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Abstract Neuropsychiatric disorders have been demon-
strated to manifest shape differences in cortical structures.
Labeled Cortical Distance Mapping (LCDM) is a power-
ful tool in quantifying such morphometric differences and
characterizes the morphometry of the laminar cortical man-
tle of cortical structures. Specifically, LCDM data are dis-
tances of labeled gray matter (GM) voxels with respect to
the gray/white matter cortical surface. Volumes and descrip-
tive measures (such as means and variances for each subject)
based on LCDM distances provide descriptive summary in-
formation on some of the shape characteristics. However,
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additional morphometrics are contained in the data and their
analysis may provide additional clues to underlying differ-
ences in cortical characteristics. To use more of this infor-
mation, we pool (merge) LCDM distances from subjects
in the same group. These pooled distances can help detect
morphometric differences between groups, but do not pro-
vide information about the locations of such differences in
the tissue in question. In this article, we check for the influ-
ence of the assumption violations on the analysis of pooled
LCDM distances. We demonstrate that the classical para-
metric tests are robust to the non-normality and within sam-
ple dependence of LCDM distances and nonparametric tests
are robust to within sample dependence of LCDM distances.
We specify the types of alternatives for which the tests are
more sensitive. We also show that the pooled LCDM dis-
tances provide powerful results for group differences in dis-
tribution of LCDM distances. As an illustrative example, we
use GM in the ventral medial prefrontal cortex (VMPFC) in
subjects with major depressive disorder (MDD), subjects
at high risk (HR) of MDD, and healthy subjects. Signifi-
cant morphometric differences were found in VMPFC due
to MDD or being at HR. In particular, the analysis indicated
that distances in left and right VMPFCs tend to decrease due
to MDD or being at HR, possibly as a result of thinning. The
methodology can also be applied to other cortical structures.

Keywords Computational anatomy - Depression - Laminar
cortical mantle - Morphometry - Ventral medial prefrontal
cortex

1 Introduction

In the past 15 years, the laminar structure of the neo-cortex
has received considerable attention thanks to advances in
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high resolution magnetic resonance imaging (MRI) tech-
nology and the development of Computational Anatomy
(CA) methods (e.g., [3, 7, 13, 15, 17, 19]). Specifically, La-
beled Cortical Distance Mapping (LCDM) has been shown
to be a powerful tool for structural comparison of cortical
thickness characteristics in the cingulate cortex in studies of
Alzheimer’s disease and schizophrenia [1, 16, 26].

LCDM characterizes the morphometry of the laminar
cortical mantle. The term “morphometry” here has two com-
ponents, the structural formation (like surface and form) of
the tissue and scale or size (like volume and surface area).
Thus, morphometry refers to all aspects of laminar shape,
where “shape” refers to the surface structure, while “size”
refers to the scale of the tissue in question. Specifically,
LCDM data are distances of labeled gray matter (GM) vox-
els with respect to the gray/white matter (GM/WM) cortical
surface. Hence LCDM distances are local measures charac-
terizing the morphometry of the cortical mantle.

In this article, we assess the use of pooling of LCDM
distances in discriminating between diagnostic groups. In
particular we consider LCDM data for the Ventral Medial
Prefrontal Cortex (VMPFC) which is implicated in major
depressive disorders (MDD) [10-14]. Abnormalities have
been demonstrated in structure and function of the prefrontal
cortex due to MDD [10, 11]. Other structural imaging stud-
ies have largely focused on adult onset MDD, while only
few have focused on early onset MDD. Structural deficits in
a subregion of the VMPFC, i.e., subgenual prefrontal cortex,
have also been associated with early onset of MDD [2].

Previously, we analyzed morphometric measures (i.e.,
volume and descriptive summary statistics based on LCDM
distances such as median, mode, range, and variance) and
demonstrated that except for left-right asymmetry and cor-
relation between left and right measures, these variables
usually failed to discriminate between MDD and healthy
groups [5]. This may be due to the fact that the subjects
are age-matched female twins, whose VMPFC may be sim-
ilar in size. This might also be partly due to the small sam-
ple size (i.e., number of subjects). On the other hand, by
only using a descriptive summary statistic (such as volume
or median) of the numerous distances for each person, we
essentially lose most of the information provided by LCDM
measures. Therefore, we suggest a strategy to avoid such
information loss and to more fully utilize the shape or mor-
phometric characteristics contained in the data by using all
of the LCDM distances. Along these lines, we pool (i.e.,
merge) the LCDM distances by condition or group and use
the pooled distances to detect morphometric differences.
However the pooled distances do not have within sample in-
dependence, as the distances of neighboring voxels of each
voxel are dependent. Moreover, there is also dependence be-
tween distances in left and right VMPFC in each subject, as
they belong to the same person. But we demonstrate that

within sample dependence does not affect the tests in terms
of empirical significance levels (or Type I errors) or power.
Throughout the article, we use o = 0.05 as the significance
level to declare a p-value to be significant.

We describe the acquisition of LCDM distances in
Sect. 2.1, the methods we employ in Sects. 2.2 and 2.3,
present the analysis of pooled distances in Sect. 3, and in-
vestigate the influence of assumption violations in Sect. 4.

2 Methods
2.1 Data Description and Acquisition

A cohort of 34 right-handed young female twin pairs be-
tween the ages of 15 and 24 years old were obtained from the
Missouri Twin Registry in order to study cortical changes in
the VMPFC associated with MDD. The inclusion criteria for
affected twin pairs were onset prior to age 16 and the DSM-
IV criteria for MDD being greater than duration of 4 weeks.
Control twin pairs had no personal or first degree of fam-
ily history of MDD. Both monozygotic and dizygotic twin
pairs were included, of which 14 pairs were controls (Ctrl)
and 20 pairs had one twin affected with MDD, their co-twins
were designated as the HR group. Three high resolution T1-
weighted MPRAGE magnetic resonance scans of each sub-
ject in this population were acquired using a Siemens scan-
ner with 1 mm? isotropic resolution. Images were then aver-
aged, corrected for intensity inhomogeneity and interpolated
t0 0.5 x 0.5 x 0.5 mm? isotropic voxels. Following [23], a re-
gion of interest (ROI) comprising the VMPFC stripped of
the basal ganglia, eyes, sinus, cavity, was defined manually
and segmented into gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF) by Bayesian segmentation us-
ing the expectation maximization algorithm [12]. A triangu-
lated representation of the cortex at the GM/WM boundary
was generated using isocontouring algorithms [12].

Bayesian segmentation [12] automatically segments the
tissue via the Expectation-Maximization minimization of
Gaussians for the three tissue classes at each voxel. Partial
volume i.e. voxels that share mixtures were resolved via a
Neymann-Pearson recalibration of the segmentation based
on a training set [23]. The threshold between GM and WM
was used to generate a triangulated isosurface via the march-
ing tetrahedra algorithm i.e. the mesh is dense. Validation
with several VMPFC subvolumes yielded misclassification
errors of 0.05-0.10 (n = 5) for the segmentation and sub-
voxel accuracy of the isosurface with 50 percent of the ver-
tices within 0.12-0.28 mm (n = 14) from semi-automated
contours [23].

