described theΓ1-region for a point inx ∈ T (Y3). For a setXn of sizen in T (Y3), the region
Γr

1(Xn,M) can be specified by the edge extrema only. The (closest)edge extremaof a setB in T (Y 3) are the points
closest to the edges ofT (Y3), denotedxej for j ∈ {1, 2, 3}; that is,xej ∈ arginfx∈Bd(x, ej). Note that ifB = Xn

is a set of iid random variables of sizen from F then the edge extrema, denotedX ej (n), are random variables.
Below, we show that the edge extrema are the active points in definingΓ r

1(Xn,M).

Proposition 2. LetB be any set ofn distinct points inT (Y3). Forr-factor proportional-edge proximity maps with
M -vertex regions,Γr

1 (B,M) = ∩3
k=1 Γ

r
1 (xek

,M).
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Fig. 9. TheΓ1-regions (the hatched regions) forr = 2 with sevenX points iidU(T (Y3)) where vertex regions constructed with incenterMI

(left) and circumcenterMCC (right) with orthogonal projection.

Proof: GivenB = {x1, . . . , xn} in T (Y3). Note that

Γr
1(B,M) ∩RM (yj) =

[
∩ni=1 Γ

r
1(xi,M)

]
∩RM (yj),

but by definitionxej ∈ argmaxx∈Bd(yj , ξj(r, x)), so

Γr
1(B,M) ∩RM (yj) = Γr

1(xej ,M) ∩RM (yj)for j ∈ {1, 2, 3}. (5)

Furthermore,Γr
1(B,M) = ∪3

j=1

[
Γr

1(xej ,M) ∩RM (yj)
]
, and

Γr
1(xej ,M) ∩RM (yj) = ∩3

k=1

[
Γr

1(xek
,M) ∩ RM (yj)

]
for j ∈ {1, 2, 3}. (6)

Combining these two results in Eqs (5) and (6), we obtainΓ r
1(B,M) = ∩3

k=1 Γ
r
1(xek

,M). �
From the above proposition, we see that theΓ1-region forB as in proposition can also be written as the union of

three regions of the form

Γr
1(B,M) ∩RM (yj) = {z ∈ RM (yj) : d(yj , #(yj, z)) � d(yj , ξj(r, xej ))} for j ∈ {1, 2, 3}.

See Fig. 9 forΓ1-region forr = 2 with sevenX points iid U(T (Y3)). In the left figure, vertex regions are
based on incenter, while in the right figure, on circumcenter with orthogonal projections to the edges. In either case
Xn ∩ Γr=2

1 (Xn,M) is nonempty, henceγn(2,M) = 1.
Below, we demonstrate that edge extrema are distinct with probability 1 asn → ∞. Hence in the limit three

distinct points suffice to determine theΓ1-region.

Theorem 1. LetXn be a set of iid random variables fromU(T (Y3)) and letEc,3(n) be the event that (closest) edge
extrema are distinct. ThenP (Ec,3(n))→ 1 asn→∞.

We can also define the regions associated withγ(Xn, N) = k for k � n calledΓk-region for proximity map
NY3(·) and setB ⊆ Ω for k = 1, . . . , n (see [1]).

5. The asymptotic distribution of γn(r,M)

In this section, we first present a finite sample upper bound forγn(r,M), then present the degenerate cases, and
the nondegenerate case of the asymptotic distribution ofγn(r,M) given in Eq. (3).
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5.1. An upper bound forγn(r,M)

Recall that by definition,γ(Xn, N) � n. We will seek an a.s. least upper bound forγ(Xn, N). LetXn be a set of
iid random variables fromF onT (Y3) and letγ(Xn, N) be the domination number for the PCD based on a proximity
mapN . Denote the general a.s. least upper bound forγ(Xn, N) that works for alln � 1 and is independent ofn
(which is calledκ-valuein [1]) asκ(N) := min{k : γ(Xn, N) � k a.s. for alln � 1}.

In R with Y2 = {0, 1}, for Xn a set of iid random variables fromU(0, 1), γ(Xn, NS) � 2 with equality holding
with positive probability. Henceκ(NS) = 2.

Theorem 2. Let Xn be a set of iid random variables fromU(TY3)) andM ∈ R2 \ Y3. Thenκ (N r
PE) = 3 for

N r
PE(·,M).
Proof: For N r

PE(·,M), pick the point closest to edgeej in vertex regionRM (yj); that is, pick
Uj ∈ argminX∈Xn∩RM (yj)

d(X, ej) = argmaxX∈Xn∩RM (yj)
d(#(y, X), yj) in the vertex region for which

Xn ∩RM (yj) 	= ∅ for j ∈ {1, 2, 3} (note that asn→ ∞, Uj is unique a.s. for eachj, sinceX is fromU(T (Y3)).
ThenXn ∩ RM (yj) ⊂ N r

PE(Uj ,M). HenceXn ⊂ ∪3
j=1N

r
PE(Uj ,M). Soγn(r,MC) � 3 with equality holding

with positive probability. Thusκ (N r
PE) = 3. �

Below is a general result for the limiting distribution ofγ(Xn, N) forXn from a very broad family of distributions
and for generalN(·).

Lemma 2. LetRS(N) be the superset region for the proximity mapN(·) andXn be a set of iid random variables
fromF with PF (X ∈ RS(N)) > 0. Thenlimn→∞ PF (γ(Xn, N) = 1) = 1.

Proof: SupposePF (X ∈ RS(N)) > 0. Recall that for anyx ∈ RS(N), we haveN(x) = Ω, soXn ⊆ N(x),
hence ifXn ∩ RS(N) 	= ∅ then γ(Xn, N) = 1. ThenP (Xn ∩ RS(N) 	= ∅) � P (γ(Xn, N) = 1). But
P
(
Xn ∩ RS(N) 	= ∅

)
= 1 − P

(
Xn ∩ RS(N) = ∅

)
= 1 −

[
1 − PF

(
X ∈ RS(N)

)]n → 1 as n → ∞, since
PF
(
X ∈ RS(N)

)
> 0. Hencelimn→∞ P (γ(Xn, N) = 1) = 1. �

Remark 1. In particular, forF = U(T (Y3)), the inequalityPF (X ∈ RS(N)) > 0 holds iffA(RS(N)) > 0, then
P (Xn ∩RS(N) 	= ∅)→ 1. �

ForY2 = {0, 1} ⊂ R,RS(NS) = {1/2}, so Lemma 2 does not apply toNS in R.
Recall thatκ (N r

PE) = 3, then

1 � E [γn(r,M)] � 3 and 0 � Var [γn(r,M)] � 9/4.

