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Abstract Proximity catch digraphs (PCDs) are a special type of proximity graphs
based on proximity maps which yield proximity regions. PCDs are defined using the
relative allocation of points from two or more classes in a region of interest and
have applications in various fields. We introduce some auxiliary tools for PCDs and
graph invariants related to the domination number of the PCDs and investigate their
probabilistic properties. We consider the cases in which the vertices of the PCDs
come from uniform and non-uniform distributions in the region of interest. We also
provide some of the newly defined proximity maps as illustrative examples.
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1 Introduction

The proximity catch digraphs (PCDs) are a special type of proximity graphs which
are based on proximity maps and are used in disciplines where shape and structure
are important. Examples include computer vision (dot patterns), image analysis,
pattern recognition (prototype selection), geography and cartography, visual per-
ception, biology, and so on. Proximity graphs were introduced by Toussaint (1980),
who called them relative neighborhood graphs. The notion of relative neighborhood
graphs has been generalized in several directions and all of these graphs are now
called proximity graphs.
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In recent years, a new classification and spatial pattern analysis approach which
are based on the relative positions of the data points from various classes have been
developed. Priebe et al. (2001) introduced the class cover catch digraphs (CCCDs)
and gave the exact and the asymptotic distribution of the domination number of
the CCCD based on two data sets, denoted Xn and Ym, both of which are random
samples from uniform distribution on a compact interval in R. DeVinney et al.
(2002), Marchette and Priebe (2003), Priebe et al. (2003a), Priebe et al. (2003b), and
DeVinney and Priebe (2006) applied the concept in higher dimensions and demon-
strated relatively good performance of CCCDs in classification. The employed
methods involve data reduction (i.e., condensing) by using approximate minimum
dominating sets as prototype sets, since finding the exact minimum dominating set
is in general an NP-hard problem—in particular, for CCCDs (see DeVinney 2003).
For the domination number of CCCDs based on one-dimensional data, a SLLN
result is proved by DeVinney and Wierman (2003), and this result is extended
by Wierman and Xiang (2008); furthermore, a CLT is also proved by Xiang and
Wierman (2009). The asymptotic distribution of the domination number of CCCDs
for non-uniform data in R is also calculated in a rather general setting (Ceyhan 2008).
However, the exact and the asymptotic distribution of the domination number of
the CCCDs are not analytically tractable in dimensions higher than one. Ceyhan
(2005) extended the concept of CCCDs by introducing PCDs, which have have better
properties (compared to CCCDs) in higher dimensions, such as the tractability of the
distribution of the domination number. In particular, he introduced two new families
of PCDs (namely, proportional-edge and central similarity PCDs). The distribution of
the domination number of proportional-edge PCDs is derived and applied in spatial
pattern analysis (Ceyhan and Priebe 2005, 2007; Ceyhan 2010). The distributions of
the relative arc density of these PCD families are also derived and used for the same
purpose (Ceyhan et al. 2006, 2007).

A general definition of proximity graphs is as follows: Let V be any finite or
infinite set of points in R

d. Each (unordered) pair of points (p, q) ∈ V × V is
associated with a neighborhood N(p, q) ⊆ R

d. Let P be a property defined on
N = {N(p, q) : (p, q) ∈ V × V}. A proximity (or neighborhood) graph GN,P(V, E)

defined by the property P is a graph with the set of vertices V and the set of edges
E such that pq ∈ E iff N(p, q) satisfies property P. Examples of most commonly
used proximity graphs are the Delaunay tessellation, the boundary of the convex
hull, the Gabriel graph, relative neighborhood graph, Euclidean minimum spanning
tree, and sphere of influence graph of a finite data set. See, e.g., Jaromczyk and
Toussaint (1992). The relative allocation of the data points are used to construct a
proximity digraph. A digraph is a directed graph, i.e., a graph with directed edges
from one vertex to another based on a binary relation. Then the pair (p, q) ∈ V × V
is an ordered pair and (p, q) is an arc (directed edge) denoted this way to reflect its
difference from an edge. For example, the nearest neighbor (di)graph in Paterson
and Yao (1992) is a proximity digraph. The nearest neighbor digraph, denoted
NND(V), has the vertex set V and (p, q) an arc iff d(p, q) = minv∈V\{p} d(p, v). That
is, (p, q) is an arc of NND(V) iff q is a nearest neighbor of p.

In this article, we introduce some graph invariants related to the domination
number of the PCDs, provide a probabilistic investigation of the proximity maps
and the associated regions. We present preliminaries and some PCD families in
literature in Section 2 and the domination number of PCDs in Section 3, describe and
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investigate the superset regions and �1-regions in Section 4, introduce the concepts
of the η- and κ-values for the PCDs in Sections 5 and 6. We present the �k-regions
for proximity maps in Section 7 and provide discussion and conclusions in Section 8.

2 Proximity Maps and Data-Random PCDs

2.1 Preliminaries

Let (�,M) be a measurable space and Xn = {
X1, X2, . . . , Xn

}
and Ym ={

Y1, Y2, . . . , Ym
}

be two data sets from classes X and Y of �-valued random
variables, respectively, whose joint probability density function (pdf) is fX,Y . Let
d(·, ·) : � × � → [0,∞) be a distance function. The class cover problem for a target
class, say Xn, refers to finding a collection of neighborhoods, N(Xi) around Xi ∈
Xn such that (i) Xn ⊂ (⋃

i N(Xi)
)

and (ii) Ym ∩ (⋃
i N(Xi)

) = ∅. A collection of
neighborhoods satisfying both conditions is called a class cover. A cover satisfying
condition (i) is a proper cover of class X while a collection satisfying condition
(ii) is a pure cover relative to class Y . From a practical point of view, for example
for classification, of particular interest are the class covers satisfying both (i) and
(ii) with the smallest collection of neighborhoods, i.e., minimum cardinality cover.
This class cover problem is a generalization of the set cover problem of Garfinkel
and Nemhauser (1972) that emerged in statistical pattern recognition and machine
learning, where an edited or condensed set (i.e., prototype set) is selected from Xn

(see, e.g., Devroye et al. 1996).
We construct the proximity regions using data sets from two classes. Given Ym ⊆

�, the proximity map NY (·) : � → ℘(�) associates a proximity region NY (x) ⊆ �

with each point x ∈ �, where ℘(A) stands for the power set of A. The region NY (x)

is defined in terms of the distance between x and Ym. More specifically, our proximity
maps will be based on the relative position of points from class X with respect to the
Delaunay tessellation of the points from class Y . See Okabe et al. (2000) and Ceyhan
(2009a) for more on Delaunay tessellations.

If Xn = {
X1, X2, . . . , Xn

}
is a set of �-valued random variables, then NY (Xi) are

random sets. If Xi are independent identically distributed, then so are the random
sets NY (Xi). We define the data-random PCD D—associated with NY (·)—with
vertex set Xn = {X1, X2, . . . , Xn} and arc set A by (Xi, X j) ∈ A ⇐⇒ X j ∈ NY (Xi).
Since this relationship is not symmetric, a digraph is needed rather than a graph.
The random digraph D depends on the (joint) distribution of the Xi and on the map
NY (·).

The PCDs might also be considered as a special case of covering sets of Tuza (1994)
and intersection digraphs of Sen et al. (1989). This data random proximity digraph is
a vertex-random proximity digraph which is not of standard type. The randomness of
the PCDs lies in the fact that the vertices are random with joint pdf fX,Y , but arcs
(Xi, X j) are deterministic functions of the random variable Xi and the set NY (Xi).
For example, the CCCD of Priebe et al. (2001) can be viewed as an example of PCD
with NY (x) = B(x, r(x)), where r(x) := miny∈Ym d(x, y). The CCCD is the digraph of
order n with vertex set Xn and an arc from Xi to X j iff X j ∈ B(Xi, r(Xi)). That is,
there is an arc from Xi to X j iff there exists an open ball centered at Xi which is
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“pure” (or contains no elements) of Ym, and simultaneously contains (or “catches”)
point X j.

2.2 Spherical and Arc-Slice PCDs

Let Ym = {y1, y2, . . . , ym} ⊂ R
d. For � = R

d, the proximity map associated with
CCCD is defined as the open ball NS(x) := B(x, r(x)) for all x ∈ R

d \ Ym (hence the
name spherical proximity map and the notation NS) and for x ∈ Ym, define NS(x) =
{x}. Furthermore, dependence on Ym is through r(x). Hence, for d = 1, NS(x) is
based on the intervals Ii = (

y(i):m, y(i+1):m
)

for i = 0, 1, 2, . . . , m with y0:m = −∞ and
y(m+1):m = ∞ where yi:m is the ith order statistic in Ym. This intervalization can be
viewed as a tessellation, since it partitions the convex hull of Ym, denoted CH (Ym).
For d > 1, a natural tessellation that partitions CH (Ym) is the Delaunay tessellation
(see Okabe et al. 2000; Ceyhan 2009a). Let Ti be the ith Delaunay cell in the Delaunay
tessellation of Ym for i = 1, 2, . . . , J. In R, we implicitly use the cell that contains x to
define the proximity region.

The spherical proximity map NS(x) is well-defined for all x ∈ R
d provided that

Ym �= ∅. The spherical proximity map—with applications in classification—is inves-
tigated in DeVinney et al. (2002), DeVinney and Wierman (2003), Marchette and
Priebe (2003), Priebe et al. (2003a, b), and DeVinney and Priebe (2006). However,
for d > 1, finding the minimum dominating set of the CCCD (i.e., the PCD associated
with NS(·)) is an NP-hard problem and the distribution of the domination number is
not analytically tractable (Ceyhan 2005). Note that for d = 1, such problems do not
exist. After a slight modification, the spherical proximity maps give rise to arc-slice
proximity maps which are defined as NAS(x) := B(x, r(x)) ∩ Ti for x ∈ Ti (i.e., the
arc-slice proximity region is the spherical proximity region restricted to the Delaunay
cell that contains x). Notice that in R, the proximity maps NS and NAS are equivalent
(i.e., they yield the same proximity region for each x). However, when x �∈ CH(Ym)

for d > 1 (i.e., x is not in any of the Delaunay cells based on Ym), NAS(x) is not
defined.

2.3 Vertex and Edge Regions

In R, the spherical proximity maps are defined as open intervals with one of the
endpoints being in Ym. In particular, for x ∈ Ii = (yi:m, y(i+1):m) for i = 1, 2, . . . , m,
NS(x) = (yi:m, yi:m + 2r(x)) and r(x) = d(x, yi:m) for all x ∈ (yi:m, (y(i+1):m + yi:m)/2)

and NS(x) = (y(i+1):m − 2r(x), y(i+1):m) and r(x) = d(x, y(i+1):m) for all x ∈ ((y(i+1):m +
yi:m)/2, y(i+1):m). Hence there are two subintervals in Ii each touching an end point
and the midpoint of the interval and NS(x) depends on which of these regions x lies
in.

In R
d with d > 1, intervals become Delaunay cells and our proximity maps are

based on the Delaunay cell Ti that contains x. The region NY (x) will also depend on
the location of x in Ti with respect to the vertices or faces (i.e., edges in R

2) of Ti.
Hence for NY (x) to be well-defined, the vertex or face of Ti associated with x should
be uniquely determined. This gives rise to two new concepts, namely, vertex regions
and face regions (edge regions in R

2).
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Definition 2.1 (Vertex Regions) Let Y3 = {y1, y2, y3} be three non-collinear points
in R

2 and T (Y3) = T(y1, y2, y3) be the triangle (including the interior) with vertices
Y3. The connected regions that partition T (Y3), (in the sense that the pairwise
intersections of the regions have zero R

2-Lebesgue measure) such that each region
has one and only one vertex of T (Y3) on its boundary are called vertex regions.

In fact, we can construct the vertex regions using a point M ∈ R
2 \ Y3, in particu-

lar, M being a center of T (Y3) by joining M to the edges with (straight) line segments.
We call such regions as M-vertex regions and denote the vertex region associated with
vertex y as RM(y) for y ∈ Y3. Vertex regions with circumcenter, incenter, and center
of mass are investigated in Ceyhan (2009a). See Fig. 1 (left) for M-vertex regions
defined by using the extensions of the line segments joining y to M for each y ∈ Y3

with M being the center of mass, MC. Let ei be the edge opposite vertex yi and Mi

be the midpoint of edge ei for i = 1, 2, 3. The lines joining yi to Mi pass through MC

and are called median lines.
Note that the endpoints of an interval constitute its boundary, but for a triangle,

the boundary consists of the vertices and edges, which suggests the concept of edge
regions.

Definition 2.2 (Edge Regions) The connected regions that partition the triangle,
T (Y3), in such a way that each region has one and only one edge of T (Y3) on its
boundary, are called edge regions.

In fact, we can construct the edge regions starting with any point M in T (Y3)
o,

where Ao stands for the interior of A, (e.g., M can be a center of the triangle
(Kimberling 2008)) by joining the point M to the vertices by straight lines. We
call such regions M-edge regions and denote the region for edge e as RM(e) for
e ∈ {e1, e2, e3}. See Fig. 1 (right) with M = MC. Edge regions for incenter, center of
mass, and orthocenter are investigated in Ceyhan (2009a).

