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ABSTRACT  Nearest neighbor methods are widely used in the analysis of spatial point 
patterns in ecology and environmental sciences.  We present exact inference on tests based 
on nearest neighbor contingency tables (i.e., NNCT-tests) for testing segregation and 
association patterns.   The spatial pattern of segregation occurs when members of a class 
tend to be found near members of the same class (i.e., conspecifics), while association 
occurs when members of a class tend to be found near members of the other class or 
classes.   The null hypothsis is randomness in the nearest neighbor structure, which may 
result from — among other patterns — random labeling (RL) or complete spatial 
randomness (CSR) of points from two or more classes (which is called CSR independence, 
henceforth).  Pielou’s, Dixon’s, and various other NNCT-tests rely on asymptotic 
approximations.  Exact inference has been extensively used on contingency tables in 
general, but not for NNCT- tests.  We propose several variants of Fisher’s exact test on 
NNCTs for testing CSR independence or RL with one- or two-sided alternatives, as well as 
variants of the exact version of Pearson’s test on NNCTs for the two-sided alternative.  We 
also perform a correction on odds ratio, the parameter used in exact inference for 
contingency tables.  An extensive Monte Carlo study is provided for empirical signifi- 
cance level (i.e., Type I error rate) and power comparisons  We demonstrate that the most 
conservative versions of the exact tests have the appropriate level and higher power 
compared to other exact and asymptotic NNCT-tests. 
 
Keywords   Association; Clustering; Complete spatial randomness; Fisher’s exact test; 
Independence; Random labeling; Spatial point pattern. 
 
 

1. Introduction 
 

Spatial point patterns have important implications in various fields such as ecology, 

population biology, and epidemiology.  Most of the related research has been on patterns of one    
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type of points, which usually fall under the pattern category called spatial aggregation (or clus-

tering) (Coomes et al. [12]) or regularity. However, it is also of practical interest to investigate

the patterns of and interaction between two or more types of points (Pielou [27], Haase [27],

Dixon [15], and Upton and Fingleton [30]). For convenience and generality, we call the types

of points as “classes”, but a class can be replaced by any characteristic of an individual at a par-

ticular location. For example, the pattern of spatial segregation has been investigated for plant

species (Diggle [13]), age classes of plants (Hamill and Wright [20]), fish species (Herler and

Patzner [21]), and sexes of dioecious plants (Nanami et al. [26]) and animals (Conradt [11]).

Many of the epidemiological applications are for a two-class system of case and control labels

(Waller and Gotway [31]).

Nearest neighbor (NN) methods are widely used in the analysis of spatial patterns and are

based on some measure of dissimilarity between a (base) point and its NN (if Y is a NN of point

X , then X is the base point and Y is the NN point); such as the distance between the points

or the class types of the pair of NN points (see, e.g., Dixon [16]). In NNCTs, the second type

of similarity is used, i.e., NNCTs are constructed using the NN frequencies of classes. Pielou

[27] and Dixon [14] proposed different tests of random labeling in a spatial pattern. Pielou [27]

proposed various tests based on NNCTs which are independent of quadrat size (Krebs [22]) and

have been used for the two-class case only; while Dixon [14] devised overall and class-specific

tests of segregation based on NNCTs for the two-class case and extended his methodology to

the multi-class case (Dixon [15]). Various authors have demonstrated problems with Pielou’s

test (Meagher and Burdick [24] and Dixon [14]), for a general discussion and literature on the

use and appropriateness of Pielou’s and Dixon’s tests see (Ceyhan [8]) where it is shown that

Pielou’s test is liberal in rejecting the randomness in the NN structure, but is appropriate for

NNCTs based on a random sample of (base,NN) pairs.

Exact inference has been implemented on contingency tables (Agresti [1]), but not on

NNCTs. Note that the everyday meaning and the technical meaning of the word “exact” do

not coincide. In statistical methodology, “exact inference” means either finite (i.e., small as

opposed to large) sample inference, or conditional (on nuisance parameters) inference (Epstein

and Fienberg [17]). For contingency tables, both meanings are implied, in the sense that, finite

sample distribution of the cell counts conditional on marginal totals is required.

In this article, we investigate the use of exact tests on NNCTs for spatial segregation and

spatial association. We discuss the use and appropriateness of many variants of Fisher’s exact

test and the exact version of Pearson’s test on NNCTs for testing CSR independence or RL. We

also implement a correction on odds ratio for exact tests. The evaluation of these tests in terms

of empirical size as well as power are performed with an extensive Monte Carlo simulation

study. We demonstrate that the most conservative versions of the exact tests provide reasonable

small sample alternatives to the asymptotic tests of Dixon and others (Dixon [15] and Ceyhan

[7]). We describe the null and alternative patterns in Section 2, exact inference on contingency
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tables in general in Section 3, NNCTs and exact inference on NNCTs in Section 4, Monte Carlo

simulation analysis in Sections 5 and 6. We apply the tests to example data sets in Section 7

and provide guidelines and recommendations in Section 8.

2. Null and Alternative Patterns

For simplicity, we describe the spatial patterns between two classes; the extension to multi-

class case is straightforward. Informally, we aim to test the randomness in the NN structure.

Such randomness might occur if the two classes of points exhibit either of the two (random)

pattern types: complete spatial randomness independence (CSR independence) or random la-

beling (RL).

Under CSR independence, points from each of the two classes satisfy the CSR pattern

in the region of interest. On the other hand, RL is the pattern in which, given a fixed set of

points in a region, class labels are assigned to these fixed points randomly so that the labels

are independent of the locations. That is, CSR independence is a process defining the spatial

distribution of event locations, while RL is a process, conditioned on locations, defining the

distribution of labels on these locations.

Our null hypothesis of randomness in NN structure might result from either of the patterns.

That is, when the points from both classes are assumed to be uniformly distributed over the

region of interest, then the null hypothesis we consider is Ho W CSR independence. Note that

this is equivalent to the case that RL is applied to a given set of points from a CSR pattern. When

only the labeling of a set of fixed points (the allocation of the points could be regular, aggregated,

or clustered, or of lattice type) is random, our null hypothesis is Ho W RL: Although CSR

independence and RL are not same, they lead to the same null model (i.e., randomness in the

NN structure) in tests using NNCT, which does not require spatially-explicit information. The

distinction between CSR independence and RL is very important when defining the appropriate

null model in practice. Goreaud and Pélissier [18] state that CSR independence implies that the

two classes are a priori the result of different processes (e.g., individuals of different species or

age cohorts), whereas RL implies that some processes affect a posteriori the individuals of a

single population (e.g., diseased vs. non-diseased individuals of a single species).