LCDM is generated as follows: first, the ROI subvol-
ume is partitioned by a regular lattice of voxels of specific
size h, denoted V (h). Every voxel is labeled by tissue type
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Fig. 1 A two-dimensional illustration of normal distances from a GM and a WM voxel to the GM/WM surface (left) and non-normalized his-

tograms of LCDM distances of GM, WM, and CSF tissues (right)

as gray matter (GM), white matter (WM), or cerebrospinal
fluid (CSF) (see, e.g., [12, 17]). For every GM voxel in the
RO, the distance from the centroid of the voxel to the clos-
est point on GM/WM surface is computed. Let S(A) be
the triangulated graph representing the GM/WM surface. An
LCDM distance is a set distance function d : v; € V(h) —
d(v;i, S(A)), the distance between the centroid of voxel v;
and the set S(A); that is, it is the distance from the center of
the voxel to the closest vertex on the surface. More precisely,

D; :=d(Cy(v;), S(A)) = min [[Cy(v;) — 52 (D
seS(A)

where Cjs(-) stands for center of mass (or centroid), and
Il - [l2 is the usual L>-norm. We use a signed (or labeled)
distance to indicate the location of each voxel with respect
to the GM/WM surface. Figure 1 illustrates the computation
of distances between labeled voxels and the cortical surface;
also shown is the corresponding non-normalized histograms
of LCDM distances. Observe that GM tissue comprises most
of the cortex, and by construction, while most of GM dis-
tances are positive, most of WM distances are negative, and
all of CSF distances are positive. Negative distances for
some GM close to the GM/WM boundary are possible by
construction, because the surface is constructed in such a
way that a surface is always intersecting voxels, i.e., partial
volume. So some appropriately labeled GM voxels may fall
on a side of surface that they should not belong to. How-
ever, these mislabeled voxels constitute a small proportion
of all voxels and do not affect the overall analysis. Relia-
bility of LCDMs is dependent on GM segmentation and re-
construction of GM/WM surfaces which has been validated
for several cortical structures including VMPFC [23], cingu-
late cortex [24, 26] and planum temporale [22]. Condensing
to a single distance value for each vertex on the surface is
the next logical step in extending LCDM. This is called Lo-
cal LCDM or LLCDM and is useful in comparing thickness
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across multiple subjects for a cortical structure (see [20,
21).

For the left ROI, let DL be the set of LCDM distances,
Dl.?k be the distance calculated as in (1) and associated with
k™ voxel in subject j in group i for k =1,2,..., K;j,
j=12,...,n;and i = 1,2, 3 (here group 1 is for MDD,
2 is for HR, and 3 is for Ctrl). Thus, n; = 20, n, = 20, and
n3 = 28. Right distances DR are denoted similarly as ng.
Based on prior anatomical knowledge (e.g., [14]), cortical
thickness of the VMPFC is roughly 6 mm, so we can safely
retain distances between —0.5 mm and 5.5 mm so that (po-
tentially) mislabeled GM is excluded from the data. In this
particular case for the left and right VMPFC, only 0.16%
and 0.14% of distances were below —0.5 mm respectively;
similarly, only 0.22% and 0.07% of distances were above
5.5 mm, respectively.

2.2 Pooling LCDM Distances by Group

Although the descriptive measures such as mean, median,
and variance of LCDM distances are global measures re-
garding the morphometry of VMPFC, they are summary sta-
tistics (such as volume or median), so they tend to oversim-
plify the data since instead of a large number of LCDM dis-
tances per subject, we will have two (e.g., one mean value
for left, one for right VMPFC) measures for each subject [5].
Hence we lose most of the information conveyed by the
LCDM distances. A solution to this problem is using all
the LCDM distances in our analysis. So we pool LCDM
distances of subjects from the same group and thereby ob-
tain yet another global measure of morphometry. That is,
we pool the LCDM distances for all left MDD VMPFECs,
those for all left HR VMPFCs, and those for all left Ctrl
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Table 1 The sample sizes (n), means, medians, and standard deviations (SD) of the pooled LCDM distances (in mm) for left and right VMPFCs

categorized by group

Group Left VMPFCs Right VMPFCs

n mean median SD n mean median SD
MDD 238937 1.62 1.46 1.13 170534 1.63 1.49 1.10
HR 228224 1.61 1.46 1.11 216978 1.59 1.46 1.08
Ctrl 308498 1.66 1.50 1.14 293479 1.66 1.53 1.12
Overall 775659 1.63 1.48 1.13 680991 1.63 1.50 1.10
VMPECs. Likewise, we pool the right VMPFC LCDM dis- group i, fori = 1,2, ..., k. For comparison of distributions

tances. Thus, for left VMPFCs

n;
D}:{Di’z:esz,...,Ni}:Upgk )
j=1

where DY, is the ¢ distance in group i and N; = 27;1 Kjj
is the number of distances (i.e., GM voxels) in group i for
i=1,2,3 (group 1 is for MDD, group 2 for HR, and group
3 for Ctrl). Similarly, we denote the right pooled distances
as DiR. Furthermore, we denote the overall (i.e., groups com-

bined) pooled left and right distances as DY = |J3_, DX

and DR = J]_, D, respectively. See Table 1 for the cor-
responding sample sizes, means, and standard deviations of
the pooled LCDM distances, overall and for each group. For
pooling the LCDM distances, the most crucial assumption
is that the subjects with the same diagnosis have similar
VMPEFEC in morphometry, which is reasonable in practice.
By pooling, the most common characteristics of the VMPFC
specific to a diagnostic group are emphasized, while the
differences at the individual (i.e., subject) level are down-
played. Furthermore, the pooled distances will be more pow-
erful in detecting the differences between LCDM distances
(hence differences in morphometry).

2.3 Statistical Tests

There is an inherent dependence between LCDM distances
of voxels to the gray matter/white matter boundary due to
spatial correlation at the level of individual subjects. When
we pool the LCDM distances by group, this spatial depen-
dence is not removed. That is, pooling neither creates nor
removes the inherent dependence of the distances, as it only
ignores the subject information. We compare the distribu-
tions and central measures (e.g., means) of the LCDM dis-
tances using various statistical tests. In particular, we con-
sider Kruskal-Wallis (K-W) test for omnibus multi-group
comparison of the LCDM distributions and ANOVA F-
tests for omnibus multi-group comparison of the LCDM
means. For k groups the null hypothesis for K-W test is

Hy: Fy = F, =--- = F;, where F; is the distribution func-
tion of group i and the null hypothesis for ANOVA F-
test is Hop : u1 = o = -+ = ug where u; is the mean of

of LCDM distances of pairs of groups, we apply Wilcoxon
rank sum test and Kolmogorov-Smirnov (K-S) tests; and for
comparisons of means of pairs of LCDM distance groups,
we apply Welch’s ¢-test (see [8] for more detail on these
tests). For pairwise comparisons, Wilcoxon rank sum test is
done as a post hoc test after a significant K-W test, because
Wilcoxon rank sum and K-W tests are both variants of the
same test for multiple or two group comparison. K-S test is
performed to determine the stochastic ordering. Wilcoxon
rank sum test (also called the Mann—Whitney U test) is a
non-parametric test for assessing whether two independent
samples of observations have similar values. It is based on
the sum of the ranks of the two independent samples, when
the samples are pooled together. Under the null hypothe-
sis, it is assumed that the distributions of both groups are
equal, i.e., Hy : F| = F;. In other words, the probability of
an observation from the first population being larger than
the one from the second population is the same as the prob-
ability of an observation from the second population being
larger than the first. For two groups, the K-S test is a non-
parametric test based on the estimated maximum difference
between the cumulative distributions of the two groups. Un-
der the null hypothesis, it is assumed that the distributions
are equal, i.e., Hy : F1 = F>. Welch’s t-test is an extension
of the usual Student’s t-test and is intended for use with two
samples having (possibly) unequal variances. The null hy-
pothesis for Welch’s ¢-test is Hp : 1 = pup.