In R
d with d > 2, let Yd+1 = {y1, y2, . . . , yd+1} be d + 1 points that do not lie on

the same (d − 1)-dimensional hyperplane. Denote the simplex formed by these d + 1
points as S(Yd+1). A simplex is the simplest polytope in R

d having d + 1 vertices,
d (d + 1)/2 edges, and d + 1 faces of dimension (d − 1). The connected regions that
partition S(Yd+1), (in the sense that the pairwise intersections of the regions have

Fig. 1 An illustration of MC-vertex regions, RMC (yi) (left) and MC-edge regions, RMC (ei) (right)
with median lines for i = 1, 2, 3
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zero R
d−1-Lebesgue measure) such that each region has one and only one vertex of

S(Yd+1) on its boundary are the vertex regions. Similarly, the connected regions that
partition the simplex, S(Yd+1), in such a way that each region has one and only one
face of S(Yd+1) on its boundary are the face regions.

2.4 Proportional-Edge Proximity Maps

Let Ym = {y1, y2, . . . , ym} be m points in general position in R
d and Ti be the ith

Delaunay cell for i = 1, 2, . . . , J. Let Xn be a random sample from a distribution
F in R

d with support S(F) ⊆ CH (Ym). For illustrative purposes, suppose d = 2, then
a Delaunay tessellation is a triangulation, provided that no more than three points
in Ym are cocircular. Furthermore, for simplicity, let Y3 = {y1, y2, y3} be three non-
collinear points in R

2 and T (Y3) = T(y1, y2, y3) be the triangle with vertices Y3. Let
Xn be a random sample from F with support S(F) ⊆ T (Y3).

For r ∈ [1,∞], define Nr
PE(·, M) := N(·, M; r,Y3) to be the proportional-edge

proximity map with M-vertex regions as follows (see also Fig. 2 with M = MC and
r = 2). For x ∈ T (Y3) \ Y3, let v(x) ∈ Y3 be the vertex whose region contains x; i.e.,
x ∈ RM(v(x)). If x falls on the boundary of two M-vertex regions, we assign v(x)

arbitrarily. Let e(x) be the edge of T (Y3) opposite v(x). Let �(v(x), x) be the line
parallel to e(x) through x. Let d(v(x), �(v(x), x)) be the Euclidean distance from v(x)

to �(v(x), x). Then for r ≥ 1

Nr
PE(x, M) := {z ∈ RM(v(x)) : d(v(x), �(v(x), z)) ≤ r d(v(x), �(v(x), x))}.

Notice that �(v(x), x) divides the edges of Tr(x) (other than �r(v(x), x)) proportion-
ally with the factor r. Hence the name proportional edge proximity region.

Notice that r ≥ 1 implies x ∈ Nr
PE(x, M). Furthermore, limr→∞ Nr

PE(x, M) =
T (Y3) for all x ∈ T (Y3) \ Y3, so we define N∞

PE(x, M) = T (Y3) for all such x. For

x ∈ Y3, we define Nr
PE(x, M) = {x} for all r ∈ [1, ∞]. Furthermore, Xi

iid∼ F, with the
additional assumption that the non-degenerate two-dimensional pdf f exists with
support S(F) ⊆ T (Y3), implies that the special case in the construction of Nr

PE—X
falls on the boundary of two vertex regions—occurs with probability zero. Note that
for such an F, Nr

PE(X) is a triangle a.s. Of particular interest is Nr
PE(x, M) with any

Fig. 2 Construction of
proportional edge proximity
region, N2

PE(x, MC) (shaded
region) where
d1 = d(v(x), �(v(x), x)) and
d2 = d(v(x), �2(v(x), x)) =
2 d(v(x), �(v(x), x))
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M and r ∈ {√2, 2}. For r = √
2, �(v(x), x) divides T√

2(x) into two regions of equal

area, hence N
√

2
PE(x, M) is also referred to as double-area proximity region. For r = 2,

�(v(x), x) divides the edges of T2(x)—other than �r(v(x), x)—into two segments of
equal length, hence N2

PE(x, M) is also referred to as double-edge proximity region.

2.4.1 Extension of Nr
PE to Higher Dimensions

The extension of Nr
PE to R

d for d > 2 is straightforward. The extension with M = MC

is provided here; the extension for general M is similar. For r ∈ [1, ∞], define the
proximity map as follows. Given a point x in S(Yd+1), let v := argminy∈Yd+1

V(Qy(x))

where Qy(x) is the polytope with vertices being the d (d + 1)/2 midpoints of the
edges, the vertex v and x and V(·) is the d-dimensional volume function. That is,
the vertex region for vertex v is the polytope with vertices v, center of mass, and
the midpoints of the edges adjacent to v. Let v(x) be the vertex in whose region x
falls. If x falls on the boundary of two vertex regions, v(x) is assigned arbitrarily. Let
ϕ(x) be the face opposite to vertex v(x), and ϒ(v(x), x) be the hyperplane parallel to
ϕ(x) which contains x. Let d(v(x), ϒ(v(x), x)) be the Euclidean distance from v(x) to
ϒ(v(x), x). For r ∈ [1, ∞), let ϒr(v(x), x) be the hyperplane parallel to ϕ(x) such that

d(v(x), ϒr(v(x), x)) = r d(v(x), ϒ(v(x), x)) and

d(ϒ(v(x), x), ϒr(v(x), x)) < d(v(x), ϒr(v(x), x)).

Let Sr(x) be the polytope similar to and with the same orientation as S(Yd+1)

having v(x) as a vertex and ϒr(v(x), x) as the opposite face. Then the proximity
region is defined as Nr

PE(x, MC) := Sr(x) ∩ S(Yd+1). Notice that r ≥ 1 implies x ∈
Nr

PE(x, MC). The special cases in the construction of Nr
PE(x, MC) can be handled as

in the two-dimensional case.

3 Domination Number of the PCDs and Related Concepts

In a digraph D = (V,A), a vertex v ∈ V dominates itself and all vertices of the form
{u : (v, u) ∈ A}. A dominating set SD for the digraph D is a subset of V such that
each vertex v ∈ V is dominated by a vertex in SD. A minimum dominating set S∗

D is a
dominating set of minimum cardinality and the domination number γ (D) is defined
as γ (D) := |S∗

D| (see, e.g., Lee 1998) where | · | denotes the set cardinality function.

For X1, X2, . . . , Xn
iid∼ F the domination number of the associated data-random

PCD, denoted γn(N), is the minimum number of points that dominate all points in
Xn.

3.1 Distribution of the Domination Number of the PCDs in Literature

Let γn(NS) be the domination number of the PCD based on NS (i.e., CCCD) for
uniform data in (y1, y2) ⊂ R with −∞ < y1 < y2 < ∞. Then the exact distribution of
γn(NS) is

γn(NS) =
{

1 w.p. 5/9 + (16/9) 4−n,

2 w.p. 4/9 − (16/9) 4−n,
for all n ≥ 1, (1)
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where w.p. stands for “with probability”. See Priebe et al. (2001) for the derivation.
This result is extended for non-uniform data in R in Ceyhan (2008).

Let γn(r) be the domination number of the PCD based on Nr
PE(·, MC) for uniform

data in T (Y3) ⊂ R
2 where T (Y3) = T(y1, y2, y3). For r = 3/2, limn→∞ γn(r) > 1 a.s.

Furthermore,

lim
n→∞ γn(3/2) =

{
2 wp ≈ 0.7413,

3 wp ≈ 0.2487.

See Ceyhan and Priebe (2005) for the derivation. This result is further extended for
the entire range of the parameter r and the center M by Ceyhan and Priebe (2007).

The main strategy used in these articles is first showing that the distribution of
the domination number for CCCD in R and for the PCD based on Nr

PE in R
d is

independent of the geometry of the support (i.e., geometry invariant) for uniform
data. This enables one to first compute the exact and asymptotic distributions for
data in one Delaunay cell and then extend the result to multiple Delaunay cell case
easily. Below we provide the details of the transformations that yield the geometry
invariance result.

In R
d with d > 1, the exact and asymptotic distribution of the domination number

of the PCDs based on NS and NAS are still open problems (Ceyhan 2005). However,
the asymptotic distribution of the domination number of the PCD based on Nr

PE and
uniform data in R

d with d > 2 can be derived similarly as in the two-dimensional
case.

3.2 Transformations Preserving Uniformity of Data on Intervals and Triangles

The proximity regions (hence the corresponding PCDs) are based on the Delaunay
tessellation of Ym, which partitions CH(Ym). Suppose the set Xn is a set of iid uniform
random variables on the convex hull of Ym; i.e., a random sample from U(CH (Ym)).
In particular, conditional on |Xn ∩ Ti| > 0 being fixed, Xn ∩ Ti will also be a set of
iid uniform random variables on Ti for i ∈ {1, 2, . . . , J}. Reducing the cell Ti as much
as possible while preserving uniformity and the probabilities related to PCDs will
simplify the notation and calculations.

In R the Delaunay cells Ti are intervals, Ii. Let Y2 = {y1, y2} ⊂ R be two non-

concurrent points. Without loss of generality, assume y1 < y2, and let Xi
iid∼ U(y1, y2)

for i = 1, 2, . . . , n. The pdf of U(y1, y2) is f (u) = 1
y2−y1

I(u ∈ (y1, y2)). The interval
(y1, y2) can be mapped to the unit interval by φ(x) = (x − y1)/(y2 − y1). A quick

investigation shows that the random variables Xi
iid∼ U(y1, y2) transformed along with

(y1, y2) in the described fashion by φ satisfy φ(Xi)
iid∼ U(0, 1). So, without loss of

generality, we can assume the interval (y1, y2) to be the unit interval (0, 1) for uniform
data.

In R
2 the Delaunay cells Ti are triangles. Let Y3 = {y1, y2, y3} ⊂ R

2 be three
non-collinear points and T (Y3) = T1 be the triangle with vertices y1, y2, y3. Let

Xi
iid∼ U(T (Y3)) for i = 1, 2, . . . , n. The pdf of U(T (Y3)) is

f (u) = 1
A(T (Y3))

I(u ∈ T (Y3)),
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where A(·) is the area function. The triangle T (Y3) can be carried into the first
quadrant by a composition of (some of the) transformations of scaling, translation,
rotation, and reflection in such a way that the largest edge has unit length and lies on
the x-axis, and the x-coordinate of the vertex nonadjacent to largest edge is less than
1/2. We call the resultant triangle the basic triangle and denote it as Tb , so we have
Tb = (

(0, 0), (1, 0), (c1, c2)
)

with 0 < c1 ≤ 1/2, and c2 > 0 and (1 − c1)
2 + c2

2 ≤ 1. The
transformation from any triangle to Tb is denoted by φb . Notice that if T (Y3) is
transformed into Tb , then T (Y3) is similar to Tb and φb (T (Y3)) = Tb . Thus the

random variables Xi
iid∼ U(T (Y3)) transformed along with T (Y3) in the described

fashion by φb satisfy φb (Xi)
iid∼ U(Tb ). So, without loss of generality, we can assume

T (Y3) to be Tb for uniform data for any proximity map N(·).
There are many transformations that preserve uniformity of the data on a triangle,

but not all of them preserve the similarity of the triangles. That is, a uniformity
preserving transformation when applied to similar triangles might yield non-similar
triangles. Hence we only describe the transformation that maps Tb to the standard
equilateral triangle, Te = T((0, 0), (1, 0), (1/2,

√
3/2)) for exploiting the symmetry in

calculations using Te.
Let φe : (x, y) → (u, v), where u(x, y) = x + 1−2 c1

2 c2
y and v(x, y) =

√
3

2 c2
y. Then in

Tb , the vertices y1 = (0, 0), y2 = (1, 0), and y3 = (c1, c2) are mapped to (0, 0), (1, 0),

and
(

1/2,
√

3/2
)

, respectively. See also Fig. 3.

Note that the inverse transformation is φ−1
e (u, v) = (

x(u, v), y(u, v)
)

where
x(u, v) = u − (1−2 c1)√

3
v and y(u, v) = 2 c2√

3
u. Then the Jacobian is J(x, y) = 2 c2/

√
3

(Ceyhan 2009b). So

fU,V(u, v) = fX,Y(φ−1
e (u, v)) |J| = 4√

3
I
(
(u, v) ∈ Te

)
.

Hence uniformity is preserved.

Remark 3.1 The probability of an event for uniform data in T (Y3) involves the ratio
of the area of the region associated with the event to A(T (Y3)). If such ratios are not
preserved under φe, then the probability content for N depends on the geometry of

Fig. 3 The description of φe(x, y) for (x, y) ∈ Tb (left) and the equilateral triangle φe(Tb ) = Te
(right)
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T (Y3). In particular, the probability content for uniform data for NS and NAS depend
on the geometry of the triangle, hence is not geometry invariant (Ceyhan 2009a).
For example, P(X ∈ NS(Y)) and P(X ∈ NAS(Y, M)) depends on (c1, c2), hence one
has to do the computations for all of these triangles (but unfortunately there are
uncountably many such triangles. But for a proximity region N(·), if the probability
content for uniform data is preserved after φe is applied on the data, then we say the
PCD is geometry invariant for uniform data. Hence, without loss of generality, we
can assume T (Y3) to be Te for uniform data for such proximity maps.

