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Abstract We study a family of interval catch digraph called proportional-edge prox-
imity catch digraph (PCD) which is also a special type of intersection digraphs parame-
terized with an expansion and a centrality parameter. PCDs are random catch digraphs
that have been developed recently and have applications in classification and spa-
tial pattern analysis. We investigate a graph invariant of the PCDs called relative arc
density. We demonstrate that relative arc density of PCDs is a U -statistic and using the
central limit theory of U -statistics, we derive the (asymptotic) distribution of the rela-
tive arc density of proportional-edge PCD for uniform data in one dimension. We also
determine the parameters for which the rate of convergence to asymptotic normality
is fastest.

Keywords Class cover catch digraph · Intersection digraph · Proximity catch
digraph · Proximity map · Random graph · U -statistics

1 Introduction

The proximity catch digraphs (PCDs) were motivated by their applications in pattern
classification and spatial pattern analysis, which have received considerable attention
in the statistical literature. The proximity catch digraphs (PCDs) were motivated by
their applications in these areas. In this article, the distribution of a graph invariant
called relative arc density of the PCDs is investigated. The PCDs are vertex-random
digraphs in which each vertex corresponds to a data point, and directed edges (i.e.,
arcs) are defined by some bivariate relation on the data. For example, nearest neighbor
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762 E. Ceyhan

digraphs are defined by placing an arc between each vertex and its nearest neighbor.
The PCDs are a special type of proximity graphs which were introduced by Toussaint
(1980). Furthermore, the PCDs are closely related to the class cover problem of Cannon
and Cowen (2000).

Priebe et al. (2001) introduced the class cover catch digraphs (CCCDs) in R and
gave the exact and the asymptotic distribution of the domination number of the CCCDs
based on data from two classes, say X and Y , with uniform distribution on a bounded
interval in R. DeVinney et al. (2002), Marchette and Priebe (2003), Priebe et al.
(2003a,b), and DeVinney and Priebe (2006) applied the concept in higher dimensions
and demonstrated relatively good performance of CCCDs in classification.

The first PCD family is introduced by Ceyhan and Priebe (2003); the parameterized
version of this PCD is later developed by Ceyhan et al. (2007) where the relative arc
density of the PCD is calculated and used for testing spatial patterns in R

2. Ceyhan and
Priebe (2005) introduced another digraph family called proportional-edge PCDs and
calculated the asymptotic distribution of its domination number in R

2 and used it for
the same purpose (Ceyhan and Priebe 2007; Ceyhan 2010). The relative arc density of
this PCD family is also computed and used in spatial pattern analysis in R

2 (Ceyhan
et al. 2006).

Properly scaled, the relative arc density of the proportional-edge PCDs is also a
U -statistic, which has asymptotic normality by the general central limit theory of
U -statistics. In this article, we consider the proportional-edge PCDs for one dimen-
sional data, where proportional-edge PCD has an expansion and a centrality parameter.
We derive the explicit form of the asymptotic normal distribution of the relative arc
density of the proportional-edge PCDs for uniform one dimensional X points whose
support being partitioned by the class Y points. The asymptotic distribution of the
relative arc density is derived for the entire ranges of the expansion and centrality
parameters based on detailed calculations. The relative arc density of proportional-
edge PCDs is first investigated for uniform data in one interval (in R) and the analysis
is generalized to uniform data in multiple intervals. These results will be of use in
applying the relative arc density for testing interaction between classes of one dimen-
sional data. Moreover, the behavior of the relative arc density in one dimensional case
will form the foundations of our investigation and extension of the topic in higher
dimensions.

We define the proximity catch digraphs and their relative arc density in Sect. 2,
describe the proportional-edge PCD and provide preliminary results on their relative
arc density in Sect. 3, provide the distribution of the relative arc density for uniform
data in one interval in Sect. 4, in multiple intervals in Sect. 5, the extension of the
proportional-edge PCD to higher dimensions in Sect. 6, and provide discussion and
conclusions in Sect. 7. Shorter proofs are given in the main body of the article; while
longer proofs are deferred to the Appendix sections.

2 Relative arc density of the proximity catch digraphs

Let Dn = (V,A) be a digraph with vertex set V = {v1, v2, . . . , vn} and arc set A and
let | · | stand for the set cardinality function. The relative arc density of the digraph Dn

which is of order |V| = n ≥ 2, denoted ρ(Dn), is defined as Janson et al. (2000)
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Relative arc density of an interval catch digraph family 763

ρ(Dn) = |A|
n(n − 1)

.

Thus ρ(Dn) represents the ratio of the number of arcs in the digraph Dn to the number
of arcs in the complete symmetric digraph of order n, which is n(n −1). For n ≤ 1, we
set ρ(Dn) = 0, since there are no arcs. If Dn is a random digraph in which arcs result
from a random process, then the arc probability between vertices vi , v j is defined as
pa(i, j) := P((vi , v j ) ∈ A) for all i �= j, i, j = 1, 2, . . . , n.

Let (�,M) be a measurable space and Xn = {X1, X2, . . . , Xn} and Ym =
{Y1, Y2, . . . , Ym} be two sets of �-valued random variables from classes X and Y ,
respectively, with joint probability distribution FX,Y and marginals FX and FY , respec-
tively. A PCD is comprised by a set V of vertices and a set A of arcs. For example, in
the two class case, with classes X and Y , we choose the X points to be the vertices
and put an arc from Xi ∈ Xn to X j ∈ Xn , based on a binary relation which mea-
sures the relative allocation of Xi and X j with respect to Y points. Consider the map
N : � → P(�), where P(�) represents the power set of �. Then given Ym ⊆ �, the
proximity map N (·) associates with each point x ∈ � a proximity region N (x) ⊆ �.
For B ⊆ �, the �1-region is the image of the map �1(·, N ) : P(�) → P(�) that asso-
ciates the region �1(B, N ) := {z ∈ � : B ⊆ N (z)} with the set B. For a point x ∈ �,
we denote �1({x}, N ) as �1(x, N ). Notice that while the proximity region is defined
for one point, a �1-region is defined for a point or set of points. The vertex-random
PCD has the vertex set V = Xn and arc set A defined by (Xi , X j ) ∈ A if X j ∈ N (Xi ).
Given Ym = {y1, y2, . . . , ym}, let Xn be a random sample from FX . Then N (Xi ) are
also iid and the same holds for �1(Xi , N ). Hence pa(i, j) := P((Xi , X j ) ∈ A) = pa

for all i �= j, i, j = 1, 2, . . . , n for such Xn .

Theorem 1 Given Ym = {y1, y2, . . . , ym}, let Xn be a random sample from FX

and Dn be the PCD based on N (·) with vertices Xn and the arc set A is defined
as (Xi , X j ) ∈ A if X j ∈ N (Xi ). The relative arc density, ρ(Dn), of Dn is a
one-sample U-statistic of degree 2 and is an unbiased estimator of pa. If, addi-
tionally, ν = Cov

[
hi j , hik

]
> 0 for all i �= j �= k, i, j, k ∈ {1, 2, . . . , n},

then
√

n [ρ(Dn) − pa]
L−→ N (0, 4 ν) as n → ∞, where 2 hi j = I((Xi , X j ) ∈

A) + I((X j , Xi ) ∈ A), and
L−→ stands for convergence in law and N (μ, σ 2) stands

for the normal distribution with mean μ and variance σ 2.

Proof Let gi j = I((Xi , X j ) ∈ A) = I(X j ∈ N (Xi )). The arcs (Xi , X j ) ∈ A and
(X j , Xi ) ∈ A are different for i �= j , so gi j is not symmetric in i, j . But we can define
a symmetric kernel as hi j = (gi j + g ji )/2. Then we have, |A| = ∑

i< j hi j . So

ρ(Dn) = 1
( n

2

)
∑ ∑

i< j

hi j (1)

Thus, ρ(Dn) is a one-sample U -statistic of degree 2 with symmetric kernel hi j . More-
over, P((Xi , X j ) ∈ A) = pa for all i �= j, i, j = 1, 2, . . . , n. Then for i �= j , we
have
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764 E. Ceyhan

E[hi j ] = E[(gi j + g ji )/2] = (E[gi j ] + E[g ji ])/2 = E[gi j ] = E[g12]
= P((X1, X2) ∈ A) = P(X2 ∈ N (X1)) = pa .

Hence pa is an estimable parameter of degree 2. Furthermore,

E[ρ(Dn)] = 2

n(n − 1)
E[|A|] = 2

n(n − 1)

∑

i< j

E[hi j ] = 2

n(n − 1)

∑

i< j

E[gi j ]

= 2

n(n − 1)

∑

i< j

pa = pa . (2)

Then, ρ(Dn) is actually an unbiased estimator of the arc probability pa .
For PCDs, the set of vertices V = Xn is a random sample from a distribution

FX (i.e., the vertices directly result from a random process), and the arcs are defined
based on the random sets (i.e., proximity regions) N (Xi ) as described before. Hence
the set of arcs A (indirectly) results from a random process such that gi j are identically
distributed and gi j and gkl are independent for i �= k and j �= l and {i, j} �= {k, l}.

Additionally, Cov(gi j , gkl)= E[gi j gkl ] − p2
a < ∞, since E[gi j gkl ] = P((gi j , gkl)

= (1, 1)). Hence ν = Cov(hi j , hik)= Cov((gi j + g ji )/2, (gik + gki )/2)= (Cov
[gi j , gik] + Cov[gi j , gki ] + Cov[g ji , gik] + Cov[g ji , gki ])/4 < ∞ as well. Then

by Theorem 3.3.13 in Randles and Wolfe (1979), we have
√

n [ρ(Dn) − pa]
L−→

N (0, 4ν) as n → ∞, provided that ν > 0. �

Recall that 2 hi j = (gi j + g ji ) = I(X j ∈ N (Xi )) + I(Xi ∈ N (X j )) is the number

of arcs between Xi and X j in Dn . For Xi
iid∼ FX , i = 1, 2, . . . , n, ρ(Dn) is a random

variable that depends on n, F , and N (·) (i.e., Ym). But E [ρ(Dn)] = E [h12] = pa

only depends on F and N (·). Furthermore,

0 ≤ Var [ρ(Dn)] = 2

n (n − 1)
Var [h12] + 4(n − 2)

n (n − 1)
Cov [h12, h13] (3)

where the variance is

Var[hi j ] = Var [h12] = E[(hi j )
2] − (E[hi j ])2 = E[(gi j + g ji )

2/4] − p2
a

= (E[gi j ] + 2 E[gi j ]E[g ji ] + E[g ji ])/4 − p2
a = (pa + 2 pa + pa)/4 − p2

a

= (pa − p2
a)/2 = pa (1 − pa) /2

and the covariance is

Cov [h12, h13] = E [h12h13] − E [h12] E [h13] = E [h12h13] − p2
a,
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Relative arc density of an interval catch digraph family 765

with

4 E [h12h13] = E[(g12 + g21)(g13 + g31)] = E[g12g13 + g12g31 + g21g13 + g21g31]
= E[I(X2 ∈ N (X1) I(X3 ∈ N (X1)) + I(X2 ∈ N (X1) I(X1 ∈ N (X3))

+I(X1 ∈ N (X2) I(X3 ∈ N (X1))] + I(X1 ∈ N (X2) I(X1 ∈ N (X3))]
= E[I({X2, X3} ⊂ N (X1)) + I(X2 ∈ N (X1) I(X3 ∈ �1(X3, N ))

+I(X2 ∈ �1(X1) I(X3 ∈ N (X1))]
+I(X2 ∈ �1(X1, N ) I(X3 ∈ �1(X1, N ))]

= P({X2, X3} ⊂ N (X1)) + 2 P(X2 ∈ N (X1), X3 ∈ �1(X1, N ))

+P({X2, X3} ⊂ �1(X1, N )).

Then ν = Cov(hi j , hik)= E[hi j hik]−E[hi j ]E[hik] = E[hi j hik]− p2
a = E[h12h13]

− p2
a > 0 iff

P({X2, X3} ⊂ N (X1)) + 2 P(X2 ∈ N (X1), X3 ∈ �1(X1, N ))

+P({X2, X3} ⊂ �1(X1, N )) > 4p2
a .