Wilcoxon and #-tests imply an ordering in a location pa-
rameter such as mean or median. Stochastic ordering, if
present, can be deduced from the direction of the alterna-
tive, together with the graph of the cumulative distribution
functions (cdfs). However, we can also use Kolmogorov-
Smirnov (K-S) tests for Hy : F| = F;. Although Wilcoxon
rank sum and K-S tests have the same null hypothesis,
Wilcoxon test gives an overall distribution comparison
based on the rankings of the observations, while K-S test
compares the cdfs of the observations at values where the
maximum differences between cdfs occur. Hence Wilcoxon
test can be significant for only one of the one-sided alter-
natives, while K-S test yields p-values that are not comple-
mentary for the one-sided alternatives (i.e., they don’t add
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up to 1). Hence, p-values can be significant for both or none
of the directional alternatives. This results from the fact that,
the order of the cdfs F; and F, can be different at different
distance values (plotted on the horizontal axis). Moreover,
if p-value based on K-S test is significant for only one-sided
alternative, then we can also deduce stochastic ordering. The
p-values being insignificant or significant for both one-sided
alternatives imply lack of stochastic ordering. But the first
case implies that equality of the distributions is retained,
while the latter implies that the distributions are different.
Although K-S test does not provide the actual values where
the significant differences between cdfs occur, it is more in-
formative and suggestive of distributional differences com-
pared to Wilcoxon rank sum test. Furthermore, different cdf
orderings at different values can be masked by the Wilcoxon
rank sum test. Hence K-S test is more informative compared
to Wilcoxon rank sum test.

We perform the omnibus multi-group tests before the
pairwise comparison tests, because if a multi-group test is
not significant, there is no need to perform the pairwise tests.
For example, if K-W test is not significant, then the distri-
butions of the LCDM distances of groups are not signifi-
cantly different, hence Wilcoxon rank sum test on each pair
of groups is redundant. On the other hand, if a multi-group
test yields a significant result, it only means that there are
some significant differences between the groups, but does
not indicate which groups are different. To determine the
pairs that have significant difference, we have to perform the
pairwise comparison methods. Among the tests we consider,
K-W and ANOVA F'-tests are omnibus tests, and Wilcoxon
rank sum and Welch’s z-tests are for commonly used multi-
ple comparison procedures after obtaining a significant om-
nibus test result. Rejecting an omnibus test for k£ groups sug-
gest that there are differences between some pair(s) of the
groups, and to determine which pair(s) exhibit significant
differences, k(k — 1)/2 pairwise comparisons are needed.
Hence, for large k values, an omnibus test might save a
great deal of time and energy since after an insignificant om-
nibus test, there is no need for the pairwise tests. For small k
values, one might do an omnibus test followed by pairwise
tests, or just the pairwise tests directly. However, for even
k =4, we need 6 pairwise tests, and this might still be too
many pairwise tests, if omnibus test were insignificant.

For the nonparametric tests (K-W, Wilcoxon rank sum,
and K-S tests) only within sample independence is violated,
but for the parametric tests (ANOVA F-tests and #-test), the
assumptions of normality (i.e., Gaussianity) and within sam-
ple independence are violated. See [4] for a complete list of
assumptions for each of these tests. However, we investigate
the influence of assumption violations on both nonparamet-
ric and parametric tests in Sect. 4 by an extensive Monte
Carlo simulation study where we find the effect of assump-
tion violations is negligible and we conjecture that this is due
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to the fact that the correlation structure is similar for each
person (hence for each group). Moreover, our analysis does
not concern inference for single populations but compari-
son of multiple populations. Given the difficulty to develop
a method that accounts for spatial correlations, we ignore
this type of spatial dependence henceforth.

In the analysis of the pooled distances, we apply clas-
sical parametric and nonparametric tests to detect the dif-
ferences in LCDM distances due to diagnostic group fac-
tors. Such differences will imply morphometric changes (if
any) due to the particular disease in question. K-W test pro-
vides an overall test of distributional equality for multiple
groups. That is, if K-W test yields a significant p-value, then
we conclude that LCDM distances are different in distribu-
tion for at least two groups, but it does not indicate which
pair or pairs of groups exhibit differences. To find out which
pairs exhibit significant distributional differences, we apply
Wilcoxon rank sum test for each pair of LCDM groups. On
the other hand, K-S test is only applicable to compare the
distributions of two LCDM groups. Similarly, if an ANOVA
F-test yields a significant p-value, it implies that the mean
LCDM distances are different for at least two LCDM dis-
tance groups. To find out which pairs exhibit significant
mean differences, we apply Welch’s z-test for each pair of
LCDM groups. The p-values for the ¢-test and Wilcoxon
rank sum test are complementary, in the sense that p-values
for the one-sided alternatives add up to 1 and can be sig-
nificant for only one of the one-sided alternatives. Hence,
Wilcoxon test provides an overall distributional comparison
for two LCDM groups. On the other hand, p-values for K-S
test are not complementary, as they do not add up to 1 for the
one-sided alternatives. For example, one might have signif-
icant p-values for both of the one-sided alternatives, which
implies that at a particular distance value, a group’s empir-
ical cumulative distribution function (ecdf) is significantly
larger, while at another distance value the other group’s ecdf
is larger. Wilcoxon test (together with the ecdf plots) and
K-S tests (either with p-values for both one-sided tests or
with the ecdf plots) might provide the stochastic ordering (if
present) of pooled distances.

3 Analysis of Pooled LCDM Distances

First we test for any distributional differences between the
LCDM distances of the three diagnostic groups by K-W test
and apply the ANOVA F-tests (with or without assuming
homogeneity of variances (HOV)) for the equality of the
means of the left and right LCDM distances of the three
groups. The null hypothesis for these tests are provided in
Sect. 2.3 (see also [4]).

The left and right pooled distances for each group are
significantly non-normal (i.e., their distributions are signif-
icantly different from a Gaussian distribution) where based
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on Lilliefor’s test of normality p < 0.0001 for each test (see,
e.g., [25]), due to the heavy right skew of the densities. This
skew is biologically reasonable since most of the gray mat-
ter voxels will be expected to be near the GM/WM surface.
Moreover, HOV is rejected (p < 0.0001 for both left and
right pooled distances based on B-F test). Hence nonpara-
metric tests of group comparisons would be more appropri-
ate for this data. However, our Monte Carlo simulation re-
sults (see Sect. 4) suggest that both parametric and nonpara-
metric tests are appropriate, with each being more sensitive
for different alternatives.

The hypothesis of equality of the distributions of the
pooled distances can be attributed to the similarity in the
VMPEC shapes for all groups, but not vice versa (i.e.,
the equality of the distributions does not necessarily im-
ply morphometric similarity, but only similarity in the dis-
tance structure of GM tissue with respect to the GM/WM
surface). Notice that LCDM distances analyzed in this fash-
ion provide morphometric information, on cortical mantle
thickness and shape because the comparison is done on the
ranking of distances (for K-W test) and means of the dis-
tances (for ANOVA F-tests) with respect to the GM/WM
surface. For example, suppose two VMPFC tissues are com-
posed of 100 and 1000 voxels of similar proportional dis-
tances, and then the test will detect no difference, although
the morphometry is obviously different. Hence, as long as
the voxels are at a similar distance from the GM/WM sur-
face, their abundance will not influence the test results. That
is, these tests are “independent of sample density” of LCDM
distances.