In R
d with d > 2, any Delaunay cell (which is now a d-dimensional polytope with

d + 1 vertices) can be mapped into the (standard) regular polytope in R
d, using

transformations similar to the ones for the two-dimensional case. For example in R
3,

a Delaunay cell is a tetrahedron. By a combination of (some of) the transformations
of scaling, translation, rotation, and reflection, this tetrahedron can be mapped to a
tetrahedron (called the basic tetrahedron) with vertices (0, 0, 0), (1, 0, 0), (c1, c2, 0),
and (d1, d2, d3) in such a way that the largest face lies in the xy-plane, and the
vertex (d1, d2, d3) is the closest vertex (other than (0, 0, 0)) to the z-axis. Then it
is also possible to map the basic tetrahedron to the standard regular tetrahedron

with vertices (0, 0, 0), (1, 0, 0),
(

1/2,
√

3/2, 0
)

, and
(

1/2,
√

3/6,
√

6/3
)

preserving
the uniformity of the data in the basic tetrahedron. In fact, for this purpose, we
can use the transformation ϕ(x, y, z) = (u, v, w) where u(x, y, z) = x + 1−2 c1

2c2
y +

c2(1−2d1)−d2(1−2c1)

2c2 d3
z, v(x, y, z) =

√
3

2c2
y +

√
3(c2−3d2)

6c2d3
z, and w(x, y, x) =

√
6

3d3
z. Furthermore,

the Jacobian for this transformation can be shown to be |J| = √
2c2d3.

4 Superset Regions and �1-Regions

First consider the case of data on R. For x ∈ Ii, the spherical proximity region
NS(x) = Ii iff x = (

yi:m + y(i+1):m
)
/2. We define an associated region for such points

in the general context.

Definition 4.1 (Superset Region) The superset region for any proximity map N(·)
in � is defined to be RS(N) := {

x ∈ � : N(x) = �
}
. When X is �-valued random

variable, then X ∈ RS(N) if N(X) = � a.s.

For example, for � = Ii � R with i = 1, 2, . . . , (m − 1), RS(NS) = {x ∈ Ii :
NS(x) = Ii} = {(

yi:m + y(i+1):m
)
/2

}
; and for i = 0, m (i.e., � = I0 or � = Im), we have

RS(NS) = ∅ since NS(x) � Ii for all x ∈ Ii. More generally for � = Ti � R
d (i.e., � is

the ith Delaunay cell), we have RS(NS) = {x ∈ Ti : NS(x) = Ti}. Note that for x ∈ Ii,
it follows that λ(NS(x)) ≤ λ(Ii) and moreover λ(NS(x)) = λ(Ii) iff x ∈ RS(NS) where
λ(·) is the Lebesgue measure on R (also called as R-Lebesgue measure). So the
proximity region of a point in RS(NS) has the largest R-Lebesgue measure. Note
that for Ym = {y1, y2, . . . , ym} ⊂ R (i.e., � = R), and Xn ∩ Ik is not empty for at least
two of k = 1, 2, . . . , (m − 1), we have RS(NS) = ∅, since NS(x) ⊆ Ii for all x ∈ Ii, so
NS(x) � R for all x ∈ R. Note also that for a given realization of Ym, RS(NS) is not a
random set, but I(X ∈ RS(NS)) is a random variable.
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Definition 4.2 (�1-Region) Let (�,M) be a measurable space and consider the
proximity map N : � → ℘(�). For any set B ⊆ �, the �1-region of B associated with
N(·), is defined to be the region �1(B, N) := {z ∈ � : B ⊆ N(z)}.

For x ∈ �, we denote �1
({x}, N

)
as �1(x, N). Note that �1-region is based on the

proximity region N(·). If Xn is a set of �-valued random variables, then �1 (Xi, N),
i = 1, 2, . . . , n are random sets. If the Xi are independent and identically distributed,
then so are the random sets �1 (Xi, N). Additionally, �1 (Xn, N) is also a random set.
Note that, γn(N) = 1 iff Xn ∩ �1 (Xn, N) �= ∅. Hence the name �1-region.

4.1 General Results on Superset and �1-Regions

Suppose μ is a measure on �. Following are some general results about superset
regions and �1-regions.

Proposition 4.3 For any proximity map N and set B ⊆ �, we have RS(N) ⊆
�1(B, N).

Proof For x ∈ RS(N), it follows that N(x) = �, so B ⊆ N(x), since B ⊆ �. Then
x ∈ �1(B, N), hence RS(N) ⊆ �1(B, N). ��

In fact, if B = �, then �1 (�, N) = RS(N).

Lemma 4.4 For any proximity map N and set B ⊆ �, we have �1(B, N) =⋂
x∈B �1(x, N).

Proof Given a proximity map N and subset B ⊆ �, y ∈ �1(B, N) iff B ⊆ N(y) iff
x ∈ N(y) for all x ∈ B iff y ∈ �1(x, N) for all x ∈ B iff y ∈ ⋂

x∈B �1(x, N). Hence the
result follows. ��

Corollary 4.5 For any proximity map N and a realization Xn = {
x1, x2, . . . , xn

}
from

a distribution with support in �, we have �1 (Xn, N) = ⋂n
i=1 �1 (xi, N).

Lemma 4.6 Given a sequence of �-valued random variables X1, X2, . . ., let X (n) :=
X (n − 1) ∪ {Xn} for n = 1, 2, . . . with X (0) := ∅. Then �1 (X (n), N) is non-increasing
in n in the sense that �1 (X (n + 1), N) ⊆ �1 (X (n), N).

Proof Given a particular type of proximity map N and a data set X (n) ={
X1, X2, . . . , Xn

}
, by Lemma 4.4, it follows that �1 (X (n), N) = ⋂n

i=1 �1 (Xi, N) and
by definition, we have X (n + 1) = X (n) ∪ {Xn+1}. So,

�1 (X (n + 1), N) =
n+1⋂

i=1

�1 (Xi, N)

=
[

n⋂

i=1

�1 (Xi, N)

]
⋂

�1 (Xn+1, N)

= �1 (X (n), N) ∩ �1 (Xn+1, N) ⊆ �1 (X (n), N) .
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Thus we have shown that �1 (X (n), N) is non-increasing in n; i.e.,
�1 (X (n + 1), N) ⊆ �1 (X (n), N). ��

Theorem 4.7 Given a sequence of random variables X1, X2, . . . which are identically
distributed on �, let X (n) := X (n − 1) ∪ {Xn} for n = 1, 2, 3, . . . and X (0) := ∅.
Then �1 (X (n), N) ↓ RS(N), as n → ∞ a.s. in the sense that �1 (X (n + 1), N) ⊆
�1 (X (n), N) and μ(�1 (X (n), N) \ RS(N)) ↓ 0 a.s.

Proof By Lemma 4.6, we have �1 (X (n + 1), N) ⊆ �1 (X (n), N). By monotone se-
quential continuity from above (Billingsley 1995), the sequence

{
�1 (X (n), N)

}∞
n=1

has a limit

G1 : =
∞⋂

j=1

�1 (X ( j), N) = lim
m→∞

m⋂

j=1

�1 (X ( j), N) = lim
m→∞ �1 (X (m), N)

= lim
m→∞

m⋂

i=1

�1 (Xi, N) =
∞⋂

i=1

�1 (Xi, N) . (2)

We claim that G1 = RS(N) a.s.
Suppose RS(N) � �, since if RS(N) = �, then N(x) = � for all x ∈ �, so

�1 (X (n), N) = � for all x and n > 1 hence the result would follow trivially. Since
RS(N) ⊆ �1 (X (n), N) for all n, it follows that RS(N) ⊆ G1. Let ε > 0. Then

P

(

sup
k≥n

μ

(
k⋂

i=1

�1 (Xi, N) \ RS(N)

)

≤ ε

)

= P

(

μ

(
n⋂

i=1

�1 (Xi, N) \ RS(N)

)

≤ ε

)

= P
(
μ
(
�1 (X (i), N) \ RS(N)

) ≤ ε
) → 1

as n → ∞, because if �1 (X (n), N) \ RS(N) had positive measure in the limit, then
the region � \ N(y) will contain data points from X (k) with positive probability for
sufficiently large k ≥ n for each y ∈ limn→∞ �1(X (n), N) \ RS(N). So y can not be in
limn→∞ �1 (X (n), N), which is a contradiction. Hence from Proposition 5.6 of Karr
(1992), the desired result follows. ��

Remark 4.8 In Lemma 4.6 and Theorem 4.7, notice that we define the set X (n)

recursively so that at each step a new point is added to the data set in the previous
step. These results do not necessarily hold for the general set Xn (which is not defined
recursively). The recursive nature of the data set X (n) is crucial for the results to
hold. Furthermore, the result in Lemma 4.6 also holds for deterministic X (n) which
are defined recursively as in the hypothesis of the lemma. However the result in
Theorem 4.7 is an a.s. convergence result, so it holds for a random set X (n) as defined
therein, but does not necessarily hold for deterministic X (n). A counterexample for
the deterministic case can be constructed easily.

Note however that �1 (Xn, N) is neither strictly decreasing nor non-increasing
provided that RS(N) �= �, because we might have �1 (Xm, N) � �1 (Xn, N) for some
m > n. Because it is possible to have a situation where ∩n

i=1�1 (Xi, N) does not

contain ∩m
j=1�1

(
X ′

j, N
)

, where Xm = {X ′
1, X ′

2, . . . , X ′
m} and Xn = {X1, X2, . . . , Xn}

and m > n. Nevertheless, the following two results hold.
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Proposition 4.9 Suppose � \ RS(N) has positive measure. For positive integers m, n
with m > n, let Xn and Xm be two samples from F on �. Then μ(�1 (Xm, N)) ≤ST

μ(�1 (Xn, N)) where ≤ST stands for “stochastically smaller than”.

Proof Recall that for X ∼ F and Y ∼ G, we have X ≤ST Y if F(x) ≥ G(x) for all
x with strict inequality holding for at least one x. Let m > n and Xn and Xm be
two samples from F. Then μ(�1 (Xm, N)) is more often smaller than μ(�1 (Xn, N)).
Hence P[μ(�1 (Xm, N)) ≤ μ(�1 (Xn, N))] ≥ 1/2 which only shows stochastic prece-
dence (Boland et al. 2004).

Now, let t ∈ (
μ(RS(N)), μ(�)

)
, then μ(�1 (Xm, N)) ≤ t happens more often

than μ(�1 (Xn, N)) ≤ t, hence P (μ(�1 (Xm, N)) ≤ t) ≥ P (μ(�1 (Xn, N)) ≤ t); that
is, Fm(t) ≥ Fn(t), where Fk(·) is the distribution function for μ(�1 (Xk, N)) for
k = m, n. For t < μ(RS(N)) or t > μ(�), we have Fk(t) = 0 for k = m, n. Letting
Nn := |Xn \ RS(N)| and Nm := |Xm \ RS(N)|, then P(Nn �= Nm) > 0 since μ(� \
RS(N)) > 0. In fact, P(Nm > Nn) ≥ 1/2. But if Fm(t) = Fn(t) for all t were the case,
then P(Nn = Nm) = 1 would have held, which is a contradiction. Hence we have
μ(�1 (Xm, N)) ≤ST μ(�1 (Xn, N)). ��

Theorem 4.10 Let {Xn}∞n=1 be a sequence of samples each of which is of size n

from distribution F with support on �. Then �1 (Xn, N)
p−→ RS(N) in the sense that

μ(�1 (Xn, N) \ RS(N))
p−→ 0 as n → ∞.

Proof Suppose we have a sequence {Xn}∞n=1 as in the theorem. By Proposition
4.3, RS(N) ⊆ �1 (Xn, N) for each n. Let �n := �1 (Xn, N) \ RS(N). If �n has zero
measure in the limit as n → ∞, then the result follows trivially. Otherwise, if �n

had positive measure in the limit, for each y ∈ limn→∞ �n, the region � \ N(y)

would have positive measure, then Xn ∩ [� \ N(y)] �= ∅ with positive probability for
sufficiently large n, then y /∈ �1 (Xn, N), which is a contradiction. ��

Theorem 4.11 Let γn(N) be the domination number of the PCD based on proximity
map N and the data set Xn which is a random sample from a distribution F with
support S(F) ⊆ �. If the superset region for N and S(F) ∩ RS(N) have positive
measure (that is, e.g., μ(RS(N)) > 0), then P(γn(N) = 1) → 1 as n → ∞.

Proof Suppose μ(RS(N)) > 0 and μ(S(F) ∩ RS(N)) > 0 and Xn is as in the theo-
rem. Notice that if there is at least one data point in RS(N) then γn(N) = 1, be-
cause any point x ∈ RS(N) will have N(x) = �, so P(Xn ∩ RS(N) �= ∅) ≤ P(γn(N) =
1). Now, P(Xn ∩ RS(N) �= ∅) = 1 − P(Xn ∩ RS = ∅) = 1 −

(
P(X∈�)−P(X∈RS(N))

P(X∈�)

)n =
1 − (

1 − P(X ∈ RS(N))
)n, which goes to 1 as n → ∞, since 0 < P(X ∈ RS(N)) ≤ 1.