Notice also that E[|hi j |3] < ∞ since E[|hi j |3] ≤ 1. Then for ν > 0, the sharpest
rate of convergence in the asymptotic normality of ρ(Dn) is

sup
t∈R

∣∣∣∣P

(√
n(ρ(Dn) − pa)√

4 ν
≤ t

)
− �(t)

∣∣∣∣ ≤ 8 K pa (4 ν)−3/2 n−1/2 = K
pa√
n ν3

(4)

where K is a constant and �(t) is the cumulative distribution function for standard
normal distribution (Callaert and Janssen 1978).

In general a random digraph, just like a random graph, can be obtained by starting
with a set of n vertices and adding arcs between them at random. We can consider
the counterpart of the Erdős–Rényi model for digraphs, denoted D(n, p), in which
every possible arc occurs independently with probability p (Erdős and Rényi 1959).
Notice that the random digraph D(n, p), satisfies the conditions of Theorem 1, so the
relative arc density of D(n, p) is a U -statistic; however, the asymptotic distribution

of its relative arc density is degenerate (with ρ(D(n, p))
L−→ p, as n → ∞) since

the covariance term is zero due to the independence between the arcs.

3 Proportional-edge PCDs for one dimensional data

Let � = R and Y(i) be the i th order statistic of Ym for i = 1, 2, . . . , m. Assume Y(i)

values are distinct (which happens with probability one for continuous distributions).
Then Y(i) values partition R into (m + 1) intervals. Let

−∞ =: Y(0) < Y(1) < · · · < Y(m) < Y(m+1) := ∞.
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766 E. Ceyhan

Fig. 1 Plotted in the top two rows are illustrations of the construction of proportional-edge proximity
region, N (x, r, c) for Y2 = {y1, y2} with y1 = 0 and y2 = 1 (hence Mc = c) and x ∈ (0, c) (top) and
x ∈ (c, 1) (bottom); and in the bottom two rows are for the proximity regions associated with CCCD, i.e.,
N (x, r = 2, c = 1/2) for an x ∈ (0, 1/2) (top) and x ∈ (1/2, 1) (bottom)

We call intervals
(−∞, Y(1)

)
and

(
Y(m),∞

)
the end intervals, and intervals(

Y(i−1), Y(i)
)

for i = 2, . . . , m the middle intervals. Then we define the propor-
tional-edge PCD with the parameter r ≥ 1 for two one dimensional data sets, Xn
and Ym , from classes X and Y , respectively, as follows. For x ∈ (

Y(i−1), Y(i)
)

with
i ∈ {2, . . . , m} (i.e., for x in a middle interval) and Mc ∈ (

Y(i−1), Y(i)
)

such that
c × 100% of (Y(i) − Y(i−1)) is to the left of Mc (i.e., Mc = Y(i−1) + c (Y(i) − Y(i−1)))

N (x, r, c)=
{(

Y(i−1), Y(i−1) + r
(
x − Y(i−1)

))⋂ (
Y(i−1), Y(i)

)
if x ∈ (Y(i−1), Mc),(

Y(i) − r
(
Y(i) − x

)
, Y(i)

) ⋂ (
Y(i−1), Y(i)

)
if x ∈ (

Mc, Y(i)
)
.

(5)

For an illustration of N (x, r, c) in the middle interval case, see also Fig. 1 where
Y2 = {y1, y2} with y1 = 0 and y2 = 1 (hence Mc = c).

Additionally, for x ∈ (
Y(i−1), Y(i)

)
with i ∈ {1, m + 1} (i.e., for x in an end inter-

val), the proportional-edge proximity region only has an expansion parameter, but
not a centrality parameter. Hence we let Ne(x, r) be the proportional-edge proximity
region for an x in an end interval.

Ne(x, r) =
{(

Y(1) − r
(
Y(1) − x

)
, Y(1)

)
if x < Y(1),(

Y(m), Y(m) + r
(
x − Y(m)

))
if x > Y(m).

(6)
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Relative arc density of an interval catch digraph family 767

If x ∈ Ym , then we define N (x, r, c) = {x} and Ne(x, r) = {x} for all r ∈
[1,∞], and if x = Mc, then in Eq. (5), we arbitrarily assign N (x, r, c) to be one
of

(
Y(i−1), Y(i−1) + r

(
x − Y(i−1)

)) ∩ (
Y(i−1), Y(i)

)
or

(
Y(i) − r

(
Y(i) − x

)
, Y(i)

) ∩(
Y(i−1), Y(i)

)
. For X from a continuous distribution, these special cases in the con-

struction of proportional-edge proximity region—x ∈ Ym and x = Mc—happen with
probability zero. Notice that r > 1 implies x ∈ N (x, r, c) for all x ∈ [

Y(i−1), Y(i)
]

with
i ∈ {2, . . . , m} and x ∈ Ne(x, r) for all x ∈ [

Y(i−1), Y(i)
]

with i ∈ {1, m+1}. Further-
more, limr→∞ N (x, r, c) = (

Y(i−1), Y(i)
)

(and limr→∞ Ne(x, r) = (
Y(i−1), Y(i)

)
)

for all x ∈ (
Y(i−1), Y(i)

)
with i ∈ {2, . . . , m} (and i ∈ {1, m + 1}), so we define

N (x,∞, c) = (
Y(i−1), Y(i)

)
(and Ne(x,∞) = (

Y(i−1), Y(i)
)
) for all such x .

The vertex-random proportional-edge PCD has the vertex set Xn and arc set A
defined by (Xi , X j ) ∈ A ⇐⇒ X j ∈ N (Xi , r, c) for Xi , X j in the middle inter-
vals and (Xi , X j ) ∈ A ⇐⇒ X j ∈ Ne(Xi , r) for Xi , X j in the end intervals.
We denote such digraphs as Dn,m(r, c). A Dn,m(r, c)-digraph is a pseudo digraph
according some authors, if loops are allowed (see, e.g., Chartrand and Lesniak 1996).
The Dn,m(r, c)-digraphs are closely related to the proximity graphs of Jaromczyk and
Toussaint (1992) and might be considered as a special case of covering sets of Tuza
(1994) and intersection digraphs of Sen et al. (1989). Our vertex-random proximity
digraph is not a standard random graph (see, e.g., Janson et al. 2000). The randomness
of a Dn,m(r, c)-digraph lies in the fact that the vertices are random with the joint distri-
bution FX,Y , but arcs (Xi , X j ) are deterministic functions of the random variable X j

and the random set N (Xi , r, c) in the middle intervals and the random set Ne(Xi , r)

in the end intervals. In R, the vertex-random PCD is a special case of interval catch
digraphs (see, e.g., Sen et al. 1989; Prisner 1994). Furthermore, when r = 2 and
c = 1/2 (i.e., Mc = (

Y(i−1) + Y(i)
)
/2) we have N (x, 2, 1/2) = B(x, r(x)) for an

x in a middle interval and Ne(x, 2) = B(x, r(x)) for an x in an end interval where
r(x) = d(x,Ym) = miny∈Ym d(x, y) and the corresponding PCD is the CCCD of
Priebe et al. (2001). See also Fig. 1.

3.1 Relative arc density of random Dn,m(r, c)-digraphs

LetF(R) := {FX,Y on R with P(X = Y ) = 0 and the marginal distributions, FX and
FY , are non-atomic}. In this article, we consider Dn,m(r, c)-digraphs for which Xn and
Ym are random samples from FX and FY , respectively, and the joint distribution of
X, Y is FX,Y ∈ F(R). We call such digraphs asF(R)-randomDn,m(r, c)-digraphs and
focus on the random variable ρ(Dn,m(r, c)). For notational brevity, we use ρn,m(r, c)
instead of ρ(Dn,m(r, c)). It is trivial to see that 0 ≤ ρn,m(r, c) ≤ 1, and ρn,m(r, c) > 0
for nontrivial digraphs.

3.2 The distribution of the relative arc density of F(R)-random Dn,m(r, c)-digraphs

For an FX,Y ∈ F(R), since the marginals are non-atomic, the order statistics are
distinct with probability one. Let Ii := (

Y(i−1), Y(i)
)
,X[i] := Xn ∩ Ii , and Y[i] :=

{Y(i−1), Y(i)} for i = 1, 2, . . . , (m +1). Let D[i](r, c) be the component of the random
Dn,m(r, c)-digraph induced by the pair X[i] and Y[i]. Then we have a disconnected
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768 E. Ceyhan

digraph with subdigraphs D[i](r, c) for i = 1, 2, . . . , (m + 1) each of which might be
null or itself disconnected. Let A[i] be the arc set of D[i](r, c), and ρ[i](r, c) denote the
relative arc density of D[i](r, c); ni := ∣

∣X[i]
∣
∣, and Fi be the density FX restricted to

Ii for i ∈ {1, 2, . . . , m + 1}. Furthermore, let M [i]
c ∈ Ii be the point so that it divides

the interval Ii in ratios c and 1 − c (i.e., length of the subinterval to the left of M [i]
c

is c × 100% of the length of Ii ) for i ∈ {2, . . . , m}. Notice that for i ∈ {2, . . . , m}
(i.e., middle intervals), D[i](r, c) is based on the proximity region N (x, r, c) and for
i ∈ {1, m +1} (i.e., end intervals), D[i](r, c) is based on the proximity region Ne(x, r).
Since we have at most m + 1 subdigraphs that are disconnected, it follows that we
have at most nT := ∑m+1

i=1 ni (ni − 1) arcs in the digraph Dn,m(r, c). Then we define
the relative arc density for the entire digraph as

ρn,m(r, c) := |A|
nT

=
∑m+1

i=1 |A[i]|
nT

= 1

nT

m+1∑

i=1

(ni (ni − 1))ρ[i](r, c). (7)

Since ni (ni −1)
nT

≥ 0 for each i and
∑m+1

i=1
ni (ni −1)

nT
= 1, it follows that ρn,m(r, c) is a

mixture of the ρ[i](r, c). We study the simpler random variable ρ[i](r, c) first. In the
remaining of this section, the almost sure (a.s.) results follow from the fact that the
marginal distributions FX and FY are non-atomic.

Lemma 1 Let D[i](r, c) be the digraph induced by X points in the end intervals (i.e.,
i ∈ {1, (m + 1)}) and ρ[i](r, c) be the corresponding relative arc density. For r ≥ 1,
if ni ≤ 1, then ρ[i](r, c) = 0. For r = 1, we have ρ[i](1, c) = (1/2) I(ni > 1) a.s.,
where I(·) stands for the indicator function.

Proof Let i = m + 1 (i.e., consider the right end interval). For all r ≥ 1, if nm+1 ≤
1, then by definition ρ[m+1](r, c) = 0. So, we assume nm+1 > 1. Let X[m+1] =
{Z1, Z2, . . . , Znm+1} and Z( j) be the corresponding order statistics. There is an arc
from Z( j) to each Z(k) for k < j , with j, k ∈ {1, 2, . . . , nm+1} (and possibly to
some other Zl ), since N

(
Z( j), r, c

) = (Y(m), Y(m) + r (Z( j) − Y(m))) and so Z(k) ∈
N

(
Z( j), r, c

)
. So, there are at least 0+1+2+· · ·+nm+1−1 = nm+1(nm+1−1)/2 arcs

in D[m+1](r, c). Then ρ[m+1](r, c) ≥ (nm+1(nm+1 − 1)/2)/(nm+1(nm+1 − 1)) = 1/2.
By symmetry, the same results hold for i = 1. For r = 1 and nm+1 > 1, and i = m+1,
there is an arc from Z( j) to each Z(k) for k < j, j, k ∈ {1, 2, . . . , m + 1} (and no arcs
to other Zl ). So, there are 0 + 1 + 2 + · · · + nm+1 − 1 = nm+1(nm+1 − 1)/2 arcs in
D[m+1](1, c). Then ρ[i](1, c) = (nm+1(nm+1 − 1)/2)/(nm+1(nm+1 − 1)) = 1/2. By
symmetry, the same results hold for i = 1. �

Using Lemma 1, we have the following lower bound for ρn,m(r, c) and exact result
for ρn,m(1, c).