The resulting p-values are presented in Table 2. Observe
that there are significant differences between the LCDMs
of the three groups, i.e., the distributions (and hence the
means) of the LCDM distances for at least two groups are
significantly different. Hence we conclude that there are
significant morphometric differences in both left and right
VMPEFECs of at least two of the diagnostic groups in ques-
tion. Hence, we perform pairwise comparisons by Wilcoxon
rank sum test and Welch'’s 7-test for left (and right) distances,
using Holm’s correction for multiple comparisons. In fact,
we could start with pairwise tests directly, since we have
only three diagnostic groups. However, for completeness
and generality, we follow the more conventional path with
an omnibus multi-group test followed by pairwise tests. The
simultaneous hypotheses for Wilcoxon tests for left pooled
LCDM distances are
Ho,:FF=FF, Hos: FF=Ff,

_— 3)
Hyj3: Fy =F5.

The less-than alternative for pairwise Wilcoxon tests is then

Hyi1:FF>FF,  Hgo:FF>FE,
— )
H,3:Fy > F5.

Notice that if, for example, MDD left distances tend to be
smaller than HR left distances, then the corresponding dis-
tribution functions have the opposite order, i.e., F IL > FZL.
Hence the left sided (i.e., less than) alternative for LCDM
distances implies that MDD pooled distances tend to be
smaller than Ctrl pooled distances, and HR pooled distances
tend to be smaller than Ctrl pooled distances and MDD
pooled distances tend to be smaller than HR pooled dis-
tances. The greater than alternatives are similar except the
inequalities should be reversed. Then we adjust these p-
values for simultaneous comparisons by Holm’s correction
method for each alternative. We perform a similar analysis
for right pooled distances.

The null hypotheses for pairwise ¢-tests are similar to the
ones provided in (3) and (4) with F being replaced by u and
the inequalities reversed.

We present the p-values in Table 3. Observe that the dis-
tributions of LCDM distances for MDD and HR groups are
not significantly different for both left and right VMPFCs
(p-values based on Wilcoxon rank sum test are 0.3022 and
0.0776, respectively). On the other hand, mean LCDM dis-
tances for MDD subjects are significantly larger than that
for HR subjects for both left and right VMPFCs (p-values
based on f-test are 0.0383 and 0.0041, respectively). This
seemingly contradictory situation occurs since the LCDM
distances are highly skewed right. The LCDM distances for
both MDD and HR left VMPFCs tend to be significantly
smaller than those of Ctrl left VMPFCs. The same holds for
the right VMPFC:s also.

Stochastic ordering of the distances could be deduced
from the direction of the alternative, together with the graph
of the cdfs. See Fig. 5 for the cdf plots of the pooled dis-
tances. Although K-S test do not provide the actual distance
values where the significant differences between cdfs occur,
it is more informative and suggestive of distributional differ-
ences than Wilcoxon tests. Furthermore, different cdf order-
ings at different distance values are masked by the Wilcoxon
test in MDD and HR left distances. The associated p-values
are presented in Table 4 where tests for the alternatives are
adjusted by Holm’s correction method. Observe that the cdf
of Ctrl-left distances is significantly smaller than those of
MDD and HR-Ieft distances. Furthermore, the cdfs of MDD
and HR-left distances are significantly different from each
other, with both sides being significant, which suggests that
the order of cdf comparisons changes at different distance
values. Thus, we conclude that MDD-left<57 Ctrl-left and
HR-left<STCtrl-left where <57 stands for “stochastically
smaller than”. That is, it is more likely for MDD- or HR-
left distances to be smaller compared to Ctrl-left distances.

The cdf of MDD-right distances is significantly smaller
than HR-right distances which implies HR-right<5"MDD-
right. But K-S test yields significant result for both types
of one-sided alternative for MDD-right, Ctrl-right and HR-
right, Ctrl-right and MDD-left and HR-left pairs (see Table 4
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Table 2 The p-values for the multi-group comparisons of the pooled LCDM distances by K-W test, ANOVA F-tests with and without HOV. pgyw:
p-value for K-W test, pr,, pr,: p-values for ANOVA F'-tests with and without HOV, respectively

Multi-group comparisons of the pooled distances

Left

Right

pkw < 0.0001, pr, <0.0001, pg, <0.0001

pkw < 0.0001, pr, <0.0001, pp, <0.0001

Table 3 The p-values for the simultaneous pairwise comparisons of the pooled distances by Wilcoxon rank sum test and the ¢-test. The p-values
are adjusted by Holm’s correction method (g (€): first group is greater (less) than the second group)

Pair With Wilcoxon rank sum test With z-test

Left Right Left Right
MDD, HR 0.3022 (£) 0.0776 (g) 0.0383 (g) 0.0041 (g)
MDD, Ctrl <0.0001 (¢) <0.0001 (£) <0.0001 (¢) <0.0001 (£)
HR, Ctrl <0.0001 (¢) <0.0001 (£) <0.0001 (¢) <0.0001 (£)

Table 4 The p-values for the cdf comparisons (overall and by group) of the pooled LCDM distances. The p-values for each type of alternative are

adjusted by Holm’s correction method

p-values for cdf comparisons

Pair Left Right

2-sided 15t < ond 15t > ond 2-sided 15t < pnd 15t > pnd
MDD, HR <0.0001 <0.0001 0.0073 0.0316 0.0158 0.6017
MDD, Ctrl <0.0001 0.5362 <0.0001 <0.0001 0.0069 <0.0001
HR, Ctrl <0.0001 0.4170 <0.0001 <0.0001 0.0043 <0.0001

and Fig. 5). This implies, for example, the cdfs of MDD-
right and Ctrl-right distances are different, but the differ-
ences between the cdfs of the groups change over the dis-
tance values; that is, for small distances, the order of cdfs
for right distances is Ctrl < MDD < HR, which is the order
for the proportion of voxels with smaller distances to the to-
tal number of voxels. Hence there is no stochastic ordering
between them. That is, the proportion of voxels with smaller
distances is largest for HR subjects and smallest for Ctrl sub-
jects. For large distances the order of cdfs for right distances
is HR < MDD < Ctrl, which can be interpreted similarly.
This result indicates the cortical thinning for HR and MDD
subjects compared to Ctrl subjects in the right VMPFEC.

4 The Influence of Assumption Violations: A Monte
Carlo Analysis

In this section, we investigate the influence of the as-
sumption violations due to the spatial correlation and non-
normality inherent in the LCDM distances on the tests. The
most crucial step in a Monte Carlo simulation is being able
to generate distances resembling those of LCDM distances
of GM in VMPFCs; i.e., simulating the true randomness in
LCDM distances.
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For illustrative purposes, we choose the left VMPFC
of HR subject 1. Recall that the LCDM distances for left
VMPEFC of HR subject 1 are denoted as D2L1. We rearrange
the distances, Dé‘l, so that first stack of distances is in
the interval Iy := [—1, 0.5] mm, the second stack of dis-
tances is in I; := (0.5,1.0] mm, the third stack of dis-
tances is in I := (1.0, 1.5] mm, and so on (until the last
stack of distances is in I1; := (5.5,6.0] mm). Let v; be
the number of distances that fall in /;, i.e., v; = |D2L1 N
I;|, for i =0,1,2,...,11. Hence v = (vg, vy1,..., V(1) =
(2059, 1898, 1764, 1670, 1492, 1268, 814,417, 142, 81, 61,
16). Then we merge these stacks into one group, (by append-
ing D5 N1y to DE NI fori =1,2,...,10). See Fig. 2,
where the left graph is for the stacked distances and the right
graph is for distances sorted in ascending order.