Therefore P(γn(N) = 1) → 1 as n → ∞. ��

Remark 4.12 (Relative Arc Density) The relative arc density of a digraph D = (V,A)

of order |V| = n, denoted as ρ(D), is defined as ρ(D) := |A|
n(n−1)

where | · | denotes the
cardinality of sets (Janson et al. 2000). Thus ρ(D) represents the ratio of the number
of arcs in the digraph D to the number of arcs in the complete symmetric digraph of
order n, which is n(n − 1).
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Theorem 4.13 Let ρn be the relative arc density of the PCD based on the proximity
map N and data set Xn. If the support of the joint distribution of Xn is subset of the
superset region for any type of proximity map, then we have ρn = 1 a.s.

Proof Suppose the support of Xn is a subset of the superset region, then the
corresponding digraph is complete with n(n − 1) arcs. Hence the relative arc density
is 1 with probability 1. ��

Ceyhan et al. (2006) demonstrates the asymptotic normality of the relative arc
density of the proportional-edge PCD. The proximity region and �1-region play a
crucial role in finding the moments of this asymptotic normal distribution.

4.2 Superset Regions for Proportional-Edge Proximity Maps

Let RS
(
Nr

PE, MC
)

be the superset region for Nr
PE based on MC-vertex regions con-

structed using the median lines. For r < 3/2, we have RS(Nr
PE, MC) = ∅; for r > 3/2,

the region RS(Nr
PE, MC) has positive area; and for r = 3/2, we have RS(Nr

PE, MC) =
{MC}. Therefore, r = 3/2 is the threshold for the superset region to be nonempty.
Furthermore, r = 3/2 is the only value at which the asymptotic distribution of the
domination number of the PCD based on Nr

PE(·, MC) is nondegenerate (Ceyhan and
Priebe 2005).

Let R⊥
S

(
Nr

PE, M
)

be the superset region for Nr
PE based on M-vertex regions with

orthogonal projections. Then the superset region with the incenter R⊥
S

(
N2

PE, MI
)

is as in Fig. 4 (left). Let Mi be the midpoint of edge ei for i = 1, 2, 3. Then
T(M1, M2, M3) ⊆ R⊥

S (N2
PE, MI) for all T (Y3) with equality holding when T (Y3) is

an equilateral triangle.
For N2

PE(·, MC) which is constructed using the median lines, we have
RS

(
N2

PE, MC
) = T(M1, M2, M3), and for N2

PE(·, MC) which is constructed by using
the orthogonal projections, we have T(M1, M2, M3) ⊆ R⊥

S

(
N2

PE, MC
)

with equality
holding when T (Y3) is an equilateral triangle.

In T (Y3), consider the lines ζi(r, x) such that d(yi, ei) = r d(ζi(r, x), yi) for i ∈
{1, 2, 3}. Note that if r > 3/2, then the straight lines ζi(r, x) yield a triangle sim-
ilar to T(M1, M2, M3); if r = 3/2, then the straight lines ζi(r, x) intersect at the
center of mass; and if 1 ≤ r < 3/2, then the straight lines ζi(r, x) yield another

Fig. 4 Superset regions R⊥
S

(
N2

PE, MI
)

(left) and R⊥
S

(
N2

PE, MCC
)

(right) in the basic triangle Tb
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triangle which is denoted as T r and is similar to T (Y3). The superset re-
gion RS(Nr

PE, M) can be described as follows. RS(Nr
PE, M) = ∪3

i=1[RS(Nr
PE, M) ∩

RM(yi)] where RS(Nr
PE, M) ∩ RM(yi) = {z ∈ RM(yi) : d(z, ei) ≤ d(ζi(r, x), ei)} for

i = 1, 2, 3. See Fig. 4 with M = MCC and M = MI where the vertex regions are
constructed using the orthogonal projections from M to the edges. For r = 3/2,
the region RS(Nr

PE, M) is guaranteed to be nonempty, since MC ∈ RS(Nr
PE, M).

For r > 3/2, the region RS(Nr
PE, M) is guaranteed to have positive measure. For

1 ≤ r < 3/2, it follows that RS(Nr
PE, M) may or may not be empty, depending on the

location of M.
The functional form of the superset region, RS

(
Nr

PE, M
)
, is given by

RS
(
Nr

PE, M
) =

{
(x, y) ∈ RM(y1) : y ≥ c2 (1 − r x)

r (1 − c1)

}

⋃
{
(x, y) ∈ RM(y2) : y ≥ c2 (r (x − 1) + 1)

r c1

}

⋃
{
(x, y) ∈ RM(y3) : y ≤ c2

r − 1
r

}
,

and the functional form of T(M1, M2, M3) in Tb is given by

T(M1, M2, M3) =
{
(x, y) ∈ Tb : y ≤ c2

2
; y ≥ c2 (−1 + 2 x)

2 c1
; y ≥ c2 (1 − 2 x)

2 (1 − c1)

}
.

Recall that for 1 ≤ r < 3/2, the triangle T r is bounded by the lines ζi(r, x) for
i = 1, 2, 3. See Fig. 5 for T r with r = √

2. The functional form of T r in Tb is

T r =
{
(x, y) ∈ Tb : y ≥ c2 (r − 1)

r
; y ≤ c2 (1 − r x)

r (1 − c1)
; y ≤ c2 (r (x − 1) + 1)

r c1

}

= T
((

(r − 1) (1 + c1)

r
,

c2 (r − 1)

r

)
,

(
2 − r + c1 (r − 1)

r
,

c2 (r − 1)

r

)
,

(
c1 (2 − r) + r − 1

r
,

c2 (r − 2)

r

))
. (3)

Fig. 5 An illustration of the
triangle T r with r = √

2 in the
basic triangle Tb
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There is a crucial difference between T r and T(M1, M2, M3): T(M1, M2, M3) ⊆
RS

(
Nr

PE, M
)

for all M and r ≥ 2, but (T r)o and RS
(
Nr

PE, M
)

are mutually exclusive
for all M and r.

If M ∈ (T r)o, then RS
(
Nr

PE, M
) = ∅; if M ∈ ∂(T r), then RS

(
Nr

PE, M
) = {M};

and if M �∈ T r, then RS
(
Nr

PE, M
)

has positive area. See Fig. 4 (right) for an example
of R⊥

S (Nr
PE, M) with r = 2 and M = MCC (i.e., circumcenter). The triangle T r

defined above plays a crucial role in the analysis of the distribution of the domination
number of the PCD based on proportional-edge proximity maps. The superset region
RS

(
Nr

PE, M
)

is important for both the domination number and the relative density
of the corresponding PCDs.

The domination number of the PCD based on Nr
PE(·, M) is geometry invariant,

if M-vertex regions are constructed with M ∈ T (Y3)
o by using the extensions of

the line segments joining y to M for all y ∈ Y3. But for example when the vertex
regions are constructed by orthogonal projections, the domination number of the
PCD associated with Nr

PE(·, M) is not geometry invariant (Ceyhan 2009a), hence
such vertex regions are not considered henceforth.

In R
d with d > 2, the superset region, provided that it is non-empty, lies in the

simplex S(Yd+1). In S(Yd+1), consider the hyperplanes ζ̃i(r, x) such that d(yi, ϕi) =
r d

(
ζ̃i(r, x), yi

)
for i ∈ {1, 2, 3}. The superset region RS(Nr

PE, M) can be constructed
as follows. RS(Nr

PE, M) = ∪d+1
i=1

[
RS(Nr

PE, M) ∩ RM(yi)
]

where RS(Nr
PE, M) ∩

RM(yi) = {
z ∈ RM(yi) : d(z, ϕi) ≤ d

(
ζ̃i(r, x), ϕi

)}
for i = 1, 2, . . . , (d + 1). We conjec-

ture that if r > (d + 1)/d, then the hyperplanes ζ̃i(r, x) yield a simplex which is similar
to the simplex with vertices (M1, M2, . . . , Md+1) and is a subset of the superset
region; if r = (d + 1)/d, then the hyperplanes ζ̃i(r, x) intersect at the center of mass;
and if r < (d + 1)/d, then the hyperplanes ζ̃i(r, x) yield another simplex which is
similar to S(Yd+1) and is the counterpart of T r in R

2.

4.3 �1-Regions for Proportional-Edge Proximity Maps

Since �1 (Xn, N) = ⋂n
i=1 �1 (xi, N) for a given realization of the data set Xn, first we

describe the region �1(x, N) for x ∈ Xn and then describe the region �1 (Xn, N).
For Nr

PE(·, M), the �1-region denoted as �r
1(·, M) is constructed as follows; see

also Fig. 6. Let ξi(r, x) be the line parallel to ei such that ξi(r, x) ∩ T (Y3) �= ∅ and
r d(yi, ξi(r, x)) = d(yi, �(yi, x)) for i ∈ {1, 2, 3}. Then

�r
1(x, M) =

3⋃

i=1

[
�r

1(x, M) ∩ RM(yi)
]

where

�r
1(x, M) ∩ RM(yi) = {z ∈ RM(yi) : d(yi, �(yi, z)) ≥ d(yi, ξi(r, x)} for i ∈ {1, 2, 3}.

Notice that r ≥ 1 implies x ∈ �r
1(x, M) for each x. Furthermore, limr→∞ �r

1(x, M) =
T (Y3) for all x ∈ T (Y3) \ Y3 and so we define �r=∞

1 (x, M) = T (Y3) for all such x.
For x ∈ Y3, �r

1(x, M) = {x} for all r ∈ [1, ∞].
The functional form of �r

1(x = (x0, y0), M) in the basic triangle Tb is given by

�r
1(x = (x0, y0), M) =

3⋃

i=1

[
�r

1(x = (x0, y0), M) ∩ RM(yi)
]
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Fig. 6 Construction of the
�1-region (shaded region),
�r

1 (x, MC) with r = 2 for an
x ∈ RMC (y1)

where

�r
1(x = (x0, y0), M) ∩ RM(y1) =

{
(x, y) ∈ RM(y1) : y ≥ y0

r
− c2 (r x − x0)

(1 − c1) r

}
,

�r
1(x = (x0, y0), M) ∩ RM(y2) =

{
(x, y) ∈ RM(y1) : y ≥ y0

r
− c2 (r (x − 1) + 1 − x0

c1 r

}
,

�r
1(x = (x0, y0), M) ∩ RM(y3) =

{
(x, y) ∈ RM(y1) : y ≤ y0 − c2 (1 − r)

r

}
.

Notice that �r
1 (x, MC) is a convex hexagon for all r ≥ 2 and x ∈ T (Y3) \ Y3 (since for

such an x, the region �r
1 (x, MC) is bounded by ξi(r, x) and ei for all i ∈ {1, 2, 3}, see

also Fig. 6); else, it is either a convex hexagon or a non-convex polygon depending on
the location of x and the value of r. The extension the associated �1-region �r

1(·, M)

to higher dimensions is presented below.

Remark 4.14 We only present the extension of the �1-region �r
1(·, M = MC) to

higher dimensions. The extension for other M is similar. In R
d with d > 2, recall

the simplex, S (Ym), based on d + 1 points that do not lie on the same hyper-
plane. Furthermore, let �i(r, x) be the hyperplane such that �i(x) ∩ S (Ym) �= ∅ and
r d(yi, �i(r, x)) = d(yi, ϒ(yi, x)) for i ∈ {1, 2, . . . , d + 1}. Then

�r
1 (x, MC) ∩ RMC (yi) = {z ∈ RMC (yi) : d(yi, ϒ(yi, z)) ≥ d(yi, �i(r, x)} for i ∈ {1, 2, 3}.

Hence �r
1 (x, MC) = ⋃d+1

i=1 [�r
1 (x, MC) ∩ RMC (yi)]. Furthermore, it is easy to see that

�r
1 (Xn, MC) =

d+1⋂

i=1

�r
1

(
Xϕi(n), MC

)
,

where Xϕi(n) is one of the closest points in Xn ∩ RMC (yi) to face ϕi.

So far, we have described the �1-region for a point in x ∈ T (Y3). For a set Xn of
size n in T (Y3), the region �r

1 (Xn, M) can be determined by the edge extrema.
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Definition 4.15 (Edge Extrema) The (closest) edge extrema of a set B in T (Y3) are
the points closest to the edges of T (Y3), denoted x[i] for i ∈ {1, 2, 3}; that is, x[i] ∈
arginfx∈B d(x, ei).

Note that if B = Xn is a set of �-valued random variables of size n from F, then
the edge extrema, denoted X[i], are also random variables.

Theorem 4.16 Let B be any set of n distinct points in T (Y3) and x[i] ∈
arginfx∈B d(x, ei). For proportional-edge proximity maps with M-vertex regions, we
have �r

1(B, M) = ⋂3
i=1 �r

1

(
x[i], M

)
.