We choose the CSR independence pattern for the comparison of the empirical sizes in

Section 5, because it provides a more general framework for the locations of the points, in the

sense that, RL can be applied on any given set of points, but the locations of the points should

be fixed for all steps of the RL process. But when we generate both classes of points under CSR

independence pattern, we attain randomness in the NN structure as well as the locations. Hence,

a wide range of spatial allocation of points in a study area can be analyzed by this choice.

The alternative patterns fall under two major categories called association and segregation.

Association occurs if the NN of a base point is more likely to be from a class different from the
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class of the base point. For example, in plant biology, the two classes of points might represent

the coordinates of mutualistic plant species, so the species depend on each other to survive.

Segregation occurs if the NN of a base point is more likely to be of the same class as the class

of the base point; i.e., the members of the same class tend to be clumped or clustered (see, e.g.,

Pielou [27]). Many different forms of segregation are possible. Although it is not possible to

list all segregation types, existence of it can be tested by an analysis of the NN relationships

between the classes (Pielou [27]). For instance, one type of plant might not grow well (or at all)

around another type of plant, and vice versa.

The term association is also used for the categorical interaction in contingency tables, but

the association we consider is the “spatial association pattern”. Segregation does not cause such

an ambiguity.

3. Exact Inference on Contingency Tables

In general, contingency tables are assumed to result from one of three sampling frameworks

for the cell counts: Poisson, row-wise multinomial, or overall multinomial sampling frame-

works. In Poisson and row-wise multinomial frameworks, cell counts are independent, while

in overall multinomial framework the cell counts have negative correlation (which vanishes in

the asymptotics). Nevertheless, all frameworks yield tests that are approximately distributed as

chi-square for large n (Conover [10]).

3.1 Fisher’s Exact Test for Contingency Tables

For a 2 � 2 contingency table, let Nij be the cell frequency for cell .i; j /, Ni be the sum

of row i , and Cj be the sum for column j . Given row and column sums (marginals), N11

determines the other three cell counts in the contingency table and has the hypergeometric

distribution with non-centrality parameter � . In general, the null case of independence in the

contingency tables is equivalent to Ho W � D 1, where � is the odds ratio (or non-centrality

parameter) in contingency tables (Agresti [1]). Fisher’s exact test can be two-sided or one-sided

for 2 � 2 contingency tables, while for contingency tables of dimension other than 2 � 2 only

the two-sided alternative is available (Agresti [2]).

There are various ways to calculate p-values for different alternatives in exact inference on

contingency table (Agresti [1]). We call these as variants of Fisher’s exact test in this article.

Exact p-values tend to be more conservative than most approximate (asymptotic) ones (Agresti

[1]).

3.1.1 Variants of Fisher’s Exact Test for One-Sided Alternatives

For the one-sided alternatives, the probabilities of more extreme tables are summed up,

including or excluding the probability of the table itself (or some middle way). Let the prob-

ability of the contingency table itself be pt D f .n11jn1; n2; c1I � D 1/, where f .�/ is the



Exact Inference for Testing Spatial Segregation by Nearest Neighbor Contingency Tables E. Ceyhan 49

probability density function of hypergeometric distribution. For testing the one-sided alterna-

tive Ho W � D 1 versus Ha W � > 1, we consider the following four methods in calculating the

p-value: Let p D
P

S f .t jn1; n2; c1I � D 1/, then

(i) with S D ft W t � n11g, we get the table-inclusive version which is denoted as p>
inc

,

(ii) with S D ft W t > n11g, we get the table-exclusive version, denoted as p>
exc.

(iii) Using p D p>
exc

C pt=2, we get the mid-p version, denoted as p>
mid

.

(iv) We can also use Tocher corrected version which is denoted as p>
Toc

.

Tocher’s modification makes Fisher’s exact test less conservative, by including the probability

for the current table based on a randomized test (Tocher [29]). When table-inclusive version of

the p-value, p>
inc

, is larger, but table-exclusive version, p>
exc

, is less than the level of the test ˛, a

random number, U , is generated from uniform distribution in .0; 1/, and if U � .˛ � p>
exc/=pt ,

p>
exc is used, otherwise p>

inc is used as the p-value. That is,

p>
Toc

D

8

ˆ

<

ˆ

:

p>
exc

if U � .˛ � p>
exc

/=pt ,

p>
inc otherwise.

(1)

Note also that p>
exc D p>

inc
� pt and p>

mid
D p>

inc
� pt=2. Furthermore, p>

exc � p>
Toc � p>

inc

and p>
exc < p>

mid < p>
inc.

For testing the one-sided alternative Ho W � D 1 versus Ha W � < 1, the p-values are

as above, except the inequalities are reversed and the corresponding p-values are denoted as

p<
inc

; p<
exc; p<

mid
; and p<

Toc, respectively.

3.1.2 Variants of Fisher’s Exact Test for Two-Sided Alternatives

There is additional complexity in p-values for the two-sided alternatives. A recommended

method is adding up probabilities of the same size and smaller than the probability associated

with the current table. Alternatively, one can double the one-sided p-value (Agresti [1]).

Type (I): For double the one-sided p-value, we propose the following four variants:

(i) twice the minimum of pinc for the one-sided tests, which is table-inclusive version for this

type of two-sided test, and denoted as pI
inc,

(ii) twice the minimum of pinc minus twice the table probability pt , which is table-exclusive

version of this type of two-sided test, and denoted as pI
exc,

(iii) table-exclusive version of this type of two-sided test plus pt , which is mid-p-value for

this test, and denoted as pI
mid

,

(iv) Tocher corrected version, pI
Toc

, is calculated as in Equation (1).

Notice that pI
inc D 2 min.p>

inc; p<
inc/, pI

exc D 2 min.p>
exc; p<

exc/ D pI
inc � 2 pt , and pI

mid D

pI
exc C pt . Furthermore, pI

exc � pI
Toc � pI

inc and pI
exc < pI

mid < pI
inc.

Type (II): For summing the p-values of more extreme —than that of the table— cases in

both directions, the following variants are proposed. The p-value is p D
P

S f .t jn1; n2; c1I

� D 1/ with
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(i) S D ft W f .t jn1; n2; c1I � D 1/ � ptg, which is called table-inclusive version, pII
inc ,

(ii) the probability of the observed table is included twice, once for each side; that is p D

pII
inc

C pt , which is called twice-table-inclusive version, pII
t,inc

,

(iii) table-inclusive minus pt , which is referred as table-exclusive version, pII
exc

,

(iv) table-exclusive plus one-half the pt , which is called mid-p version, pII
mid and,

(v) Tocher corrected version, pII
Toc, is obtained as before.

Note that pII
exc

D pII
inc

�pt and pII
mid

D pII
exc

Cpt=2. Furthermore, pII
exc

� pII
Toc

� pII
inc

< pII
t,inc

and pII
exc < pII

mid
< pII

inc
< pII

t,inc
.