Theorem 2 Let Dn,m(r, c) be an F(R)-random Dn,m(r, c)-digraph with n >

0, m > 0 and k1 and k2 be two natural numbers defined as k1 := ∑m
i=2(ni,1(ni,1 − 1)/2

+ni,2(ni,2−1)/2) and k2 :=∑
i∈{1,m+1} ni (ni −1)/2, where ni,1 :=

∣∣
∣Xn ∩

(
Y(i), M [i]

c

)∣∣
∣

and ni,2 :=
∣
∣∣Xn ∩

(
M [i]

c , Y(i+1)

)∣
∣∣. Then for r ≥ 1, we have (k1 + k2)/nT ≤

ρn,m(r, c) ≤ 1 a.s. and for r = 1, we have ρn,m(1, c) = (k1 + k2)/nT a.s.

123

Author's personal copy



Relative arc density of an interval catch digraph family 769

Proof For i ∈ {1, (m + 1)}, we have k2 as in Lemma 1. Let i ∈ {2, 3, . . . , m} and

Xi,1 := X[i] ∩
(

Y(i−1), M [i]
c

)
= {U1, U2, . . . , Uni,1},

and

Xi,2 := X[i] ∩
(

M [i]
c , Y(i)

)
= {V1, V2, . . . , Vni,2}.

Furthermore, let U( j) and V(k) be the corresponding order statistics. There is an arc
from U( j) to U(k) for k < j, j, k ∈ {1, 2, . . . , ni,1} and possibly to some other Ul , and
similarly there is an arc from V( j) to V(k) for k > j, j, k ∈ {1, 2, . . . , ni,2} and possi-

bly to some other Vl . Thus, there are at least ni,1(ni,1−1)

2 + ni,2(ni,2−1)

2 arcs in D[i](r, c).

Hence ρn,m(r, c) ≥ (k1 + k2)/nT . For r = 1, we have ni,1(ni,1−1)

2 + ni,2(ni,2−1)

2 many
arcs in D[i](1, c). Hence ρn,m(1, c) = (k1 + k2)/nT . �

Theorem 3 For i = 1, 2, 3, . . . , m + 1, r = ∞, and ni > 0, we have ρ[i](r =
∞, c) = I(ni > 1) and ρn,m(r = ∞, c) = 1 a.s.

Proof For r = ∞, if ni ≤ 1, then ρ[i](r = ∞, c) = 0. So we assume ni > 1 and let
i = m + 1. Then Ne(x,∞) = (

Y(m),∞
)

for all x ∈ (
Y(m),∞

)
. Hence D[m+1](∞, c)

is a complete symmetric digraph of order nm+1, which implies ρ[m+1](r = ∞, c) = 1.
By symmetry, the same holds for i = 1. For i ∈ {2, 3, . . . , m} and ni > 1, we have
N (x,∞, c) = Ii for all x ∈ Ii , hence D[i](∞, c) is a complete symmetric digraph of

order ni , which implies ρ[i](∞, c) = 1. Then ρn,m(∞, c) = ∑ ni (ni −1)ρ[i] (∞,c)

nT
= 1,

since when ni ≤ 1, ni has no contribution to nT , and when ni > 1, ρ[i](∞, c) = 1.
�

4 The distribution of the relative arc density of proportional-edge PCDs
for uniform data

Let −∞ < δ1 < δ2 < ∞,Ym be a random sample from FY with support S(FY ) ⊆
(δ1, δ2), and Xn = {X1, X2, . . . , Xn} be a random sample from FX = U(δ1, δ2), the
uniform distribution on (δ1, δ2) so that we have FX,Y ∈ F(R). Assuming we have the
realization of Ym as Ym = {y1, y2, . . . , ym} = {y(1), y(2), . . . , y(m)} with δ1 < y(1) <

y(2) < · · · < y(m) < δ2, we let y(0) := δ1 and y(m+1) := δ2. Then it follows that the
distribution of Xi restricted to Ii is FX |Ii = U(Ii ). We call such digraphs as U(δ1, δ2)-
random Dn,m(r, c)-digraphs and provide the distribution of their relative density for
the whole ranges of r and c. We present a “scale invariance” result for proportional-
edge PCDs. This invariance property will simplify the notation in our subsequent
analysis by allowing us to consider the special case of the unit interval (0, 1).

Theorem 4 (Scale Invariance Property) Suppose Xn is a set of iid random variables
from U(δ1, δ2) where δ1 < δ2 and Ym is set of m distinct Y points in (δ1, δ2). Then
for any r ≥ 1, the distribution of ρ[i](r, c) is independent of Y[i] (and hence of the
restricted support interval Ii ) for all i ∈ {1, 2, . . . , m + 1}.

123

Author's personal copy



770 E. Ceyhan

Proof Let δ1 < δ2 and Ym be as in the hypothesis. Any U(δ1, δ2) random variable
can be transformed into a U(0, 1) random variable by φ(x) = (x − δ1)/(δ2 − δ1),
which maps intervals (t1, t2) ⊆ (δ1, δ2) to intervals (φ(t1), φ(t2)) ⊆ (0, 1). That is,
if X ∼ U(δ1, δ2), then we have φ(X) ∼ U(0, 1) and P(X ∈ (t1, t2)) = P(φ(X) ∈
(φ(t1), φ(t2)) for all (t1, t2) ⊆ (δ1, δ2). The distribution of ρ[i](r, c) is obtained by
calculating such probabilities. So, without loss of generality, we can assume X[i] is a
set of iid random variables from the U(0, 1) distribution. That is, the distribution of
ρ[i](r, c) does not depend on Y[i] and hence does not depend on the restricted support
interval Ii . �

Note that scale invariance of ρ[i](r = ∞, c) follows trivially for all Xn from any
non-atomic FX with support in (δ1, δ2) with δ1 < δ2, since for r = ∞, we have
ρ[i](r = ∞, c) = 1 a.s.

Based on Theorem 4, we may assume each Ii as the unit interval (0, 1) for uniform
data. Then the proportional-edge proximity region for x ∈ (0, 1) with parameters
c ∈ (0, 1) and r ≥ 1 have the following forms. If x ∈ Ii for i ∈ {2, . . . , m} (i.e., in
the middle intervals), when transformed under φ(·) to (0, 1), we have

N (x, r, c) =
{

(0, r x) ∩ (0, 1) if x ∈ (0, c),
(1 − r (1 − x), 1) ∩ (0, 1) if x ∈ (c, 1),

(8)

and N (x = c, r, c) is arbitrarily taken to be one of (0, r x)∩(0, 1) or (1−r (1−x), 1).
This special case of “X = c” happens with probability zero for continuous X .

If x ∈ I1 (i.e., in the left end interval), when transformed under φ(·) to (0, 1), we
have Ne(x, r) = (max(0, 1 − r (1 − x)), 1); and if x ∈ Im+1 (i.e., in the right end
interval), when transformed under φ(·) to (0, 1), we have Ne(x, r) = (0, min(1, r x)).

Notice that each subdigraph D[i](r, c) is itself a U(Ii )-random Dn,2(r, c)-digraph.
The distribution of the relative arc density of D[i](r, c) is given in the following result
as a corollary to Theorem 1.

Corollary 1 Let ρ[i](r, c) be the relative density of subdigraph D[i](r, c) of the
proportional-edge PCD based on uniform data in (δ1, δ2) where δ1 < δ2 and Ym

be a set of m distinct Y points in (δ1, δ2). Then for r ∈ (1,∞), as ni → ∞, we have

(i) for i ∈ {2, . . . , m},√ni
[
ρ[i](r, c) − μ(r, c)

] L−→ N (0, 4 ν(r, c)), where
μ(r, c) is the arc probability and ν(r, c) = Cov[h12, h12] in the middle intervals,
and

(ii) for i ∈ {1, m + 1},√ni
[
ρ[i](r, c) − μe(r)

] L−→ N (0, 4 νe(r)), where μe(r) is
the arc probability and νe(r) = Cov[h12, h12] in the end intervals.

Proof (i) Let i ∈ {2, . . . , m} (i.e., Ii is a middle interval). By the scale invariance for
uniform data (see Theorem 4), a middle interval can be assumed to be the unit interval
(0, 1). The mean of the asymptotic distribution ρ[i](r, c) is computed as follows.

E
[
ρ[i](r, c)

] = E[h12] = P(X2 ∈ N (X1, r, c)) = μ(r, c)

which is the arc probability. And the asymptotic variance of ρ[i](r, c) is Cov[h12, h13]
= 4 ν(r, c). For r ∈ (1,∞), since 2 h12 = I(X2 ∈ N (X1, r, c))+I(X1 ∈ N (X2, r, c))
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is the number of arcs between X1 and X2 in the PCD, h12 tends to be high if the prox-
imity region N (X1, r, c) is large. In such a case, h13 tends to be high also. That is, h12
and h13 tend to be high and low together. So, for r ∈ (1,∞), we have ν(r, c) > 0.
Hence asymptotic normality follows.

(ii) In an end interval, the mean of the asymptotic distribution ρ[i](r, c) is

E
[
ρ[i](r, c)

] = E[h12] = P(X2 ∈ Ne(X1, r)) = μe(r)

the asymptotic variance of ρ[i](r, c) is Cov[h12, h13] = 4 νe(r). For r ∈ (1,∞), as in
(i), we have νe(r) > 0. Hence asymptotic normality follows. �

Let P2N := P({X2, X3} ⊂ N (X1, r, c)), PN G := P(X2 ∈ N (X1, r, c), X3 ∈
�1(X1, r, c)), and P2G := P({X2, X3} ⊂ �1(X1, r, c)). Then

Cov[h12, h13] = E[h12h13] − E[h12]E[h13] = E[h12h13] − μ(r, c)2

= (P2N + 2 PN G + P2G)/4 − μ(r, c)2,

since

4 E[h12h13] = P({X2, X3} ⊂ N (X1, r, c)) + 2 P(X2 ∈ N (X1, r, c),

X3 ∈ �1(X1, r, c)) + P({X2, X3} ⊂ �1(X1, r, c)) = P2N + 2 PN G + P2G .

Similarly, let P2N ,e := P({X2, X3} ⊂ Ne(X1, r)), PN G,e := P(X2 ∈
Ne(X1, r), X3 ∈ �1,e(X1, r)), and P2G,e := P({X2, X3} ⊂ �1,e(X1, r)). Then

Cov[h12, h13] = (P2N ,e + 2 PN G,e + P2G,e)/4 − μe(r)2.

Hence, we have ν(r, c) > 0 (and νe(r) > 0) iff P2N + 2 PN G + P2G > 4 μ(r, c)2

(and P2N ,e + 2 PN G,e + P2G,e > 4 μe(r)2).
For r = ∞, we have N (x,∞, c) = Ii for all x ∈ Ii with i ∈ {2, . . . , m} and

Ne(x,∞) = Ii for all x ∈ Ii with i ∈ {1, m + 1}. Then for i ∈ {2, . . . , m}

E
[
ρ[i](∞, c)

] = E [h12] = μ(∞, c) = P(X2 ∈ N (X1,∞, c) = P(X2 ∈ Ii ) = 1.

On the other hand, 4 E [h12h13] = P({X2, X3} ⊂ N (X1,∞, c)) + 2 P(X2 ∈
N (X1,∞, c), X3 ∈ �1(X1,∞, c)) + P({X2, X3} ⊂ �1(X1,∞, c)) = (1 + 2 + 1).
Hence E [h12h13] = 1 and so ν(∞, c) = 0. Similarly, for i ∈ {1, m + 1}, we have
μe(∞) = 1 and νe(∞) = 0. Therefore, the CLT result does not hold for r = ∞.
Furthermore, ρ[i](r = ∞, c) = 1 a.s.