Proof Suppose B = {x1, x2, . . . , xn} in T (Y3). Note that

�r
1(B, M) ∩ RM(yi) =

[
n⋂

i=1

�r
1 (xi, M)

]
⋂

RM(yi),

and if d(yi, �(yi, x)) ≤ d(yi, �(yi, x′)) then Nr
PE(x, M) ⊆ Nr

PE(x′, M) for all x, x′ ∈
RM(yi). Further, by definition x[i] ∈ argmaxx∈B d(yi, ξi(r, x)), so

�r
1(B, M) ∩ RM(yi) = �r

1

(
x[i], M

) ∩ RM(yi) for i ∈ {1, 2, 3}.
Furthermore, �r

1(B, M) = ⋃3
i=1

[
�r

1

(
x[i], M

) ∩ RM(yi)
]
, and

�r
1

(
x[i], M

) ∩ RM(yi) =
⎡

⎣
3⋂

j=1

�r
1

(
x[ j], M

)
⎤

⎦
⋂

RM(yi) for i ∈ {1, 2, 3}.

Combining these two results, we obtain �r
1(B, M) = ⋂3

j=1 �r
1

(
x[ j], M

)
. ��

Then �r
1 (Xn, M) = ⋂3

i=1 �r
1

(
X[i], M

)
, where X[i] is the closest point to edge ei

which is the edge opposite vertex yi, for i = 1, 2, 3. So �r
1 (Xn, M) ∩ RM(yi) = {z ∈

RM(yi) : d(yi, �(yi, z)) ≥ d(yi, ξi(r, x[i]))} for i = 1, 2, 3.
For r ≥ 3/2 and M ∈ R

2 \ Y3, we have �r
1 (Xn, M) �= ∅ a.s., since RS

(
Nr

PE, M
) �= ∅

and RS
(
Nr

PE, M
) ⊆ �r

1 (Xn, M).
Now, for n > 1, let X[i] = x[i] = (ui, wi) be given for i ∈ {1, 2, 3}, be the edge

extrema in a given realization of Xn. The functional form of �1-region in Tb is
given by

�r
1 (Xn, M) =

3⋃

i=1

[
�r

1 (Xn, M) ∩ RM(yi)
]

where

�r
1 (Xn, M) ∩ RM(y1) =

{
(x, y) ∈ RM(y1) : y ≥ w1

r
− c2 (r x − u1)

(1 − c1) r

}
,

�r
1 (Xn, M) ∩ RM(y2) =

{
(x, y) ∈ RM(y1) : y ≥ w2

r
− c2 (r (x − 1) + 1 − u2

c1 r

}
,

�r
1 (Xn, M) ∩ RM(y3) =

{
(x, y) ∈ RM(y1) : y ≤ w3 − c2 (1 − r)

r

}
.



Methodol Comput Appl Probab (2012) 14:299–334 317

However, for 1 ≤ r < 3/2, the region �r
1(x, M) ∩ RM(yi) might be empty for

some i ∈ {1, 2, 3}. Furthermore, if M ∈ (T r)o with 1 ≤ r < 3/2, then �r
1 (Xn, M) will

be empty with probability 1 as n → ∞. In such a case, there is no �1-region to
construct. To determine whether the �1-region is empty or not, it suffices to check the
intersection of the �1-regions of the edge extrema. If M /∈ (T r)o, then the �1-region
is guaranteed to be nonempty.

Remark 4.17

• For r1 < r2, �
r1
1 (x, M) ⊆ �

r2
1 (x, M) for all x ∈ T (Y3) with equality holding only

when x ∈ Y3; and �
r1
1 (Xn, M) ⊆ �

r2
1 (Xn, M) with equality holding only when

Xn ⊆ Y3 or �r
1 (Xn, M) = ∅ for r ∈ {r1, r2}.

• Suppose X and X ′ are iid from a continuous distribution F whose support is
S(F) ⊆ T (Y3). Then for r1 < r2, we have A

(
�

r1
1 (X, M)

) ≤ST A
(
�

r2
1 (X ′, M)

)
.

• Suppose Xn and X ′
n are two random samples from a continuous distribution F

whose support is S(F) ⊆ T (Y3). Then for r1 < r2, we have A(�
r1
1 (Xn, M)) ≤ST

A(�
r2
1

(
X ′

n, M
)
).

In Section 4.1, we have investigated the behavior of �1 (Xn, N) for general
proximity maps in �. The assertions for the specific proximity maps we consider will
be stronger. For example, we have a stronger result than the one in Proposition 4.3
in the sense that, RS(N) is a proper subset of �1 (Xn, N) (i.e., RS(N) � �1 (Xn, N))
as shown below.

Proposition 4.18 For each type of proximity map N ∈ {
NS, NAS, Nr

PE

}
and any

random sample Xn = {
X1, X2, . . . , Xn

}
from a continuous distribution F on T (Y3),

if RS(N) �= ∅, then RS(N) � �1 (Xn, N) a.s. for each n < ∞.

Proof We have shown that RS(N) ⊆ �1 (Xn, N) (see Proposition 4.3). Moreover,
RS(N) �= ∅ for NAS and Nr

PE with r > 3/2. For these proximity regions, RS(N) =
�1 (Xn, N) with probability 0 for each finite n since

(i) for N ∈ {NS, NAS}, we have �1 (Xn, N) = RS (N) iff Xy(n) = y for each y ∈ Y3

which happens with probability 0,
(ii) for Nr

PE with r > 3/2, we have �r
1 (Xn, M) = RS (N, M) iff X[i] ∈ ei for each

i ∈ {1, 2, 3} which happens with probability 0.

Furthermore, for Nr
PE with 1 ≤ r < 3/2, we have RS

(
Nr

PE, M
) �= ∅ iff M /∈ (T r)o,

say M = (mx, my) is such that d(ζ2(mx, x), y2) < d(y2, e2)/r. Then �r
1 (Xn, M) =

RS
(
Nr

PE, M
)

iff X[2] ∈ e2 which happens with probability 0. Similarly the same result
also holds for edges e1 and e3. ��

Note that, if RS(N) = ∅ and Xn is a random sample from a continuous distribution
on T (Y3), then �1 (Xn, N) = ∅ a.s. in the limit as n → ∞. In particular, this holds for
Nr

PE(·, M) with 1 ≤ r < 3/2 and M ∈ (T r)o. Lemma 4.6 holds as stated. In Lemma
4.6, we have shown that �1 (X (n), N) is non-increasing. Furthermore, for the prox-
imity regions

{
NS, NAS, Nr

PE

}
, we can state that �1 (X (n + 1), N) � �1 (X (n), N)

with positive probability, since the new point in X (n + 1) has positive probability
to fall closer to the subset of T (Y3) that defines RS(N) (e.g., ∂(T (Y3))). The general
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results in Theorems 4.7 and 4.10 and Proposition 4.9 hold for the proximity maps{
NS, NAS, Nr

PE

}
also.

4.4 Expected Value of the Measure of �1-Regions

Let λ(·) be the Lebesgue measure on R
d with d ≥ 1. In R with Y2 = {y1, y2},

let Xn be a random sample from U(y1, y2). We can assume that (y1, y2) =
(0, 1) due to the geometry invariance for uniform data in R. Then, it fol-
lows that �1 (Xn, NS) = [

Xn:n/2, (1 + X1:n)/2
]
. So λ(�1 (Xn, NS)) = |�1 (Xn, NS) | =

(1 + X1:n − Xn:n) /2. Hence the expected length of the �1-region is

E [λ(�1 (Xn, NS)] = E
[

1 + X1:n − Xn:n
2

]

= 1 + E [X1:n] − E [Xn:n]
2

= 1 + 1
n+1 − n

n+1

2

= 1
n + 1

→ 0

as n → ∞, since E [Xk:n] = k
n+1 for iid uniform Xi in (0, 1).

4.4.1 The Limit of Expected Area of �r
1 (Xn, M)

In R
2, with three non-collinear points Y3 = {y1, y2, y3}, let Xn be a random sample

from U(T (Y3)). Then for r > 3/2 and M ∈ R
2 \ Y3, we have A(�r

1 (Xn, M)) > 0 a.s.
for all n < ∞. The region �r

1 (Xn, M) is determined by the (closest) edge extrema
X[i] ∈ argminX∈Xn

d(X, ei) for i ∈ {1, 2, 3}. So, to find the expected area of �r
1 (Xn, M),

we need to find the expected locus of X[i]; i.e., the expected distance of X[i]
from ei. For example, for Xn a random sample from a continuous distribution F,
argminX∈Xn

d(X, ei) is unique a.s., and if d
(
X[i], ei

) = u, then X[i] falls on a line
parallel to ei whose distance from ei is u a.s. for i = 1, 2, 3.

Lemma 4.19 Let Di(n) := d
(
X[i], ei

)
for i ∈ {1, 2, 3} and Xn be a random sample from

U(T (Y3)). Then E [Di(n)] → 0 (i.e., the expected locus of X[i] converges to edge ei) as
n → ∞ for each i ∈ {1, 2, 3}.

Proof Suppose Zi = (Xi, Yi)
iid∼ U(T (Y3)). Then for e = e3, it follows that D3(n) =

Y1:n which is the minimum y-coordinate of Zi ∈ Xn. First observe that P(Yi ≤ y) =
y (2 c2−y)

c2
2

, hence

FY(y) = y (2 c2 − y)

c2
2

I(0 ≤ y < c2) + I(y ≥ c2).

So the pdf of Yi is

fY(y) = 2
c2 − y

c2
2

I(0 ≤ y ≤ c2).
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Then the pdf of Y1:n is

f1:n(y) = 2 n(c2 − y)

(
1 − y (2 c2 − y)

c2
2

)n−1

c2
−2I(0 ≤ y ≤ c2).

Therefore,

E [Y1:n] =
∫ c2

0
2 y n(c2 − y)

(
1 − y (2 c2 − y)

c2
2

)n−1

c2
−2dy = c2

2 n + 1
→ 0, as n → ∞.

Hence E [Y1:n] = E [D3(n)] → 0. Similarly, as n → ∞ E [Di(n)] → 0 for i ∈ {1, 2}.
��

Theorem 4.20 Let Xn be a random sample from U(T (Y3)) and M ∈ T (Y3)
o. Then

E [A(�r
1 (Xn, M))] → A(RS(Nr

PE, M)) as n → ∞.

Proof Recall that for Nr
PE, we have �r

1 (Xn, M) = ⋂3
i=1 �r

1

(
X[i], M

)
. Moreover,

�r
1 (Xn, M) = RS(Nr

PE, M) iff X[i] ∈ ei for i ∈ {1, 2, 3}. In Lemma 4.19, we have
shown that expected locus of X[i] converges to edge e as n → ∞. Hence the expected
locus of ∂(�r

1 (Xn, M)) ∩ RM(ei) converges to the ∂(RS(Nr
PE, M)) ∩ RM(ei) for each

i ∈ {1, 2, 3}. Hence

E [A(�r
1 (Xn, M)] → A(RS(Nr

PE, M)) as n → ∞.

��

Remark 4.21 In particular,

i- E
[
A

(
�r=2

1 (Xn, MC)
)] → 1/4 as n → ∞, since RS

(
N2

PE, MC
) =

T(M1, M2, M3); and we have E [A(�r
1 (Xn, M))] → 0 as n → ∞ if M ∈ T r, since

RS
(
Nr

PE, M
) = ∅ for M ∈ T r. Furthermore, E

[
A

(
�

r=3/2
1 (Xn, MC)

)]
→ 0

since RS

(
N3/2

PE, MC

)
= {MC}.

ii- We also have E
[
A

(
�r

1 (Xn, MC)
)] → 0 for r ∈ [1, 3/2) as n → ∞. By careful

geometric calculations, we get E
[
A

(
�r

1 (Xn, MC)
)] → √

3
[
1 − 3/(2 r)

]2 for r ∈
(3/2, 2]. Furthermore, E

[
A

(
�r

1 (Xn, MC)
)] → √

3/
[
4 (1 − 3/r2)

]
for r ∈ (2,∞],

as n → ∞.

Definition 4.22 Suppose Xn is a set of iid random variables from F with support
S(F) ⊆ �. If over a sequence �n ⊆ � with n = 1, 2, 3, . . ., X restricted to �n, de-
noted X|�n , has distribution Fn with Fn(x) = F(x)/PF(X ∈ �n) and PF(X ∈ �n) →
1 as n → ∞, then we call Fn the asymptotically accurate distribution of X and �n the
asymptotically accurate support of F . If F has density f , then fn = f (x)/PF(X ∈ �n)

is called the asymptotically accurate pdf of X. In both cases, if we are concerned
with asymptotic results, then for simplicity we will, respectively, use F and f for the
asymptotically accurate distribution and pdf. Conditioning will be implied by stating
that X ∈ �n with probability 1, “as n → ∞” or “for sufficiently large n”.

We also derive the rate of convergence of E [A(�r
1 (Xn, MC))] for r = 3/2. First we

provide a result that will be used in our derivation.



