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Abstract: The authors discuss a graph-based approach for testing spatiappttietns. This approach
falls under the category of data-random graphs, which have beeductd and used for statistical pattern
recognition in recent years. The authors address specifically théepralf testing complete spatial ran-
domness against spatial patterns of segregation or association bétwemmmore classes of points on the
plane. To this end, they use a particular type of parameterized randeapldigalled a proximity catch
digraph (PCD) which is based on relative positions of the data points feorous classes. The statistic
employed is the relative density of the PCD, which i§ atatistic when scaled properly. The authors de-
rive the limiting distribution of the relative density, using the standard asyioptweory of U-statistics.
They evaluate the finite-sample performance of their test statistic by Marte €imulations and assess
its asymptotic performance via Pitman’s asymptotic efficiency, thereligiggethe optimal parameters for
testing. They further stress that their methodology remains valid for daigler dimensions.

Une nouvelle famille de graphes aléatoires utile pour tester la ségrégation spatiale

Résuné : Les auteurs montrent comment on pegétatter des configurations de points dans I'espet-

de de graphes. Leur approche s’appuie sur la notion de grapamiaé obse®, recemment introduite et
utilisée en statistique pour la reconnaissance de formes. Les auteutsectigaicis pecismenta detecter

la préesence de&giegation ou d’'association entre deux ou plusieurs ensembles de poirtndengestant
I'hypothese d’absence congik de structure. Dans ce but, ils font appelne classe paratrique parti-
culiere de digraphes@htoires appék digraphesd captation proximale” (DCP) qui tiennent compte de la
disposition relative deslements des diverses classes. Le test s'appuie sur la&eglsitive du DCP qui,
une fois proprement normadis, est uné/-statistique. Les auteurs eétérminent la loi limite en invoquant
la theorie asymptotique dds-statistiques. lls edvaluent la performancetaille finie au moyen de simula-
tions de Monte-Carlo et egtudient aussi le comportement limite sous I'angle de I'effiéaastymptotique
de Pitman, dont &coulent des choix optimaux de partnes aux fins de test. lls soulignent de plus que
leur méthodologie reste valide en dimensionsé&uigures.

1. INTRODUCTION

In this article, a graph-based approach for testing spaoiait patterns is discussed. In the statis-
tical literature, the analysis of spatial point patterns@tural populations has been extensively
studied and has important implications in epidemiologyuation biology, and ecology. The
pattern of points from one class with respect to points fréneoclasses, rather than the pattern
of points from one class with respect to the ground, is ingattd. The spatial relationships
among two or more classes have important implications éslpeéor plant species. See, for
example, Pielou (1961) and Dixon (1994, 2002).

The goal of this article is to test the spatial pattern of clatgpspatial randomness against
spatial segregation or association. Complete spatiabrandss (CSR) is roughly defined as the
lack of spatial interaction between the points in a giverlgtarea. Segregation is the pattern
in which points of one class tend to cluster together, imfone-class clumps. In association,
the points of one class tend to occur more frequently arowiadtgfrom the other class. For
convenience and generality, we call the different typesaafits “classes”, but the class can be
replaced by any characteristic of an observation at a péatitocation. For example, the pat-
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tern of spatial segregation has been investigated for epéDiiggle 1983), age classes of plants
(Hamill & Wright 1986) and sexes of dioecious plants (Nandtaiwaguchi & Yamakura 1999).

Data random digraphs are directed graphs in which eachxveoteesponds to a data point,
and directed edges (arcs) are defined in terms of some hi&dwiaction on the data. For exam-
ple, nearest neighbour graphs are defined by placing an txede each vertex and its nearest
neighbour. Priebe, DeVinney & Marchette (2001) introduaethta random digraph (called class
cover catch digraphs (CCCD)) in R and extended it to mugtigiimensions. In this model, the
vertices correspond to data from a single clasand the definition of the arcs utilizes the other
classy. For eachr; € X aradius is defined by, = min d(z;,y) where the minimum is taken
over ally € Y. There is an arc from; to z; if d(x;,z;) < r;, thatis, if the sphere of radius
r; “catches’z;. DeVinney, Priebe, Marchette & Socolinsky (2002), Mar¢tét Priebe (2003),
Priebe, Marchette, DeVinney & Socolinsky (2003), and R¥jekolka, Marchette & Clark (2003)
demonstrated relatively good performance of it in classiion.

We define a new class of random digraphs (proximity catchagigs or PCDs) and apply
it in testing against segregation or association. By caostin, in our PCDs, the farther ati
point is from)’, the more arcs to other points it will be likely to have. We will use the relative
density (number of arcs divided by the total number of pdesilocs) as a statistic for testing
against segregation or association.

To illustrate our methods, we provide three artificial dagtssone for each pattern. These
data sets are plotted in Figure 1, whédepoints are at the vertices of the triangles, atid
points are depicted as squares. The triangles are the gldriangulation of the) points.
These triangles will be used to define the proximity functibat will in turn define the PCD.
Under segregation (left) the relative density of the PCD léllarger compared to the CSR case
(middle), while under association (right) the relative signwill be smaller compared to the CSR
case.

The statistical tool utilized is the asymptotic theorybtatistics. Properly scaled, we (what
is properly scaled?) demonstrate that the relative densityir PCDs is d/-statistic, which has
asymptotic normality by the general central limit theorylbftatistics. For the digraphs intro-
duced by Priebe, DeVinney & Marchette (2001), whose redadiensity is also of th& -statistic
form, the asymptotic mean and variance of the relative deisnot analytically tractable, due
to geometric difficulties encountered. However, the PCDmwsduce is a parameterized family
of random digraphs, whose relative density has tractalyi@pmtic mean and variance.

1 I

0.8 0.8

0.6 0.6
0.4

0.4

0.2 0.2

0.2 0.4 0.6 0.8

FIGURE 1: Realizations of segregation (left), CSR (middle), and associatiort)fiyh )| = 10 and
|X| = 1000. The) points are at the vertices of the triangles andihpoints are squares.

Ceyhan & Priebe (2003) introduced an (unparameterizedjamof this PCD; Ceyhan &
Priebe (2005) also introduced another parameterized yaohiPCDs and used the domination



2007 TESTING SPATIAL SEGREGATION 3

number (which is another statistic based on the number sffamm the vertices) of the second
parameterized family for testing segregation and assonialhe domination number approach
is appropriate when both classes are comparably large.aBefiebe & Wierman (2006) used
the relative density of the same PCD for testing the spasitiépns. Our new parameterized fam-
ily of PCDs has more geometric appeal, is simpler in distidnal parameters in the asymptotics,
and the range of the parameters is bounded.