3.2 Exact Version of Pearson’s Test

Let �ij be the expected cell count in cell .i; j / of a contingency table. Pearson’s �2 test is

based on the test statistic

X
2 D

2
X

j D1

2
X

iD1

.Nij � �ij /2=�ij ;

which has �2
1 distribution in the limit provided that the contingency table is constructed from one

of Poisson, row-wise, or overall multinomial sampling frameworks (Conover [10]). The exact

version of Pearson’s test uses the exact distribution of X 2 rather than large sample �2 approxi-

mation. That is, for the two-sided alternative, we calculate the p-values as p D
P

S f .t jn1; n2;

c1I � D 1/ with

(i) S D ft W jt � �11j � jn11 � �11jg, which is called table-inclusive version, p
�
inc,

(ii)-(v) the twice-table-inclusive version, p
�
t,inc

, table-exclusive version, p�
exc

, mid-p version,

p
�
mid, and Tocher corrected version, p

�
Toc, are obtained as pII

exc, pII
mid, and pII

Toc, respec-

tively.

Observe that in all of these versions of exact tests, the most conservative ones are the

table-inclusive versions, and the least conservative are the table-exclusive versions.

4. Nearest Neighbor Contingency Tables

Consider two classes labeled as f1; 2g. Let ni be the number of points from class i for

i 2 f1; 2g and n D n1 C n2. If we record the class of each point and of its nearest neighbor,

the NN relationships fall into four categories: .1; 1/; .1; 2/I .2; 1/; .2; 2/ where in cell .i; j /,

class i is the base class, while class j is the class of its NN. That is, the n points (classes 1 and

2 combined together) forms n (base,NN) pairs. Then each pair is categorized according to the

base label (row categories) and NN label (column categories). Denoting Nij as the frequency

of cell .i; j / for i; j 2 f1; 2g, we obtain the NNCT in Table 1 where Cj is the sum of column

j ; i.e., number of times class j points serve as NNs for j 2 f1; 2g.

Under segregation, the diagonal entries, Ni i for i D 1; 2, tend to be larger than expected;

under association, the off-diagonals tend to be larger than expected. The general two-sided
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alternative is that some cell counts are different from those expected under CSR independence

or RL.

Table 1 NNCT for two classes.

NN class

class 1 class 2 sum

class 1 N11 N12 n1
base class

class 2 N21 N22 n2

sum C1 C2 n

Pielou used the usual Pearson’s �2 test of independence for testing deviations from ran-

domness in NN-structure (Pielou [27]), but the distribution of cell counts was not appropriate

(Meagher and Burdick [24]). Dixon derived the appropriate asymptotic distribution of the cell

counts using Moran join count statistics (Moran [25]) and hence the appropriate test which also

has a �2-distribution (Dixon [14]). Moreover, Dixon’s test is acceptable for moderate to large

sample sizes (e.g., class sizes ni � 30).

Ceyhan [8] compared these tests and demonstrated that Pielou’s test is only appropriate

for a random sample of (base,NN) pairs. Although, both tests are shown to be consistent (in

the sense that, the power tends to 1 as sample sizes go to infinity under the alternatives), only

Dixon’s test has the appropriate nominal level, while Pielou’s test is liberal in rejecting CSR

independence or RL.

4.1 Exact Inference on NNCTs

Pielou’s test and Dixon’s tests are based on �2 approximation for large samples (i.e., row

sums). As the sample sizes increase, the approximation for Dixon’s test gets better for test-

ing spatial segregation. When row and column sums are small, exact inference might be an

alternative to the asymptotic NNCT tests.

For N11, conditional on marginal sums, to follow a hypergeometric distribution, cell counts

should originate from either Poisson or row-wise multinomial sampling frameworks (Conover

[10]). In the overall multinomial sampling framework, N11 approximately follows a hypergeo-

metric distribution. However, in the case of NNCTs, cell counts do not conform to any of these

sampling frameworks (Ceyhan [8]).

In all these frameworks, the dependence between cell counts, and the dependence between

rows of the NNCTs are caused by the spatial correlation of points. For spatial data, a (base, NN)

pair is more likely to be a reflexive pair, rather than a non-reflexive one under CSR independence

or RL. A (base,NN) pair .x; y/ is reflexive if .y; x/ is also a (base,NN) pair, that is, if x is a NN

of y and y is a NN of x. Furthermore, a point can serve as a NN up to six other points in R
2;



52 JPSS Vol. 8 No. 1 February 2010 pp. 45-68

that is, a point can be shared as a NN by as many as six points. The spatial correlation between

(base,NN) pairs and hence between cell counts in NNCTs are due to reflexivity and shared

NN structure. Furthermore, these problems persist in the asymptotics also (Clark and Evans

[9]). Thus, under any of Poisson, row-wise multinomial, and overall multinomial sampling

frameworks, as in the case of Pielou’s tests, Fisher’s exact test is not appropriate for testing CSR

independence or RL. The independence of rows and individual trials (base,NN pairs) would

follow if NNCT is based on a random sample of (base,NN) pairs, which unfortunately is not

realistic in practical situations.

While Pielou’s test is liberal in rejecting CSR independence or RL with levels almost twice

the nominal level (Ceyhan [8]), exact tests for contingency tables are conservative in general.

Hence for exact tests, there are two competing factors: liberalness due to the inherent depen-

dence between cell counts, and conservativeness due to the exact nature of the tests. Thus,

these two factors might counterbalance each other, thereby rendering a variant of exact tests

appropriate for CSR independence or RL.

Under CSR independence or RL, the odds ratio in the NNCT is given by � D �11 �22

�12 �21
D

.n1�1/.n2�1/

n1 n2

; since

EŒNij � D �ij D

8

ˆ

<

ˆ

:

ni.ni � 1/=.n � 1/ if i D j ,

ni nj =.n � 1/ if i 6D j .

(2)

See Dixon [14] for the derivation of the expectation in Equation (2). Observe that the expected

cell counts depend only on the size of each class (i.e., row sums), but not on column sums. In

a NNCT, row sums are fixed, while column sums are random quantities. On the other hand,

Pielou’s test and Fisher’s exact test depend on both row and column sums. This is part of the

problem, but the greater problem is the dependence due to reflexivity and shared NN structure.

Notice also that as ni ! 1 for both i D 1; 2, the odds ratio � ! 1. Therefore, the null

hypothesis for Fisher’s exact test, namely, Ho W � D 1 is only equivalent to testing CSR inde-

pendence or RL in the limit. On the other hand, for moderate to large sample sizes, under CSR

independence or RL, � � 1. Hence, even if the distribution of the cell counts were correct,

Fisher’s exact test in the general form would be an approximate test for CSR independence or

RL.