Furthermore, there is a stochastic ordering forγn(r,M).

Theorem 3. SupposeXn is a set of iid random variables from a continuous distributionF on T (Y 3). Then for
r1 < r2, we haveγn(r2,M) ≤ST γ (Xn, N

r1
PE ,M).

Proof: Supposer1 < r2. ThenP (γn(r2,M) � 1) > P (γn(r1,M) � 1) sinceΓr1
1 (Xn,M) � Γr2

1 (Xn,M) for
any realization ofXn and by a similar argumentP

(
γn(r2,M) � 2

)
> P (γn(r1,M) � 2) soP (γn(r2,M) � 3) =

P (γn(r1,M) � 3) . Hence the desired result follows.�

5.2. Geometry invariance

We present a “geometry invariance” result forN r
PE(·,M) whereM -vertex regions are constructed using the lines

joiningY3 toM , rather than the orthogonal projections fromM to the edges. This invariance property will simplify
the notation in our subsequent analysis by allowing us to consider the special case of the equilateral triangle.

Theorem 4. (Geometry Invariance Property) SupposeXn is a set of iid random variables fromU(T (Y3)). Then for
anyr ∈ [1,∞] the distribution ofγn(r,M) is independent ofY3 and hence the geometry ofT (Y3).

Proof: SupposeX ∼ U(T (Y3)). A composition of translation, rotation, reflections, and scaling will take any
given triangleT (Y3) = T (y1, y2, y3) to the basic triangleTb = T ((0, 0), (1, 0), (c1, c2)) with 0 < c1 � 1/2,
c2 > 0, and(1− c1)2 + c22 � 1. Furthermore, whenX is also transformed in the same manner, say toX ′, thenX ′
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Table 1
The number ofγn(r, M) = k out ofN = 1000 Monte Carlo replicates withM = MC andr = 2
(left) andr = 5/4 (right)

k\n 10 20 30 50 100 k\n 10 20 30 50 100
1 961 1000 1000 1000 1000 1 9 0 0 0 0
2 34 0 0 0 0 2 293 110 30 8 0
3 5 0 0 0 0 3 698 890 970 992 1000

is uniform onTb, i.e.,X ′ ∼ U(Tb). The transformationφe : R2 → R2 given byφe(u, v) =
(
u+ 1−2 c1√

3
v,

√
3

2 c2
v
)

takesTb to the equilateral triangleTe =
(
(0, 0), (1, 0), (1/2,

√
3/2)

)
. Investigation of the Jacobian shows thatφe

also preserves uniformity. That is,φe(X ′) ∼ U(Te). Furthermore, the composition ofφe, with the scaling and rigid
body transformations, maps the boundary of the original triangle,T o, to the boundary of the equilateral triangle,
Te, the lines joiningM to yj in Tb to the lines joiningφe(M) to φe(yj) in Te, and lines parallel to the edges ofTo
to lines parallel to the edges ofTe. Since the distribution ofγn(r,M) involves only probability content of unions
and intersections of regions bounded by precisely such lines and the probability content of such regions is preserved
since uniformity is preserved; the desired result follows.�

Note that geometry invariance ofγ (Xn, N
r=∞
PE ,M) also follows trivially, since forr = ∞, we haveγn(r =

∞,M) = 1 a.s. for allXn from anyF with support inT (Y3) \ Y3.
Based on Theorem 4 we may assume thatT (Y3) is a standard equilateral triangle withY3 =

{(0, 0), (1, 0), (1/2,
√
3/ 2)} forN r

PE(·,M) withM -vertex regions.
Notice that, we proved the geometry invariance property forN r

PE whereM -vertex regions are defined with the
lines joiningY3 to M . On the other hand, if we use the orthogonal projections fromM to the edges, the vertex
regions, henceN r

PE will depend on the geometry of the triangle. That is, the orthogonol projections fromM to the
edges will not be mapped to the orthogonal projections in the standard equilateral triangle. Hence with the choice of
the former type ofM -vertex regions, it suffices to work on the standard equilateral triangle. On the other hand, with
the orthogonal projections, the exact and asymptotic distribution ofγ n will depend onc1, c2, so one needs to do the
calculations for each possible combination ofc1, c2.

5.3. The degenerate case withγn(r,M)
p→ 1

Below, we prove thatγn(r,M) is degenerate in the limit forr > 3/2.

Theorem 5. SupposeXn is a set of iid random variables from a continuous distributionF on T (Y 3). If M 	∈ Tr
(see Fig. 5 and Eq. (2) forTr), thenlimn→∞ P (γn(r,M) = 1) = 1 for allM ∈ R2 \ Y3.

Proof: SupposeM /∈ Tr. ThenRS (N r
PE ,M) is nonempty with positive area. Hence the result follows by

Lemma 2.�

Corollary 1. SupposeXn is a set of iid random variables from a continuous distributionF on T (Y 3). Then for
r > 3/2, limn→∞ P (γn(r,M) = 1) = 1 for allM ∈ R2 \ Y3.

Proof: Forr > 3/2, Tr = ∅, soM 	∈ Tr. Hence the result follows by Theorem 6.�
We estimate the distribution ofγn(r,M) with r = 2 andM = MC for variousn empirically. In Table 1 (left),

we present the empirical estimates ofγn(r,M) with n = 10, 20, 30, 50, 100 based on 1000 Monte Carlo replicates
in Te. Observe that the empirical estimates are in agreement with the asymptotic distribution given in Corollary 1.

The asymptotic distribution ofγn(r,M) for r < 3/2 depends on the relative position ofM with respect to the
triangleTr.

5.4. The degenerate case withγn(r,M)
p→ 3

Theorem 6. SupposeXn is a set of iid random variables from a continuous distributionF onT (Y 3). If M ∈ (Tr)◦,
thenP (γn(r,M) = 3)→ 1 asn→∞.