Using the Delaunay triangulation of thé observations, in Section 3.1 we will define the
parameterized version of the proximity maps of Ceyhan &b#&i€2003) for which the calcula-
tions (regarding the distribution of the relative denséyg tractable. We then can use the relative
density of the digraph to construct a test of complete shaialomness against the alternatives
of segregation or association which are defined expliaitigéctions 2 and 4.1. We will calculate
the asymptotic distribution of the relative density forgbeligraphs, under both the null and al-
ternative patterns in Sections 4.2 and 4.3, respectivdilis grocedure results in a consistent test,
as will be shown in Section 5.1. The finite sample performdicéerms of power) is analyzed
using Monte Carlo simulations in Section 5.2. The Pitmamgsgtic efficiency is analyzed in
Section 5.2.3. The multiple-triangle case and the extensidigher dimensions are presented
in Sections 5.3 and 5.4, respectively. All proofs are predith the Appendix.

2. SPATIAL POINT PATTERNS

For simplicity, we describe the spatial point patterns ¥eu-tlass populations. The null hypoth-
esis for spatial patterns has been a controversial topicdtogy from the early days (Gotelli &
Graves 1996). But in general, the null hypothesis consfdtsmrandom pattern types: complete
spatial randomness or random labelling.

Undercomplete spatial randomne@SSR) for a spatial point pattegnX; (D), i = 1,...,n:
D c R?*}, whereX;(D) is the Bernoulli random variable denoting the event thahpois in
regionD, we have

(i) givenn points in domainD, the points are an independent random sample from the uni-
form distribution onD;

(i) there is no spatial interaction, i.e., the locationgluése points have no influence on one
another.

Note that condition (ii) is implied by (i). Furthermore, withe reference regiob is large,
the number of points in any planar region with awégD) follows (approximately) a Poisson
distribution with intensity\ and meamn\ - A(D).

Given a fixed set of points in a region, under random labellalgss labels are assigned to
these fixed points randomly so that the labels are indepémdehe locations. Thus, random
labelling is less restrictive than CSR. We only considerecgp case of CSR as our null hypoth-
esis. More specifically, onlyt’ points are assumed to be uniformly distributed over the eonv
hull of Y points.

The alternative patterns fall under two major categoridiedassociationandsegregation
Association occurs if the points from the two classes tagretbrm clumps or clusters. That
is, association occurs when members of one class have antgntte attract members of the
other class, as in symbiotic species, so thatthevill tend to cluster around the members)f
For example, in plant biologyY points might be the geometric coordinates of parasitictplan
exploiting another plant whose coordinates 3rpoints. As another examplé; and) points
might represent the coordinates of mutualistic plant g0 they depend on each other to
survive. In epidemiology) points might be the geographic coordinates of contaminauntces,
such as a nuclear reactor, or a factory emitting toxic waste.X’ points might be the coordinates
of the residences of cases (incidences) of certain diseassed by the contaminant, e.g., some
type of cancer.
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Segregation occurs if the members of the same class tendctarnped or clustered together
(see, e.g., Pielou 1961). Many different forms of segregagire possible. Our methods will
be useful only for the segregation patterns in which the tlaeses more or less share the same
support (habitat), and members of one class have a tendenegel members of the other class.
For instance, it may be the case that one type of plant doegowtwell in the vicinity of another
type of plant, and vice versa. This implies, in our notatibiat the.X; are unlikely to be located
near any elements gf. See, for instance, (Dixon 1994; Coomes, Rees & TurnbulBL9th
plant biology,) points might represent the coordinates of trees from a ep&dgth large canopy,
so that other plants (whose coordinates &rpoints) that need light cannot grow around these
trees. As another interesting but contrived example, denshe arsonist who wishes to start fires
with maximum duration time (hence maximum damage), so taatérts the fires at the furthest
points possible from fire houses in a city. ThBmpoints could be the geographic coordinates of
the fire houses, whil&’ points will be the coordinates of the locations of arson sase

We consider completely mapped data, i.e., the locationd ef/ants in a defined space are
observed rather than sparsely sampled data (i.e., onlyd@nasubset of locations is observed).

3. DATA-RANDOM PROXIMITY CATCH DIGRAPHS

In general, in aandom digraphthere is an arc between two vertices, with a fixed probabpilit
independent of other arcs and vertex pairs. However, in ppraach, arcs with a shared vertex
will be dependent. Hence the namiata-random digraphs

Let (2, M) be a measurable space and consider a fungtioft x 2 — 2, where2®
represents the power set @f Then giveny C €, the proximity mapNy(-) = N(-,)) :

Q) — 2 associates proximity regionNy,(x) C Q with each pointz € Q. The regionNy(z) is
defined in terms of the distance betweeand) .

If X, := {X1,Xs,...,X,} is a set ofQ-valued random variables, then th&,(X;), i =
1,...,n, are random sets. If th&,; are independent and identically distributed, then so a¥e th
random setsiVy (X;).

Define the data-random proximity catch digraptwith vertex setV = {Xy,..., X, } and
arc setd by (X;,X,) € A < X, € Ny(X;) where pointX; catche pointX;. The random
digraphD depends on the (joint) distribution of th€; and on the magVy. The adjective
proximity (for the catch digrap® and for the magVy,)comes from thinking of the regioNy, (z)
as representing those pointstinclose tox (Toussaint 1980; and Jaromczyk & Toussaint 1992).

The relative density of a digrapgh = (V, A) of order|V| = n (i.e., number of vertices is),
denotedo(D), is defined as

P(D) = n(7|1A—| 1)

where| - | stands for the set cardinality (Janson, tuczak & Raski 2000). Thus(D) rep-
resents the ratio of the number of arcs in the digrépto the number of arcs in the complete
symmetric digraph of ordet, namelyn(n — 1).

If Xq,..., X, id F, then the relative density of the associated data-randomxirpity catch

digraphD, denotedh(X,,; h, Ny), is a U-statistic:
1
p(Xn;h, Ny) = ——= h(Xi, X;; N
where
h(Xi,Xj;Ny) = I{(XZ,X]) EA}+I{(XJ,X1) EA}
= I{Xj GNy(X7)}+I{X1 GNy(Xj)}

with I( - ) being the indicator function. We denadt¢X;, X,; Ny) ash;; henceforth for brevity
of notation. Although the digraph is not symmetric (siticey) € A does not necessarily imply
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FIGURE 2: Construction ofr-factor central similarity proximity regioriwéé2 (z) (shaded region).