A possible Monte Carlo simulation for these distances
can be performed as follows. We independently generate
n numbers in {0,1,2,..., 11} proportional to the above
frequencies, v;, with replacement, i.e., with the discrete
probability mass function Py(N; =1i) = v; /11659 for i =
1,2,...,11 and j =1,2,...,n. So, Py(N; = i) = Vp.i
where

(Vp,0s Vp,1s -+ -5 Vp,11)

=V,
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Fig. 2 Plots of the LCDM distances for the left VMPFC of HR subject 1. The /left plot is for the distances stacked for intervals of size 0.5 mm and

the right plot is for the sorted distances
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Fig. 3 Plots of the data values generated by Monte Carlo simulation to resemble LCDM distances. The left plot is for the distances stacked for

intervals of size 0.5 and the right plot is for the sorted distances

=(0.177,0.163,0.151, 0.143, 0.126, 0.109, 0.070,
0.036,0.012, 0.007, 0.005, 0.001). (5)

Let n; be the frequency of i among the n generated num-
bers from {0,1,2,...,11} with distribution Py, for i =
1,2,...,11.Hencen = Z}i{) n;. Then we generate as many
U (0, 1) numbers for eachi € {0, 1,2, ..., 11} as i occurs in
the generated sample of 1000 numbers and add these uni-
form numbers to i. That is, we generate Uy ~ U(0, 1) for
k=1,2,...,n; for each i. Then we divide each distance
by 2 to make the range of generated distances [0, 6.0] mm

which is the range of DZLI, so the desired distance values are
dix = (i + Ujx)/2. Hence the set of simulated distances is

Dy ={djix = (( +Uir)/2: Ui ~U(O, 1)
fork=1,...,N; and
N; ~ Py fori=0,1,2,...,11}. ©6)
A sample of the distances generated in this fashion is plot-
ted in Fig. 3 where the left plot is for the distances as they

are generated at each bin (stack) of size 0.5 mm, the right
plot is for the distances sorted in ascending order. Com-
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Table S Estimated significance levels and proportions of agreement
between the tests based on Monte Carlo simulations of distances with
three groups, X, ¥, and Z with sizes ny, ny, and n;, respectively,
with N,,. = 10000 Monte Carlo replicates. agw is the empirical size
estimate for K-W test, &, , @, are for ANOVA F-tests with and with-

out HOV, respectively; Gkw, r,, @kw,F,. and &, r, are the values of
proportion of agreement between the indicated tests in the subscripts.
The empirical sizes in the same row with the same superscript are not
significantly different from each other

(ny,ny,ny) Empirical size Prop. of agreement

Gxw ar, ar, Qkw, F, Gkw,F, &r,
(1000, 1000, 1000) 0.0511% 0.0508* 0.0506* 0.0417' 0.0419! 0.0499~
(5000, 5000, 10000) 0.0495% 0.0498* 0.0497% 0.0386! 0.0386' 0.0491~
(5000, 7500, 10000) 0.0480* 0.0451%< 0.0449*< 0.0368! 0.0369' 0.0446~
(10000, 10000, 10000) 0.0483% 0.0483% 0.0480* 0.0392! 0.0392! 0.0477%

(= (<) Empirical size is significantly larger (smaller) than 0.05; i.e. method is liberal (conservative)
(:(*) The proportion of agreement (not) significantly less than the minimum of the empirical sizes

paring Fig. 2 and Fig. 3, we observe that the Monte Carlo
scheme described above generates distances that resemble
LCDM distances for left VMPFC of HR subject 1. There-
fore the distances generated in this fashion together with
modification of some parameters such as v,; would re-
semble the distances of VMPFCs from real subjects. That
is, when such parameters are modified in the Monte Carlo
scheme described above, the differences in the LCDM dis-
tances could simulate the morphometric differences between
real subjects.

4.1 Simulation of Distances that Resemble LCDM
Distances

In our Monte Carlo study, we generate three samples X,
Y, and Z with sizes ny, ny, and n,, respectively, and set
ny =ny =n; = 10000. Each sample is generated similar to
the procedure described above. For example, sample X" is
generated as follows: First we generate

Ny ={J~Px,J=1,...,nx}, )

where Px(J =i) = v¥/ Y12 v¥ with v¥ is the i en-
try in vy = (v3, v{,...,V;,) and is also the i value af-
ter the entries |v; — ny| are sorted in descending order for
. 11
i=0,1,2,...,11 and v}, = 11659 — } ;" |v;i — ny|. Let
ni be the frequency of i among the n, generated num-
bers from Px. Then we generate Ujy ~ U(0,ry) for k =
1,...,n} for each i. Hence the set of simulated distances
for set X is

DX ={(i +Uit)/2: Uix ~UO, ry) fori =0,1,...,12
andk=1,..., Nx}. (8)

Samples )V and Z are generated similarly with parameter
subscripts in (7) and (8) are modified accordingly.
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4.2 Empirical Size Estimates for the Multi-Sample Case

For the null hypothesis of multi-sample case which states the
equality of the distributions of LCDM distances, we gener-
ate three samples X', ), and Z with the below parameters:
Hy:ry=ry=r;=10 and n,=n,=n;=0. )
Notice that each sample is generated so as to resemble those
of the left VMPFC of HR subject 1 up to scale. This is done
without loss of generality, since any other VMPFC can ei-
ther be obtained by a rescaling of the generated distances or
by modifying the parameters. So for example, for sample X,
Px(X;=i)=vp, with v, ; being the i entry in v, in (5)
and the set of simulated distances for set X is as in (8) with
ry = 1.0 and n, =0.

We repeat this sample generation procedure N, =
10000 times. We count the number of times the null hypoth-
esis is rejected at o = 0.05 level for K-W test of distribu-
tional equality and ANOVA F-tests (with and without HOV)
of equality of mean distances. The ratio of the number of sig-
nificant results by each test to Ny, yields the estimated sig-
nificance levels under H,. The estimated significance levels
for various values of ny, ny, and n; are provided in Table 5,
where apr is the empirical size estimate for K-W test, &,
is for ANOVA F-test with HOV, and &, is for ANOVA
F-test without HOV. Furthermore, &xw., r,is the proportion
of agreement between K-W and ANOVA F-test with HOV,
i.e., the number of times out of 10000 Monte Carlo repli-
cates both KW and ANOVA F'-test with HOV reject the null
hypothesis. Similarly, @xw, F, is the proportion of agreement
between K-W and ANOVA F-test without HOV, and &, r,
is the proportion of agreement between ANOVA F -test with
HOV and ANOVA F-test without HOV. Using the asymp-
totic normality of the proportions, we test the equality of the
empirical size estimates with 0.05, and compare the empir-
ical sizes pairwise. We observe that the K-W test is at the
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Fig. 4 Plots of the kernel density estimates of the Monte Carlo simulated LCDM distances under the null case and alternatives with n, = 0 and
ry € {1.1, 1.2} (left); null case and alternatives with r, = 1.0 and 5, € {10, 30, 50} (right). For the parameters ry and 7., see Sect. 4
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Fig. 5 Empirical cdfs of the pooled LCDM distances when extreme subjects are removed for the left and right VMPFCs

desired significance level, while ANOVA F'-tests with and
without HOV are at the desired level or slightly conserva-
tive. Notice also that under H,, the tests tend to be more
conservative as the sample sizes increase. Hence, if the dis-
tances are not that different; i.e., the frequency of distances
for each bin and the distances for each bin are identically
distributed for each group, the inherent spatial correlation
does not seem to influence the significance levels. Moreover,
we observe that for LCDM distances K-W and ANOVA with
HOV tests have significantly different rejection (hence ac-
ceptance) regions, because the proportion of agreement for
these tests, &xw, F, is significantly smaller than the mini-
mum of akxw and &f,, min(&gw, &f,). Similarly, K-W and
ANOVA without HOV tests have significantly different re-
jection (hence acceptance) regions because, the proportion

of agreement for these tests, Gxw, F, is significantly smaller
than min(agw, dr,). However, ANOVA with and without
HOV tests have about the same rejection (hence acceptance)
regions because, the proportion of agreement for these tests,
QF,, F, is not significantly different from min(é&r, , &, ). This
mainly results from the fact that K-W and ANOVA with
HOV tests test different hypotheses, and so do the K-W and
ANOVA without HOV tests. But, ANOVA with and without
HOV tests basically test the same hypotheses.