E. Ceyhan and C.E. Priebe / Distribution of the domination number of a new family of parametrized random digraphs243

Table 2
The number ofγn(r, M) = k out of N = 1000 Monte Carlo
replicates withr = 5/4 andM =

(
3/5,

√
3/10

)
k\n 10 20 30 50 100 500 1000 2000

1 118 60 51 39 15 1 2 1
2 462 409 361 299 258 100 57 29
3 420 531 588 662 727 899 941 970

Table 3
The number ofγn(r, M) = k out of N = 1000 Monte Carlo
replicates withr = 5/4 andM =

(
7/10,

√
3/10

)
k\n 10 20 30 50 100 500 1000 2000

1 174 118 82 61 22 5 1 1
2 532 526 548 561 611 617 633 649
3 294 356 370 378 367 378 366 350

We estimate the distribution ofγn(r,M) with r = 5/4 andM =MC for variousn values empirically. In Table 1
(right), we present the empirical estimates ofγn(r,M) with n = 10, 20, 30, 50, 100 based on 1000 Monte Carlo
replicates inTe. Observe that the empirical estimates are in agreement with our result in Theorem 7.

Theorem 7. SupposeXn is a set of iid random variables fromU(T (Y3)). IfM ∈ ∂(Tr), thenP (γn(r,M) > 1)→ 1
asn→∞.

ForM ∈ ∂(Tr), there are two separate cases:

(i) M ∈ ∂(Tr) \ {t1(r), t2(r), t3(r)} wheretj(r) with j ∈ {1, 2, 3} are the vertices ofTr whose explicit forms
are given in Eq. (2).

(ii) M ∈ {t1(r), t2(r), t3(r)}.

Theorem 8. SupposeXn is a set of iid random variables fromU(T (Y3)). If M ∈ ∂(Tr) \ {t1(r), t2(r), t3(r)},
thenP (γn(r,M) = 3)→ 1 asn→∞.

We estimate the distribution ofγn(r,M) with r = 5/4 andM =
(
3/5,

√
3/10

)
∈ ∂(Tr) \ {t1(r), t2(r), t3(r)}

for variousn empirically. In Table 2 we present empirical estimates ofγn(r,M)with n = 10, 20, 30, 50, 100, 500,
1000, 2000 based on 1000 Monte Carlo replicates inTe. Observe that the empirical estimates are in agreement with
our result in Theorem 9.

5.5. The nondegenerate case

Theorem 9. SupposeXn is a set of iid random variables fromU(T (T3)). If M ∈ {t1(r), t2(r), t3(r)}, then
P (γn(r,M) = 2)→ pr asn→∞ wherepr ∈ (0, 1) is provided in Eq. (4) but only numerically computable.

For example,pr=5/4 ≈ 0.6514 andpr=
√

2 ≈ 0.4826.
So the asymptotic distribution ofγn(r,M) with r ∈ [1, 3/2) andM ∈ {t1(r), t2(r), t3(r)} is given by

γn(r,M) ∼ 2 + BER(1 − pr). (7)

We estimate the distribution ofγn(r,M) with r = 5/4 andM =
(
7/10,

√
3/10

)
for variousn empirically.

In Table 3, we present the empirical estimates ofγn(r,M) with n = 10, 20, 30, 50, 100, 500, 1000, 2000 based
on 1000 Monte Carlo replicates inTe. Observe that the empirical estimates are in agreement with our result
pr=5/4 ≈ 0.6514.

Remark 2. Forr = 3/2, asn→∞, P (γn(r,MC) > 1)→ 1 at rateO
(
n−1

)
. �

Theorem 10. SupposeXn is a set of iid random variables fromU(T (Y3)). Then forr = 3/2, asn→∞,

γn(3/2,MC) ∼ 2 + BER(p ≈ 0.2487) (8)
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Table 4
The number ofγn(3/2, MC) = k out ofN = 1000 Monte Carlo
replicates

k\n 10 20 30 50 100 500 1000 2000

1 151 82 61 50 27 2 3 1
2 602 636 688 693 718 753 729 749
3 247 282 251 257 255 245 268 250

For the proof of Theorem 10, see [3,4].
Using Theorem 10,

lim
n→∞ E [γn(3/2,MC)] = 3− p3/2 ≈ 2.2587 (9)

and

lim
n→∞Var [γn(3/2,MC)] = 6 + p3/2 − p23/2 ≈ 0.1917. (10)

Indeed, the finite sample distribution ofγn(3/2,MC) hence the finite sample mean and variance can also be
obtained by numerical methods.

We also estimate the distribution ofγn(3/2,MC) for variousn empirically. The empirical estimates forn =
10, 20, 30, 50, 100, 500, 1000, 2000 based on1000 Monte Carlo replicates are given in Table 4 observe that the
estimates are in agreement with our resultpr=3/2 ≈ 0.7413.

5.6. Distribution of theγn(r,M) in multiple triangles

So far we have worked with data in one Delaunay triangle, i.e.,m = 3 or J 3 = 1. In this section, we present
the asymptotic distribution of the domination number ofr-factor PCDs in multiple Delaunay triangles. Suppose
Ym = {y1, y2, . . . , ym} ⊂ R2 be a set ofm points in general position withm > 3 and no more than 3 points are
cocircular. Then there areJm > 1 Delaunay triangles each of which is denoted asTj . LetM j be the point inTj
that corresponds toM in Te, T j

r be the triangle that corresponds toTr in Te, andtji (r) be the vertices ofT j
r that

correspond toti(r) in Te for i ∈ {1, 2, 3}. Moreover, letnj := |Xn ∩ Tj |, the number ofX points in Delaunay
triangleTj . ForXn ⊂ CH(Ym), let γnj (r,M j) be the domination number of the digraph induced by vertices ofT j

andXn ∩ Tj . Then the domination number of ther-factor PCD inJm triangles is

γn(r,M, Jm) =
Jm∑
j=1

γnj (r,M
j).

See Fig. 10 (left) for the 77X points that are inCH(Ym) out of the 200X points plotted in Fig. 1. Observe that 10
Y points yieldJ10 = 13Delaunay triangles. In Fig. 10 (right) are the corresponding arcs forM =M C andr = 3/2.
The correspondingγn = 22. SupposeXn is a set of iid random variables fromU(CH(Ym)), the uniform distribution
on convex hull ofYm and we construct ther-factor PCDs using the pointsM j that correspond toM in Te. Then for
fixedm (or fixedJm), asn →∞, so does eachnj . Furthermore, asn →∞, each componentγnj (r,M j) become
independent. Therefore using Eq. (3), we can obtain the asymptotic distribution ofγ n(r,M, Jm). As n → ∞, for
fixedJm,