(y,z) € A), h;; is defined as the number of arcsiinbetween vertices(; and X ;, in order to
produce a symmetric kernel with finite variance (Lehmann8)98

The random variable,, := p(X,,; h, Ny) depends om and Ny, explicitly and onF' implic-
itly. The expectatiorE [p,,], however, is independent efand depends only ol and Ny:

1
0<Ep,] = §E [hi2] <1 foralln > 2.
The variancesar [p,,] simplifies to

—2
var [hia] + nn cov [hy2, hyg] < 1/4.

var [py] = m

1
2n(n — 1)

A central limit theorem folU-statistics (Lehmann (1988)) yields

V7 (9 — B [pn]) == N(0, cov [12, )

provided thatcov [hi2, h13] > 0. The asymptotic variance @f,, cov [h12, h13], depends only
on F' and Ny. Thus, we need determine oriy[h;2] andcov [h12, h13] in order to obtain the
normal approximation fop,,.

3.1. Ther-factor central similarity proximity catch digraphs.

We define ther-factor central similarity proximity map briefly. Le® = R? and let) =
{y1,y2,y3} C R? be three non-collinear points. Denote the triangle (iniclgcthe interior)
formed by the points i) asT'(Y). Forr € [0, 1], defineN3, to be ther-factor central similarity
proximity map as follows; see also Figure 2. kebe the edge opposite vertexfor j = 1,2, 3,
and let “edge regionsR(e;), R(e2), R(es) partition7'()) using segments from the centre of
mass ofT’()), M¢, to the vertices. For € T(Y) \ Y, lete(z) be the edge in whose regian
falls; x € R(e(x)). If x falls on the boundary of two edge regions we assigr) arbitrarily. For

7 € (0, 1], ther-factor central similarity proximity regionViq (x) = N3,() is defined to be the
triangleT’ (x) with the following properties:

() T,(z) has an edge.(x) parallel toe(x) such thatd(z,e,(z)) = 7d(z,e(z)) and
d(er(x),e(x)) < d(z,e(x)) whered(z, e(z)) is the Euclidean (perpendicular) distance
from z to e(x),

(i) T (x) has the same orientation as and is simildf'ty’),

(iii) « is at the centre of mass @f. ().
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FIGURE 3: Realizations of segregation (left), CSR (middle), and associatiort)fgyh)Y| = 3 and
|X| = 20. Y points are at the vertices of the triangle, aXighoints are circles.

Note that (i) implies ther-facto, (ii) implies similarit, and (iii) implies centra ithe name
r-factor central similarity proximity mapNotice thatr > 0 implies thatr € Nig(x) andr <1
implies thatN/q(z) C T'(Y) for all x € T(Y). Forz € 9(T(Y)) andt € [0,1], we define
NlZg(z) = {z}; for 7 = 0 andz € T'()) we also defineVig(x) = {z}. LetT(Y)° be the
interior of the trianglel’()). Then for allx € T'())° the edges., (x) ande(x) are coincident
iff 7 = 1. Observe that the central similarity proximity map of Ceyh& Priebe (2003) is
NZg(-) with 7 = 1. Hence by definition(z, y) is an arc of ther-factor central similarity PCD
iff y € Nig(x).

Notice thatX; id F, with the additional assumption that the non-degeneratedimensional
probability density functiory exists with support irf’()), implies that the special case in the
construction ofVZq occurs with probability zero.X falls on the boundary of two edge regions.)

For a fixedr € (0, 1], Nlg(x) gets larger (in area) asgets farther away from the edges (or
equivalently gets closer to the centre of magg) in thatd(z, e(x)) increases, or equivalently
d(Mc,e.(x)) decreases. Hence for pointsdfi{)’), the farther the points away from the ver-
tices) (or closer the points td/- as above), the larger the area/6f4(z). Hence, it is more
likely for such points to catch other points, i.e., have manes directed to other points. There-
fore, if moreX points are clustered around the centre of mass, then thaptigs more likely to
have more arcs, hence larger relative density. So, undezgaipn, relative density is expected
to be larger than that in CSR or association. On the other,Harttle case of association, i.e.,
when X' points are clustered arourdd points, the regionsVig(z) tend to be smaller in area,
hence, catch fewer points, thereby resulting in a small rermobarcs, or a smaller relative den-
sity compared to CSR or segregation. See, for example, &@with three) points, and 20¢
points for segregation (top left), CSR (top middle) and asgn (top right). The corresponding
arcs in ther-factor central similarity PCD with- = 1 are plotted in the right in Figure 3. The
corresponding relative density values (foe 1) are .2579, .1395, and .0974, respectively.

Furthermore, for a fixed € T'(Y)°, Nig(z) gets larger (in area) asincreases. So as
increases, it is more likely to have more arcs, hence lagjative density for a given realization
of X points inT'()).

4. ASYMPTOTIC DISTRIBUTION OF THE RELATIVE DENSITY
There are two major types of asymptotic structures for apdata (Lahiri 1996). In the first,
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any two points are required to be at least a fixed distance,dpance as the number of points
increase, the region on which the process (or pattern) ereed eventually becomes unbounded.
This type of sampling structure is call@ttreasing domain asymptotics

In the second type, the region of interest is a fixed boundgidmeand more and more points
are observed in this region. Hence the minimum distance d@ivdata points tends to zero
as the sample size tends to infinity. This type of structureaited infill asymptotics due to
Cressie (1991).

The sampling structure for our asymptotic analysis is infidt only the size of the type’
points tends to infinity, while the support, the convex hidila@iven set of points from typg
pointsCy (Y) is a fixed bounded region.

Next, we describe the null pattern of CSR and parameterizalternative patterns of segre-
gation and association briefly, and then provide the asytiepdtstribution of the relative density
for these patterns.

4.1. Null and alternative patterns.

For statistical testing against segregation and assogiatie null hypothesis is generally some
form of complete spatial randomness; thus we consider

Ho : X; S U(T(Y)).
If it is desired to have the sample size be a random variatdanay consider a spatial Poisson
point process off’()) as our null hypothesis.

We first present a geometry-invariance result that will difpur calculations by allowing
us to consider the special case of the equilateral triangle.