320 Methodol Comput Appl Probab (2012) 14:299–334

Theorem 4.23 Let Xn be a random sample from F such that B(yi, ε) ⊆ S(F) for some
ε > 0 and for each i = 1, 2, 3, and let E3(n) be the event that (closest) edge extrema are
distinct. Then P(E3(n)) → 1 as n → ∞.

Proof First, we define two more events related to edge extrema as in the hypothesis
of the theorem. Let E2(n) be the event that there are two distinct (closest) edge
extrema and E1(n) be the event that all three edge extrema coincide. Clearly
P(E1(n)) + P(E2(n)) + P(E3(n)) = 1. It is trivial to see that P(E1(n)) → 0 as n →
∞. Next we calculate the limit of P(E2(n)) as n → ∞.

Using the transformation φe : (x, y) → (u, v) of Section 3.2, F becomes Fe with
support S(Fe) ⊆ Te. Then φe(Xn) becomes a random sample from Fe such that
B(φe(yi), εe) ⊆ S(Fe) for some εe > 0 and for each i = 1, 2, 3. First consider P(X[2] =
X[3]). Given X[2] = X[3] = (x, y) the remaining n − 1 points will lie in the shaded
region in Fig. 7. The event X[2] = X[3] = (X, Y) is equivalent to the event that

Xn ⊂ SR(X, Y) = {(U, W) ∈ Te : �(y1, (U, W)) ≤ �(y1, (X, Y)),

�(y3, (U, W)) ≤ �(y3, (X, Y))}.
The pdf of such (X, Y) is g(x, y) = n G(x, y)n−1 f (x, y) where G(u, v) = PF(X ∈
SR(u, v)). Note that P(X[2] = X[3] = y1) = 0 for all n, and X[2] = X[3] �= y1 is
equivalent to d((X, Y), y1) > 0. Let ε > 0, by Markov’s inequality, we have

P(d((X, Y), y1) > ε) ≤ E
[
d((X, Y), y1)

]
/ε = E

[√
X2 + Y2

]
/ε. Switching to the

polar coordinates as X = R cos θ and Y = R sin θ , we get
√

X2 + Y2 = R. But,

E [R] =
∫ ε

0

∫ π/3

0
n r G(r, θ)n−1 f (r, θ)r dr dθ.

The integrand is critical at r = 0, since for r > 0 it converges to zero as n → ∞. So
we use the Taylor series expansion around r = 0 as

f (r, θ) = f (0, θ) + ∂ f (0, θ)

∂r
r + O

(
r2) ,

G(r, θ) = G(0, θ) + ∂G(0, θ)

∂r
r + O

(
r2) = 1 + ∂G(0, θ)

∂r
r + O

(
r2) .

Fig. 7 The figure for X[2] = X[3] = (x, y) (left) and X[1] = X[2] = (x, y) (right)
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Note that ∂G(0,θ)

∂r < 0, since area of SR(u, v) decreases as r increases for fixed θ . So let
r = w/n, then

E [R] ≈
∫ n ε

0

∫ π/3

0
n

w

n

(
1 + ∂G(0, θ)

∂r
w

n
+ O

(
n−2)

)n−1

×
(

f (0, θ) + ∂ f (0, θ)

∂r
w

n
+ O

(
n−2)

)
w

n2 dw dθ

= 1
n2

∫ ∞

0

∫ π/3

0
w2 exp

(
∂G(0, θ)

∂r
w

)
f (0, θ)w dw dθ = O

(
n−2) .

Hence P(X[2] = X[3] �= y1) → 0 as n → ∞. Since P(X[2] = X[3]) = P(X[2] = X[3] =
y1) + P(X[2] = X[3] �= y1) and P(X[2] = X[3] = y1) = 0, we have P(X[2] = X[3]) → 0
as n → ∞.

Likewise, it follows that limn→∞ P(X[1] = X[2]) = limn→∞ P(X[1] = X[3]) = 0.
Hence P(E2(n)) → 0 as n → ∞. Thus P(E3(n)) → 1 as n → ∞. ��

As a Corollary to Theorem 4.23, we have

Corollary 4.24 Let Xn be a random sample from U(T (Y3)). Then P(E3(n)) → 1 as
n → ∞.

Theorem 4.25 Let Xn be a random sample from U(T (Y3)). For r = 3/2, the expected
area of the the �1-region, E

[
A

(
�r

1 (Xn, MC)
)]

, converges to zero, at rate O
(
n−2

)
.

Proof By the geometry invariance property, we can assume that T (Y3) is the
standard equilateral triangle Te. For r = 3/2 and M = MC, and sufficiently large n,
we have �r

1

(
X[i], MC

) ∩ RMC (yi) is a triangle for i = 1, 2, 3 w.p. 1. See Fig. 8. With
the realization of the edge extrema denoted as x[i] = (xi, yi) close enough to ei, for
i = 1, 2, 3, �

3/2
1

(
x[1], MC

) ∩ RMC (y1) is the triangle with vertices
(√

3
3

y2 + x2− 1
2
,−

√
3

18

(
−9 + 2

√
3 y2 + 6 x2

))

,

(
1
2
,

√
3

9

(
−9

2
+2

√
3 y2+6 x2

))

,

(
1
2
,

√
3

6

)

,

�
3/2
1

(
x[2], MC

) ∩ RMC (y2) is the triangle with vertices
(

1
2
,

√
3

18

(
3 + 4

√
3 y3 − 12 x3

))

,

(
1
2

−
√

3
3

y3 + x3,−
√

3
18

(
−3 + 2

√
3 y3 − 6 x3

))

,

(
1
2
,

√
3

6

)

,

and �
3/2
1

(
x[3], MC

) ∩ RMC (y3) is the triangle with vertices
(

−
√

3
6

(
−√

3 + 4 y1

)
,

√
3

6
+ 2

3
y1

)

,

(
1
2
,

√
3

6

)

,

(√
3

6

(√
3 + 4 y1

)
,

√
3

6
+ 2

3
y1

)

.
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Then for sufficiently large n,

A
(
�

3/2
1 (Xn, M)

)

=
√

3
27

(
3 x2 − 3 + √

3 y2

)2 +
√

3
27

(
−3 x3 + √

3 y3

)2 + 4
√

3
9

y2
1

=
√

3
9

(
3 x2

2−6 x2 + 2
√

3 y2 x2−2
√

3 y2 + y2
2 + 3+y2

3 − 2
√

3 y3 x3+3 x2
3+4 y2

1

)
.

To find the expected area, we need the joint density of the X[i]. By Theorem 4.23, the
edge extrema are all distinct with probability 1 as n → ∞. Let T(ζ ) be the triangle
formed by the lines at x[i] parallel to ei for i = 1, 2, 3 where ζ = (x1, y1, x2, y2, x3, y3).
See Fig. 8 (right).

The asymptotically accurate joint pdf of X[i] is

f3(ζ ) = n(n − 1)(n − 2)

[
A(T(ζ ))

A(T (Y3))

]n−3 1
A(T (Y3))3

= n(n−1)(n−2)

[√
3/36

(
−2

√
3 y1+

√
3 y3−3 x3+

√
3 y2+3 x2

)2
]n−3/(√

3/4
)n

.

with the support DS = {
ζ ∈ R

6 : (xi, yi)’s are distinct
}
.

For sufficiently large n,

E
[

A
(
�1

(
Xn, N3/2

PE, M
))]

≈
∫

A
(
�

3/2
1 (Xn, MC)

)
f3(ζ )dζ

=
∫

A
(
�

3/2
1 (Xn, MC)

)
n(n − 1)(n − 2)

(
A(T(ζ ))

A(T (Y3))

)n−3

× 1
A(T (Y3))3 dζ.

Fig. 8 The shaded regions are the triangular �
3/2
1

(
X[i], MC

) ∩ RMC (yi) regions for i = 1, 2, 3 (left).
The figure for the joint pdf of X[i] where the shaded region is T(ζ ) (right)
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Let G(ζ ) = A(T(ζ ))/A(T (Y3)). Notice that the integrand is critical when x[i] ∈ ei

for i = 1, 2, 3, since G(ζ ) = 1 when x[i] ∈ ei for each i = 1, 2, 3. So we make the
change of variables y1 = z1, y2 = √

3 (1 − x2) − z2, and y3 = √
3 x3 − z3, then G(ζ )

and A(�1 (Xn, N)) become

G(ζ ) = G(z1, z2, z3) =
(

2 z1 + z3 − √
3 + z2

)2 /
3 and

A(�1 (Xn, N)) = √
3
(
z2

2 + z2
3 + 4 z2

1

)
/9,

respectively. Hence the integrand does not depend on x1, x2, x3 and integrating with
respect to x1, x2, x3 yields a constant K. Now, the integrand is critical at (z1, z2, z3) =
(0, 0, 0), since G(0, 0, 0) = 1. So let Eε

u be the event that 0 ≤ zi ≤ ε for i = 1, 2, 3 for
ε > 0 small enough. Then making the change of variables zi = wi/n for i = 1, 2, 3,

we get A
(
�

3/2
1 (Xn, MC)

)
= O

(
n−2

)
and G(z1, z2, z3) becomes G(w1, w2, w3) = 1 −

1
n

(
2/

√
3 (2 w1 + w2 + w3)

)
+ O

(
n−2

)
, hence

E
[

A
(
�

3/2
1 (Xn, MC)

)]
≈ K

∫ nε

0

∫ nε

0

∫ nε

0
A

(
�

3/2
1 (Xn, MC)

)
n(n − 1)(n − 2)

× 1
n3 G(w1, w2, w3)

n−3dw1dw2dw3,

letting n → ∞

≈ K
∫ ∞

0

∫ ∞

0

∫ ∞

0
O

(
n−2) exp

(
−2/

√
3 (2 w1 + w2 + w3)

)
dw1dw2dw3 = O

(
n−2) ,

since
∫ ∞

0

∫ ∞
0

∫ ∞
0 exp

(
−2/

√
3 (2 w1 + w2 + w3)

)
dw1dw2dw3 = 3

√
3/16 which is a

finite constant. Hence E
[

A
(
�

3/2
1 (Xn, M)

)]
→ 0 as n → ∞ at the rate O

(
n−2

)
. ��

In fact, in a similar fashion, one can demonstrate that the rate of convergence of
the result in Theorem 4.20 is also O(n−2) as n → ∞.

In R
d with d > 2 and Yd+1 = {y1, y2, . . . , yd+1}, let Xn be a random sample

from U(S(Yd+1)). We can assume that S(Yd+1) to be the standard regular d-
dimensional polytope with d + 1 vertices due to the geometry invariance. The region
�r

1 (Xn, M) is determined by the (closest) face extrema X[i] ∈ argminX∈Xn
d(X, ϕi), for

i ∈ {1, 2, . . . , (d + 1)}. So, to find the expected volume of �1 (Xn, N, M), we need to
find the expected locus of X[i]; i.e., the expected distance of X[i] from ϕi. The results
in Lemma 4.19 and Theorem 4.20 can be generalized with slight modifications as
follows.

Lemma 4.26 Let Di(n) := d
(
X[i], ϕi

)
for i ∈ {1, 2, . . . , (d + 1)} and Xn be a random

sample from U(S(Yd+1)). Then E [Di(n)] → 0 (i.e., the expected locus of X[i] con-
verges to face ϕi) for each i ∈ {1, 2, . . . , (d + 1)}, as n → ∞.

Theorem 4.27 Let Xn be a random sample from U(S(Yd+1)) and M ∈ S(Yd+1)
o.

Then E [μ(�r
1 (Xn, M))] → μ(RS(Nr

PE, M)) as n → ∞.

We also conjecture that the rate of convergence in the above theorem is O
(
n−d

)
.
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5 The η-Values for PCDs

A problem of interest is finding, if possible, a subset of B, say G, such that �1(B, N) =⋂
x∈G �1(x, N). This implies that only the points in G are active in determining

�1(B, N).

Definition 5.1 An active set of points SA(B) ⊆ � for determining �1(B, N) is defined
to be a subset of B such that �1(B, N) = ⋂

x∈SA(B) �1(x, N).

This definition allows B to be an active set, which always holds by Lemma 4.4.
When B is a set of finitely many points, so is the associated active set. Among the
active sets, we seek an active set of minimum cardinality.

Definition 5.2 Let B be a set of finitely many points. An active subset of B ⊂ � is
called a minimal active subset, denoted Sμ(B), if there is no other active subset SA of
B such that SA(B) � Sμ(B). The minimum cardinality among the active subsets of B
is called the η-value and denoted as η(B, N). An active subset of cardinality η(B, N)

is called a minimum active subset denoted as SM(B); that is, η(B, N) := |SM(B)|.

Then for any proximity map N and Xn, it follows trivially that ηn(N) ≤ n, since

ηn(N) := min
A⊆Xn

{

|A| : �1(Xn, N) =
⋂

Z∈A

�1(Z , N)

}

.