For r = 1, in a middle interval, we have ρ[i](r, c) = [ni,1(ni,1 − 1)/2 + ni,2(ni,2 −
1)/2]/(n(n − 1)) where ni,1 and ni,2 are as in Theorem 2. As ni,1, and ni,2 (and hence
ni ) goes to ∞, we have [ni,1(ni,1−1)]/(ni (ni −1)) → c2 and [ni,2(ni,2−1)]/(ni (ni −
1)) → (1 − c)2. Then ρ[i](r, c)

L→ (c2 + (1 − c)2)/2 = 1/2 + c (1 − c) which is
degenerate. Likewise, in the end intervals, by Lemma 1, we have ρ[i](r = 1, c) = 1/2
for ni > 1. Hence the CLT result does not hold for r = 1 either.
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Remark 1 The Joint Distribution of (h12, h13): The pair (h12, h13) is a bivariate
discrete random variable with nine possible values so that

(2 h12, 2 h13) ∈ {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.

Then finding the joint distribution of (h12, h13) is equivalent to finding the joint prob-
ability mass function of (h12, h13). Hence the joint distribution of (h12, h13) can be
found by calculating the probabilities such as P((h12, h13) = (0, 0)) = P({X2, X3} ⊂
Ii \ (N (X1, r, c) ∪ �1(X1, r, c))). �

4.1 The distribution of relative arc density of U(y1, y2)-random Dn,2(r, c)-digraphs

In the special case of m = 2 with Y2 = {y1, y2} and δ1 = y1 < y2 = δ2, we
have only one middle interval, and the two end intervals are empty. In this section,
we consider the relative density of proportional-edge PCD based on uniform data in
(y1, y2). By Theorem 4 and Corollary 1, the asymptotic distribution of any ρ[i](r, c)
for the middle intervals for m ≥ 2 will be identical to the asymptotic distribution of
U(y1, y2)-random Dn,2(r, c)-digraph.

First we consider the simplest case of r = 2 and c = 1/2. By Theorem 4, with-
out loss of generality, we can assume (y1, y2) to be the unit interval (0, 1). Then
N (x, 2, 1/2) = B(x, r(x)) where r(x) = min(x, 1 − x) for x ∈ (0, 1). Hence pro-
portional-edge PCD based on N (x, 2, 1/2) is equivalent to the CCCD of Priebe et al.
(2001). Moreover, we have �1(X1, 2, 1/2) = (X1/2, (1 + X1) /2).

Theorem 5 As n → ∞, we have

√
n [ρn(2, 1/2) − μ(2, 1/2)]

L−→ N (0, 4 ν(2, 1/2)),

where μ(2, 1/2) = 1/2 and 4 ν(2, 1/2) = 1/12.

Proof By symmetry, we only consider X1 ∈ (0, 1/2). Notice that for x ∈ (0, 1/2),
we have N (x, 2, 1/2) = (0, 2 x) and �1(x, 2, 1/2) = (x/2, (1 + x)/2). Hence

μ(2, 1/2) = P(X2 ∈ N (X1, 2, 1/2)) = 2 P(X2 ∈ N (X1, 2, 1/2), X1 ∈ (0, 1/2))

by symmetry. Here

P(X2 ∈ N (X1, 2, 1/2), X1 ∈ (0, 1/2)) = P(X2 ∈ (0, 2 x1), X1 ∈ (0, 1/2))

=
1/2∫

0

2 x1∫

0

f1,2(x1, x2)dx2dx1 =
1/2∫

0

2 x1∫

0

1dx2dx1

=
1/2∫

0

2 x1dx1 = x2
1 |1/2

0 = 1/4. (9)
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Then μ(2, 1/2) = 2 (1/4) = 1/2.
For Cov(h12, h13), we need to calculate P2N , PN G , and P2G . The probability

P2N = P({X2, X3} ⊂ N (X1, 2, 1/2))

= 2 P({X2, X3} ⊂ N (X1, 2, 1/2), X1 ∈ (0, 1/2)) (10)

and

P({X2, X3} ⊂ N (X1, 2, 1/2), X1 ∈ (0, 1/2)) =
1/2∫

0

(2 x1)
2dx1 = 1/6.

So P2N = 2 (1/6) = 1/3.

PN G = 2 P(X2 ∈ N (X1, 2, 1/2), X3 ∈ �1(X1, 2, 1/2), X1 ∈ (0, 1/2))

and

P(X2 ∈ N (X1, 2, 1/2), X3 ∈ �1(X1, 2, 1/2), X1 ∈ (0, 1/2))

=
1/2∫

0

(2 x1)(1/2)dx1 = 1/8. (11)

Then PN G = 2 (1/8) = 1/4.
Finally, we have P2G = 2 P({X2, X3} ⊂ �1(X1, 2, 1/2), X1 ∈ (0, 1/2)) and

P({X2, X3} ⊂ �1(X1, 2, 1/2), X1 ∈ (0, 1/2)) =
1/2∫

0

(1/4)dx1 = 1/8.

So P2G = 2 (1/8) = 1/4.
Therefore, 4 E[h12h13] = 1/3 + 2 (1/4) + 1/4 = 13/12. Hence 4 ν(2, 1/2) =

4 Cov[h12, h13] = 13/12 − 4(1/2)2 = 1/12. �

The sharpest rate of convergence in Theorem 5 is K μ(2,1/2)√
n ν(2,1/2)3

= 12
√

3 K√
n

.

Next we consider the more general case of r = 2 and c ∈ (0, 1). Without loss
of generality, assume 0 < c < 1/2. For x ∈ (0, 1), the proximity region has the
following form:

N (x, 2, c) =
⎧
⎨

⎩

(0, 2 x) if x ∈ (0, c),
(0, 1) if x ∈ [c, 1/2),

(2 x − 1, 1) if x ∈ [1/2, 1)

(12)

and the �1-region is �1(x, 2, c)=(min(x/2, c), max(1/2, (1+ x)/2))=(min(x/2, c),
(1 + x)/2), since (1 + x)/2 > 1/2.
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Theorem 6 As n → ∞, for c ∈ (0, 1), we have
√

n [ρn(2, c) − μ(2, c)]
L−→

N (0, 4 ν(2, c)), where μ(2, c) = μ1(2, c) I(0 < c ≤ 1/2)+μ2(2, c) I(1/2 ≤ c < 1)

and ν(2, c) = ν1(2, c) I(0 < c ≤ 1/2) + ν2(2, c) I(1/2 ≤ c < 1) with μ1(2, c) =
c2 − c + 3/4 and

4 ν1(2, c) =
{

26 c3/3 + c + 1/24 − 4 c4 − 5 c2 if 0 < c ≤ 1/4,

6 c3 + c/2 + 1/12 − 4 c4 − 3 c2 if 1/4 < c < 1/2,
(13)

and μ2(2, c) = μ1(2, 1 − c) and ν2(2, c) = ν1(2, 1 − c).

Proof is provided in Appendix 1. See Fig. 2 for the plots of the mean μ(2, c) and the
asymptotic variance 4 ν(2, c). Notice that for c = 1/2, we have μ(2, c = 1/2) = 1/2,
and 4 ν(2, c = 1/2) = 1/12, hence as c → 1/2, the distribution of ρn(2, c) converges
to the one in Theorem 5. Furthermore, the sharpest rate of convergence in Theorem 6
is K μ(2,c)√

n ν(2,c)3
which is, for c ∈ (0, 1/2),

K√
n

⎧
⎪⎨

⎪⎩

72 (4 c−4 c2−3)

(96 c4−208 c3+120 c2−24 c−1)
√−576 c4+1248 c3−720 c2+144 c+6

if 0 < c ≤ 1/4,

18 (4 c−4 c2−3)

(48 c4−72 c3+36 c2−6 c−1)
√−144 c4+216 c3−108 c2+18 c+3

if 1/4 < c < 1/2,

and is minimized at c ≈ 0.19 which is found by setting the first derivative of this rate
with respect to c to zero and solving for c numerically. We also checked the plot of

μ1(2,c)√
ν1(2,c)3

(not presented) and verified that this is actually where the global minimum

is attained. By symmetry, the same global minimum for K μ(2,c)√
n ν(2,c)3

is also attained

at c ≈ 0.81.
Next we consider the case of r ≥ 1 and c = 1/2. By symmetry, we only con-

sider X1 ∈ (0, 1/2). For x ∈ (0, 1/2), the proximity region is N (x, r, c = 1/2) =
(0, min(r x, 1)) and the �1-region is �1(x, r, 1/2) = (min(x/r, c), max(1/2, 1−(1−
x)/r)).

Theorem 7 For r ∈ (1,∞), as n → ∞, we have
√

n [ρn(r, 1/2) − μ(r, 1/2)]
L−→

N (0, 4 ν(r, 1/2)) where

μ(r, 1/2) =
{

r/4 if 1 ≤ r < 2,

1 − 1/r if r ≥ 2,
(14)

and

4 ν(r, 1/2) =
{

4 r4+12 r−r5−r3−10 r2−4
12 r2 if 1 ≤ r < 2,

2 r−3
3 r2 if r ≥ 2.

(15)

Proof is provided in Appendix 1. See Fig. 3 for the plots of the mean μ(r, 1/2)

and the asymptotic variance 4 ν(r, 1/2). Notice that ν(r = 1, 1/2) = 0 and
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Fig. 2 The plots of the asymptotic mean μ(2, c) (top) and the variance 4 ν(2, c) (bottom) as a function of
c for c ∈ (0, 1)

limr→∞ ν(r, 1/2) = 0, so the CLT result fails for r ∈ {1,∞}. For r = 2, we have
μ(r = 2, c = 1/2) = 1/2, and 4 ν(r = 2, c = 1/2) = 1/12, hence as r → 2,
the distribution of ρn(r, 1/2) converges to the one in Theorem 5. Furthermore, the
sharpest rate of convergence in Theorem 7 is

K
μ(r, 1/2)

√
n ν(r, 1/2)3

= K√
n

⎧
⎨

⎩

6
√

3 r4

(2 r2+4 r−r3−4)3/2(r−1)2 if 1 ≤ r < 2,

3
√

3 r2(r−1)

(2 r−3)3/2 if r ≥ 2.

(16)

and is minimized at r ≈ 2.55 which is found by setting the first derivative of this
rate with respect to r to zero and solving for r numerically. We also checked the plot
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Fig. 3 The plots of the asymptotic mean μ(r, 1/2) (top) and the variance 4 ν(r, 1/2) (bottom) as a function
of r for r ∈ [1, 10]

of μ(r, 1/2)/
√

ν(r, 1/2)3 (not presented) and verified that this is where the global
minimum is attained.

Finally, we consider the most general case of r ≥ 1 and c ∈ (0, 1). The proximity
region has the following forms:

N (x, r, c) =
{

(0, min(r x, 1)) if x ∈ (0, c),
(max(0, 1 − r (1 − x)), 1) if x ∈ (c, 1),

(17)

and the �1-region is �1(x, r, c) = (min(x/r, c), max(c, 1 − (1 − x)/r)).

Theorem 8 For r ∈ [1,∞), and c ∈ (0, 1), we have
√

n [ρn(r, c) − μ(r, c)]
L−→

N (0, 4 ν(r, c)), as n → ∞, where μ(r, c) = μ1(r, c) I(0 < c ≤ 1/2) +
μ2(r, c) I(1/2 ≤ c < 1) and ν(r, c) = ν1(r, c) I(0 < c ≤ 1/2) + ν2(r, c) I(1/2 ≤
c < 1). For 0 < c ≤ 1/2,
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μ1(r, c) =
⎧
⎨

⎩

c2r − c r + r/2 if 1 ≤ r < 1/(1 − c),
c2r2−2 c r+2 r−1

2 r if 1/(1 − c) ≤ r < 1/c,
1 − 1/r if r ≥ 1/c,

(18)

and for 1/4 < c ≤ 1/2,

ν1(r, c) = κ1(r, c) I(1 ≤ r < 1/(1 − c)) + κ2(r, c) I(1/(1 − c) ≤ r < 1/c)

+κ3(r, c) I(r ≥ 1/c) (19)

where

4 κ1(r, c) = −[12 c4r4 − 24 c3r4 + 3 c2r5 + 15 c2r4 − 3 c r5 − 9 c2r3 − 3 c r4 + r5

+6 c2r2 + 9 c r3 − r4 − 6 c r2 − 2 r3 + 4 r2 − 3 r + 1]
/

[3 r2] ,
4 κ2(r, c) = −[3 c4r4 + c3r5 − c3r4 − 11 c3r3 − 3 c2r4 + 6 c2r3 + 9 c2r2 + 3 c r3

−9 c r2 + 3 c r − r2 + 2 r − 1]
/

[3 r2] ,

4 κ3(r, c) = 2 r − 3

3 r2 ,

and for 0 < c ≤ 1/4,

ν1(r, c) = ϑ1(r, c) I
(

1 ≤ r <
1

1 − c

)
+ ϑ2(r, c) I

(
1

1 − c
≤ r <

1 − √
1 − 4c

2c

)

+ϑ3(r, c) I

(
1 − √

1 − 4c

2c
≤ r <

1 + √
1 − 4c

2c

)

+ϑ4(r, c) I

(
1 + √

1 − 4c

2c
≤ r <

1

c

)

+ ϑ5(r, c) I(r ≥ 1/c) (20)

where ϑ1(r, c) = κ1(r, c), ϑ2(r, c) = ϑ4(r, c) = κ2(r, c), ϑ5(r, c) = κ3(r, c), and

4 ϑ3(r, c) = 3 c4r5 − c3r5 − 11 c3r4 + 3 c2r4 + 9 c2r3 − 3 c r3 − r2 + 2 r − 1

3 r3 .