THEOREM 1 (Geometry invariance propertybet) = {y1,y2,ys} C R? be three non-collinear
points. Fori = 1,... ,nletX; £ U(T'(Y)), the uniform distribution on the trianglE()). Then
for any T € [0,1] the distribution ofp,,(7) := p(X,; h, Nig) is independent o}/, hence the

geometry ofl'()).

Based on Theorem 1 and our uniform null hypothesis, we magéferth assume th&t())
is the standard equilateral triangle wgh = {(0,0), (1,0), (1/2,v/3/2)}. For ourr-factor
central similarity proximity map and uniform null hypothligshe asymptotic null distribution of
pn(T) = p(Xn; h, N&g) as afunction of- can be derived. Let(r) := E [p,,], then

w(t) = Elhi2]/2 = P(X2 € Nig(X1))

is the probability of an arc occurring between any two vegiand let/(7) := cov [h12, h13].

We define two simple classes of alternativé& andHZ with e € (0,+/3 /3), for segre-
gation and association, respectively. See also Figure 4.y ko ), let e(y) denote the edge
of T'(Y) opposite vertex, and forz € T'()) let {,(x) denote the:(y) throughz. Then de-
fine T(y,e) = {z € T(Y) : d(y,{,(x)) < £}. Let’ HZ be the model under whick; i
U(T(P)\ Uyey T(y,€)) andHZ be the model under whick; £ U(U,ey T(y,V3/3—¢)).
The shaded region in Figure 4 is the support for segregatior fparticulars value; and its
complement is the support for the association alternatitle W3 /3 — . Thus the segregation
model excludes the possibility of ary; occurring near &; and the association model requires
that X; occur near &;. The+/3 /3 — < in the definition of the association alternative is so that
e = 0yieldsH, under both classes of alternatives. We consider these ¢fpdternatives among
many other possibilities, since relative density is geaynievariant for these alternatives as the
alternatives are defined with parallel lines to the edges.
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3= (1/2,7/3/2)

Mc

Vi 0,07 v =1T0)

FIGURE 4: An example of the segregation alternative for a partical@haded region); its complement is
for the association alternative (unshaded region) on the standardterplitaiangle.

Remark.These definitions of the alternatives are given for the stechdquilateral triangle. The
geometry-invariance result of Theorem 1 still holds undher alternatives as follows: if, in an
arbitrary triangle, a small percentage 100% whereé € (0,4/9) of the area is carved away
as forbidden from each vertex using line segments parallti¢ opposite edge, then under the
transformation to the standard equilateral triangle thikresult in the aIternativé—[f/m. This

argument is for segregation with< 1/4; a similar construction is available for the other cases.

4.2. Asymptotic normality under the null hypothesis.

By detailed geometric probability calculations providedtie Appendix and in Ceyhan, Priebe &
Marchette (2004), the mean and the asymptotic varianceeafelative density of our proximity
catch digraph can be calculated explicitly. The centraitltheorem forU-statistics then estab-
lishes the asymptotic normality under the null hypothe$isese results are summarized in the
following theorem.

THEOREM 2. For 7 € (0, 1], the relative density of the-factor central similarity proximity
digraph converges in law to the normal distribution; i.es;;ja— oo,

\/ﬁ(pn(T) B M(T)) i) N(O, 1)
v(T)
where
p(r) =72/6 1)
and

74675 — 374 — 2573 + 72 4497 + 14)

v(r) = 45 (r+ )27+ 1)(1+2)

(2)

For 7 = 0, p,,(7) is degenerate for alh > 1.

Consider the form of the mean and the variance functionsghwaie depicted in Figure 5.
Note that.(7) is strictly increasing irr, sinceN{q () increases with for all z € T'())°. Note
also thatu(7) is continuous inr with (7 = 1) = 1/6 andu(r = 0) = 0.

Regarding the asymptotic variance, note th@t) is strictly increasing and continuous in
andv(r = 1) = 7/135 andv(r = 0) = 0 (there are no arcs when= 0 a.s.) which explains
why p,, (7 = 0) is degenerate.
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FIGURE 5: Result of Theorem 2: asymptotic null meatr) = u(7) (left) and variance/(7) = v(r7)
(right), from Equations (1) and (2), respectively.

As an example of the limiting distributior, = 1/2 yields

v(1/2) AT

Vi en(/2) — /) _ [2880m gy 1/24) =5 N(0,1),

or equivalently,

119
L (1/2) 2N ( .
pn(1/2) (24’2880n>

The finite sample variance may be derived analytically in Imdibe same way as
cov [hi12, hy3] for the asymptotic variance. In fact, the exact distribotid p,, (7) is available, in
principle, by successively conditioning on the values efXh). Alas, while the joint distribution
of h19, hy3 is available, the joint distribution dfh;; }1<i<j<», and hence the calculation for the
exact distribution op,,(7), is extraordinarily tedious and lengthy for even small eslofn.

density
density
0 15
1
density

T
000

005

FIGURE 6: Depicted are,, (1/2) “X* N(ﬁ, %) for n = 10, 20, 100 (left to right). Histograms are

based on 1000 Monte Carlo replicates. Solid curves represent thexappting normal densities given in
Theorem 2. Note that the vertical axes are differently scaled.

Figure 6 indicates that, far = 1/2, the normal approximation is accurate even for small
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(although kurtosis and skewness may be indicatedafee 10, 20). Figure 7 demonstrates,
however, that the smaller the valueofthe more severe the skewness of the probability density.

density
density
density

r T T T 1 -
000 005 010 015 020 r T T T !
00 01 02 03 04

FIGURE 7: Depicted are the histograms for 10000 Monte Carlo replicatpsodl /4) (left), p10(3/4)
(middle), andp10(1) (right) indicating severe small sample skewness for small values of

4.3. Asymptotic normality under the alternatives.

Asymptotic normality of the relative density of the proxtgncatch digraph can be established
under the alternative hypotheses of segregation and assochby the same method as under the
null hypothesis. LeE,[-] be the expectation with respect to the uniform distributioder the
segregation and association alternatives with (0, V3 /3).

THEOREM 3. Let ug(7,¢) (1a(T,€)) be the mean and lets (7, ¢) (va(T, €)) be the covariance,
cov [h1a, his) for 7 € (0,1] ande € (0,v/3/3) under segregation (association). Then under

H?,

Vi (pa(r) = ps(r,2)) == N(0,vs(7.2))
for the values of the paifr, ¢) for whichvg(r,e) > 0. p,(7) is degenerate whemns (7, ¢) = 0.
Likewise, undeM2, \/n (pn(7) — pa(r,)) £, N(0,va(7,e)) for the values of the paifr, )
for whichv 4 (7,¢) > 0. p,(7) is degenerate whem, (,¢) = 0.