Note that the Definitions 5.1 and 5.2 can be extended for any subset B ⊆ �.
Moreover, a minimal active set of minimum cardinality is a minimum active set.
We will suppress the dependence on B for SA(B), Sμ(B), and SM(B) if there is no
ambiguity. In particular, if B = Xn is a set of �-valued random variables, then SA

and SM are random sets and ηn(N) is a random quantity.
For example, in R with Y2 = {0, 1} and Xn a random sample of size n > 1 from F

with support in (0, 1), we have �1 (Xn, NS) = (Xn:n/2, (1 + X1:n) /2). So the extrema
(minimum and maximum) of the set Xn are sufficient to determine the �1-region; i.e.,
SM = {

X1:n, Xn:n
}
. Then ηn (NS) = 1 + I(n > 1) a.s. for Xn being a random sample

from a continuous distribution with support in (0, 1).
In the multidimensional case there is no natural extension of ordering that yields

natural extrema such as minimum or maximum. To get the minimum active sets
associated with our proximity maps, we will resort to some other type of extrema,
such as, the closest points to edges (i.e., edge extrema) or vertices in T (Y3).

Proposition 5.3 Let Xn be a random sample from a continuous distribution F on
T (Y3) and let ηn

(
Nr

PE

)
be the η-value associated with the PCD based on Nr

PE and Xn.
For proportional-edge proximity maps with M-vertex regions, we have ηn

(
Nr

PE

) ≤ 3
with equality holding with positive probability for n ≥ 3.

Proof From Theorem 4.16, it follows that ηn
(
Nr

PE

) ≤ 3. Furthermore, X[i] is unique
for each edge ei a.s. since F is continuous and there are three distinct edge extrema
with positive probability. Hence P(ηn

(
Nr

PE

) = 3) > 0 for n ≥ 3. ��
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Recall that if M ∈ (T r)o with 1 ≤ r < 3/2, then the region �r
1 (Xn, M) will be

empty with probability 1 as n → ∞. In such a case, there is no �1-region to construct.
But the definition of the η-value still works in the sense that �r

1 (Xn, M) = ∅ =⋂
x∈SM(Xn) �r

1(x, M) (see Definition 5.1 for SM) and �r
1(x, M) �= ∅ for all x ∈ Xn since

x ∈ �r
1(x, M).

Note that P(ηn
(
Nr

PE

) = 3) → 1 as n → ∞ for Xn a random sample from F
with positive density around the vertices Y3, since edge extrema are distinct with
probability 1 as n → ∞ as shown in Theorem 4.23.

Theorem 4.23 also implies that for Xn from an F with support as described in the
theorem, the asymptotic distribution of ηn

(
Nr

PE

)
is degenerate with P(ηn

(
Nr

PE

) =
3) → 1 as n → ∞. Likewise, the same result holds for Xn from uniform data in

T (Y3). But for finite n, we have ηn
(
Nr

PE

)
for Xi

iid∼ F where F is as in Theorem 4.23,
has the following non-degenerate distribution.

ηn
(
Nr

PE

) =
{

2 wp π2(n)

3 wp π3(n) = 1 − π2(n),

where π2(n) ∈ (0, 1) is the probability of edge extrema for any two distinct edges
being concurrent.

Remark 5.4 If Xn is a random sample from F such that S(F) ∩ {x ∈ T (Y3) :
d(x, ei) ≤ ε1} has positive measure and S(F) ∩ B(yi, ε2) = ∅ for some ε1, ε2 > 0 for
each i = 1, 2, 3, then P(E3(n)) → 1 as n → ∞ follows trivially.

Note that, for Xn a random sample from U(T (Y3)), we have P(ηn
(
Nr

PE

) = 3) → 1
as n → ∞, since the edge extrema are distinct with probability 1 as n → ∞. Note

also that ηn
(
Nr1

PE

) d= ηn
(
Nr2

PE

)
for all (r1, r2) ∈ [1,∞) × [1, ∞), where d= stands for

“equality in distribution”.
We have shown that the upper bound for Nr

PE exists: ηn(Nr
PE) ≤ 3. However,

for arc-slice PCDs, finding a k < n such that ηn(NAS) ≤ k for all n is still an open
problem. The same holds for ηn(NS).

Below we state a condition for N(·, M) defined with M-vertex regions to have
ηn(N) ≤ 3 for Xn with support in T (Y3).

Theorem 5.5 Suppose N(·, M) is a proximity region def ined with M-vertex regions
and B is a set of n distinct points in T (Y3). Then η(B, N) ≤ 3 if

(i) for each yi ∈ Y3 there exists a point x(yi) ∈ B (i.e., related to yi) such that
�1(B, N) ∩ RM(yi) = �1 (x(yi), N) ∩ RM(yi),
or

(ii) there exist points x(y j), x(yk) ∈ B such that �1(B, N) ∩ RM(yi) =
�1

(
x(y j), N

) ∩ �1 (x(yk), N) ∩ RM(yi) for j, k �= i with i ∈ {1, 2, 3} and
( j, k) ∈ {(1, 2), (1, 3), (2, 3)}.
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Proof Let B = {x1, x2, . . . , xn} ⊂ T (Y3).

(i) Suppose there exists a point x(yi) ∈ B such that �1(B, N) ∩ RM(yi) =
�1 (x(yi), N) ∩ RM(yi) for each i ∈ {1, 2, 3}. Then

�1(B, N) ∩ RM(yi) = �1 (x(yi), N) ∩ RM(yi)

=
n⋂

i=1

[
�1 (xi, N) ∩ RM(yi)

] =
3⋂

q=1

[
�1

(
x(yq), N

) ∩ RM(yi)
]

=
⎡

⎣
3⋂

q=1

�1
(
x(yq), N

)
⎤

⎦ ∩ RM(yi)

and

�1(B, N) =
3⋃

i=1

[
�1(B, N) ∩ RM(yi)

] =
3⋃

i=1

⎛

⎝

⎡

⎣
3⋂

q=1

�1
(
x(yq), N

)
⎤

⎦ ∩ RM(yi)

⎞

⎠ .

Hence, we get

�1(B, N) =
3⋂

i=1

�1 (x(yi), N) .

Thus, the minimum active set SM ⊆ {x(y1), x(y2), x(y3)}, which implies
η(B, N) ≤ 3. The η-value η(B, N) < 3 will hold if x(yi) are not all distinct.

(ii) Suppose there exist points x(y j) and x(yk) such that �1 (B, N) ∩ RM(yi) =[
�1

(
x(y j), N

) ∩ �1 (x(yk), N)
] ∩ RM(yi) for j, k �= i. Then

�1 (B, N) ∩ RM(yi) = [
�1

(
x(y j), N

) ∩ �1 (x(yk), N)
] ∩ RM(yi)

=
n⋂

i=1

[
�1 (xi, N) ∩ RM(yi)

] =
3⋂

q=1

[�1
(
x(yq), N

) ∩ RM(yi)]

=
⎡

⎣
3⋂

q=1

�1
(
x(yq), N

)
⎤

⎦ ∩ RM(yi)

and

�1(B, N) =
3⋃

i=1

[
�1(B, N) ∩ RM(yi)

] =
3⋃

i=1

⎛

⎝

⎡

⎣
3⋂

q=1

�1
(
x(yq), N

)
⎤

⎦ ∩ RM(yi)

⎞

⎠ .

Hence, we get �1(B, N) = ⋂3
i=1 �1 (x(yi), N) . Therefore, the minimum active

set SM ⊆ {x(y1), x(y2), x(y3)} which implies η(B, N) ≤ 3. ��

Notice that Nr
PE satisfies condition (i) of Theorem 5.5.

Below we state some conditions for N(·, M) defined with M-edge regions to have
η-value less than equal to 3. See Ceyhan et al. (2007) for an example of proximity
region which is constructed by using M-edge regions.
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Theorem 5.6 Suppose N(·, M) is a proximity region def ined with M-edge regions and
B is set of n distinct points in T (Y3). Then η(B, N) ≤ 3 if

(i) for each ei ∈ {e1, e2, e3}, there exists a point x(ei) ∈ B such that �1(B, N) ∩
RM(ei) = �1 (x(ei), N) ∩ RM(ei),
or

(ii) there exist points x(e j), x(ek) ∈ B such that �1(B, N) ∩ RM(ei) =
[�1

(
x(e j), N

) ∩ �1 (x(ek), N)] ∩ RM(ei) for j, k �= i with i ∈ {1, 2, 3} and
( j, k) ∈ {(1, 2), (1, 3), (2, 3)}.

The proof of this theorem is same as the proof of Theorem 5.5 with vertices being
replaced by edges.

In R
d with d > 2 the results in Proposition 5.3 and Theorem 4.23 can be extended

as follows:

Proposition 5.7 Let Xn be a random sample from a continuous distribution F on
S(Yd+1) and let ηn

(
Nr

PE

)
be the η-value associated with the PCD based on Nr

PE and
Xn. For proportional-edge proximity maps with M-vertex regions, ηn

(
Nr

PE

) ≤ d + 1
with equality holding with positive probability for n ≥ d + 1.

Theorem 5.8 Let Xn be a random sample from F such that B(yi, ε) ⊆ S(F) for some
ε > 0 and for each i = 1, 2, . . . , (d + 1), and let Ed+1(n) be the event that (closest) face
extrema are distinct. Then P(Ed+1(n)) → 1 as n → ∞.

The other results can be extended similarly.

6 The κ-Values for PCDs

Recall that the domination number, γn(N) is the cardinality of a minimum dominat-
ing set of the PCD based on N. So by definition, γn(N) ≤ n. We seek an a.s. least
upper bound for γn(N).

Definition 6.1 (κ-Value) Let Xn be a random sample from F on T (Y3) and let γn(N)

be the domination number of the PCD based on a proximity map N and Xn. The
general a.s. least upper bound for γn(N) that works for all n ≥ 1 is called the κ-value;
i.e., κn(N) := min{k(n) : γ (Xn, N) ≤ k(n) a.s. for all n ≥ 1}.

It is more desirable to have a κ-value that is independent of n. Further, if κn(N) =
κ exists for the PCD based on the proximity map N(·) and is independent of n,
then the domination number has the following discrete probability mass function:
P(γ (Xn, N) = k) = pk for k = 1, 2, . . . , κ .

In R with Y2 = {y1, y2}, for Xn a random sample from F with density f being
positive around y1 and y2, we have γn(NS) ≤ 2 with equality holding with positive
probability. Hence κn(NS) = 2. The same holds for NAS also. But in R

d with d > 1,
finding κn(N) for N ∈ {NS, NAS} is an open problem. Next, we investigate the κ-
values for the PCD based on Nr

PE in R
2.
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Theorem 6.2 Let Xn be a random sample from U(T (Y3)) and M ∈ R
2 \ Y3. Then for

the PCD based on Nr
PE(·, M) and Xn, we have κn

(
Nr

PE

) = 3.

Proof For Nr
PE(·, M), pick the point in vertex region RM(yi) closest to edge ei;

that is, pick Ui ∈ argminX∈Xn∩RM(yi)
d(X, ei) = argmaxX∈Xn∩RM(yi)

d(�(y, X), yi) in the
vertex region for which Xn ∩ RM(yi) �= ∅ for i ∈ {1, 2, 3}. Note that as n → ∞,
we have Xn ∩ RM(yi) �= ∅ for all i ∈ {1, 2, 3} a.s., and also Ui is unique a.s. for
each i, since X is from U(T (Y3)). Then Xn ∩ RM(yi) ⊂ Nr

PE(Ui, M). Hence Xn ⊂
⋃3

i=1 Nr
PE(Ui, M). So γn

(
Nr

PE, MC
) ≤ 3 with equality holding with positive probabil-

ity. Thus κn
(
Nr

PE

) = 3. ��

One property of proximity maps that makes κn(N) < n is that the probability of
having an Xn for which N(X) ∩ Xn = {X} for all X ∈ Xn is zero.

Below we state a condition for κn(N(·, M)) ≤ 3 for N(·, M) defined with M-vertex
regions.

Theorem 6.3 Suppose N(·, M) is def ined with M-vertex regions with M ∈ R
2 \ Y3

and N(x, M) gets larger as d(�(y, x), y) increases for x ∈ RM(y) in the sense that
N(x, M) ⊆ N(z, M) for all x, z ∈ RM(y) when d(�(y, x), y) ≤ d(�(y, z), y). Further-
more, N(X, M) � N(Z , M) for all X, Z ∈ RM(y) occurs with positive probability
when d(�(y, X), y) < d(�(y, Z ), y) occurs with positive probability for X, Z from F.
Then κn(N) ≤ 3.

Proof When Xn ∩ RM(yi) �= ∅, pick one of the points Ui(n) ∈
argmaxX∈Xn∩RM(yi)

d(�(yi, X), yi), then Xn ∩ RM(yi) ⊂ N(Ui(n)) for each i ∈ {1, 2, 3}.
So γ (Xn, N, M) ≤ 3, and hence κn(N) ≤ 3. ��

Notice that Nr
PE satisfies the conditions of Theorem 6.3.

Theorem 6.4 Suppose N(·, M) is def ined with M-edge regions and N(x, M) gets
larger as d(x, e) increases for x ∈ RM(e) in the sense that N(x, M) ⊆ N(y, M) for all
x, y ∈ RM(e) when d(x, e) ≤ d(y, e). Suppose also that for X, Y from F, N(X, M) �

N(Y, M) for all X, Y ∈ RM(e) occurs with positive probability when d(X, e) < d(Y, e)
occurs with positive probability. Then κn(N) ≤ 3.