4.3 Empirical Power Estimates for Multi-Sample Case

For the alternative hypothesis, we generate sample X’ as in
the null case, so D,ffc is as in (8). We consider various r,

and 7, values for sample ) and various r, and », values for
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Table 6 The power estimates based on Monte Carlo simulation of
distances with three groups, X, Y, and Z with sizes n,, ny, and n,,
respectively, with N, = 10000 Monte Carlo replicates. EKW is the
empirical power estimate for K-W test, r, and B F, are for ANOVA
F-tests with and without HOV, respectively. The superscripts of the

power estimates in the same row are labeled in increasing order of sig-
nificance. That is, the power estimates with the same superscript are
not significantly different from each other; while power estimate with
label ? is significantly smaller than the estimate labeled with ®, and so
on

(nx,ny, ny) Brw Br, Br,
(ry,rz) = (1.1, 1.0); (ny, nz) = (0,0)

(1000, 1000, 1000) 0.07782 0.0770% 0.0768 2
(5000, 5000, 10000) 0.22812 0.2137° 0.2114°
(5000, 10000, 5000) 0.2936 0.2731° 0.2745°
(5000, 10000, 7500) 0.32442 0.2939° 0.2947 ®
(10000, 10000, 10000) 0.39002 0.3564° 0.3559 P
(ry,rz) = (1.1, 1.2); (ny, n;) = (0,0)

(1000, 1000, 1000) 0.1396* 0.1316% 0.1313P
(5000, 5000, 10000) 0.6725 0.6315° 0.6317°
(10000, 5000, 5000) 0.66512 0.6262° 0.6253°
(5000, 10000, 5000) 0.52962 0.4828" 0.4828°
(10000, 10000, 10000) 0.84102 0.8050° 0.8050°
(ry, ;) = (1.0, 1.0); (ny, nz) = (10, 0)

(1000, 1000, 1000) 0.0574% 0.07282 0.07212
(5000, 5000, 10000) 0.0767° 0.19302 0.18542
(5000, 10000, 5000) 0.0884° 0.23412 0.2381%
(5000, 7500, 10000) 0.0832° 0.2415% 0.2360°
(5000, 10000, 7500) 0.0878° 0.25712 0.25842
(10000, 10000, 10000) 0.1006° 031272 0.30612
(ry, r2) = (1.0, 1.0); (1, 1) = (10, 30)

(1000, 1000, 1000) 0.0963° 0.15192 0.15122
(5000, 5000, 10000) 0.3986° 0.74362 0.75372
(10000, 5000, 5000) 0.3556° 0.7175% 0.70712
(5000, 10000, 5000) 0.2908" 0.5826% 0.58312
(5000, 7500, 10000) 0.4191° 0.75782 0.76272
(10000, 7500, 5000) 0.3652° 0.72292 0.71472
(10000, 5000, 7500) 0.4554b 0.8260% 0.82262
(7500, 5000, 10000) 0.4739> 0.83312 0.83632
(7500, 10000, 5000) 0.3421° 0.67432 0.67022
(5000, 10000, 7500) 0.3752b 0.69382 0.69832
(10000, 10000, 10000) 0.5352b 0.88422 0.88352

sample Z. The five alternative cases we consider are
(ry,rz,my,nz) €{(1.1,1.0,0,0), (1.1,1.2,0, 0),
(1.0,1.0,10,0), (1.0, 1.0, 10, 10),
(1.0, 1.0, 10, 30)}. (10)

See Fig. 4 for the kernel density estimates of sample dis-
tances under the null case and various alternatives.

We repeat the sample generation N, = 10000 times un-
der each alternative case. We count the number of times the
null hypothesis is rejected at o« = 0.05 for K-W test of dis-
tributional equality, and ANOVA F-tests (with and without
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HOV) of equality of mean distances, and find the ratio of
number of significant results by each test to N,.. Thus we
obtain the empirical power estimates under H, which are
provided in Table 6, where Bxw is the empirical power es-
timate for K-W test, ,3 F, 1s for ANOVA F-test with HOV,
and B, is for ANOVA F-test without HOV. Using the as-
ymptotic normality of the empirical power estimates, we
observe that under each of H, cases with (ry, 7, ny,n;) €
{(1.1,1.0,0,0), (1.1,1.2,0, 0)} the distributions are differ-
ent, so the larger the r, and r, from 1.0, the higher the
power estimates for K-W and ANOVA F-tests. Furthermore,
as the sample size n increases, the power estimates for K-W
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Table 7 Estimated significance levels based on Monte Carlo simu-
lation of distances with two groups X and ) with sizes n, and ng,
respectively, with N, = 10000 Monte Carlo replicates. aw is the
empirical size estimate for Wilcoxon rank sum test, @, is for ¢-test,
Qs is for K-S test; aw (, @w ks, and & ks are the values of propor-

tion of agreement between the indicated tests in the subscripts. The
superscript labeling for conservativeness and liberalness of empirical
sizes and for proportions of agreement values are as in Table 5 and for
ordering of the power estimates for each row is as in Table 6

(ny,ny) Empirical size Prop. of agreement

&W éft &KS &W,t &W,KS &f,KS
Two-sided tests
(1000, 1000) 0.05172 0.05052 0.0486* 0.0403! 0.0305! 0.0273!
(5000, 10000) 0.04570< 0.04630< 0.0465° 0.0356! 0.0273! 0.0244!
(7500, 10000) 0.04932 0.0463%< 0.04642 0.0385 0.0282! 0.0246'
(10000, 10000) 0.0518? 0.05252 0.05012 0.0421! 0.0320' 0.0281!
Left-sided tests (i.e., X values tend to be smaller than ) values)
(1000, 1000) 0.0517 0.05272 0.0486* 0.0440" 0.0329! 0.0305!
(5000, 10000) 0.0470? 0.04892 0.04922 0.0382! 0.0311! 0.0282!
(7500, 10000) 0.0490? 0.04932 0.04782 0.0399! 0.0322! 0.0284!
(10000, 10000) 0.05172 0.05142 0.04942 0.0426! 0.0330! 0.0301!
Right-sided tests (i.e., X values tend to be larger than ) values)
(1000, 1000) 0.05212 0.05022 0.04912 0.0409! 0.0337! 0.0294!
(5000, 10000) 0.0486* 0.05022 0.04782 0.0405! 0.0308! 0.0285!
(7500, 10000) 0.0479* 0.04692 0.04952 0.0391! 0.0325! 0.0287!
(10000, 10000) 0.05322 0.05172° 0.0469° 0.0435! 0.0354! 0.0311

and ANOVA F-tests also increase. Notice that under these
alternatives, the K-W test tends to be more powerful than
ANOVA F-tests, since such alternatives influence the rank-
ing (hence the distribution) of the distances, more than the
mean of the distances. Furthermore, under these alternatives,
it is not the size or scale that is really different; it is the differ-
ence in shape that is more emphasized. The size component
is distance with respect to the GM/WM surface; i.e., if the
GM voxels from the GM/WM surface are at about the same
distance, the K-W test is more sensitive to the differences in
the distributions of the LCDM distances. We also note that
ANOVA F -tests with and without HOV have about the same
power estimates.
Under each of alternative cases with

(ry, rz,ny, nz) €{(1.0, 1.0, 10, 0), (1.0, 1.0, 10, 10),

(1.0, 1.0, 10, 30)} (11)
as ny and 7, deviate more from 0, the power estimates for
K-W and ANOVA F-tests increase. Note that as n increases,
the power estimates also increase under these alternative
cases. Under these second type of alternatives, ANOVA F-
tests tend to be more powerful, since the right skewness (tail)
of distances are more emphasized, which in turn implies that
the differences in the mean distances are emphasized more.
Under these alternatives, both the size or scale and shape
are different. If the GM voxels from the GM/WM surface

are at different distances, ANOVA F-tests are more sensi-
tive to the differences in LCDM distances. We also note that
both ANOVA F-tests (with and without HOV) have about
the same power estimates.