Notice that under the association alternatives amy (0, 1] yields asymptotic normality for
all e € (O, \/§/3), while under the segregation alternatives only= 1 yields this universal
asymptotic normality.

5. THE TEST AND ANALYSIS

The relative density of the central similarity proximitytch digraph is a test statistic for the
segregation/association alternative; rejecting foreerr values op,,(7) is appropriate since
under segregation we expegt(7) to be large, while under association we expegfr) to be
small. Using the test statistic

\/ﬁ (pn(T) - ﬂ(T))
v(T)

which is the normalized relative density, the asymptotitiocal value for the one-sided level
test against segregation is given by

R(r) =

)

Za = P11 — ).

Against segregation, the test rejects fofr) > z, and against association, the test rejects for
R(T) < z1—a-
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5.1. Consistency of the tests under the alternatives.

In this section, we provide the consistency of the tests uselgregation and association alterna-
tives.

THEOREM 4. The test against{Z which rejects forR(r) > z, and the test against(2* which
rejects forR(r) < z,_, are consistent for € (0,1] ande € (0,/3 /3).

In fact, the analysis of the means under the alternativesaisvmore than what is required for
consistency. Under segregation, the analysis indicatgsth(t,e1) < us(7,e2) fore; < es.
On the other hand, under association, the analysis indidag ;14 (7,21) > pa(r,e2) for
g1 < €a.

5.2. Monte Carlo power analysis.

In this section, we asses the finite sample behaviour of tlaéive density using Monte Carlo
simulations for testing CSR against segregation or assoiciaWe provide the kernel density
estimates, empirical significance levels, and empiricalgroestimates under the null case and
various segregation and association alternatives.

TABLE 1: The empirical significance levels and empirical power values ubdefor ¢ = v/3 /8, v/3 /4
ata = .05.

T 1 2 3 A4 .5 .6 e .8 .9 1.0

n =10, N = 10000

as(n) .0932 .1916 .1740 .1533 .1101 .0979 .1035 .0945 .0883 .0868
B5(r,v/3/8) .1286 .2630 .2917 .2811 .2305 .2342 .2526 .2405 .2334 .2289
B2 (r,4/3/4) 5821 .9011 .9824 .9945 .9967 .9979 .9990 .9985 .9983 .9969

n = 100, N = 1000

s (n) 155 101 .080 .077 .075 .066 .065 .063 .066 .069
B3(r,\/3/8) 574 574 612 655 .709 .742 774 786 .793 .793

kernel density estimate
0 1
kernel density estimate
10 15

kernel density estimate

s

ol o1 om0 00 o1 0z 03 04 o5 Melai'“d _“IH
relative density relative density relative density

FIGURE 8: Kernel density estimates for the null (solid) and the segregation aitert4’ (dashed) with
T =1/2,n =10, N = 10000, ande = v/3 /8 (left), e = /3 /4 (middle), ande = 2+/3 /7 (right).

5.2.1. Monte Carlo power analysis for segregation altérest
In Figure 8, we present the kernel density estimates uridgrand HS with ¢ =
V3 /8, /3 /4, 2/3 /7. Observe that witlm = 10, ande = /3 /8, the density estimates are



12 CEYHAN, PRIEBE & MARCHETTE Vol. 35, No. 1

very similar implying small power; and asgets larger, the separation between the null and
alternative curves gets larger, hence the power gets laWygh n» = 10, 10000 Monte Carlo
replicates yield power estimatgs . (c) = .0994, .9777, 1.000, respectively. Withn = 100
(figures not presented), there is more separation betweemulthand alternative curves at each
e, which implies that power increases @®r n increases. Wit = 100, 1000 Monte Carlo
replicates yield33 (¢) = .5444, 1.000, 1.000.

For a given alternative and sample size, we may consideyznglthe power of the test—
using the asymptotic critical value (i.e., the normal appration)—as a function of. The
empirical significance levels and power estimates ag&i}%/s, Hf/g a8 function ofr for
n = 10 are presented in Table 1. The empirical significance levgls,, are all greater than
.05 with smallest being0868 atT = 1.0 which have the empirical powérm(\/g/8) = .2289,
510(\/5/4) = .9969. However, the empirical significance levels imply that 10 is not large
enough for normal approximation. Notice thatragets larger, the empirical significance levels
get closer ta05 (except forr = 0.1), but still are all greater thaid5, which indicates that for
n < 100, the test is liberal in rejecting{, against segregation. Furthermore,ragcreases,
for fixed e the empirical power estimates increase, the empiricalifsignce levels get closer
to .05; and for fixedn asT increases power estimates get larger. Therefore, for gatipe, we
recommend the use of largevalues ¢ < 1.0).

5.2.2. Monte Carlo power analysis for association altérast

In Figure 9, we present the kernel density estimates uridgrand H2 with ¢ =

V3 /21, /3 /12, 54/3 /24. Observe that witm = 10, the density estimates are very sim-
ilar for all € values (with slightly more separation for larger which implies small power.
Ten thousand Monte Carlo replicates yield power estimé;fgs ~ 0. With n = 100 (fig-
ures not presented), there is more separation between thendualternative curves at eaeh
which implies that power increases afcreases. One thousand Monte Carlo replicates yield
3A = 324, .634, .634, respectively.

mec

kernel density estimate
kernel density estimate

kernel density estimate
10 1

02 03 04 00 01 02 03 04 000 00s o1
relative density relative density relative density

FIGURE 9: Kernel density estimates for the null (solid) and the association altezridft (dashed) for
T =1/2withn = 10, N = 10000 ande = /3 /21 (left), ¢ = v/3 /12 (middle),e = 5+/3 /24 (right).

For a given alternative and sample size, we may consideyznglthe power of the test —
using the asymptotic critical value—as a functionrof

The empirical significance levels and power estimates agaid?, with ¢ =
V3 /12, 5/3 /24 as a function of- for n = 10, are presented in Table 2. The empirical signif-
icance level closest t®)5 occurs atr = .6 (much smaller for other values), which have the
empirical powerﬁw(\/g/m) = .1181, and B (5v/3/24) = .1187. However, the empirical
significance levels imply that = 10 is not large enough for the normal approximation. With
n = 100, the empirical significance levels are approximat@ly for - > .3 and the highest
empirical power is997 at 7 = 1.0. Note that as: increases, the empirical power estimates in-
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crease forr > .2 and the empirical significance levels get closelffor 7 > .5. This analysis
indicates that in the one triangle case, the sample sizddheuvery large«{ > 100) for the
normal approximation to be appropriate. Moreover, the Entier value, the larger the sample
needed for the normal approximation to be appropriate. &fbez, we recommend the use of
larger values ¢ < 1.0) for association.