As N11 gets large, the odds ratio also gets larger than 1. Hence the alternative Ha W � > 1

is approximately (exactly) equivalent to the segregation alternative for finite samples (in the

limit). The same holds for Ha W � < 1 under the association alternative. On the other hand,

the two-sided alternative Ha W � 6D 1 is asymptotically equivalent to any deviation from CSR

independence or RL. Since Fisher’s exact test is a finite sample test, under CSR independence

or RL, � D .n1�1/.n2�1/

n1 n2

< 1, which implies, if N11 had a hypergeometric distribution, it would

have been a non-central hypergeometric distribution with non-centrality parameter, � .
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When only row sums in a contingency table are fixed with independent binomial samples,

alternative exact tests are available. These tests are less conservative than Fisher’s exact test

(Berger and Boos [5]). However, the rows in a NNCT are not independent binomial samples,

and Fisher’s exact test is already mildly liberal in the best case, so we do not consider this

approach for NNCTs (see Section 5).

We are applying exact and ‘corrected’ (i.e., a correction on the odds ratio is implemented

by setting � D .n1�1/.n2�1/

n1 n2
for Ho.) exact tests for the usual test of independence in a 2 � 2

contingency table which has 1 df. Hence they turn out to be the exact versions of Pielou’s test

but not of Dixon’s test. Alas, for Dixon’s test, the exact version is not available, so we are left

with Monte Carlo tests.

Remark 1. Consistency is an asymptotic property and exact tests are designed and used for finite

samples. But as n ! 1, the null hypothesis becomes Ho W � D 1 under CSR independence or

RL, and Fisher’s exact tests become equivalent to Pearson’s �2 test. So Fisher’s exact tests are

also consistent, since Pielou’s test is Pearson’s �2 test for NNCTs, and is proved to be consistent

by Ceyhan [8]. �

5. Empirical Significance Levels of the Tests under CSR Independence

We implement Monte Carlo simulations to evaluate the finite sample performance of the

tests in terms of empirical size. For the null case, we simulate the CSR independence pattern

only, with classes X and Y of sizes n1 and n2, respectively. At each of Nmc D 10000 replicates,

under Ho, we generate data for some combinations of n1; n2 2 f10; 20; 30; 50; 100; 150; 200g

points independent identically distributed (iid) from U..0; 1/ � .0; 1//, the uniform distribution

on the unit square. Let fX1; : : : ; Xn1
g be the set of class X points and fY1; : : : ; Yn2

g be the set

of class Y points.

As the tests under consideration, namely, Fisher’s exact test, and exact version of Pear-

son’s test, are not appropriate in testing the null pattern of CSR independence or RL, we

do not perform power comparisons under various alternatives for all the versions right away.

We first investigate which variant(s) are more appropriate (i.e., have the empirical sizes about

the nominal level, ˛). We present the empirical significance levels for the tests under Ho W

CSR independence with or without the correction on odds ratio against segregation or asso-

ciation alternatives in Table 2. The empirical sizes significantly smaller (larger) than .05 are

marked with c (`), which indicate that the corresponding test is conservative (liberal). The

asymptotic normal approximation to proportions is used in determining the significance of the

deviations of the empirical size estimates from the nominal level of .05. For these proportion

tests, we also use ˛ D :05 to test against empirical size being equal to .05. With Nmc D 10000,

empirical sizes less (greater) than .0464 (.0536) are deemed conservative (liberal) at ˛ D :05

level.
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Table 2 The empirical significance levels without correction on odds ratio (top) and with fi-

nite sample correction (bottom) for the one-sided tests under Ho W CSR independence with

Nmc D 10000, for some combinations of n1; n2 2 f10; 20; 30g at ˛ D :05. ǪS
inc

is the estimated

empirical significance level for the table-inclusive version of the one-sided test of segregation,

ǪS
exc is for the table-exclusive version, ǪS

mid is for the mid-p-value version, ǪS
Toc is for the Tocher

corrected version. The notation is similar for the association alternative with S being replaced

by A. c:The empirical size is significantly smaller than .05; i.e., the test is conservative. `:The

empirical size is significantly larger than .05; i.e., the test is liberal.

Empirical significance levels for the one-sided tests

.n1; n2/ ǪS
inc

ǪS
exc

ǪS
mid

ǪS
Toc

ǪA
inc

ǪA
exc

ǪA
mid

ǪA
Toc

.10; 10/ .0421c .1504` .0619` .0692` .0839` .2448` .1229` .1295`

.0440c .1554` .0833` .0984` .0562` .1786` .0872` .1016`

.10; 20/ .0440c .1347` .0670` .0736` .0836` .2330` .1158` .1310`

.0622` .1789` .0949` .0960` .0503 .1768` .1012` .0997`

.10; 30/ .0499 .1481` .0685` .0767` .0584` .2310` .1183` .1328`

.0532 .1575` .0770` .0913` .0625` .2329` .1190` .1154`

.20; 10/ .0437c .1371` .0684` .0749` .0778` .2314` .1100` .1291`

.0575` .1803` .0933` .0922` .0519 .1767` .0988` .1001`

.20; 20/ .0406c .1070` .0651` .0736` .0731` .1697` .1142` .1257`

.0689` .1578` .1066` .0948` .0683` .1630` .1080` .0979`

.20; 30/ .0487 .1182` .0716` .0760` .0786` .1682` .1154` .1170`

.0637` .1482` .0956` .1016` .0671` .1515` .0931` .0944`

.30; 10/ .0486 .1438` .0675` .0749` .0578` .2339` .1213` .1339`

.0575` .1635` .0803` .0947` .0590` .2313` .1163` .1103`

.30; 20/ .0530 .1287` .0771` .0830` .0799` .1767` .1204` .1174`

.0594` .1322` .0883` .0918` .0744` .1583` .1001` .1000`

.30; 30/ .0536 .1093` .0765` .0775` .0787` .1609` .1152` .1161`

.0732` .1451` .0749` .0901` .0763` .1564` .0837` .0953`

Observe that without correction on odds ratio, all empirical sizes for segregation alternative

are smaller than the corresponding ones for the association alternative for ni � 50. The correc-

tion on odds ratio slightly increases (decreases) the empirical levels for segregation (association)

alternatives. The increase in empirical levels for segregation alternatives are significant for most

sample size combinations, while the decrease in empirical levels for association alternatives is

significant for some of them. Without correction on odds ratio, odds ratio is less than 1, hence

the test tends to reject for the segregation alternative less than that under CSR independence,

and vice versa for association alternative. The order of estimated empirical sizes from smallest
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to largest is table-inclusive, mid-p-value, Tocher corrected version, and table-exclusive ver-

sions. This ordering is also from most conservative to the least conservative versions for testing

independence in general contingency tables.