And for c ∈ (1/2, 1), we have μ2(r, c) = μ1(r, 1 − c) and ν2(r, c) = ν1(r, 1 − c).

Proof is provided in Appendix 1. See Fig. 4 for the plots of the mean μ(r, c)
and the asymptotic variance 4 ν(r, c). Notice that limc→1/2 ν(r = 1, c) = 0 and
limr→∞ ν(r, c) = 0, so the CLT result fails for (r, c) = (1, 1/2) and r = ∞. Further-
more, for r = 2 and c = 1/2, we have μ(r = 2, c = 1/2) = 1/2, and 4 ν(r = 2, c =
1/2) = 1/12, hence as r → 2 and c → 1/2, the distribution of ρn(r, c) converges to
the one in Theorem 5. The sharpest rate of convergence in Theorem 8 is K μ(r,c)√

n ν(r,c)3
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(the explicit form not presented) and is minimized at r ≈ 1.88 and c ≈ 0.19 (or
c ≈ 0.81) which is found by setting the first order partial derivatives of this rate with
respect to r and c to zero and solving for r and c numerically. We also checked the
surface plot of this rate (not presented) and observed that these points are actually
where the global minimum is attained.

4.2 The case of end intervals: relative density for U (
δ1, y(1)

)
or U (

y(m), δ2
)

data

Recall that with m ≥ 1 for the end intervals, I1 = (
δ1, y(1)

)
and Im+1 = (

y(m), δ2
)
,

the proximity and �1-regions were only dependent on x and r (but not on c). For
U (

δ1, y(1)

)
and U (

y(m), δ2
)

data, by symmetry, relative density has the same distri-
bution. So we only consider

(
y(m), δ2

)
. Due to scale invariance from Theorem 4, we

can assume that
(
y(m), δ2

)
is (0, 1). Let �1,e(x, r) be the �1-region corresponding to

Ne(x, r) in the end interval case.
First we consider r = 2 and uniform data in the end intervals. Then for x in the

right end interval, Ne(x, 2) = (0, min(1, 2 x)) for x ∈ (0, 1) and the �1-region is
�1,e(x, 2) = (x/2, 1).

Theorem 9 Let D[i](2, c) be the subdigraph of the proportional-edge PCD based
on uniform data in (δ1, δ2) where δ1 < δ2 and Ym be a set of m distinct Y points
in (δ1, δ2). Then for i ∈ {1, m + 1} (i.e., in the end intervals), as ni → ∞, we

have
√

ni
[
ρ[i](2, c) − μe(2)

] L−→ N (0, 4 νe(2)), where μe(2) = 3/4 and 4 νe(2) =
1/24.

Proof For x1 ∈ (0, 1), depending on the location of x1, the following are the different
types of the combinations of Ne(x1, 2) and �1,e(x1, 2).

(i) for 0 < x1 ≤ 1/2, Ne(x1, 2) = (0, 2 x1) and �1,e(x1, 2) = (x1/2, 1),
(ii) for 1/2 < x1 < 1, Ne(x1, 2) = (0, 1) and �1,e(x1, 2) = (x1/2, 1).

Then μe(2) = P(X2 ∈ Ne(X1, 2)) = ∫ 1/2
0 2 x1dx1 + ∫ 1

1/2 1dx1 = 3/4.
For Cov(h12, h13), we need to calculate P2N , PN G , and P2G .

P2N = P({X2, X3} ⊂ Ne(X1, 2)) =
1/2∫

0

(2 x1)
2dx1 +

1∫

1/2

1dx1 = 2/3.

PN G = P(X2 ∈ Ne(X1, 2), X3 ∈ �1,e(X1, 2))

=
1/2∫

0

(2 x1)(1 − x1/2)dx1 +
1∫

1/2

(1 − x1/2)dx1 = 25/48.

Finally, P2G = P({X2, X3} ⊂ �1,e(X1, 2)) = ∫ 1
0 (1 − x1/2)2dx1 = 7/12.

Therefore 4 E[h12h13] = P2N + 2 PN G + P2G = 55/24. Hence 4 νe(2) =
4 Cov[h12, h13] = 1/24. �
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Relative arc density of an interval catch digraph family 779

Fig. 4 The surface plots of the asymptotic mean μ(r, c) (top) and the variance 4 ν(r, c) (bottom) as a
function of r and c for r ∈ [1, 10] and c ∈ (0, 1), respectively

The sharpest rate of convergence in Theorem 9 is K μ(2,1/2)√
n ν(2,1/2)3

= 36
√

6 K√
n

.

Next we consider the more general case of r ≥ 1 for the end intervals. By Theo-
rem 4, we can assume each end interval to be (0, 1). For x in the right end interval,
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the proximity region is Ne(x, r) = (0, min(1, r x)) for x ∈ (0, 1) and the �1-region
is �1,e(x, r) = (x/r, 1).

Theorem 10 Let D[i](r, c) be the subdigraph of the proportional-edge PCD based
on uniform data in (δ1, δ2) where δ1 < δ2 and Ym be a set of m distinct Y points in
(δ1, δ2). Then for i ∈ {1, m + 1} (i.e., in the end intervals), and r ∈ (1,∞), we have
√

ni
[
ρ[i](r, c) − μe(r)

] L−→ N (0, 4 νe(r)), as ni → ∞, where μe(r) = 1 − 1/(2 r)

and 4 νe(r) = (r − 1)2/(3 r3).

Proof For x1 ∈ (0, 1), depending on the location of x1, the following are the different
types of the combinations of Ne(x1, r) and �1,e(x1, r).

(i) for 0 < x1 ≤ 1/r, Ne(x1, r) = (0, r x1) and �1,e(x1, r) = (x1/r, 1),
(ii) for 1/r < x1 < 1, Ne(x1, r) = (0, 1) and �1,e(x1, r) = (x1/r, 1).

Then μe(r) = P(X2 ∈ Ne(X1, r)) = ∫ 1/r
0 r x1dx1 + ∫ 1

1/r 1dx1 = 1 − 1/(2 r).
For Cov(h12, h13), we need to calculate P2N ,e, PN G,e, and P2G,e. The probability

P2N ,e = P({X2, X3} ⊂ Ne(X1, r)) =
1/r∫

0

(r x1)
2dx1 +

1∫

1/r

1dx1 = 1 − 2/(2 r).

PN G,e = P(X2 ∈ Ne(X1, r), X3 ∈ �1,e(X1, r))

=
1/r∫

0

(r x1)(1 − x1/r)dx1 +
1∫

1/r

(1 − x1/r)dx1 = 1 − r−1 + r−3/6.

Finally,

P2G,e = P({X2, X3} ⊂ �1,e(X1, r)) =
1∫

0

(1 − x1/r)2dx1 = 1 − r−1 + r−2/3.

Therefore 4 E[h12h13] = P2N ,e + 2 PN G,e + P2G,e = 12 r3−11r2+r+1
3 r3 . Hence

4 νe(r) = 4 Cov[h12, h13] = (r − 1)2/(3 r3). �

See Fig. 5 for the plots of the mean μe(r) and the asymptotic variance 4 νe(r). Notice
that νe(r = 1) = 0 and limr→∞ νe(r) = 0, so the CLT result fails for r ∈ {1,∞}.
Furthermore, for r = 2, we have μe(r = 2) = 3/4, and 4 νe(r = 2) = 1/24, hence as
r → 2, the distribution of ρn(r, c) converges to the one in Theorem 9. The sharpest
rate of convergence in Theorem 10 is K μ(r,1/2)√

n ν(r,1/2)3
(explicit form not presented) and

is minimized at r ≈ 2.74 which is found numerically as before. We also checked
the plot of μe(r)/

√
νe(r)3 (not presented) and verified that this is where the global

minimum is attained.
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Fig. 5 The plots of the asymptotic mean μe(r) (top) and the variance 4 νe(r) (bottom) for the end intervals
as a function of r for r ∈ [1, 10]

5 The distribution of the relative arc density of Dn,m(r, c)-digraphs

In this section, we consider the more challenging case of m ≥ 2.

5.1 First version of relative density in the case of m ≥ 2

Recall that the relative density ρn,m(r, c) is defined as in Eq. (7). Letting wi = (y(i) −
y(i−1))/(δ2 − δ1), for i = 1, 2, . . . , m + 1, we obtain the following as a result of
Theorem 8.

Theorem 11 Let Xn be a random sample from U(δ1, δ2) with −∞ < δ1 < δ2 < ∞
and Ym be a set of m distinct points in (δ1, δ2). For r ∈ (1,∞) and c ∈ (0, 1), the
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asymptotic distribution of ρn,m(r, c) conditional on Ym is given by

√
n

(
ρn,m(r, c) − μ̆(m, r, c)

) L−→ N (0, 4 ν̆(m, r, c)), (21)

as n → ∞, provided that ν̆(m, r, c) > 0, where

μ̆(m, r, c) = μ̃(m, r, c)

/(
m+1∑

i=1

w2
i

)

with μ̃(m, r, c) = μ(r, c)
∑m

i=2 w2
i +μe(r)

∑
i∈{1,m+1} w2

i and μ(r, c) and μe(r) are
as in Theorems 8 and 10, respectively. Furthermore,

4 ν̆(m, r, c) = 4 ν̃(m, r, c)

/(
m+1∑

i=1

w2
i

)2

with

4 ν̃(m, r, c) = [P2N + 2 PN G + P2G]
m∑

i=2

w3
i

+[P2N ,e + 2 PN G,e + P2G,e]
∑

i∈{1,m+1}
w3

i − (μ̃(m, r, c))2.

Proof is provided in Appendix 2. Notice that if y(1) = δ1 and y(m) = δ2, there
are only m − 1 middle intervals formed by y(i) and the end intervals are empty.
Hence in Theorem 11, μ̆(m, r, c) = μ(r, c) since μ̃(m, r, c) = μ(r, c)

∑m
i=2 w2

i . Fur-
thermore, 4 ν̆(m, r, c) = [P2N + 2 PN G + P2G] ∑m

i=2 w3
i − (μ(r, c)

∑m
i=2 w2

i )2 =
4 ν(m, r, c) + μ2(r, c)

(∑m
i=2 w3

i − (
∑m

i=2 w2
i )2

)
.

5.2 Second version of relative density in the case of m ≥ 2

For m ≥ 2, if we consider the entire data set Xn , then we have n vertices. So we can
also consider the relative density as ρ̃n,m(r, c) = |A| /(n (n − 1)).