TABLE 2: The empirical significance level and empirical power values utiefor e = 5/3 /24,
V3 /12,/3 /21 with N = 10000, andn = 10 ata = .05.

T 1 2 3 A 5 .6 4 .8 .9 1.0

n =10, N = 10000

aa(n) 0 0 0 0 0 .0465 .0164 .0223 .0209 .0339

BAr,\/3/12) O 0O 0O O 0 .1181 .0569 .0831 .0882 .1490

BA(r,5v3/24) O O 0O O O .1187 .0581 .0863 .0985 .1771
n =100, N = 1000

aa(n) 169 .075 .053 .047 .049 .044 .040 .044 .049 .049

BA(r,\/3/12) 433 399 .460 559 .687 .789 .887 .938 .977 .997

5.2.3. Pitman asymptotic efficiency under the alternatives

The Pitman asymptotic efficiency (PAE) provides for an itigegion of local asymptotic power,
local aroundH,. This involves the limit as — oo, as well as the limit as — 0. See the proof

of Theorem 3 for the ranges afande for which relative density is continuous agyjoes tosc.

A detailed discussion of PAE can be found in Kendall & Stu&a879) and van Eeden (1963).
For segregation or association alternatives the PAE isdiye

B (1. e = 0))2
PAE(p, (1)) = 2=,

wherek is the minimum order of the derivative with respectttor which p(¥) (7, = 0) # 0.
Thatis,u®) (r,e = 0) # 0 butu (1,6 = 0) = 0forl = 1,2,...,k—1. Then under segregation
alternativeH? and association alternativé”, the PAE ofp,, (1) is given by

PAES(T) = M and PAE4(7—) — M

v(7)

respectively, since/s(r,e = 0) = p/4(r,e = 0) = 0. Equation (2) provides the denomi-
nator; the numerator requiress(7,<) and u4 (7, e) which are provided in Ceyhan, Priebe &
Marchette (2004) where we only use the intervals tfiat do not vanish as — 0.

In Figure 10, we present the PAE as a functionrofor both segregation and associa-
tion. Notice thatlim, .o PAE®(7) = 320/7 ~ 45.7143, argsup,, ,PAE°(7) = 1.0, and
PAES (1 = 1) = 960/7 ~ 137.1429. Based on the PAE analysis, we suggest, for largad
smalle, choosingr large (i.e.,r = 1) for testing against segregation.

Notice thatlim, o PAEA (1) = 72000/7 ~ 10285.7, PAE* (7 = 1) = 61440/7 ~ 8777.1,
arginf, ., )PAE* (1) ~ 4566 with PAE" (7 ~ .4566) ~ 6191.1. Based on the asymptotic
efficiency analysis, we suggest, for largeand smalle, choosingr small for testing against
association. However, for small and moderate values thfe normal approximation is not ap-
propriate due to the skewness in the density,dfr). Therefore, for small and moderate we
suggest large values ¢ < 1.0).
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FIGURE 10: Pitman asymptotic efficiency curves against segregation (left)ssuti@tion (right) as a
function of 7. Notice that the axes of the plots are scaled differently.

5.3. The case with multiple Delaunay triangles.

Suppose) is a finite collection of points in Rwith |Y| > 3. Consider the Delaunay tri-
angulation (assumed to exist) of, whereT; denotes thejth Delaunay triangle,/ denotes

the number of triangles, an@ ()) denotes the convex hull @f. We wish to investigate

Ho : X; w0 U(CH(Y)) against segregation and association alternatives.

Figure 1 is the graph of realizations of= 1000 observations which are independent and
identically distributed according td(Cy ())) for | Y| = 10 and.J = 13 and under segregation
and association for the sarpe

The digraphD is constructed usingVig(j,-) = N3, () as described above, where for
X; € T} the three points i) defining the Delaunay trianglg; are used a3/;. Lettingw,; =
A(T;)/A(Cr(Y)) with A(-) being the area functional, we obtain the following as a dargl
to Theorem 2.

COROLLARY 1. The asymptotic null distribution fgr, (7, J) conditional onW = {wy, ..., w}
for 7 € (0,1] is given byN(p(7, J), v(r, J)/n) provided that/(r, .J) > 0 with

p(r,J) = p(r) Y wj and v(r,J) Zw T AulT {Zw ‘(Z H

=1

wherep(7) andv(7) are given by Equations (1) and (2), respectively

By an appropriate application of Jensen’s inequality, VEtBetZ - w > (Z]] 1 wf)Q.
Therefore the covarianegr, J) = 0 if and only if bothy(7) = 0 andzjz1 w? = (Zj:l wjz)2
hold, so asymptotic normality may hold even whegn) = 0 (provided thay(7) > 0).

Similarly, for the segregation (association) alternatiweret =2 /3-100% of the area around
the vertices of each triangle is forbidden (allowed), weagbthe above asymptotic distribution
of p, (7, J) with (7, J) being replaced by.s (7, J, €), v(7, J) by vs(r, J, €), pu(7) by pus(, €),
andv(r) by vs(t,¢€). Likewise for association.

The segregation (with = 1/16, i.e.,e = v/3/8), null, and association (with = 1/4, i.e.,

e = /3 /12) realizations (from left to right) are depicted in Figure ithwn = 1000. For the
null realization, thep-valuep > .34 for all = values relative to the segregation alternative, also
p > .32 for all 7 values relative to the association alternative. For theegggion realization, we
obtainp < .021 for all 7 > .2. For the association realization, we obtair< .02 for all 7 > .2
andp = .07 atT = 0.1. Note that this is only for one realization af,.
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We repeat the null and alternative realizatidri®)0 times withn = 100 andn = 500
and estimate the significance levels and empirical powee. €gtimated values are presented in
Table 3. Withn = 100, the empirical significance levels are all greater than b lass than
.10 forT > .6 against both alternatives, much larger for other valuegs ahalysis suggests that
n = 100 is not large enough for normal approximation. Witk= 500, the empirical significance
levels are around .1 foB < 7 < .5 for segregation, and around (but slightly larger thaa)for
T > .5. Based on this analysis, we see that, against segregatiotest is liberal (less liberal
for largerr) in rejectingH, for small and moderate, against association it is slightly liberal for
small and moderate, and larger values. For both alternatives, we suggest the use of large
values. Observe that the poor performance of relative teimsone-triangle case for association
does not persist in multiple triangle case. In fact, for thétiple triangle caseR(7) gets to be
more appropriate for testing against association compargsting against segregation.