γn(r,M, Jm) ∼


2 Jm +BIN(Jm, 1− pr), forM j ∈ {tj1(r), t

j
2(r), t

j
3(r)} and r ∈ [1, 3/2],

Jm, for r > 3/2,
3 Jm, forM ∈ T j

r \ {t
j
1(r), t

j
2(r), t

j
3(r)} and r ∈ [1, 3/2),

(11)

whereBIN(n, p) stands for binomial distribution withn trials and probability of successp, for r ∈ [1, 3/2) and
M ∈ {t1(r), t2(r), t3(r)}, pr is given in Eq. (3) and forr = 3/2 andM =MC , pr ≈ 0.7413 (see Eq. (8)).
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Table 5
The number ofγn(4/3, MC) = k out ofN = 1000 Monte Carlo replicates

k\n 10 20 30 40 50 100 200 500 1000 2000

1 52 18 5 5 4 0 0 0 0 0
2 385 308 263 221 219 155 88 41 31 19
3 348 455 557 609 621 725 773 831 845 862
4 215 219 175 165 156 120 139 128 124 119
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Fig. 10. The 77X points (crosses) in the convex hull ofY points (circles) given in Fig. 1 (left) and the corresponding arcs (right) ofr-factor
proportional edge PCD withr = 3/2 andM = MC .

5.7. Extension ofN r
PE to higher dimensions

The extension toRd for d > 2 withM =MC is provided in [4], but the extension for generalM is similar.
Letγn(r,M, d) := γ(Xn, N

r
PE ,M, d)be the domination number of the PCD based on the extension ofN r

PE(·,M)
to Rd. Then it is easy to see thatγn(r,M, 3) is nondegenerate asn → ∞ for r = 4/3. In Rd, it can be seen that
γn(r,M, d) is nondegenerate in the limit only whenr = (d+1)/d. Furthermore, for larged, asymptotic distribution
of γn(r,M, d) is nondegenerate at values ofr closer to1. Moreover, it can be shown thatlim n→∞ P

(
2 � γn(r =

(d+ 1)/d,M, d) � d+ 1
)
= 1 and we conjecture the following.

Conjecture 1. SupposeXn is a set of iid random variables from the uniform distribution on a simplex inR d. Then
the domination numberγn(r,M) in the simplex satisfies

lim
n→∞P (d � γn((d+ 1)/d,M, d) � d+ 1) = 1.

For instance, withd = 3 we estimate the empirical distribution ofγ(Xn, 4/3) for variousn. The empirical
estimates forn = 10, 20, 30, 40, 50, 100, 200, 500, 1000, 2000 based on1000 Monte Carlo replicates for eachn
are given in Table 5.

6. Discussion

Ther-factor proportional-edge proximity catch digraphs (PCDs), when compared to class cover catch digraphs
(CCCDs), have some advantages. The asymptotic distribution of the domination numberγ n(r,M) of ther-factor
PCDs, unlike that of CCCDs, is mathematically tractable (but computable by numerical integration). A minimum
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dominating set can be found in polynomial time forr-factor PCDs inR d for all d � 1, but finding a minimum
dominating set is an NP-hard problem for CCCDs (except forR). These nice properties ofr-factor PCDs are due to
the geometry invariance of distribution ofγn(r,M) for uniform data in triangles.

On the other hand, CCCDs are easily extendable to higher dimensions and are defined for allX n ⊂ Rd, while
r-factor PCDs are only defined forXn ⊂ CH(Ym). Furthermore, the CCCDs based on balls use proximity regions
that are defined by the obvious metric, while the PCDs in general do not suggest a metric. In particular, ourr-factor
PCDs are based on some sort of dissimilarity measure that has no underlying metric.

The finite sample distribution ofγn(r,M), although computationally tedious, can be found by numerical methods,
while that of CCCDs can only be empirically estimated by Monte Carlo simulations. Moreover, we had to introduce
many auxiliary tools to compute the distribution ofγn(r,M) in R2. Same tools will work in higher dimensions,
perhaps with more complicated geometry.

The r-factor PCDs have applications in classification and testing spatial patterns of segregation or association.
The former can be performed building discriminant regions for classification in a manner analogous to the procedure
proposed in [17]; and the latter can be performed by using the asymptotic distribution ofγ n(r,M) similar to the
procedure used in [4].
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Appendix

First, we begin with a remark that introduces some terminology which we will use for asymptotics throughout
this appendix.

Remark 3. SupposeXn is a set of iid random variables fromF with supportS(F ) ⊆ Ω. If over a sequence
Ωn ⊆ Ω, n = 1, 2, 3, . . ., X restricted toΩn, X |Ωn , has distributionFn with Fn(x) = F (x)/PF (X ∈ Ωn)
andPF (X ∈ Ωn) → 1 asn → ∞, then we callFn the asymptotically accurate distributionof X andΩn the
asymptotically accurate supportofF . If F has densityf , thenfn = f(x)/PF (X ∈ Ωn) is called theasymptotically
accurate pdfof X . In both cases, if we are concerned with asymptotic results, for simplicity we will, respectively,
useF andf for asymptotically accurate distribution and pdf. Conditioning will be implied by stating thatX ∈ Ω n

with probability 1, asn→∞ or for sufficiently largen. �

Proof of Theorem 1

Without loss of generality, assumeT (Y3) = Tb = T ((0, 0), (1, 0), (c1, c2)) Note that the probability of edge
extrema all being equal to each other isP (Xe1(n) = Xe2(n) = Xe3(n)) = I(n = 1). LetEc,2(n) be the event that
there are only two distinct (closest) edge extrema. Then forn > 1,

P (Ec,2(n)) = P (Xe1(n) = Xe2(n)) + P (Xe1(n) = Xe3(n)) + P (Xe2(n) = Xe3(n))

since the intersection of the events{Xei(n) = Xej (n)} and{Xei(n) = Xek
(n)} for distincti, j, k is equivalent to

the event{Xe1(n) = Xe2(n) = Xe3(n)}. Notice also thatP (Ec,2(n = 2)) = 1. So, forn > 2, there are two or
three distinct edge extrema with probability 1. HenceP (Ec,3(n)) + P (Ec,2(n)) = 1 for n > 2.