Table 3 The empirical significance levels without correction on odds ratio (top), with fi-

nite sample correction (middle), and the mixed method for the two-sided tests under Ho with

Nmc D 10000, for some combinations of n1; n2 2 f10; 20; 30g at ˛ D :05. Ǫ I
inc

is the estimated

empirical significance level for the two-sided test of segregation with the table-inclusive version

of Pearson type I test, Ǫ I
exc

is for table-exclusive version, Ǫ I
mid

is for mid-p-value version, Ǫ I
Toc

is

for Tocher corrected version. Superscript labeling is as in Table 2.

Empirical significance levels for the two-sided tests

.n1; n2/ Ǫ I
inc Ǫ I

exc Ǫ I
mid Ǫ I

Toc Ǫ II
inc Ǫ II

exc Ǫ II
mid Ǫ II

Toc Ǫ II
t,inc

.10; 10/ .0592` .2354` .1260` .1272` .0592` .1260` .0738` .0917` .0592`

.0866` .3016` .0896` .1313` .0877` .1711` .1207` .1334` .0866`

.10; 20/ .0839` .2725` .1193` .1346` .1072` .2000` .1331` .1354` .0686`

.0693` .2610` .0992` .1229` .0893` .1813` .1156` .1246` .0600`

.10; 30/ .0574` .2737` .0986` .1290` .0929` .1787` .1071` .1252` .0421c

.0521 .2850` .1137` .1266` .0882` .2071` .1037` .1288` .0417c

.20; 10/ .0766` .2720` .1129` .1298` .1010` .1952` .1272` .1302` .0618`

.0702` .2597` .0974` .1219` .0896` .1811` .1162` .1235` .0613`

.20; 20/ .0715` .1895` .1120` .1297` .0715` .1120` .1117` .1034` .0683`

.0820` .2147` .1372` .1211` .0830` .1393` .1372` .1249` .0820`

.20; 30/ .0798` .1949` .1086` .1205` .1054` .1648` .1116` .1209` .0704`

.0778` .2010` .1069` .1204` .1020` .1692` .1086` .1232` .0699`

.30; 10/ .0525 .2760` .0932` .1237` .0878` .1785` .1017` .1216` .0362c

.0523 .2868` .1146` .1221` .0894` .2020` .1039` .1266` .0425c

.30; 20/ .0833` .2076` .1163` .1286` .1132` .1733` .1188` .1296` .0722`

.0804` .1985` .1101` .1230` .1064` .1677` .1128` .1254` .0716`

.30; 30/ .0844` .1917` .1321` .1238` .0844` .1321` .0850` .0990` .0587`

.0728` .1665` .0993` .1194` .0992` .1495` .1001` .1162` .0641`

For the segregation alternative, the table-inclusive version has about the nominal level,

while mid-p, and Tocher corrected versions are slightly liberal, and the table-exclusive version

is the most liberal. For the table-inclusive version, the one without correction on odds ratio is

closer to the nominal level. On the other hand, for the association alternative, table-inclusive

version is mildly liberal but table-inclusive version with correction on odds ratio is closer to the

desired nominal level compared to other versions.
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We present the empirical significance levels for the two-sided tests in Tables 3 and 4 where

we use the empirical significance levels for Dixon’s test, ǪD as a benchmark. Observe that

among type I tests, table inclusive version with correction on odds ratio has empirical size

closest to the nominal level, among type II tests, twice-table-inclusive without correction on

odds ratio has empirical size closest to the nominal level. Among exact versions of Pearson’s

test, twice-table-inclusive with correction on odds ratio is about the desired nominal level.

Table 4 The empirical significance levels without correction on odds ratio (top) and with finite

sample correction (bottom) for the exact version of Pearson’s test under Ho with Nmc D 10000,

for some combinations of n1; n2 2 f10; 20; 30g at ˛ D :05. ǪD stands for the empirical size

estimate for Dixon’s test, and the other size notations are as in Table 3, with I (or II) replaced

by �. Superscript labeling is as in Table 2.

Empirical significance levels for Dixon’s test

and the exact version of Pearson’s tests

.n1; n2/ Ǫ
�
inc Ǫ�

exc Ǫ
�
mid Ǫ

�
Toc Ǫ

�
t,inc ǪD

.10; 10/ .0592` .1260` .0738` .0904` .0592` .0432c

.0813` .1918` .1007` .1087` .0523 —

.10; 20/ .1072` .1671` .1276` .1274` .0624` .0422c

.0845` .1972` .0930` .1225` .0530 —

.10; 30/ .0710` .1488` .0826` .0922` .0321c .0424c

.0467 .1866` .1188` .1088` .0317c —

.20; 10/ .1010` .1621` .1215` .1220` .0552` .0406c

.0756` .2020` .0923` .1161` .0381c —

.20; 20/ .0715` .1120` .1117` .1024` .0683` .0432c

.0683` .1622` .0982` .1063` .0551` —

.20; 30/ .1054` .1522` .1086` .1176` .0650` .0469

.0810` .1427` .1064` .1043` .0524 —

.30; 10/ .0643` .1506` .0748` .0889` .0259c .0389c

.0743` .1936` .1041` .1139` .0440c —

.30; 20/ .1132` .1612` .1162` .1259` .0664` .0479

.0796` .1537` .1000` .1087` .0539` —

.30; 30/ .0844` .1321` .0850` .0958` .0587` .0453c

.0789` .1586` .1020` .1061` .0616` —

6. Empirical Power Analysis

For the right-sided test (i.e., the test relative to segregation alternative) we use the table-

inclusive versions of Fisher’s exact test without correction on odds ratio. For the left-sided test
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(i.e., the test relative to association alternative) we use the table-inclusive versions of Fisher’s

exact test with correction on odds ratio. For the two-sided alternative, we consider twice-table-

inclusive version of type I Fisher test with correction on odds ratio, type II Fisher test without

correction on odds ratio, and twice-table-inclusive version of Pearson’s exact test with correc-

tion on odds ratio.

6.1 Empirical Power Analysis under the Segregation Alternatives

For the segregation alternatives, we generate Xi
i id
� U..0; 1 � s/ � .0; 1 � s// and Yj

i id
�

U..s; 1/ � .s; 1// for i D 1; : : : ; n1 and j D 1; : : : ; n2. Notice that the level of segregation

is determined by the magnitude of s 2 .0; 1/. We consider the following three segregation

alternatives:

H I
S W s D 1=6; H II

S W s D 1=4; and H III
S W s D 1=3:

These alternatives are illustrated with n1 D 100 X and n2 D 100 Y points in Figure 1.
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Figure 1 Three realizations for H I
S W s D 1=6 (left), H II

S W s D 1=4 (middle), and H III
S W s D

1=3 (right) with n1 D 100 X points (solid squares �) and n2 D 100 Y points (triangles 4).