Theorem 12 Let Xn be a random sample from U(δ1, δ2) with −∞ < δ1 < δ2 < ∞
and Ym be a set of m distinct points in (δ1, δ2). For r ∈ (1,∞) and c ∈ (0, 1), the
asymptotic distribution for ρ̃n,m(r, c) conditional on Ym is given by

√
n

(
ρ̃n,m(r, c) − μ̃(m, r, c)

) L−→ N (0, 4 ν̃(m, r, c)), (22)

as n → ∞, provided that ν̃(m, r, c) > 0, where μ̃(m, r, c) and ν̃(m, r, c) are as in
Theorem 11.
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Relative arc density of an interval catch digraph family 783

Proof is provided in Appendix 2. Notice that the relative arc densities, ρn,m(r, c)
and ρ̃n,m(r, c) do not have the same distribution for neither finite nor infinite n. But
we have ρn,m(r, c) = n(n−1)

nT
ρ̃n,m(r, c) and since for large ni and n,

∑m+1
i=1

ni (ni −1)
n(n−1)

≈
∑m+1

i=1 w2
i < 1, it follows that μ̃(m, r, c) < μ̆(m, r, c) and ν̃(m, r, c) < ν̆(m, r, c) for

large ni and n. Furthermore, the asymptotic normality holds for ρn,m(r, c) iff it holds
for ρ̃n,m(r, c).

6 Extension of proportional-edge proximity regions to higher dimensions

Note that in R the proportional-edge PCDs are based on the intervals whose end points
are from class Y . This interval partitioning can be viewed as the Delaunay tessellation
of R based on Ym . So in higher dimensions, we use the Delaunay triangulation based
on Ym to partition the space.

Let Ym = {y1, y2, . . . , ym} be m points in general position in R
d and Ti be the i th

Delaunay cell for i = 1, 2, . . . , Jm , where Jm is the number of Delaunay cells. Let
Xn be a set of iid random variables from distribution F in R

d with support S(F) ⊆
CH (Ym) where CH (Ym) stands for the convex hull of Ym .

6.1 Extension of proportional-edge proximity regions to R
2

For illustrative purposes, we focus on R
2 where a Delaunay tessellation is a triangula-

tion, provided that no more than three points in Ym are cocircular (i.e., lie on the same
circle). Furthermore, for simplicity, we only consider the one Delaunay triangle case.
Let Y3 = {y1, y2, y3} be three non-collinear points in R

2 and T (Y3) = T (y1, y2, y3)

be the triangle with vertices Y3. Let Xn be a set of iid random variables from F with
support S(F) ⊆ T (Y3).

For r ∈ [1,∞], define N (·, r, M) to be the (parameterized) proportional-edge
proximity map with M-vertex regions as follows (see also Fig. 6 with M = MC which
is the center of mass and r = 2). For x ∈ T (Y3) \ Y3, let v(x) ∈ Y3 be the vertex
whose region contains x ; i.e., x ∈ RM (v(x)). In this article M-vertex regions are
constructed by the lines joining any point M ∈ R

2 \Y3 to a point on each of the edges
of T (Y3). Preferably, M is selected to be in the interior of the triangle T (Y3)

o. For
such an M , the corresponding vertex regions can be defined using the line segment
joining M to e j , which lies on the line joining y j to M . With MC , the lines joining
M and Y3 are the median lines, that cross edges at M j for j = 1, 2, 3. M-vertex
regions, among many possibilities, can also be defined by the orthogonal projections
from M to the edges. See Ceyhan (2005) for a more general definition. The vertex
regions in Fig. 6 are center of mass vertex regions (i.e., MC -vertex regions). If x falls
on the boundary of two M-vertex regions, we assign v(x) arbitrarily. Let e(x) be the
edge of T (Y3) opposite of v(x). Let �(v(x), x) be the line parallel to e(x) and passes
through x . Let d(v(x), �(v(x), x)) be the Euclidean distance from v(x) to �(v(x), x).
For r ∈ [1,∞), let �r (v(x), x) be the line parallel to e(x) such that

d(v(x), �r (v(x), x)) = r d(v(x), �(v(x), x))
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784 E. Ceyhan

Fig. 6 Construction of proportional-edge proximity region, N (x, r = 2, MC ) (shaded region) for an x in
the MC -vertex region for y1, RMC (y1)

and

d(�(v(x), x), �r (v(x), x)) < d(v(x), �r (v(x), x)).

Let Tr (x) be the triangle similar to and with the same orientation as T (Y3) having
v(x) as a vertex and �r (v(x), x) as the opposite edge. Then the (parameterized) pro-
portional-edge proximity region N (x, r, M) is defined to be Tr (x) ∩ T (Y3). Notice
that �(v(x), x) divides the edges of Tr (x) (other than the one lies on �r (v(x), x))
proportionally with the factor r . Hence the name proportional-edge proximity region.

6.2 Extension of proportional-edge proximity regions to R
d with d > 2

The extension to R
d for d > 2 with M = MC is provided in Ceyhan and Priebe (2005),

the extension for general M is similar: Let Yd+1 = {y1, y2, . . . , yd+1} be d + 1 non-
coplanar points. Denote the simplex formed by these d + 1 points as S(Yd+1). For
r ∈ [1,∞], define the proportional-edge proximity map as follows. Given a point x in
S(Yd+1), let Qy(M, x) be the polytope with vertices being the d (d + 1)/2 points on
the edges, the vertex y and x so that the faces of Qy(M, x) are formed by d − 1 line
segments each of which joining one of Y points, say yi , to M and that are between M
and the face opposite yi . That is, the vertex region for vertex v is the polytope with
vertices given by v and such points on the edges. Let v(x) be the vertex in whose region
x falls. If x falls on the boundary of two vertex regions, we assign v(x) arbitrarily. Let
ϕ(x) be the face opposite to vertex v(x), and η(v(x), x) be the hyperplane parallel to
ϕ(x) which contains x . Let d(v(x), η(v(x), x)) be the Euclidean distance from v(x)

to η(v(x), x). For r ∈ [1,∞), let ηr (v(x), x) be the hyperplane parallel to ϕ(x) such
that d(v(x), ηr (v(x), x)) = r d(v(x), η(v(x), x)) and d(η(v(x), x), ηr (v(x), x)) <

d(v(x), ηr (v(x), x)). LetSr (x)be the polytope similar to and with the same orientation

123

Author's personal copy



Relative arc density of an interval catch digraph family 785

as S(Yd+1) having v(x) as a vertex and ηr (v(x), x) as the opposite face. Then the
proportional-edge proximity region N (x, r, M) := Sr (x) ∩ S(Yd+1).

7 Discussion

In this article, we investigate a graph invariant of a random digraph family called
proportional-edge proximity catch digraph (PCD) which is based on two classes of
points in R. The graph invariant of interest is the relative arc density (which is the
number of arcs in a given digraph to the total number of arcs possible in a complete
symmetric digraph with the same number of vertices). Points from one of the classes
constitute the vertices of the PCDs and are a random sample from uniform distribution
in compact intervals in R. We demonstrate that the relative arc density of the PCDs is
a U -statistic. Then, applying the central limit theory of the U -statistics, we derive the
(asymptotic normal) distribution of the relative arc density.

The PCD we discuss here is based on a parameterized proximity map in which there
is an expansion parameter, r ≥ 1, and a centrality parameter, c ∈ (0, 1). We provide
the asymptotic distribution of the relative arc density for proportional-edge PCDs for
uniform data for the entire ranges of r and c. We also determine the parameters r and
c for which the rate of convergence to normality is the fastest. The PCD in this article
can also be viewed as the one dimensional version of the PCD in Ceyhan and Priebe
(2005, 2007) (see also Sect. 6). As in Ceyhan et al. (2006), we can use the relative
arc density in testing one dimensional spatial point patterns and our results will help
make the power comparisons possible for data from large families of distributions. In
hypothesis testing, e.g., of spatial point patterns in the one dimensional case, the null
hypothesis is some form of complete spatial randomness, which implies that distri-
bution of X points has a uniform distribution in the support interval irrespective of
the distribution of the Y points. The alternatives are segregation and association of
X points with respect to the Y points. Under segregation, the points from the same
class tend to cluster together, while under association, the points from the two dif-
ferent classes occur close to each other. In this context, under association, X points
are clustered around Y points, while under segregation, X points are clustered away
from the Y points. Notice that we can use the asymptotic distribution (i.e., the normal
approximation) of the relative density for spatial pattern tests, so our methodology
requires number of X points to be much larger compared to the number of Y points.
Our results will make the power comparisons possible for data from large families of
distributions. Moreover, one might determine the optimal (with respect to empirical
size and power) parameter values against segregation and association alternatives.

Furthermore, a high dimensional data might be projected to one dimensional space
(by some dimension reduction method) and then proportional-edge PCD might be used
for classification as outlined in Priebe et al. (2003a). Here, one might also determine
the optimal parameters (with respect to some penalty function in the classification
procedure) for the best performance. This work will form the foundation of the gener-
alizations and calculations for uniform and non-uniform cases in multiple dimensions.
See Sect. 6 for the details of the extension to higher dimensions. For example, in R

2, the
expansion parameter is still r , but the centrality parameter is M = (m1, m2), which is
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two dimensional. The optimal parameters for testing spatial patterns and classification
can also be determined, as in the one dimensional case.
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Appendix 1: Proofs for the one interval case

Proof of Theorem 6 First we consider 0 < c ≤ 1/2, for which there are two cases,
namely 0 < c ≤ 1/4 and 1/4 < c ≤ 1/2.
Case 1: 0 < c ≤ 1/4: In this case depending on the location of x1, the following are
the different types of the combinations of N (x1, 2, c) and �1(x1, 2, c).

(i) for 0 < x1 ≤ c, N (x1, 2, c) = (0, 2 x1) and �1(x1, 2, c) = (x1/2, (1 + x1)/2),
(ii) for c < x1 ≤ 2 c, N (x1, 2, c) = (0, 1) and �1(x1, 2, c) = (x1/2, (1 + x1)/2),

(iii) for 2 c < x1 ≤ 1/2, N (x1, 2, c) = (0, 1) and �1(x1, 2, c) = (c, (1 + x1)/2),
(iv) for 1/2 < x1 < 1, N (x1, 2, c) = (2 x1 − 1, 1) and �1(x1, 2, c) = (c, (1 +

x1)/2).

Then μ1(2, c) = P(X2 ∈ N (X1, 2, c)) = ∫ c
0 2 x1dx1 + ∫ 1/2

c 1dx1 + ∫ 1
1/2(2 −

2 x1)dx1 = c2 − c + 3/4.
For Cov(h12, h13), we need to calculate P2N , PN G , and P2G . The proba-

bility P2N = P({X2, X3} ⊂ N (X1, 2, c))= ∫ c
0 (2 x1)

2dx1 + ∫ 1/2
c 1dx1 + ∫ 1

1/2(2 −
2 x1)

2dx1 = 4 c3/3 − c + 2/3.
PN G = P(X2 ∈ N (X1, 2, c), X3 ∈ �1(X1, 2, c))= ∫ c

0 (2 x1)(1/2)dx1 + ∫ 2 c
c (1/2)

dx1 + ∫ 1/2
2 c ((1 + x1)/2 − c)dx1 + ∫ 1

1/2(2 − 2 x1)((1 + x1)/2 − c)dx1 = 3 c2/2 −
5 c/4 + 25/48.

Finally, P2G = P({X2, X3} ⊂ �1(X1, 2, c)) = ∫ 2 c
0 (1/2)2dx1 + ∫ 1

2 c((1+ x1)/2 −
c)2dx1 = 2 c2 + 7/12 − 2 c3/3 − 3 c/2.

Therefore 4 E[h12h13] = P2N + 2 PN G + P2G = 2 c3/3 + 5 c2 − 5 c + 55/24.
Hence 4 ν1(2, c) = 4 Cov[h12, h13] = 26 c3/3 + c + 1/24 − 4 c4 − 5 c2.

Case 2: 1/4 < c ≤ 1/2: In this case depending on the location of x1, the following
are the different types of the combinations of N (x1, 2, c) and �1(x1, 2, c).

(i) for 0 < x1 ≤ c, N (x1, 2, c) = (0, 2 x1) and �1(x1, 2, c) = (x1/2, (1 + x1)/2),
(ii) for c < x1 ≤ 1/2, N (x1, 2, c) = (0, 1) and �1(x1, 2, c) = (x1/2, (1 + x1)/2),

(iii) for 1/2 < x1 ≤ 2 c, N (x1, 2, c) = (2 x1 −1, 1) and �1(x1, 2, c) = (x1/2, (1+
x1)/2),

(iv) for 2 c < x1 < 1, N (x1, 2, c) = (2 x1−1, 1) and �1(x1, 2, c) = (c, (1+x1)/2).