By simple integral calculus, we can show thatP (Ec,2(n))→ 0 asn→∞, which will imply the desired result.�
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Proof of Theorem 6
??
Note that(Tr)◦ 	= ∅ iff r < 3/2. SupposeM ∈ (Tr)◦. Then for any pointu in RM (yj),N

r
PE(u,M) � T (Y3),

because there is a tiny strip adjacent to edgeej not covered byN r
PE(u,M), for eachj ∈ {1, 2, 3}. Then,N r

PE

(u,M) ∪N r
PE(v,M) � T (Y3) for all (u, v) ∈ RM (y1) × RM (y2). Pick sup(u,v)∈RM (y1)×RM (y2)N

r
PE(u,M) ∪

N r
PE(v,M) � T (Y3). ThenT (Y3) \

[
sup(u,v)∈RM (y1)×RM(y2)N

r
PE(u,M) ∪N r

PE(v,M)
]

has positive area. So

Xn ∩
[
T (Y3) \

[
sup

(u,v)∈RM (y1)×RM(y2)

N r
PE(u,M) ∪N r

PE(v,M)

]]
	= ∅

with probability 1 for sufficiently largen. (The supremum of a set functionalA(x) over a rangeB is defined as
the setS := supx∈B A(x) such thatS is the smallest set satisfyingA(x) ⊆ S for all x ∈ B.) Then at least three
points–one for each vertex region – are required to dominateX n. Hence for sufficiently largen, γn(r,M) � 3 with
probability 1, butκ (N r

PE) = 3 by Theorem 2. Thenlimn→∞ P (γn(r,M) = 3) = 1 for r < 3/2. �

Proof of Theorem 7

Let M = (m1,m2) ∈ ∂(Tr), sayM ∈ q3(r, x) (recall thatqj(r, x) are defined such thatd(yj , ej) = r ·
d(qj(r, x), yj) for j ∈ {1, 2, 3}), thenm2 =

√
3 (2−r)
2 r andm1 ∈

[
3 (r−1)

2 r , 3−r
2 r

]
. LetXej (n) be one of the closest

point(s) to the edgeej; i.e.,Xej (n) ∈ argminX∈Xn
d(X, ej) for j ∈ {1, 2, 3}. Note thatXej (n) is unique a.s. for

eachj.
Notice that for allj ∈ {1, 2, 3}, Xej (n) /∈ N r

PE(X) for all X ∈ Xn ∩ RM (yj) implies thatγn(r,M) > 1
with probability 1. For sufficiently largen, Xej (n) /∈ N r

PE(X) for all X ∈ Xn ∩ RM (yj) with probability 1, for
j ∈ {1, 2}, by the choice ofM . Hence we consider onlyXe3(n). The asymptotically accurate pdf ofXe3(n) is

fe3 (x, y) = n
(
A(SU (x, y))
A(T (Y3))

)n−1 1
A(T (Y3))

,

whereSU (x, y) is the unshaded region in Fig. 11 (left) (for a givenX e3(n) = xe3 = (x, y)) whose area

is A(SU (x, y)) =
√
3
(
2 y −

√
3
)2
/12. Note thatXe3(n) /∈ N r

PE(X) for all X ∈ Xn ∩ RM (y3) iff
Xn ∩ [Γr

1 (Xn,M) ∩RM (y3)] = ∅. Then givenXe3(n) = (x, y),

P
(
Xn ∩

[
Γr

1 (Xn,M) ∩RM (y3)
]
= ∅

)
=
(
A(SU (x, y)) −A (Γr

1 (Xn,M) ∩RM (y3))
A(SU (x, y))

)n−1

,

whereA (Γr
1 (Xn,M) ∩RM (y3)) =

√
3 y2

3 (r−1) r (see Fig. 12 (right) where the shaded region isΓr
1 (Xn,M)∩RM (y3)

for a givenXe3(n) = (x, y)), then for sufficiently largen

P (Xn ∩ [Γr
1 (Xn,M) ∩RM (y3)] = ∅) ≈

∫ (
A(SU (x, y))−A (Γr

1 (Xn,M) ∩RM (y3))
A(SU (x, y))

)n−1

fe3 (x, y) dy dx =
∫

n

AT (Y3)

(
A(SU (x, y)) −A (Γr

1 (Xn,M) ∩RM (y3))
AT (Y3)

)n−1

dy dx.

Let

G(x, y) =
A(SU (x, y))−A (Γr

1 (Xn,M) ∩RM (y3))
A(T (Y3))

=
4√
3

(√
3
(
2 y −

√
3
)2

12
−

√
3 y2

3 (r − 1) r

)
,

which is independent onx, so we denote it asG(y).
Let ε > 0 be sufficiently small, then for sufficiently largen,
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y2 = (1, 0)y1 = (0, 0)

y3 = (1/ 2, 3/ 2)

e3

xe3
= (x , y)

y2 = (1, 0)y1 = (0, 0)

y3 = (1/ 2, 3/ 2)

e3

Mt1
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t3

T r

xe3
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Γ1(Xn, N r
P E , M ) R M (y3)I

Fig. 11. A figure for the description of the pdf ofXe3 (n) (left) andΓr
1 (Xn, M) (right) givenXe3 (n) = xe3 = (x, y).

P (Xn ∩ [Γr
1 (Xn,M) ∩RM (y3)] = ∅) ≈

∫ ε

0

∫ 1−y/
√

3

y/
√

3

nG(y)n−1 4/
√
3 dy dx

=
(
1− 2 y/

√
3
) ∫ ε

0

nG(y)n−1 4/
√
3 dy.

The integrand is critical aty = 0, sinceG(0) = 1 (i.e., whenxe3 ∈ e3). Furthermore,G(y) = 1−4 y/
√
3+O

(
y2
)

aroundy = 0. Then lettingy = w/n, we get

P (Xn ∩ [Γr
1 (Xn,M) ∩RM (y3)] = ∅) ≈

(
1− 2w√

3n

)
4√
3

∫ nε

0

(
1− 4w√

3n
+O

(
n−2

))n−1

dw.

letting n→∞, ≈ 4/
√
3
∫ ∞

0

exp
(
−4w/

√
3
)
dw = 1.

Hencelimn→∞ P (γn(r,M) > 1) = 1. ForM ∈ qj(r, x) ∩ Tr with j ∈ {1, 2} the result follows similarly.�

Proof of Theorem 8

LetM = (m1,m2) ∈ ∂(Tr) \ {t1(r), t2(r), t3(r)}, sayM ∈ q3(r, x). Thenm2 =
√

3 (r−1)
2 r . Without loss of

generality, assume12 � m1 <
3−r
2 r . See also Fig. 12.

WheneverXn ∩RM (yj) 	= ∅, let

Q̂j(n) ∈ argminX∈Xn∩RM (yj)
d (X, ej) = argmaxX∈Xn∩RM (yj)

d(#(yj, X), yj) for j ∈ {1, 2, 3}.