Observe that, from H I
S to H III

S (i.e., as s increases), the segregation between X and Y gets

stronger in the sense that X and Y points tend to form one-class clumps or clusters. The power

estimates are presented in Table 5. By construction these segregation alternatives are symmetric

in the sense that degree of segregation of class X in .n1; n2/ case is same as that of class Y in

.n2; n1/ case, so we only present n1 � n2 cases. Observe that, with the correction on odds

ratio, the empirical power estimates increase (significantly for most cases). As n D .n1 C n2/

gets larger, the power estimates get larger. Furthermore, as the segregation gets more severe, the

power estimates get larger. The highest power estimates are usually attained by the right-sided

(i.e., relative to segregation) test. The left-sided tests (i.e., tests relative to association) have

virtually zero power (hence not presented). Considering the empirical significance levels and

power estimates, when testing against segregation, we recommend the table-inclusive version

of the right-sided Fisher’s exact test without correction on odds ratio for small to moderate

samples (i.e., ni < 30), and Dixon’s test for larger samples.
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Table 5 The empirical power estimates under the segregation alternatives with Nmc D 10000

Monte Carlo replicates, for some combinations of n1; n2 2 f10; 20; 30g at ˛ D :05. ǑS;woc
inc

stands for the power estimate of the table-inclusive version of Fisher’s exact test for the right-

sided alternative (without correction on the odds ratio), ǑI;wc
inc

for the table-inclusive version

of type I of Fisher’s exact test (with correction on the odds ratio), ǑII;woc
t,inc for the twice-table-

inclusive version of type II of Fisher’s exact test (without correction on the odds ratio), Ǒ�;wc
t,inc

for the twice-table-inclusive version of Pearson’s exact test (with correction on the odds ratio),

and Ǒ
D for Dixon’s test.

Empirical power estimates under HS

.n1; n2/ ǑS;woc
inc

ǑI;wc
inc

ǑII;woc
t,inc

Ǒ�;wc
t,inc

Ǒ
D

.10; 10/ .1532 .1590 .0890 .0888 .0775

.10; 20/ .2105 .2071 .1574 .1584 .1064

.10; 30/ .2593 .2188 .1721 .2049 .1414

.20; 20/ .3295 .3294 .2414 .2414 .1597

.20; 30/ .4315 .3932 .2988 .3309 .2121

H I
S

.30; 30/ .5344 .4749 .3825 .4080 .2904

.10; 10/ .4287 .4292 .2842 .2842 .2305

.10; 20/ .5720 .5657 .4864 .4876 .3643

.10; 30/ .6599 .6069 .5352 .5917 .4555

.20; 20/ .7849 .7838 .6925 .6925 .5379

.20; 30/ .8887 .8691 .7935 .8160 .6774

H II
S

.30; 30/ .9515 .9308 .8896 .9006 .8141

.10; 10/ .8197 .8197 .6890 .6890 .5817

.10; 20/ .9286 .9272 .8844 .8846 .7837

.10; 30/ .9633 .9513 .9245 .9466 .8787

.20; 20/ .9923 .9923 .9808 .9808 .9375

.20; 30/ .9984 .9978 .9946 .9954 .9819

H III
S

.30; 30/ .9997 .9994 .9989 .9991 .9969

As for the two-sided tests, the power estimates of the exact tests are significantly larger than

power estimates for Dixon’s test. Considering their empirical level performance, if one wants

to conduct a two-sided test, we recommend twice-table-inclusive version of exact version of

Pearson’s test with correction on odds ratio for small sample sizes (i.e., ni < 30) and for larger
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samples we recommend Dixon’s test.

6.2 Empirical Power Analysis under the Association Alternatives

For the association alternatives, we also consider three cases. First, we generate Xi
i id
�

U..0; 1/ � .0; 1// for i D 1; 2; : : : ; n1 and Yj for j D 1; 2; : : : ; n2 as follows. For each j , we

pick an i randomly, then generate Rj � U.0; r/ with r 2 .0; 1/ and Tj � U.0; 2 �/ and set

Yj D Xi C Rj .cos Tj ; sin Tj /0. Appropriate choices of r will imply that classes X and Y are

more associated. That is, it is more likely to have .X; Y / NNs than same-class NNs (.X; X/ or

.Y; Y /). The three values of r we consider constitute the three association alternatives;

H I
A W r D 1=4; H II

A W r D 1=7; and H III
A W r D 1=10:

These alternatives are illustrated with n1 D 20 X and n2 D 100 Y points in Figure 2. Observe

that, from H I
A to H III

A , the association gets more severe in the sense that X and Y points tend

to occur together more and more frequently.
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Figure 2 Three realizations for H I
A W r D 1=4 (left), H II

A W r D 1=7 (middle), and H III
A W r D

1=10 (right) with n1 D 20 X points (solid squares �) and n2 D 100 Y points (triangles 4).

The power estimates are presented in Table 6. Observe that for each sample size combi-

nation, as the association gets more severe, the power estimates get larger. The highest power

estimates are naturally attained by the one-sided association test among exact tests. The right-

sided tests (i.e., tests relative to segregation) have virtually zero power (hence not presented).

Furthermore, by construction the larger the class Y from class X , the stronger the association

between them, while the larger the class X from class Y the weaker the association. Consid-

ering the empirical significance levels and power estimates, when testing against association,

for small sample sizes (i.e., ni < 30), we recommend the table-inclusive version of left-sided

Fisher’s exact test with correction on odds ratio. For larger samples, we recommend Dixon’s

test.

Table 6 The empirical power estimates under the association alternatives with Nmc D 10000

Monte Carlo replicates, for all combinations of n1; n2 2 f10; 20; 30g at ˛ D :05. ǑA;wc
inc stands
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for the power estimate of the table-inclusive version of Fisher’s exact test for the left-sided

alternative (with correction on the odds ratio), ǑI;wc
inc , ǑII;woc

t,inc , Ǒ�;wc
t,inc , and Ǒ

D are as in Table 5.