Proof When Xn ∩ RM(ei) �= ∅, pick one of the points U[i] ∈
argmaxX∈Xn∩RM(ei)

d(X, ei). Then Xn ∩ RM(ei) ⊂ N(U[i]) for each i ∈ {1, 2, 3}. So
γ (Xn, N, M) ≤ 3, and hence κn(N) ≤ 3. ��

In Theorems 6.3 and 6.4, we have an upper bound for κn(N). To
determine an exact value for κn(N) we need further restrictions. Let
A1 := {x ∈ T (Y3) : μ(N(x, M)) = μ(T (Y3))} and A2 := {(x, y) ∈ T (Y3) × T (Y3) :
μ(N(x, M) ∪ N(y, M)) = μ(T (Y3))}. If in addition to the hypothesis of Theorem 6.3
(and 6.4) we have A1 and A2 that have zero measure (e.g., zero area for continuous
distributions with support in T (Y3)), then κn(N) = 3 would hold.
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In R
d with d > 2, the result in Theorem 6.2 can be extended as follows:

Theorem 6.5 Let Xn be a random sample from U(S(Yd+1)) and M ∈ R
d \ Yd+1. Then

for the PCD based on Nr
PE(·, M) and Xn, we have κn

(
Nr

PE

) = d + 1.

The other results can be extended similarly.

7 The �k-Regions for Proximity Maps

We can also define the regions associated with γn(N) = k for k ≤ n. In R with Y2 =
{0, 1}, it follows that γn(N) ≤ 2, hence we can only define �2-regions. Recall that
γn(N) = 2 iff Xn ∩ [ xn:n

2 , 1+x1:n
2

] = ∅ iff Xn ⊂ [0, 1] \ �1 (Xn, N). So

�2 (Xn, N) = {
(x, y) ∈ [0, 1]2 : Xn ⊂ N(x) ∪ N(y); x, y /∈ �1 (Xn, N)

}

= {
(x, y) ∈ ([0, 1] \ �1 (Xn, N))2 : Xn ⊂ N(x) ∪ N(y)

}

where A2 = A × A. Notice that �2 (Xn, N) ⊆ [0, 1]2. Let x[1] :=
argminx∈Xn∩(0,1/2)(1/2 − x) and x[2] := argminx∈Xn∩(1/2,1)(x − 1/2), then γn(N) = 2
iff x[1], x[2] /∈ �1 (Xn, N). In such a case Xn ⊂ N

(
x[1]

) ∪ N
(
x[2]

)
by construction.

In general, �k-regions can be defined as follows for k > 1.

Definition 7.1 (�k-Region) The �2-region for proximity map N(·) and set B ⊂ �

is �2(B, N) = {(x, y) ∈ [� \ �1(B)]2 : B ⊆ N(x) ∪ N(y)}. In general, �k-region for
proximity map N(·) and set B ⊂ � for k = 1, 2, . . . , n is

�k(B, N) =
{
(x1, x2, . . . , xk) ∈ �k : B ⊆

k⋃

i=1

N (xi) and all possible m-permutations

(u1, u2, . . . , um) of (x1, x2, . . . , xk) satisfy (u1, u2, . . . , um) �∈ �m(B, N)

for each m = 1, 2, . . . , k − 1
}
.

Note that �k-regions are defined for k ≤ n and they might be empty. Moreover,
�k-regions are in �k. Let

{ n
m

}
denote the Stirling partition number for a set of size n

into m blocks and let
{

A
m

}
denote all Stirling partitions of a set A into m blocks; that

is,
{

A
m

}
:=

{

{B1,B2, . . . ,Bm} : Bi �= ∅,Bi ⊂ A,Bi ∩ B j = ∅ for i �= j, i, j = 1, 2, . . . , m;

A =
⋃

i

Bi

}

.

In particular, for a set B of size n, the Stirling partition
{

B
2

}
is the unordered pair

of blocks B1 and B2 such that Bi �= ∅ and Bi � B for i = 1, 2, and B1 ∪ B2 = B. Note
that B2 = B \ B1. Then we have the following result.
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Proposition 7.2 Let B be a set of f initely many points in � and �2 (B, N) be the
corresponding �2-region associated with the proximity map N(·). Then �2 (B, N) =⋃

{B1,B2}∈
{

B
2

}[�1 (B1, N) × �1 (B2, N)] \ [
�1 (B, N)2] for any Stirling blocks B1 and B2

in
{

B
2

}
.

Proof Given B with |B| = n, suppose (u, v) ∈ �2 (B, N), then B ⊂ N(u) ∪ N(v)

and u, v /∈ �1 (B, N). Let B1 = B ∩ N(u) and B2 = [B ∩ N(v)] \ N(u). Then B1 and
B2 are two Stirling blocks in

{
B
2

}
. Hence B1 ⊂ N(u) implies that u ∈ �1 (B1, N) \

�1 (B, N) and B2 ⊂ N(v) implies that v ∈ �1 (B2, N) \ �1 (B, N), hence �2 (B, N) ⊆⋃
{B1,B2}∈

{
B
2

}[�1 (B1, N) × �1 (B2, N)] \ [
�1 (B, N)2]. The other direction is trivial,

hence the desired result follows. ��

In R with N = NS, we can exploit the natural ordering available.

Proposition 7.3 In R with Y2 = {0, 1}, we have �2 (Xn, NS) = ⋃n−1
k=1

( xk:n
2 , xn:n

2

) ×(
1+x1:n

2 ,
1+x(k+1):n

2

)
.

Proof From Proposition 7.2, we have �2 (Xn, NS) = ⋃
{B1,B2}∈

{
Xn

2

}[�1 (B1, NS) ×
�1 (B2, NS)] \ (�1 (Xn, NS)

2
). Let {B1,B2} be a Stirling partition in

{
Xn
2

}
. First ob-

serve that �1(k) = {x1:n, x2:n, . . . , xk:n} and �2(k) = {x(k+1):n, x(k+2):n, . . . , xn:n} forms
a Stirling partition of Xn, and

�1 (�1(k), NS) =
(

xk:n
2

,
1 + x1:n

2

)
, �1 (�2(k), NS) =

(
xn:n
2

,
1 + x(k+1):n

2

)
,

and

�1 (Xn, NS) =
(

xn:n
2

,
1 + x1:n

2

)
.

Then we have

�1 (�1(k), NS) \ �1 (Xn, NS) =
( xk:n

2
,

xn:n
2

)

and

�1 (�2(k), NS) \ �1 (Xn, NS) =
(

1 + x1:n
2

,
1 + x(k+1):n

2

)
.

Now if x1:n and xn:n are in one of the Stirling partitions, say B1, then [�1 (B1, NS) ×
�1 (B2, NS)] \ (�1 (Xn, NS)

2) will be empty, since �1 (B1, NS) \ (�1 (Xn, NS)) is
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empty. Furthermore, if max(B1) < min(B2), then B1 and B2 do not constitute a
Stirling partition. So we only consider Stirling partitions of the form

�k =
{
{B1,B2} ∈

{Xn

2

}
: x1:n ∈ B1, xn:n ∈ B2, max (B1) = xk:n,

min (B2) = xl:n, l < k
}

.

Then for {B1,B2} ∈ �k, we have �1 (B1, NS) = ( xk:n
2 , 1+x1:n

2

)
and �1 (B2, NS) =( xn:n

2 , 1+xl:n
2

)
. Hence, �1 (B1, NS) = �1 (�1(k), NS) and �1 (B2, NS) � �1 (�2(k), NS),

since l < k. Therefore

⋃

{B1,B2}∈�k

�1 (B1, NS) × �1 (B2, NS) = �1 (�1(k), NS) × �1 (�2(k), NS) . (4)

Moreover, we have

⋃

{B1,B2}∈
{
Xn

2

}
[�1 (B1, NS) × �1 (B2, NS)] =

n−1⋃

k=1

⎡

⎣
⋃

{B1,B2}∈�k

�1 (B1, NS) × �1 (B2, NS)

⎤

⎦

=
n−1⋃

k=1

[
�1 (�1(k), NS) × �1 (�2(k), NS)

]
.

Since
⋃n−1

k=1

[
�1 (�1(k), NS) × �1 (�2(k), NS)

] = ( xk:n
2 , 1+x1:n

2

) ×
(

xn:n
2 ,

1+x(k+1):n
2

)
we

have

�2 (Xn, NS) =
⋃

{B1,B2}∈
{
Xn

2

}
[�1 (B1, NS) × �1 (B2, NS)] \ (�1 (Xn, NS)

2)

=
n−1⋃

k=1

[
�1 (�1(k), NS) × �1 (�2(k), NS)

] \ (�1 (Xn, NS)
2

=
n−1⋃

k=1

( xk:n
2

,
xn:n
2

)
×

(
1 + x1:n

2
,

1 + x(k+1):n
2

)
.

So we have the desired result. ��

For Nr
PE, the �1-region for blocks in Proposition 7.2, the region �r

1 (Bi, M) is deter-
mined by the edge extrema in Bi for i = 1, 2. But for Nr

PE, if (u, v) ∈ �2
(
Xn, Nr

PE, M
)
,

then (u, v) /∈ RM(y)2, since either Nr
PE(u) ⊆ Nr

PE(v) or Nr
PE(v) ⊆ Nr

PE(u) should
hold if (u, v) ∈ RM(y)2.
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For any proximity map N,

P(γn(N) = 2)

= P(X 2
n ∩ �2 (Xn, N) �= ∅, γn(N) �= 1)

= P

⎛

⎜⎜
⎝X 2

n

⋂

⎡

⎢⎢
⎣

⋃

{B1,B2}∈
{
Xn

2

}

[
�1 (B1, N) × �1 (B2, N)

] \ (�1 (Xn, N))2

⎤

⎥⎥
⎦ �= ∅,

Xn ∩ �1 (Xn, N) = ∅

⎞

⎟⎟
⎠ .

A more compact way to write this is as P(γn(N) > 2) = P
(
X 2

n ∩ �≤2 (Xn, N) = ∅)
where �≤2 (Xn, N) = ⋃

{B1,B2}∈
{
Xn

2

} �1 (B1, N) × �1 (B2, N).

Furthermore, for k ≥ 3, the �k-regions are defined similarly as

�k (Xn, N) =
⋃

{B1,...,Bk}∈
{
Xn

k

}
[�1 (B1, N) × . . . × �1 (Bk, N)] \ �1 (Xn, N)

k .

Hence,

P(γn(N) = k)

= P
(
X k

n ∩ �k (Xn, N) �= ∅, γn(N) > k − 1
)

= P

⎛

⎜⎜
⎝X k

n ∩

⎡

⎢⎢
⎣

⋃

{B1,...,Bk}∈
{
Xn

k

}
�1 (B1, N) . . . × �1 (Bk, N) \ �1 (Xn, N)

k

⎤

⎥⎥
⎦ �= ∅

⎞

⎟⎟
⎠ .

A more compact way to write this is as P(γn(N) > k) = P
(
X k

n ∩ �≤k (Xn, N) �= ∅)
where �≤k (Xn, N) = ⋃

{B1,...,Bk}∈
{
Xn

k

} �1 (B1, N) × . . . × �1 (Bk, N).

8 Discussion and Conclusions

In this article, we introduce new graph invariants associated with the domination
number of proximity catch digraphs (PCDs) based on proximity maps and investigate
their probabilistic behavior. Although �1-regions and superset regions were intro-
duced before (see Ceyhan and Priebe 2005; Ceyhan et al. 2006; Ceyhan and Priebe
2007), a thorough investigation is only performed in this article. A �1-region is sort of
a “dual” of the underlying proximity region and is closely associated with domination
number being equal to one. We investigate the probabilistic behavior of �1-regions
for general proximity maps N and data points from a fairly general distribution F.
We also extend this concept by introducing �k-regions, which are associated with
domination number being equal to k.

We introduce the quantities related to domination number, namely, η- and κ-
values. The η-value is the minimum number of points in a set required to determine
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the �1-region for that set. We determine some general conditions that make ηn(N) ≤
3 for data in the triangle T (Y3). The κ-value is the a.s. least upper bound for the
domination number of the PCDs. We also determine some general conditions that
make κn(N) ≤ 3 for data in the triangle T (Y3). We also extend the results to higher
dimensions.

We provide a few PCD families, namely spherical, arc-slice (Ceyhan and Priebe
2003), and proportional-edge PCDs (Ceyhan et al. 2006), as illustrative examples.
We discuss the construction of proximity regions and �1-regions for these PCDs.
Furthermore, we calculate the limit of the expected measure of �1-regions for the
spherical PCDs in R and proportional-edge PCDs for R

2. Determining �1-regions,
η− and κ-values for spherical and arc-slice PCDs contain many open problems and
are subjects of ongoing research.

With the tools presented in this article, given a PCD, we can determine how it
behaves in terms of domination number and the related invariants. For example, we
can determine a.s. least upper bounds for the domination number of the new PCD.
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