4.4 Empirical Size Estimates for the Two-Sample Case

For the null hypothesis for the two-sample case, we generate
two samples X’ and ) each of size n, and ny, respectively.
Each sample is generated as described in Sect. 4.2. We re-
peat the sample generation N, = 10000 times.

We count the number of times the null hypothesis is re-
jected at o = 0.05 for Lilliefor’s test of normality, Wilcoxon
rank sum test of distributional equality, #-test of equality of
mean distances, and K-S test of equality of cdfs, and find the
ratio of the number of significant results by each test to Ny,
thereby obtain the estimated significance levels. Unlike the
multi-sample case, for the two-sample case, except for Lil-
liefor’s test there are three types of alternative hypotheses
possible: two-sided, left, and right-sided alternatives. The
estimated significance levels are provided in Table 7, where
Qw is the empirical size estimate for Wilcoxon rank sum
test, &, is for z-test, ags is for K-S test. Furthermore, aw ;
is the proportion of agreement between Wilcoxon rank sum
and ¢-tests, &w ks is the proportion of agreement between
Wilcoxon rank sum and K-S tests, and & ks is the pro-
portion of agreement between ¢-test and K-S test. We omit
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the Lilliefor’s test, since by construction, our samples are
severely non-normal, so normality is rejected for virtually
all samples generated. Observe that under H,, the empirical
significance levels are about the desired level for all three
types of alternatives, although Wilcoxon tests are slightly
liberal, while K-S test is slightly conservative. Hence, if the
distances are not that different; i.e., the frequency of dis-
tances for each bin and the distances for each bin are iden-
tically distributed for each group, the inherent spatial corre-
lation does not influence the significance levels. However,
Wilcoxon rank sum, 7-test, and K-S methods test different
hypotheses, so their acceptance and rejection regions are
significantly different for LCDM distances, since the pro-
portion of agreement for each pair is significantly smaller
than the minimum of the empirical size estimates for each
pair of tests.

4.5 Empirical Power Estimates for the Two-Sample Case

For the alternative hypotheses, we generate samples X and
Y as in Sect. 4.3 also. Note that when ry, =1 and n, =0,
we obtain the null case. The five alternative cases we con-
sider are (ry,ny) € {(1.1,0), (1.2,0), (1.0, 10), (1.0, 30),
(1.0,50)}. We count the number of times the null hypoth-
esis is rejected for Lilliefor’s test of normality, Wilcoxon
rank sum test of distributional equality, ¢-test of equality of
mean distances, and K-S test of equality of cdfs, thereby ob-
tain the estimated significance levels as before. The power
estimates are provided in Table 8, where Bw is the power
estimate for Wilcoxon rank sum test, ﬁ, is for z-test, 31(3 is
for K-S test.

Under the alternative cases with (ry,ny) € {(1.1,0),
(1.2,0)}, we see that the distributions start to differ. As ry
deviates further away from 1.0, then the power estimates for
Wilcoxon rank sum, ¢-test, and K-S tests increase. Further-
more, as the sample size n increases, the power estimates for
Wilcoxon test, 7-test, and K-S test also increase. Observe
that as in the multi-sample case, under these alternatives,
Wilcoxon test is more powerful than 7-test, since the ranking
of the distances are affected more than the mean distances
under these alternatives. But K-S test has the highest power
estimates for sample sizes larger than 1000. Thus, for dif-
ferences in shape rather than the distance from the GM/WM
surface, K-S test and Wilcoxon rank sum test are more sen-
sitive (i.e., powerful) than ¢-test. Furthermore, as the sam-
ple sizes increase, the left-sided tests become more power-
ful than their two-sided counterparts. Notice that we omit
the power estimates for the right-sided alternatives, since by
construction (i.e., due to our parameter choices in our simu-
lations) X values tend to be smaller than ) values for these
alternatives; hence the tests virtually have no power for the
right-sided alternatives.

Under the H, cases with (ry, ny) € {(1.0, 10), (1.0, 30),
(1.0, 50)}, as ny deviates further away from 0, the power
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estimates for Wilcoxon rank sum, #-test, and K-S tests in-
crease. Note that as n increases, the power estimates also
increase under each alternative case. Under these alterna-
tives, ¢-test is more powerful than Wilcoxon test, since mean
distances are more affected than the rankings under such al-
ternatives. However, K-S test has higher power estimates
for larger deviations from the null case. These alternatives
imply that the distances of the GM voxels are at different
scales, 7-test has the best performance for small differences,
while for large differences, K-S has the best performance.
Furthermore, as the sample sizes increase, the left-sided
tests become more powerful than their two-sided counter-
parts. Again, we omit the power estimates for the right-sided
alternatives, because, by construction, X’ values tend to be
smaller than ) values for these alternatives.

We do not report the power estimates for Lilliefor’s test
of normality, since by construction our data is severely non-
normal, and we get power estimates of 1.000 under both null
and alternative cases.

5 Discussion and Conclusions

Pooled LCDM distances, when used as a single variable,
provide a method to analyze heterogeneous forms of mor-
phometric differences. When the LCDM distances of the
subjects in the same diagnostic group are pooled, common
morphometric traits of the ROI for that group are accentu-
ated. Conversely, the morphometric traits not common for
all the subjects in a group but specific to a particular sub-
ject are downplayed. The most common morphometric traits
in a relevant ROI in a particular group may be associated
with the diagnosis of the group and pooled LCDM distances
carry on the most common characteristics, so they have the
potential as demonstrated here to be very sensitive in de-
tecting the diagnosis-specific traits of the ROI. As a result,
they can indicate changes in the ROI highly associated with
disease (major depression in the VMPFC in this article) or
associated with being at genetic risk for the development of
a specific condition. When pooled distances yield significant
results, it implies that ROI significantly differ in morphome-
try (shape or size). However, it does not indicate the specific
location within a ROI where such differences occur which
might be important for understanding the underlying neuro-
biology. This may require the use of censoring which is the
topic of another paper.