The conditional test presented here is appropriate wiea WV are fixed, not random. An
unconditional version requires the joint distribution loéthumber and relative size of Delaunay
triangles wher) is, for instance, from a Poisson point process. Alas, thig fistribution is not
available (Okabe, Boots & Sugihara 2000).

TABLE 3: The empirical significance levels and empirical power values uHo%r/S andH\%/m,
N = 1000, n = 100, andJ = 13, ata = .05 for the realization ofy in Figure 1.

T A 2 3 A4 .5 .6 7 .8 9 1.0

n =100, N = 1000, J = 13

as(n, J) 496 366 .302 .242 190 .103 .102 .092 .095 .091
BS(r,v/3/8,J) 393 429 464 512 551 578 608 613 .611 .604

Galn,J) 726 452 322 310 .194 .097 .081 .072 .063 .067
BA(r,v/3/12,J) 452 426 443 555 567 667 .721 .809 .857 .906

n = 500, N = 1000, J = 13

as(n,J) 0.246 0.162 0.114 0.103 0.097 0.092 0.095 0.093 0.095 0.090
Bf(r,\/g/S,J) 0.829 0.947 0.982 0.988 0.995 0.995 0.997 0.998 0.997 0.997

&a(n,J) 0.255 0.117 0.077 0.067 0.052 0.059 0.061 0.054 0.056 0.058
B;?(T,\/g/IQ,J) 0.684 0.872 0.953 0.991 0.999 1.000 1.000 1.000 1.000 1.000

5.3.1. Pitman asymptotic efficiency for multiple triangkese.

The PAE analysis is given fof = 1. ForJ > 1, the analysis will depend on both the number
of triangles as well as the sizes of the triangles. So thev@tr values with respect to these
efficiency criteria forJ = 1 are not necessarily optimal fof > 1, so the analyses need to be
updated, conditional on the values.bandV.

Under the segregation alternatit€’, the PAE ofp,, () is given by

o)

1

(4(r, Je = 0))* _ ( N N
v(r,J) Zw +4ps(r 2<Zw (Zw) )

J=1 Jj=1

PAE} (1) =

Under association alternativé:* the PAE ofp,, (7) is similar.
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The PAE curves forJ = 13 (as in Figure 1) are similar to the ones for thhe= 1 case (see
Figure 10), hence are omitted. Based on the Pitman asymgtfitiency analysis, we suggest,
for large n and smalle, choosing larger for testing against segregation and smallgainst
association However, for moderate and small we suggest large values for association due
to the skewness of the density @f(7).

5.4. Extension to higher dimensions.

The extension ofVig to R? for d > 2 is straightforward. Le} = {y1,Y2,--+,Ya+1} bed+1
points in general position. Denote the simplex formed bgéiet 1 points asS()). (A simplex

is the simplest polytope in Rhavingd + 1 vertices,d (d + 1)/2 edges andl + 1 faces of
dimension(d — 1).) Forr € [0, 1], define ther-factor central similarity proximityp; as the face
opposite vertey; for j = 1,2,...,d + 1, and face region&(¢1), . . ., R(pq+1) partitionS(Y)

into d + 1 regions, namely thé + 1 polytopes with vertices being the centre of mass together
with d vertices chosen frord + 1 vertices. Forz € S()) \ Y, let o(z) be the face in whose
regionz falls; © € R(p(z)). (If = falls on the boundary of two face regions, we assjdm)
arbitrarily.) Forr € (0, 1], ther-factor central similarity proximity regionVig(z) = N3, (z) is
defined to be the simplef;, (x) with the following properties:

(i) S-(x) has a facep,(x) parallel top(z) such thatr d(z, ¢(x))

= d(p,(z),x), where
d(z, ¢(x)) is the Euclidean (perpendicular) distance frono ¢(x),

(i) S;(z) has the same orientation as and is simila§{®’),

(i) z is at the centre of mass 6% (x). Note thatr > 1 implies thatr € Nig(x).

Forr = 0, defineN(ig(z) = {z} for all z € S(V).

Theorem 1 generalizes, so that any simpiin R¢ can be transformed into a regular
polytope (with edges being equal in length and faces beingleiq area) preserving unifor-
mity. Delaunay triangulation becomes Delaunay tessetiaiin R?, provided no more than
d + 1 points are cospherical (lying on the boundary of the samersph In particular, with
d = 3, the general simplex is a tetrahedron (4 vertices, 4 triamgiaces and 6 edges),
which can be mapped into a regular tetrahedron (4 faces aikatgal triangles) with vertices
(0,0,0) (1,0,0) (1/2,v/3/2,0), (1/2,v/3 /6,6 /3).

Asymptotic normality of thé/-statistic and consistency of the tests holddas 2.

6. DISCUSSION AND CONCLUSIONS

In this article, we investigate the mathematical and stesisproperties of a new proximity catch
digraph (PCD) and its use in the analysis of spatial poirtepas. The mathematical results are
the detailed computations of means and variances ot/tsgatistics under the null and alter-
native hypotheses. These statistics require keeping gacl bof the geometry of the relevant
neighbourhoods, and the complicated computations of iake@re done in the symbolic com-
putation package /sc Maple. The methodology is similar & tiven by Ceyhan, Priebe &
Wierman (2006). However, the results are simplified by thiddeate choices we make. For
example, among many possibilities, the proximity map isrdefiin such a way that the distri-
bution of the domination number and relative density is getyninvariant for uniform data in
triangles, which allows the calculations on the standardlaigral triangle, rather than for each
triangle separately.