Empirical power estimates under HA

.n1; n2/ ǑA;wc
inc

ǑI;wc
inc

ǑII;woc
t,inc

Ǒ�;wc
t,inc

Ǒ
D

.10; 10/ .3068 .2657 .2690 .2653 .1105

.10; 20/ .4338 .3488 .3980 .3487 .2371

.10; 30/ .4948 .3427 .3504 .2497 .3007

.20; 10/ .1758 .1282 .1461 .1264 .0632

.20; 20/ .4085 .3060 .3055 .3053 .1745H I
A

.20; 30/ .4945 .3733 .4038 .3730 .2672

.30; 10/ .1318 .0515 .0502 .0263 .0409

.30; 20/ .3019 .1979 .2394 .1969 .1082

.30; 30/ .4284 .2845 .2842 .2676 .1697

.10; 10/ .4804 .4398 .4422 .4398 .1834

.10; 20/ .6719 .5746 .6341 .5746 .4007

.10; 30/ .7259 .5880 .5983 .4847 .4956

.20; 10/ .3311 .2516 .2977 .2511 .1427

.20; 20/ .6941 .5873 .5871 .5870 .3622

.20; 30/ .8101 .7078 .7383 .7077 .5258H II
A

.30; 10/ .2623 .1293 .1307 .706 .1003

.30; 20/ .5778 .4408 .4849 .4406 .2675

.30; 30/ .7632 .6216 .6216 .6078 .4141

.10; 10/ .5476 .5116 .5138 .5116 .2222

.10; 20/ .7680 .6806 .7351 .6806 .4853

.10; 30/ .8228 .7006 .7107 .6037 .6003

.20; 10/ .4262 .3365 .3913 .3363 .2153

.20; 20/ .8199 .7382 .7381 .7381 .5063

.20; 30/ .9169 .8525 .8765 .8525 .6869H II
A

.30; 10/ .3527 .2091 .2112 .1305 .1783

.30; 20/ .7378 .6169 .6526 .6169 .4268

.30; 30/ .9025 .8081 .8081 .7966 .6157
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For the two-sided tests, the power estimates of the exact tests are usually significantly

larger than power estimates for Dixon’s test. Considering their empirical level performance, if

one wants to conduct a two-sided test, we recommend the table-inclusive version of the exact

Pearson’s test with correction on odds ratio for small sample sizes (i.e., ni < 30); for larger

sample sizes, we recommend Dixon’s test.

Remark 2. Edge Correction for the NNCT-Tests: The CSR independence pattern assumes

that the study region is unbounded for the analyzed pattern, which is not the case in practice.

So it might be necessary to correct for edge effects under CSR independence (Yamada and

Rogersen [32]). Two correction methods for the edge effects on exact and asymptotic NNCT-

tests, namely buffer zone correction and toroidal correction, are investigated in (Ceyhan [6;8])

where it is shown that the empirical sizes of the NNCT-tests are not affected by the toroidal

edge correction under CSR independence. However, toroidal correction is biased for non-CSR

patterns. In particular if the pattern outside the plot (which is often unknown) is not the same

as that inside it yields questionable results (Haase [19] and Yamada and Rogersen [32]). Under

CSR independence, the (outer) buffer zone edge correction method does not change the sizes

significantly for most sample size combinations. This is in agreement with the findings of Barot

et al. [4] who say that NN methods only require a small buffer area around the study region.

A large buffer area does not help much since once the buffer area extends past the likely NN

distances (i.e., about the average NN distances), it is not adding much helpful information for

NNCTs. Hence we recommend inner or outer buffer zone correction for these tests with the

width of the buffer area being about the average NN distance. �

7. Examples

We illustrate the tests on three example data sets: swamp tree data (the whole region and

a subset of the region) and an artificial data set. We conduct Pielou’s and Dixon’s test of seg-

regation, table-inclusive version of Fisher’s right-sided exact test (for segregation) without cor-

rection on odds ratio, table-inclusive version of Fisher’s left-sided exact test (for association)

with correction on odds ratio, table-inclusive version of type-I test with correction on odds

ratio, twice-table-inclusive version of type II test without correction on odds ratio, twice-table-

inclusive version of Pearson’s exact test with correction on odds ratio.

7.1 Swamp Tree Data - The Whole Region

Dixon illustrates NN-methods on the tree species in a 50m by 200m rectangular plot of

hardwood swamp in South Carolina, USA (Dixon [16]). The plot contains 13 different tree

species, of which we only consider two, namely, bald cypress and black gum trees as they con-

stitute the majority of the trees (there are 182 black gum trees and 91 bald cypresses). The

locations of the tree species can be viewed a priori resulting from different processes, so the
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more appropriate null hypothesis is the CSR independence pattern. The question of interest is

whether these tree species exhibit segregation, association, or CSR independence. The loca-

tions of these trees in the study region are plotted in Figure 3 and the corresponding NNCT

together with percentages are provided in Table 7 (top). Observe that the percentage values are

suggestive of segregation for both species.
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Figure 3 The scatter plots of the locations of black gum trees (circles ı) and cypress trees

(triangles 4). The smaller region (i.e., one-eighth of the region) is the rectangle bounded by the

dashed lines.

The p-values are presented in Table 9, where we observe that all two-sided tests are signif-

icant, implying significant deviation from CSR independence; and the one-sided tests indicate

that black gum trees and cypress trees are significantly segregated.

7.2 Swamp Tree Data - A Subset of the Region

Dixon’s test is more reliable for the swamp tree data with the whole region, since the

sample sizes are large enough for asymptotic approximation. Furthermore, the exact tests we

consider become more similar to Pielou’s test, hence get to be liberal in rejecting the null hy-

pothesis for large samples. Moreover, exact tests are intended for use in small sample sizes

where the asymptotic approximations fail; in particular exact tests we consider are conservative

for small samples for general contingency tables, which makes them appropriate for NNCTs.

Therefore, we also analyze the spatial pattern in a subset of the region (one-eighth of the region)

in this data set (see the dashed box in Figure 3). This region contains 26 black gums and 12 bald

cypresses, hence it is appropriate for using the exact tests, while the asymptotic approximations

might fail. The corresponding NNCT and the percentages are also presented in Table 7 (bot-

tom). Observe that the percentages for the whole region and the one-eighth of the region are

very similar, suggesting the segregation of black gums and bald cypresses in this subregion also.

The p-values are presented in Table 9, where it is seen that Dixon’s test is not significant at .05
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level, Pielou’s test is significant at .01 level, and the exact tests are significant only at .05 level.

Dixon’s test misses the apparent segregation pattern here as it is conservative for small samples,

Pielou’s test suggests severe segregation, which (we think) is over-emphasized because of its

liberalness. Thus, the exact tests more reliably indicate the mild segregation pattern and its

significance.

Table 7 The NNCT for Swamp tree data (left) and the corresponding percentages (right) with

the whole region (top) and the one-eighth of the region (bottom). B.G. = black gum trees, B.C.

= bald cypress trees

Swamp Tree Data (The Whole Region)

NN

B.G. B.C. sum

B.G. 149 33 182
base

B.C. 43 48 91

sum 192 581 273

NN

B.G. B.C.