We use Kruskal-Wallis (K-W) and ANOVA F-tests (with
or without HOV) for multi-group comparisons, Wilcoxon
rank sum, Kolmogorov-Smirnov (K-S), and ¢-tests for two-
group comparisons (the first two of these tests used to test
distributional differences and the third is used to test mean
differences due to a location parameter). But these tests re-
quire within sample independence which is violated due to
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Table 8 The power estimates based on Monte Carlo simulation of dis-
tances with two groups, X, and ), with sizes n,, and ny, respectively,
with N, = 10000 Monte Carlo replicates. By is the power estimate

for Wilcoxon rank sum test, ﬁ, is for t-test, ,31(5 is for K-S test. The
superscript labeling for ordering of the power estimates in each row is
as in Table 6

(nyx,ny) Two-sided Left-sided

ﬂAW /§t léKS I§W /§t I§KS
ry=10.1; 97, =0
(1000, 1000) 0.13172 0.12642 0.0788> 0.07422 0.07122 0.0750?
(5000, 10000) 0.2723b 0.2520¢ 0.3734 0.3816° 0.3600¢ 0.51222
(10000, 5000) 0.27200 0.2507¢ 0.3753 0.3838° 0.3572¢ 0.51572
(7500, 10000) 0.32420 0.3046¢ 0.4731 0.4425° 0.4178¢ 0.61392
(10000, 7500) 0.3305° 0.3100¢ 0.4850 0.4455° 0.4204¢ 0.62532
(10000, 10000) 0.3662° 0.3362¢ 0.5504 0.4924° 0.4588¢ 0.6861%
ry=12;n,=0
(1000, 1000) 0.26352 0.25332 0.1838P 0.1695° 0.1630° 0.18132
(5000, 10000) 0.7606° 0.7331¢ 0.94012 0.8463° 0.8250¢ 0.9755
(10000, 5000) 0.7588P 0.7269¢ 0.94212 0.8437° 0.8178¢ 0.9765
(7500, 10000) 0.8514° 0.8282¢ 0.9839° 0.9121° 0.8950¢ 0.99452
(10000, 7500) 0.8561° 0.8300¢ 0.98452 0.91332 0.8969° 0.8882¢
(10000, 10000) 0.8976° 0.8750¢ 0.99352 0.9468° 0.9312¢ 0.99822
ry=1.0;ny, =10
(1000, 1000) 0.0772¢ 0.11732 0.05144 0.0506¢ 0.0677° 0.0477¢
(5000, 10000) 0.0871¢ 0.22220 0.06734 0.1361°¢ 0.3297° 0.10894
(10000, 5000) 0.0841°¢ 0.2186° 0.06704 0.1390¢ 0.32320 0.10764
(7500, 10000) 0.0951¢ 0.2638° 0.07374 0.1497¢ 0.3786° 0.11594
(10000, 7500) 0.0995¢ 0.2630° 0.07484 0.1560¢ 0.3725b 0.11614
(10000, 10000) 0.1018¢ 0.2978P 0.07434 0.1628¢ 0.4132° 0.12004
ry = 1.0; 7y =30
(1000, 1000) 0.1760P 0.28872 0.0878¢ 0.1028¢ 0.1885° 0.07934
(5000, 10000) 0.46774 0.8254° 0.7080¢ 0.5927¢ 0.8881° 0.8911°
(10000, 5000) 0.46684 0.8094° 0.6901¢ 0.59184 0.8807° 0.8659¢
(7500, 10000) 0.55784 0.8987¢ 0.9078> 0.67734 0.9435¢ 0.9792°
(10000, 7500) 0.5509¢ 0.8976° 0.8983P 0.67504 0.9438¢ 0.9713
(10000, 10000) 0.61884 0.9369¢ 0.9691° 0.73394 0.9679¢ 0.9942b
ry =1.0; ny =50
(1000, 1000) 0.3361¢ 0.4865° 0.2041¢ 0.2266° 0.3521° 0.2048¢
(5000, 10000) 0.8876¢ 0.98420 0.9980° 0.9363¢ 0.9936° 0.99982
(10000, 5000) 0.8830¢ 0.9844b 0.99802 0.93254 0.9931¢ 1.000?
(7500, 10000) 0.9478¢ 0.9964° 1.000? 0.9932¢ 0.9986° 1.000?
(10000, 7500) 0.9473¢ 0.9961° 1.0002 0.9741¢ 0.9984° 1.000?
(10000, 10000) 0.9716¢ 0.9984> 1.0002 0.9847¢ 0.9995P 1.000?

the spatial correlation between LCDM distances of nearby
voxels. Furthermore, parametric tests require normality of
the samples also, which is again violated due to the heavy
right skewness of the LCDM distances. However, our Monte
Carlo analysis indicates that the influence of these violations
is mild or negligible. Furthermore, the tests are more sen-
sitive against different alternatives. In particular, K-W and
Wilcoxon tests (i.e., the nonparametric tests) are more sen-
sitive to distributional differences in a ROI with similar lam-
inar thickness, while ANOVA F'-tests and ¢-test (i.e., para-
metric tests) are more sensitive against the differences in the

means, that is, differences in average GM thickness (i.e.,
laminar thickness values). On the other hand, K-S test is
more sensitive to the largest difference in the cdfs of the
LCDM distances.

Although the focus of this paper is the description of
new morphologic image processing methods, as an illus-
trative example, we use GM tissue in the Ventral Medial
Prefrontal Cortex (VMPFC) as the ROI for three groups
of subjects; namely, subjects with major depressive disor-
der (MDD), subjects at high risk (HR) for MDD, and unre-
lated healthy control subjects (Ctrl). Based on previous re-
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sults from other groups with older adult populations, we ex-
pected to find cortical differences associated with affective
disorders in this region, however the nature of the changes or
if they are present in younger populations has not been well
characterized. Our study comprises of adolescent and young
adult (MDD, HR) and (Ctrl, Ctrl) co-twin pairs. We found
that gray matter distances in left and right VMPFC tend to
decrease associated with MDD or being at HR for MDD,
which is a characteristic that would be associated with corti-
cal thinning. We thus observe a significant reduction in lam-
inar thickness of VMPFC and perhaps shrinkage in MDD
when compared to Ctrl subjects. However the same trend
is also seen in the HR subjects, who are typical healthy in-
dividuals except for their genetic relation to the depressed
cotwins. Thus this study does not support that all of the
changes in morphometry of VMPFCs is related directly to
major depression. It could be possible that VMPFC tend to
shrink due to depression, but as similar shrinkage is seen in
HR subjects, it could also be the case that specific genetic
factors might predispose to this morphometric difference in
VMPEFEC which in turn leads to vulnerability for developing
depression in young individuals. Furthermore, in the pooled
LCDM distance analysis, we find that the central values (i.e.,
means and medians) of the pooled distances in left VMPFCs
of MDD and HR subjects are not significantly different, but
the orderings of the central values of LCDM distances are
MDD < Ctrl and HR < Ctrl; in right VMPECs the order-
ing is as HR < MDD < Ctrl. Our findings here support that
there are significant lateralization differences in the contri-
bution of this region to affective disorders; similar asymme-
try or lateralization findings have been previously reported
in functional and structural studies [13, 18] and functional
lateralization in this region has also been reported in ani-
mal models [9]. The cdf comparisons indicate that it is more
likely for left VMPFCs of MDD or HR subjects to be thin-
ner than those of Ctrl subjects which confirm the above find-
ings about cortical thinning. However no such stochastic or-
dering occurs for the right VMPFCs, which only indicates
the cdf orderings depend on the distance values in the right
VMPEFCs.

We demonstrate that pooled LCDM distances may pro-
vide a useful tool in detecting morphometric differences
associated with specific disorders which affect the cortex.
There is increasing recognition that different cortical fea-
tures such as surface area or thickness may provide clues
to different underlying pathology [6]. For instance increased
GM distribution at shorter distances may represent increased
surface area or increased curvature which could be further
investigated via different methods. Attaining similar maxi-
mum long distances with a lower gray matter concentration
at nearby long distances could indicate achievement of ex-
pected cortical thickness with loss of thickness in certain
subregions within the ROI. Additional characterization of

@ Springer

cortex may lead to improved sensitivity to detect differences
associated with specific disorders. For example, the thick-
ness at each point on the surface can be measured, which
means mapping the surfaces to a template and then doing
the statistics at each point on the surface. For this purpose,
the first step is to apply LLCDM and then apply LDDMM-
Surface (see [20, 21]). We also note that the LCDM based
methodology used in this article can be applied to many dif-
ferent cortical regions.
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