Note that at least one of thêQj(n) uniquely exists w.p. 1 for finiten and asn → ∞, Q̂j(n) are unique w.p. 1.
Then

γn(r,M) � 2 iff Xn ⊂
[
N r

PE

(
Q̂1(n),M

)
∪N r

PE

(
Q̂2(n),M

)]
or

Xn ⊂
[
N r

PE

(
Q̂2(n),M

)
∪N r

PE

(
Q̂3(n),M

)]
or Xn ⊂

[
N r

PE

(
Q̂1(n),M

)
∪N r

PE

(
Q̂3(n),M

)]
.

LetEi,j
n be the event thatXn ⊂ N r

PE

(
Q̂i,M

)
∪
[
NPE

r
(
Q̂j(n),M

)]
for (i, j) ∈

{
(1, 2), (1, 3), (2, 3)

}
. Then

P (γn(r,M) � 2) = P
(
E1,2
n

)
+ P

(
E2,3
n

)
+ P

(
E1,3
n

)
− P

(
E1,2
n ∩E2,3

n

)
− P

(
E1,2
n ∩ E1,3

n

)
−P

(
E1,3
n ∩ E2,3

n

)
+ P

(
E1,2
n ∩ E2,3

n ∩ E1,3
n

)
.

But note thatP
(
E1,2
n

)
→ 0 asn→∞ by the choice ofM since
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Fig. 12. A figure for the description of the pdf of̂Q1(n) andQ̂3(n) (left) and the unshaded region isNr
PE(q̂1, M) ∪ Nr

PE(q̂3, M) (right).

sup
u ∈ RM (y1)
v ∈ RM (y2)

N r
PE(u,M) ∪N r

PE(v,M) � T (Y3),

and

P

Xn ∩ T (Y3) \

 sup
u ∈ RM (y1)
v ∈ RM (y2)

N r
PE(u,M) ∪N r

PE(v,M)

 	= ∅
→ 1 as n→∞.

Then,

P
(
E1,2
n

)
− P

(
E1,2
n ∩E2,3

n

)
− P

(
E1,2
n ∩ E1,3

n

)
+ P

(
E1,2
n ∩ E2,3

n ∩ E1,3
n

)
� 4P

(
E1,2
n

)
→ 0 as n→∞.

Therefore,

lim
n→∞P (γn(r,M) � 2) = lim

n→∞
(
P
(
E2,3
n

)
+ P

(
E1,3
n

))
.

Furthermore, observe thatP
(
E1,3
n

)
� P

(
E2,3
n

)
by the choice ofM . Then we first findlimn→∞ P

(
E1,3
n

)
. Given

a realization ofXn with Q̂1(n) = q̂1 = (x1, y1) andQ̂3(n) = q̂3 = (x3, y3), the remainingn− 2 points should fall,
for example, in the undshaded region in Fig. 12 (left). Then the asymptotically accurate joint pdf ofQ̂1(n), Q̂3(n) is

f13
(
6ζ
)
=
n (n− 1)
AT (Y3)2

(
AT (Y3)−A(SR

(
6ζ
)(
6ζ
)
)

AT (Y3)

)n−2

where 6ζ = (x1, y1, x3, y3), SR
(
6ζ
)

is the shaded region in Fig. 12 (left) whose area isA(SR

(
6ζ
)
) =

√
3 (2 r y3−

√
3 (r−1))2

12 r (r−1) +
√

3[2
√

3 r y1−3 (r−1)+6 r (x1−m1)]2
72 r (1−r (2m1−1)) .

GivenQ̂j(n) = q̂j = (xj , yj) for j ∈ {1, 3},

P
(
E1,3
n

)
=

(
A (N r

PE (q̂1,M) ∪N r
PE (q̂3,M))−A(SR

(
6ζ
)
)

AT (Y3)−A(SR
(
6ζ
)
)

)n−2

then for sufficiently largen

P
(
E1,3
n

)
≈
∫ (

A (N r
PE (q̂1,M) ∪N r

PE (q̂3,M))−A(SR
(
6ζ
)
)

AT (Y3)−A(SR
(
6ζ
)
)

)n−2

f13
(
6ζ
)
d6ζ,
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=
∫

n (n− 1)
A(T (Y3))2

(
A (N r

PE (q̂1,M) ∪N r
PE (q̂3,M))−A(SR

(
6ζ
)
)

AT (Y3)

)n−2

d6ζ

where

A (N r
PE (q̂1,M) ∪N r

PE (q̂3,M)) =
√
3
4
−
((√

3 r y1 + 3 r x1 − 3
) (√

3 (r − 1)− 2 r y3
)

6

)
.

See Fig. 12 (right) forN r
PE(q̂1,M) ∪N r

PE(q̂3,M). Let

G
(
6ζ
)
=
A (N r

PE (q̂1,M) ∪N r
PE (q̂3,M))−A(SR

(
6ζ
)
)

AT (Y3)
.

Note that the integral is critical atx1 = x3 = m1 andy1 = y3 = m2, sinceG
(
6ζ
)
= 1. SinceN r

PE(x,MC)
depends on the distanced(x, ej) for x ∈ RM (yj), we make the change of variables(x1, y1)→ (d(M, e1) + z1, y1)

whered(M, e1) =
√

3 (r+1−2 rm1)
4 r and(x3, y3) → (x3,m2 + z3) thenG

(
6ζ
)

depends only onz1, z3, we denote it
G(z1, z3) which is

G(z1, z3) = 1− 8 r z21
3 (1 + r (1− 2m1))

− 4 r z23
3 (r − 1)

−
2 r z3

(√
3 (3− r)

)
+ r

(
4 z1 − 2

√
3m1

)
3

.

The new integrand isn (n−1)
AT (Y3)2G(z1, z3)

n−2. Integrating with respect tox3 and y1 yields 2
√

3 z3 r
3 (r−1) and

4
√

3 r z1
3 (2 rm1−r−1) , respectively. Hence for sufficiently largen

P
(
E1,3
n

)
≈
∫ ε

0

∫ ε

0

n (n− 1)
AT (Y3)2

(
2
√
3 z3 r

3 (r − 1)

) (
4
√
3 r z1

3 (2 rm1 − r − 1)

)
G(z1, z3)n−2dz1 dz3.