B.G. 82 % 18 % 67 %
base

B.C. 47 % 53 % 23 %

34 % 66 % 100 %

Swamp Tree Data (One-Eighth of the Region)

NN

B.G. B.C. sum

B.G. 22 4 26

base
B.C. 5 7 12

sum 27 11 38

NN

B.G. B.C.

B.G. 85 % 15 % 68 %

base
B.C. 42 % 58 % 32 %

71 % 29 % 100 %

7.3 Artificial Data

In this artificial example, a random sample of size 40 (with 20 X and 20 Y -points iid

uniformly generated on the unit square). By construction, the locations of these points can

be viewed a priori resulting from (possibly) different processes, so the more appropriate null

hypothesis is the CSR independence pattern. The question of interest is the spatial interaction

between X and Y points. We plot the locations of these points in the study region in Figure 4

and provide the corresponding NNCT together with percentages in Table 8. Observe that the

percentages are slightly larger for the off-diagonal cells, which might be interpreted as presence

of mild association for both classes.

Observe in Table 9 that among the two-sided tests, only Pielou’s test is significant at .05

level, but the significance of Pielou’s test seems to be a false alarm, as it is liberal test (Ceyhan

[8]). However, notice that, pA
inc

is mildly significant which is in agreement with the NNCT-

table and the figure. But the left-sided test for this particular sample size combination was
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significantly liberal (see Table 2), so this result is not so reliable either. On the other hand

two-sided tests suggest no significant deviation from CSR independence (as they are mildly

significant only at .10 level) and this seems to be the most reliable conclusion about the pattern

in question (i.e., very mild association). Figure 4 is also suggestive of such a conclusion.
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Figure 4 The scatter plots of the locations of 20 X points (circles ı) and 20 Y points (triangles

4).

Table 8 The NNCT for the artificial data (left) and the corresponding percentages (right).

NN

X Y sum

X 6 14 20

base
Y 13 7 20

sum 19 21 40

NN

X Y

X 30 % 70 % 50 %

base
Y 65 % 35 % 50 %

47.5 % 52.5 % 100 %

8. Discussion and Conclusions

In this article we propose the use of exact tests for segregation tests based on nearest neigh-

bor contingency tables (NNCTs). Based on our Monte Carlo simulations, we conclude that the

asymptotic approximation for the NNCT-tests is appropriate for large samples. For smaller

samples, Monte Carlo randomization versions of the NNCT-tests or the most conservative ver-

sions of Fisher’s exact test (i.e., the ones based on table-inclusive versions in Section 3) can be

used.

For the analysis of two-class spatial patterns, Ripley’s K-function and related methods are

extensively used in literature. The K-function techniques are based on Monte Carlo simulations
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and might indicate different patterns at different distance values. Therefore, for an overall as-

sessment of the patterns between two-classes, we first recommend the use of NNCT tests, and

then Ripley’s K or L function tests to get the details of the pattern(s) at different scales. Fur-

thermore, K-function methods are most useful as pairwise comparisons. The pair correlation

function g.t/ and Ripley’s classical K- or L-functions and other variants provide information

on the pattern at various scales. On the other hand NNCT-tests summarize the pattern in the

data set for small scales in one compound summary statistic; more specifically, they provide

information on the pattern around the average NN distance between the points.

Table 9 The test statistics (top) and p-values (bottom) for the exact and asymptotic NNCT-

tests. � is for the odds ratio which is the test statistic for variants of Fisher’s exact test, CP is for

the test statistic for Pielou’s test and Pearson’s exact test, and CD is for Dixon’s test. pP is the

p-value for Pielou’s test, and other subscripts and superscripts of the p-values are as in Tables

5 and 6.

Test statistics and p-values for the exact tests and Dixon’s test

Data � (i.e., odds ratio) CP CD

p
S;woc
inc

p
A;wc
inc

p
I;wc
inc

p
II;woc
t,inc

p
�;wc
t,inc

pP pD

Swamp tree data 5.0052 34.8359 23.7704

(the whole region) < :0001 � 1:0 < :0001 < :0001 < :0001 < :0001 < :0001

Swamp tree data 7.1934 7.3635 5.2074

(one-eighth of the region) .0110 .9994 .0137 .0272 .0131 .0067 .0740

Artificial data .2402 4.9123 2.7585

.9948 .0406 .0812 .0790 .0919 .0267 .2518

Ripley’s classical K- or L-functions can be used for testing (i.e., inference) when the null

pattern can be assumed to be CSR independence; that is, when the null pattern assumes first-

order homogeneity for each class. When the null pattern is the RL of points from an inho-

mogeneous Poisson process they are not appropriate (Kulldorff [23]) Diggle’s D-function is a

modified version of Ripley’s K-function (Diggle [13]) and adjusts for any inhomogeneity in

the locations of, e.g., cases and controls. Furthermore, there are variants of K.t/ that explicitly

correct for inhomogeneity (see Baddeley et al. [3]). Ripley’s K-, Diggle’s D- and pair cor-

relation functions are designed to analyze univariate or bivariate spatial interaction at various

scales (i.e., inter-point distances). Since the pair correlation functions are derivatives of Rip-

ley’s K-function (Stoyan and Stoyan [28]), most of the above discussion holds for them also,

except g.t/ is reliable only for large scale interaction analysis. Hence NNCT-tests and pair cor-
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relation function are not comparable but provide complimentary information about the pattern

in question.

Pielou’s NNCT-test is not appropriate for testing complete spatial randomness (CSR) inde-

pendence or random labeling (RL). However, the finite sample nature and conservativeness of

Fisher’s exact test on NNCTs makes it more appropriate for testing CSR independence or RL

compared to Pielou’s test. We consider four main variants of the test for one-sided alternatives,

and fourteen different variants (nine using Fisher’s exact test, five using the exact version of

Pearson’s test) for the two-sided alternatives. For each variant, we also implement a correction

on odds ratio which makes the parameter of testing (i.e., odds ratio) � accurate under CSR in-

dependence or RL. This adjustment also improves the empirical sizes of some of the tests under

the null case.

Out of all these variants of exact tests, the most conservative versions with the correction

on odds ratio have the best performance in terms of empirical size. Furthermore, the exact tests

have higher power estimates under the alternatives compared to Dixon’s test. For the right-

sided (left-sided) test, the table-inclusive version without (with) finite sample adjustment has

the best empirical size performance. For type I two-sided tests, the table-inclusive version with

correction on odds ratio has the best performance. On the other hand, for type II and Pearson’s

exact tests, the best performers are twice-table-inclusive versions without and with correction

on odds ratio, respectively. Considering empirical size and power performance, we recommend

the exact version of Pearson’s test with correction on odds ratio for the two-sided tests, and then

the one-sided exact tests can be performed. We recommend the exact tests when sample sizes

are small (i.e., < 30); for larger samples, Dixon’s test can be safely used.
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