Then μ1(2, c) = P(X2 ∈ N (X1, 2, c)) = ∫ c
0 2 x1dx1 + ∫ 1/2

c 1dx1 + ∫ 1
1/2(2 −

2 x1)dx1 = c2 − c + 3/4.
Next P2N = P({X2, X3} ⊂ N (X1, 2, c)) = ∫ c

0 (2 x1)
2dx1 + ∫ 1/2

c 1dx1 + ∫ 1
1/2(2 −

2 x1)
2dx1 = 4 c3/3 − c + 2/3.
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PN G = P(X2 ∈ N (X1, 2, c), X3 ∈ �1(X1, 2, c))= ∫ c
0 (2 x1)(1/2)dx1 + ∫ 1/2

c (1/2)

dx1 + ∫ 2 c
1/2(2 − 2 x1)(1/2)dx1 + ∫ 1

2 c(2 − 2 x1)((1 + x1)/2 − c)dx1 = 5 c2/2 +
13/24 − 4 c3/3 − 3 c/2.

Finally, P2G = P({X2, X3} ⊂ �1(X1, 2, c)) = ∫ 2 c
0 (1/2)2dx1 + ∫ 1

2 c((1+ x1)/2 −
c)2dx1 = −2 c3/3 + 2 c2 − 3 c/2 + 7/12

Therefore 4 E[h12h13] = P2N +2 PN G + P2G = 7 c2 +7/3−2 c3 −11 c/2. Hence
4 ν1(2, c) = 4 Cov[h12, h13] = 6 c3 + c/2 + 1/12 − 4 c4 − 3 c2.

For 1/2 ≤ c < 1, by symmetry we obtain μ2(2, c) = μ1(2, 1 − c) and ν2(2, c) =
ν1(2, 1 − c). �

Proof of Theorem 7 There are two cases for r , namely 1 ≤ r < 2 and r ≥ 2.
Case 1: 1 ≤ r < 2: In this case depending on the location of x1, since 1 − r/2 <

1/2 and 1/2 < 1/r , the following are the different types of the combinations of
N (x1, r, 1/2) and �1(x1, r, 1/2).

(i) for 0 < x1 ≤ 1 − r/2, N (x1, r, 1/2) = (0, r x1) and �1(x1, r, 1/2) =
(x1/r, 1/2) = (a, 1/2) since 1/2 > 1 − (1 − x1)/r ,

(ii) for 1−r/2 < x1 ≤ 1/2, N (x1, r, 1/2) = (0, 1) and�1(x1, r, 1/2) = (x1/2, (1+
x1)/2).

Let a = x1/r and b = 1 − (1 − x)/r . Then μ(r, 1/2)= P(X2 ∈ N (X1, r, 1/2)) =
2 P(X2 ∈ N (X1, r, 1/2), X1 ∈ (0, 1/2)) by symmetry and P(X2 ∈ N (X1, r, 1/2), X1

∈ (0, 1/2)) = ∫ 1/2
0 r x1dx1 = r/8. So μ(r, 1/2) = 2 (r/8) = r/4.

For Cov(h12, h13), we need to calculate P2N , PN G , and P2G . The probabil-
ity P2N = P({X2, X3} ⊂ N (X1, r, 1/2))= 2 P({X2, X3} ⊂ N (X1, r, 1/2), X1 ∈
(0, 1/2)) and P({X2, X3} ⊂ N (X1, r, 1/2), X1 ∈ (0, 1/2)) = ∫ 1/2

0 (r x1)
2dx1 =

r2/24. So P2N = 2 (r2/24) = r2/12.
PN G = P(X2 ∈ N (X1, r, 1/2), X3 ∈ �1(X1, r, 1/2)) = 2 P(X2 ∈

N (X1, r, 1/2), X3 ∈ �1(X1, r, 1/2), X1 ∈ (0, 1/2)) and P(X2 ∈ N (X1, r, 1/2),

X3 ∈ �1(X1, r, 1/2), X1 ∈ (0, 1/2) = ∫ 1−r/2
0 (r x1)(1/2 − a)dx1 + ∫ 1/2

1−r/2 r x1(b −
a)dx1 = r2/8 + 1/24 − r3/48 − r/8. So PN G = r2/4 + 1/12 − r3/24 − r/4.

Finally, P2G = P({X2, X3} ⊂ �1(X1, r, 1/2)) = 2 P({X2, X3} ⊂ �1(X1, r, 1/2),

X1 ∈ (0, 1/2)) and P({X2, X3} ⊂ �1(X1, r, 1/2), X1 ∈ (0, 1/2)) = ∫ 1−r/2
0 (1/2 −

a)2dx1 + ∫ 1/2
1−r/2(b − a)2dx1 = 5 r3−12 r2+12 r−4

24 r2 . So P2G = 5 r3−12 r2+12 r−4
12 r2

Therefore 4 E[h12h13] = P2N + 2 PN G + P2G = 7 r4+12 r−r5−r3−10 r2−4
12 r2 . Hence

4 ν(r, 1/2) = 4 Cov[h12, h13] = 4 r4+12 r−r5−r3−10 r2−4
12 r2 .

Case 2: r ≥ 2: In this case depending on the location of x1, the following are the
different types of the combinations of N (x1, r, 1/2) and �1(x1, r, 1/2).

(i) for 0 < x1 ≤ 1/r, N (x1, r, 1/2) = (0, r x1) and �1(x1, r, 1/2) = (a, b),
(ii) for 1/r < x1 ≤ 1/2, N (x1, r, 1/2) = (0, 1) and �1(x1, r, 1/2) = (a, b),

Then μ(r, 1/2) = P(X2 ∈ N (X1, r, 1/2)) = 2 P(X2 ∈ N (X1, r, 1/2), X1 ∈
(0, 1/2)) by symmetry and P(X2 ∈ N (X1, r, 1/2), X1 ∈ (0, 1/2)) = ∫ 1/r

0 r x1dx1 +
∫ 1/2

1/r 1dx1 = (1 − 1/r)/2. So μ(r, 1/2) = 1 − 1/r .
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Next P2N = P({X2, X3} ⊂ N (X1, r, 1/2)) = 2 P({X2, X3} ⊂ N (X1, r, 1/2),

X1 ∈ (0, 1/2)) and P({X2, X3} ⊂ N (X1, r, 1/2), X1 ∈ (0, 1/2)) = ∫ 1/r
0 (r x1)

2dx1

+ ∫ 1/2
1/r 1dx1 = (1 − 4/(3 r))/2. So P2N = 2 (r2/24) = 1 − 4/(3 r).
PN G = P(X2 ∈ N (X1, r, 1/2), X3 ∈ �1(X1, r, 1/2)) = 2 P(X2 ∈

N (X1, r, 1/2), X3 ∈ �1(X1, r, 1/2), X1 ∈ (0, 1/2)) and P(X2 ∈ N (X1, r, 1/2),

X3 ∈ �1(X1, r, 1/2), X1 ∈ (0, 1/2) = ∫ 1/r
0 (r x1)(b − a)dx1 + ∫ 1/2

1/r (b − a)dx1 =
(r−1)2

2 r2 . So PN G = (r−1)2

r2 .
Finally, P2G = P({X2, X3} ⊂ �1(X1, r, 1/2)) = 2 P({X2, X3} ⊂ �1(X1, r, 1/2),

X1 ∈ (0, 1/2)) and P({X2, X3} ⊂ �1(X1, r, 1/2), X1 ∈ (0, 1/2)) = ∫ 1/2
0 (b −

a)2dx1 + ∫ 1/2
1−r/2(b − a)2dx1 = (r−1)2

2 r2 . So P2G = (r−1)2

r2

Therefore 4 E[h12h13] = P2N + 2 PN G + P2G = 12 r2−22 r+9
3 r2 . Hence

4 ν(r, 1/2) = 4 Cov[h12, h13] = 2 r − 3

3 r2 .

�

Proof of Theorem 8 First we consider 0 < c ≤ 1/2, for which there are two cases,
namely Case 1: 1/4 < c ≤ 1/2 and Case 2: 0 < c ≤ 1/4.
Case 1-I: 1 ≤ r < 1/(1−c): In this case depending on the location of x1, the following
are the different types of the combinations of N (x1, r, c) and �1(x1, r, c).

(i) for 0 < x1 ≤ 1 − r (1 − c), N (x1, r, c) = (0, r x1) and �1(x1, r, c) = (a, c),
(ii) for 1 − r (1 − c) < x1 ≤ c, N (x1, r, c) = (0, r x1) and �1(x1, r, c) = (a, b),

(iii) for c < x1 ≤ c r, N (x1, r, c) = (1 − r (1 − x1), 1) and �1(x1, r, c) = (a, b),
(iv) for c r < x1 < 1, N (x1, r, c) = (1 − r (1 − x1), 1) and �1(x1, r, c) = (c, b),

Then μ1(r, c) = P(X2 ∈ N (X1, r, c)) = ∫ c
0 r x1dx1 + ∫ 1

c r (1 − x1)dx1 = c2r −
c r + r/2.

For Cov(h12, h13), we need to calculate P2N , PN G , and P2G . The probability
P2N = P({X2, X3} ⊂ N (X1, r, c)) = ∫ c

0 (r x1)
2dx1 + ∫ 1

c r2(1 − x1)
2dx1 =

c2r2 − c r2 + r2/3.
PN G = P(X2 ∈ N (X1, r, c), X3 ∈ �1(X1, r, c)) = ∫ 1−r (1−c)

0 (r x1)(c − a)dx1 +
∫ c

1−r (1−c) r x1(b − a)dx1 + ∫ c r
c r (1 − x1)(b − a)dx1 + ∫ 1

c r r (1 − x1)(b − c)dx1 =
−c2r3/2 + c2r2 + c r3/2 + c2r − c r2 − r3/6 − c2 − c r + r2/2 + c − 1/6.

Finally, P2G = P({X2, X3} ⊂ �1(X1, r, c))=∫ 1−r (1−c)
0 (c−a)2dx1+

∫ c r
1−r (1−c)(b−

a)2dx1 + ∫ 1
c r (b − c)2dx1 = 3 c2r3−3 c r3+2 r3−3 r2+3 r−1

3 r2 .

Therefore

4 E[h12h13] = P2N + 2 PN G + P2G = [9 c2r4 − 3 c2r5 + 3 c r5 + 9 c2r3 − 9 c r4

−r5 − 6 c2r2 − 9 c r3 + 4 r4 + 6 c r2 + 2 r3 − 4 r2

+3 r − 1]
/

[3 r2] .

123

Author's personal copy



Relative arc density of an interval catch digraph family 789

Hence

4 κ1(r, c) = 4 Cov[h12, h13] = [24 c3r4 − 12 c4r4 − 3 c2r5 − 15 c2r4 + 3 c r5

+9 c2r3 + 3 c r4 − r5 − 6 c2r2 − 9 c r3 + r4 + 6 c r2 + 2 r3 − 4 r2

+3 r − 1]
/

[3 r2].

Case 1-II: 1/(1 − c) ≤ r < 1/c: In this case depending on the location of x1, the
following are the different types of the combinations of N (x1, r, c) and �1(x1, r, c).

(i) for 0 < x1 ≤ c, N (x1, r, c) = (0, r x1) and �1(x1, r, c) = (a, b),
(ii) for c < x1 ≤ 1 − 1/r, N (x1, r, c) = (0, 1) and �1(x1, r, c) = (a, b),

(iii) for 1 − 1/r < x1 ≤ c r, N (x1, r, c) = (1 − r (1 − x1), 1) and �1(x1, r, c) =
(a, b),

(iv) for c r < x1 < 1, N (x1, r, c) = (1 − r (1 − x1), 1) and �1(x1, r, c) = (c, b),

Then μ1(r, c)= P(X2 ∈ N (X1, r, c))= ∫ c
0 r x1dx1 +∫ 1−1/r

c 1dx1 +∫ 1
1−1/r r (1−

x1)dx1 = c2r2−2 c r+2 r−1
2 r .