Note that the new integral is critical whenz1 = z3 = 0, so we make the change of variablesz1 = w1/
√
n and

z3 = w3/n thenG(z1, z3) becomes

G(w1, w3) = 1 +
1
n

(
2
√
3 r (r − 3 + 2 rm1)

3
w3 +

8 r
3 (r + 1− 2 rm1)

w2
1

)
+O

(
n−3/2

)
,

so for sufficiently largen

P
(
E1,3
n

)
≈
∫ √

n ε

0

∫ n ε

0

(n− 1)
n3

16
3

(
2
√
3 r

3 (r − 1)

) (
4
√
3 r

3 (2 rm1 − r − 1)

)
(−4m1 + 2 +

√
2)w1 w3

[
1− 1

n

(
2
√
3 r (r − 3 + 2 rm1)

3
w3 +

8 r
3 (r + 1− 2 rm1)

w2
1

)
+O

(
n−3/2

)]n−2

dw3w1,

≈ O
(
n−1

) ∫ ∞

0

∫ ∞

0

w1 w3 exp

(
−2

√
3 r (r − 3 + 2 rm1)w3

3
− 8 r w2

1

3 (r + 1− 2 rm1)

)
dw3w1

= O
(
n−1

)
since

∫∞
0

∫∞
0 w1 w3 exp

(
− 2

√
3 r (r−3+2 rm1)

3 w3 − 8 r
3 (r+1−2 rm1)

w2
1

)
dw3w1 = 3

8 r (3−r (2m1+1)) , which is a

finite constant. ThenP
(
E1,3
n

)
→ 0 as n → ∞, which also impliesP

(
E2,3
n

)
→ 0 as n → ∞. Then

P (γn(r,M) � 2)→ 0. Hence the desired result follows.�
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Fig. 13. A figure for the description of the pdf of̂Q1(n) andQ̂3(n) (left) and the unshaded region isNr
PE(q̂1, M) ∪ Nr

PE(q̂3, M) (right)

givenQ̂j(n) = q̂j for j ∈ {1, 3}.

Proof of Theorem 9

Let M = (m1,m2) ∈ {t1(r), t2(r), t3(r)}. Without loss of generality, assumeM = t2(r) thenm1 =
2−r+c1 (r−1)

r andm2 =
c2 (r−1)

r . See Fig. 13.

Let Q̂j(n) and the eventsE i,j
n be defined as in the proof of Theorem 8 for(i, j) ∈

{
(1, 2), (1, 3), (2, 3)

}
. Then

as in the proof of Theorem 8,

P (γn(r,M) � 2) = P
(
E1,2
n

)
+ P

(
E2,3
n

)
+ P

(
E1,3
n

)
− P

(
E1,2
n ∩ E2,3

n

)
−

P
(
E1,2
n ∩E1,3

n

)
− P

(
E1,3
n ∩ E2,3

n

)
+ P

(
E1,2
n ∩ E2,3

n ∩ E1,3
n

)
.

Observe that the choice ofM implies thatP
(
E1,3
n

)
� P

(
E2,3
n

)
and by symmetry (inTe) P

(
E1,2
n

)
= P

(
E2,3
n

)
.

So first we findP
(
E1,3
n

)
. As in the proof of Theorem 8 asymptotically accurate joint pdf ofQ̂1(n), Q̂3(n) is

f13
(
6ζ
)
=
n (n− 1)
AT (Y3)2

(
AT (Y3)−A(SR

(
6ζ
)
)

AT (Y3)

)n−2

where6ζ = (x1, y1, x3, y3) andSR
(
6ζ
)

is the shaded region in Fig. 13 (left) whose area is

A(SR
(
6ζ
)
) =

√
3
(
2 r y3 −

√
3 (r − 1)2

)
12 (r − 1) r

+

√
3
(√

3 r y1 + 3 x1 r − 3
)2

36 (r − 1) r
.

GivenQ̂j(n) = q̂j = (xj , yj) for j ∈ {1, 3},

P
(
E1,3
n

)
=

(
A (N r

PE (q̂1,M) ∪N r
PE (q̂3,M))−A(SR

(
6ζ
)
)

AT (Y3)−A(SR
(
6ζ
)
)

)n−2

,

then for sufficiently largen

P
(
E1,3
n

)
≈
∫ A

(
N r

PE

(
Q̂ = q̂1,M

)
∪N r

PE (q̂3,M)
)
−A(SR

(
6ζ
)
)

AT (Y3)−A(SR
(
6ζ
)
)

n−2

f13
(
6ζ
)
d6ζ,

=
∫
n (n− 1)
AT (Y3)2

(
A (N r

PE (q̂1,M) ∪N r
PE (q̂3,M))−A(SR

(
6ζ
)
)

AT (Y3)

)n−2

d6ζ

where
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A (N r
PE (q̂1,M) ∪N r

PE (q̂3,M)) =
√
3
4
−
(
2 r y3 −

√
3 (r − 1)

) (
3−

√
3 r y1 − 3 r x1

)
6

.

See Fig. 13 (right) forN r
PE(q̂1,M) ∪N r

PE(q̂3,M). Let

G
(
6ζ
)
=
A (N r

PE (q̂1,M) ∪N r
PE (q̂3,M))−A(SR

(
6ζ
)
)

AT (Y3)
.

Note that the integral is critical whenx1 = x3 = m1 andy1 = y3 = m2, sinceG
(
6ζ
)
= 1.

As in the proof of Theorem 8, we make the change of variables(x 1, y1)→ (d(M, e1)+z1, y1)whered(M, e1) =√
3 (r−1)
2 r and(x3, y3)→ (x3,m2 + z3). ThenG

(
6ζ
)

becomes

G(z1, z3) = 1− 4 r
3 (r − 1)

z21 −
4 r

3 (r − 1)
z23 −

8 r2

3
z1 z3.

The new integral is∫
n (n− 1)
AT (Y3)2

G(z1, z3)n−2dx3dy1dz3dz1.

Note thatG(z1, z3) is independent ofy1, x3, so integrating with respect tox3 andy1 yields 2
√

3 r z1
3 (r−1) and 2

√
3 r z3

3 (r−1) ,
respectively. The new integral is critical atz1 = z3 = 0. Hence, for sufficiently largen and sufficiently smallε > 0,
the integral becomes,

P
(
E1,3
n

)
≈
∫ ε

0

∫ ε

0

n (n− 1)
AT (Y3)2

(
12 r2

9 (r − 1)2

)
z1 z3G(z1, z3)n−2 dz1dz3.