Next P2N = P({X2, X3} ⊂ N (X1, r, c)) = ∫ c
0 (r x1)

2dx1 + ∫ 1−1/r
c 1dx1 +

∫ 1
1−1/r r2(1 − x1)

2dx1 = c3r3−3 c r+3 r−2
3 r .

PN G = P(X2 ∈ N (X1, r, c), X3 ∈ �1(X1, r, c)) = ∫ c
0 (r x1)(b − a)dx1 +

∫ 1−1/r
c (b − a)dx1 + ∫ c r

1−1/r r (1 − x1)(b − a)dx1 + ∫ 1
c r r (1 − x1)(b − c)dx1 =

3 c2r4−c3r5+3 c2r3−3 c2r2−3 c r3−6 c r2+6 c r+7 r2−9 r+3
6 r2 .

Finally, P2G = P({X2, X3} ⊂ �1(X1, r, c)) = ∫ c r
0 (b−a)2dx1+

∫ 1
c r (b−c)2dx1 =

3 c2r3−c3r3−6 c r2+3 c r+3 r2−3 r+1
3 r2 .

Therefore

4 E[h12h13] = P2N + 2 PN G + P2G

= c3r4 − c3r5 − c3r3 + 3 c2r4 + 6 c2r3 − 3 c2r2 − 3 c r3 − 15 c r2 + 9 c r + 13 r2 − 14 r + 4

3 r2 .

Hence

4 κ2(r, c) = 4 Cov[h12, h13] = [c3r4 − 3 c4r4 − c3r5 + 11 c3r3 + 3 c2r4 − 6 c2r3

−9 c2r2 − 3 c r3 + 9 c r2 − 3 c r + r2 − 2 r + 1]
/

[3 r2] .

Case 1-III: r ≥ 1/c: In this case depending on the location of x1, the following
are the different types of the combinations of N (x1, r, c) and �1(x1, r, c).

(i) for 0 < x1 ≤ 1/r, N (x1, r, c) = (0, r x1) and �1(x1, r, c) = (a, b),
(ii) for 1/r < x1 ≤ c, N (x1, r, c) = (0, 1) and �1(x1, r, c) = (a, b),
(iii) for c < x1 ≤ 1 − 1/r, N (x1, r, c) = (0, 1) and �1(x1, r, c) = (a, b),

(iii) for 1−1/r < x1 < 1, N (x1, r, c) = (1−r (1−x1), 1) and�1(x1, r, c) = (a, b),

Then μ1(r, c) = P(X2 ∈ N (X1, r, c)) = ∫ 1/r
0 r x1dx1 + ∫ 1−1/r

1/r 1dx1 +
∫ 1

1−1/r r(1 − x1)dx1 = 1 − 1/r .
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For Cov(h12, h13), we need to calculate P2N , PN G , and P2G . The probability
P2N = P({X2, X3} ⊂ N (X1, r, c)) = ∫ 1/r

0 (r x1)
2dx1 +∫ 1−1/r

1/r 1dx1 +∫ 1
1−1/r r2(1−

x1)
2dx1 = 1 − 4/(3 r).
PN G = P(X2 ∈ N (X1, r, c), X3 ∈ �1(X1, r, c)) = ∫ 1/r

0 (r x1)(b − a)dx1 +
∫ 1−1/r

1/r (b − a)dx1 + ∫ 1
1−1/r r (1 − x1)(b − a)dx1 = (r − 1)2/r2.

Finally, P2G = P({X2, X3} ⊂ �1(X1, r, c)) = ∫ 1
0 (b − a)2dx1 = (r − 1)2/r2.

Therefore 4 E[h12h13] = P2N + 2 PN G + P2G = 12 r2−22 r+9
3 r2 . Hence we obtain

4 κ3(r, c) = 4 Cov[h12, h13] = 2 r−3
3 r2 .

Case 2: 0 < c ≤ 1/4: In this case, the calculations for μ1(r, c) are as in Case 1.
Case 2-I: 1 ≤ r < 1/(1 − c) is same as Case 1-I, Case 2-V: 1 ≤ r < 1/(1 − c)

is same as Case 1-III, Case 2-II: 1/(1 − c) ≤ r < (1 − √
1 − 4c)/(2c) and Case

2-IV: (1 + √
1 − 4c)/(2c) ≤ r < 1/c are same as Case 1-II. However, we have a

new possible range of r in this case for the calculation of ν(r, c). Case 2-III: (1 −√
1 − 4c)/(2c) ≤ r < (1 + √

1 − 4c)/(2c): Depending on the location of x1, the
following are the different types of the combinations of N (x1, r, c) and �1(x1, r, c).

(i) for 0 < x1 ≤ c, N (x1, r, c) = (0, r x1) and �1(x1, r, c) = (a, b),
(ii) for c < x1 ≤ c r, N (x1, r, c) = (0, 1) and �1(x1, r, c) = (a, b),

(iii) for c r < x1 ≤ 1 − 1/r, N (x1, r, c) = (0, 1) and �1(x1, r, c) = (c, b),
(iv) for 1−1/r < x1 < 1, N (x1, r, c) = (1−r (1−x1), 1) and �1(x1, r, c) = (c, b),

Then μ1(r, c) = P(X2 ∈ N (X1, r, c)) = ∫ c
0 r x1dx1+∫ 1−1/r

c 1dx1+∫ 1
1−1/r r (1−

x1)dx1 = c2r2−2 c r+2 r−1
2 r .

For Cov(h12, h13), we need to calculate P2N , PN G , and P2G . The probability
P2N = P({X2, X3} ⊂ N (X1, r, c)) = ∫ c

0 (r x1)
2dx1 + ∫ 1−1/r

c 1dx1 + ∫ 1
1−1/r r2(1 −

x1)
2dx1 = c3r3−3 c r+3 r−2

3 r .
PN G = P(X2 ∈ N (X1, r, c), X3 ∈ �1(X1, r, c)) = ∫ c

0 (r x1)(b−a)dx1 +∫ c r
c (b−

a)dx1+∫ 1−1/r
c r (b−c)dx1+∫ 1

1−1/r r (1−x1)(b−c)dx1 = [6 c2r4−3 c2r3−12 c r3+
9 c r2 + 6 r3 − 6 r2 + 1]/[6 r3] .

Finally, P2G = P({X2, X3} ⊂ �1(X1, r, c)) = ∫ c r
0 (b−a)2dx1+

∫ 1
c r (b−c)2dx1 =

3 c2r3−c3r3−6 c r2+3 c r+3 r2−3 r+1
3 r2 .

Therefore
4 E[h12h13] = P2N + 2 PN G + P2G

= c3r5 − c3r4 + 9 c2r4 − 3 c2r3 − 21 c r3 + 12 c r2 + 12 r3 − 11 r2 + r + 1

3 r3 .

Hence

4 ϑ3(r, c) = 4 Cov[h12, h13]
= 3 c4r5 − c3r5 − 11 c3r4 + 3 c2r4 + 9 c2r3 − 3 c r3 − r2 + 2 r − 1

3 r3 .

For 1/2 ≤ c < 1, by symmetry, it follows that μ2(r, c) = μ1(r, 1 − c) and
ν2(r, c) = ν1(r, 1 − c). �
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Appendix 2: Proofs for the multiple interval case

We give the proof of Theorem 12 first.

Proof of Theorem 12 Recall that ρ̃n,m(r, c) is the relative arc density of the PCD for
the m ≥ 2 case. Then it follows that ρ̃n,m(r, c) is a U -statistic of degree two, so we
can write it as ρ̃n,m(r, c) = 2

n(n−1)

∑
i< j hi j where hi j = (gi j + g ji )/2. Then the

expectation of ρ̃n,m(r, c) is

E
[
ρ̃n,m(r, c)

] = 2

n (n − 1)

∑ ∑

i< j

E
[
hi j

] = E [h12] = E [g12]

= P((X1, X2) ∈ A) = μ̃(m, r, c).

But, by definition of N (·, r, c), if X1 and X2 are in different intervals, then
P((X1, X2) ∈ A) = 0. So, by the law of total probability, we have

μ̃(m, r, c) := P((X1, X2) ∈ A)

=
m+1∑

i=1

P((X1, X2) ∈ A | {X1, X2} ⊂ Ii ) P({X1, X2} ⊂ Ii )

=
m∑

i=2

μ(r, c) P({X1, X2} ⊂ Ii ) +
∑

i∈{1,m+1}
μe(r) P({X1, X2} ⊂ Ii )

=
m∑

i=2

μ(r, c) w2
i +

∑

i∈{1,m+1}
μe(r) w2

i

= μ(r, c)
m∑

i=2

w2
i + μe(r)

∑

i∈{1,m+1}
w2

i .

since P({X1, X2} ⊂ Ii ) =
(

y(i)−y(i−1)

δ2−δ1

)2 = w2
i .

Furthermore, the asymptotic variance is

4 ν̃(m, r, c) = 4 E [h12h13] − E [h12] E [h13] = 4 E [h12h13] − (μ̃(m, r, c))2

where 4 E [h12h13] = P̃2N + 2 P̃N G + P̃2G with,

P̃2N =
m∑

i=2

P({X2, X3} ⊂ N (X1, r, c) | {X1, X2, X3} ⊂ Ii ) P({X1, X2, X3} ⊂ Ii )

+
∑

i∈{1,m+1}
P({X2, X3} ⊂ Ne(X1, r) | {X1, X2, X3} ⊂ Ii )

×P({X1, X2, X3} ⊂ Ii )

=
m∑

i=2

P2N P({X1, X2, X3} ⊂ Ii ) +
∑

i∈{1,m+1}
P2N ,e P({X1, X2, X3} ⊂ Ii )
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≈
m∑

i=2

P2N w3
i +

∑

i∈{1,m+1}
P2N ,e w3

i = P2N

m∑

i=2

w3
i + P2N ,e

∑

i∈{1,m+1}
w3

i .

since P({X2, X3} ⊂ N (X1, r, c) | {X1, X2, X3} ⊂ Ii ) is P2N for middle intervals

and P2N ,e for the end intervals and P({X1, X2, X3} ⊂ Ii ) =
(

y(i)−y(i−1)

δ2−δ1

)3 = w3
i .

Similarly,

P̃N G = PN G

m∑

i=2

w3
i + PN G,e

∑

i∈{1,m+1}
w3

i

and

P̃2G = P2G

m∑

i=2

w3
i + P2G,e

∑

i∈{1,m+1}
w3

i .

Therefore,

4 ν̃(m, r, c) = (P2N + 2 PN G + P2G)

m∑

i=2

w3
i

+(P2N ,e + 2 PN G,e + P2G,e)
∑

i∈{1,m+1}
w3

i − (μ̃(m, r, c))2.

Hence the desired result follows. �

Proof of Theorem 11 Recall that ρn,m(r, c) is the version I of the relative arc density
of the PCD for the m > 2 case. Moreover, ρn,m(r, c) = n(n−1)

nT
ρ̃n,m(r, c). Then the

expectation of ρn,m(r, c), for large ni and n, is

E
[
ρn,m(r, c)

] = n(n − 1)

nT

E[ρ̃n,m(r, c)] ≈ μ̃(m, r, c)

(
m+1∑

i=1

w2
i

)−1

since n(n−1)
nT

=
(∑m+1

i=1 ni (ni − 1)/(n(n − 1))
)−1 ≈

(∑m+1
i=1 w2

i

)−1
for large ni and

n. Here μ̃(m, r, c) is as in Theorem 12.
Moreover, the asymptotic variance of ρn,m(r, c), for large ni and n, is

4 ν̆(m, r, c) = n2(n − 1)2

n2
T

4 ν̃(m, r, c) = 4 ν̃(m, r, c)

(
m+1∑

i=1

w2
i

)−2

since
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n2(n − 1)2

n2
T

=
(

m+1∑

i=1

ni (ni − 1)/(n(n − 1))

)−2

≈
(

m+1∑

i=1

w2
i

)−2

for large ni and n. Here ν̃(m, r, c) is as in Theorem 12. Hence the desired result
follows. �
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