Since the new integral is critical whenz1 = z2 = 0, we make the change of variableszj = wj/
√
n for j ∈ {1, 3};

thenG(z1, z3) becomes

G(w1, w3) = 1− 4 r
3n (r − 1)

(
w2

1 + w
2
3 + 2 r (r − 1)w1 w3)

)
,

so

pr := P
(
E1,3
n

)
≈
∫ √

n ε

0

∫ √
n ε

0

(n− 1)
n

16
3

(
2
(

12 r2

9 (r − 1)2

)
w1 w3

)
[
1− 4 r

3n (r − 1)
(w2

1 + w
2
3 + 2 r (r − 1)w1 w3))

]n−2

dw3w1, letting n→∞,

≈
∫ ∞

0

∫ ∞

0

64
9

(
r

r − 1

)2

w1 w3 exp
(

4 r
3 (r − 1)

(w2
1 + w

2
3 + 2 r (r − 1)w1 w3)

)
dw3w1

which is not analytically integrable, butpr can be obtained by numerical integration, e.g.,p r=
√

2 ≈ 0.4826 and
pr=5/4 ≈ 0.6514.

Next, we findlimn→∞ P
(
E2,3
n

)
. The asymptotically accurate joint pdf of̂Q2(n), Q̂3(n) is

f23
(
6ζ
)
=
n (n− 1)
AT (Y3)2

(
AT (Y3)−A(S2

R

(
6ζ
)
)

AT (Y3)

)n−2

where6ζ = (x2, y2, x3, y3) andS2
R

(
6ζ
)

is the shaded region in Fig. 14 (left) whose area is

A
(
S2
R

(
6ζ
))

=

√
3
(
2 r y3 +

√
3 (1− r)

)
12 r (r − 1)

+

√
3
(√

3 r y2 − 3 r x2 − 3 r + 6
)

36 (2− r) r .

As before,
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y2 = (1, 0)y1 = (0, 0)

y3 = (1/ 2, 3/ 2)

e3

e1

t1

t3

e2

M = t2

T r

q2

q3

y2 = (1, 0)y1 = (0, 0)

y3 = (1/ 2, 3/ 2)

e3

e1

t1

t3

e2
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T r

q2

q3
^

^

^

^

Fig. 14. A figure for the description of the pdf ofQ̂2(n) andQ̂3(n) (left) and unshaded region isNr
PE(q̂2)∪Nr

PE(q̂3) (right) givenQ̂j(n) = q̂j

for j ∈ {2, 3}.

P
(
E2,3
n

)
=
∫ (

A (N r
PE (q̂2,M) ∪N r

PE (q̂3,M))−A(SR
(
6ζ
)
)

AT (Y3)−A(S2
R

(
6ζ
)
)

)n−2

f23
(
6ζ
)
d6ζ

=
∫
n (n− 1)
AT (Y3)2

(
A (N r

PE (q̂2,M) ∪N r
PE (q̂3,M))−A(SR

(
6ζ
)
)

AT (Y3)

)n−2

d6ζ,

whereA (N r
PE (q̂2,M) ∪N r

PE (q̂3,M)) =
√

3
4 − (2 r y3−

√
3 (r−1)) (3−

√
3 r y2+3 r x2−3 r)

6 .
See Fig. 14 (right) forN r

PE(q̂2) ∪N r
PE(q̂3,M). Let

G
(
6ζ
)
=
A (N r

PE (q̂2,M) ∪N r
PE (q̂3,M))−A(SR

(
6ζ
)
)

AT (Y3)
.

Note that the integral is critical whenx2 = x3 = m1 andy2 = y3 = m2, sinceG
(
6ζ
)
= 1.

We make the change of variables(x3, y3)→ (x3,m2+z3) and(x2, y2)→ (d(M, e2)+z2, y2)whered(M, e2) =√
3 (2−r)
2 r . ThenG

(
6ζ
)

becomes

G(z2, z3) = 1− 4 r z22
3 (2− r) −

4 r z22
3 (r − 2)

− 4
√
3 r z3 (3 − 2 r)

3
− 8 r2 z2 z3

3
.

The new integral is∫
n (n− 1)
AT (Y3)2

G(z2, z3)n−2dx3dy2dz3dz2.

The integrand is independent ofx3 andy2, so integrating with respect tox3 andy2 yields 2
√

3 r z3
3 (r−1) and 2

√
3 r z2

3 (2−r) ,
respectively. Hence, for sufficiently largen

P
(
E2,3
n

)
≈
∫ ε

0

∫ ε

0

n (n− 1)
AT (Y3)2

(
4 r2

3 (r − 1) (2− r)

)
z3 z2G(z2, z3)n−2dz2dz3.

Note that the new integral is critical whenz2 = z3 = 0, so we make the change of variablesz2 = w2/
√
n and

z3 = w3/n thenG(z2, z3) becomes

G(w2, w3) = 1− 1
n

[
4 r w2

2

3 (2− r) −
4
√
3 r w3 (3− 2 r)

3

]
+O

(
n−

3
2

)
,

so for sufficiently largen
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P
(
E2,3
n

)
≈
∫ √

n ε

0

∫ n ε

0

(n− 1)
n2

64 r2

9 (r − 1) (2− r) w2 w3[
1− 1

n

(
4 r w2

2

3 (2− r) −
4
√
3 r w3 (3− 2 r)

3

)
+O

(
n−

3
2

)]n−2

dw3w2,

≈ O
(
n−1

) ∫ ∞

0

∫ ∞

0

w2 w3 exp

(
− 4 r w2

2

3 (2− r) −
4
√
3 r u3 (3 − 2 r)

3

)
dw3w2 = O

(
n−1

)
since∫ ∞

0

∫ ∞

0

w2 w3 exp

(
− 4 r w2

2

3 (2− r) −
4
√
3 r u3 (3− 2 r)

3

)
dw3w2 =

27 (2− r)
384 r3 (3 − 2 r)2

which is a finite constant.
Thus we have shown thatP

(
E2,3
n

)
→ 0 asn→∞, which implies that asn→∞,

P
(
E2,3
n

)
+ P

(
E1,2
n

)
− P

(
E1,2
n ∩ E2,3

n

)
− P

(
E1,2
n ∩ E1,3

n

)
−P

(
E1,3
n ∩ E2,3

n

)
+ P

(
E1,2
n ∩E2,3

n ∩ E1,3
n

)
� 5P

(
E2,3
n

)
→ 0.

Hencelimn→∞ P (γn(r,M) � 2) = limn→∞ P
(
E1,3
n

)
andlimn→∞ P (γn(r,M) > 1) = 1 together imply that

lim
n→∞P (γn(r,M) = 2) = pr. �
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