We develop a technique for testing the patterns of segmyatiassociation. There are many
tests available for segregation and association in ecdiieggiture. See (Dixon 1994) for a survey
on these tests and relevant references. Two of the most calypmged tests are Pielowg test
of independence (Pielou 1961) and Ripley’s test baseld @ and L (¢) functions (Ripley 1981).
However, the test we introduce here is not comparable teriththem. Our test is a conditional
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test (conditional on a realization of, the number of Delaunay triangles, aid, the set of
relative areas of the Delaunay triangles), and we requatttte number of triangles be fixed
and relatively small compared to = |X,,|. Furthermore, our method deals with a slightly
different type of data than most methods for examining sppttterns. The sample size for one
type of point (typeY points) is much larger compared to the other (typpoints). This implies
that in practice)) could be stationary or have a much longer life span than mesydiet’. For
example, the geometric coordinates of a special type ofifomght constituteX’ points, while
the geometric coordinates of trees from a species arounchvthé fungi grow might be viewed
as they points.

Based on the asymptotic analysis and finite sample perfarenaifirelative density of-factor
central similarity PCD, we recommend large values ¢f < 1), regardless of the sample size
for segregation. For association, we recommend large salfre (» < 1) for small to moderate
sample sizes, and small valuesofr = 0) for large sample sizes. However, in a practical
situation, we will not know the pattern in advance. So as aoraatic data-based selection of
7 to test CSR against segregation or association, one canstiarr = 1, and if the relative
density is found to be smaller than that under CSR (whichggestive of association), use any
T € [.8,1.0] for small to moderate sample sizes{ 200), and use- 2 0 (sayr = 0.1) for large
sample sizes > 200. If the relative density is found to be larger than that und&R (which
is suggestive of segregation), then use lardany = € [.8,1.0]) regardless of the sample size.
However, for larger values,r = 1 has more geometric appeal than the rest, so it can be used
when larger is recommended.

Although the statistical analysis and the mathematicgb@riies related to the-factor cen-
tral similarity proximity catch digraph are done irfRhe extension to Rwith d > 2 is straight-
forward. Moreover, the geometry invariance, asymptoticmadity of theU-statistic and consis-
tency of the tests hold fat > 2.

APPENDIX

Proof of Theorem 1.SupposeX ~ U(T(Y)). A composition of translation, rotation, re-
flections, and scaling will take any given triandglg)) = T'(y1,y2,ys) to the basic triangle
T, = T((0,0),(1,0), (c1,c2)) With 0 < ¢; < 1/2, ¢ > 0and(l — ¢;)® + ¢3 < 1. Further-
more, whenX is also transformed in the same manner, sa¥ tothen X' is uniform onTy, i.e.,
X' ~ U(Ty). The transformatiom,: R?> — R? given by

1—201U \/§U>
\/g ,202

takesT; to the equilateral triangld, = 7°((0,0), (1,0), (1/2,v/3/2)). Investigation of the
Jacobian shows thai. also preserves uniformity. That ig.(X’) ~ U(T.). Furthermore,
the composition ofp., with the rigid motion transformations maps the boundaryhef @riginal
triangle T'(Y) to the boundary of the equilateral triandlg, the median lines of'()) to the
median lines of,, and lines parallel to the edgesBf)) to lines parallel to the edges @ and
straight lines that crosg()) to the straight lines that cro§s. Since the joint distribution of
any collection of thé;; involves only probability content of unions and intersens of regions
bounded by precisely such lines, and the probability cdriésuch regions is preserved since
uniformity is preserved, the desired result follows. O

¢e(u,v) = (u +

Derivation of u(7) andv(7). Let M; be the midpoint of edge; for j = 1,2,3, let M be
the centre of mass, arfl, := T(yi, M3, M¢). LetX; = (X;,Y;) fori = 1,2,3 be three
random points from(7'(Y)), and letx; = (z;, y;) be their realizations. Notice that the bivariate
variables are denoted in boldface, and random variabledearated with upper case characters.
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By symmetry,u(r) = P(X2 € Nig(X1)) = 6 P(X2 € Ng(X1), X1 € Ty). Then

1/2 fEl/\/gA NT
P(Xz (S NéS(Xl); X; € TS) = /0 /O Igl(jc’:(sj(}))c)lg)dyl dry = 7—2/36,

whereA (Nig(x1)) = 3v3 72 y? andA(T(Y)) = V3 /4. Henceu(r) = 72 /6.
Next, we find the asymptotic variance. Let

Piy = P({X2,Xs} C Nis(Xq)),
PQTG = P({Xg, Xg} C FI(Xl)) and
P]& = P(X2 S NES(Xl),X3 S FI(Xl)),

whereI'] (x) is theT';-region of = based onVlg and defined a7 (z) := {y € T(Y) : = C
NZgs(y)}. (See Ceyhan, Priebe & Wierman 2006 for mordgrregions.)
Thencov [hlg, hlg] =E [h12 hlg] —E [hlg]E [hlg] where

Elhohis] = P({X2, X3} C Nig(X1))
+2P (X2 € Nig(X1), X3 € I'T(X1))
+ P({X2, X3} C T'T(Xy))
= Pjy+2P} + P

Hencev(r) = cov [hi2, hi3] = (PZTN +2P], + P{G) —[2p(7)]?.

v €3 = e(x) Vi € =e(z)

FIGURE 11: The prototypes of the four casesldf(x1) for x1 € T'(y1, M3, M¢c) with 7 = 1/2.

To find the covariance, we need to find the possible typds] ¢k, ) and Niq(x1) for 7 €
(0, 1]. There are four cases regardifig(x1) and one case faVig(x1). See Figure 11 for the
prototypes of these four casesldf(x;) where, forxy = (z1,y1) € T()), the explicit forms of
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¢j(r,x) are
S ara) = L1,
C3(r, ) = \/gx(7+ ) +y — \/3(551 +7) Culr,x) = \/57(96— 1) =2y
7 (1=7) 7 ’ 247 ’
CS(T x) — w C6(7' w) _ \/g[(xl +y1) — m(l +T)]
| 27 | -7 /
Gr(mz) = 1y—17'
0.251 \ib

Ry /
0.05-

R

0 N
yi 0.1 0.2 51 0.3 0.4 0’%14

FIGURE 12: The regions corresponding to the prototypes of the four cases-with /2.

Each casg corresponds to the regid®; in Figure 12, where

ql(x):;_Tg, qg(x):(l\};:()l(_li_;;), q3(x):\%(_1:_)i>, and s;=(1-7)/2.
The explicit forms ofR;, j = 1,...,4 are as follows:
R, = {(x7y) € [071/2} X [O,(B(CC)]},
Ry = {(z,y) €0,51] x [gs(x),2/vV3] U[s1,1/2] x [g3(2), g2()]},
Ry = {(z,y) € [s1,1/2] X [g2(2), qa ()]},
Ry = {(z,y)e[sl,l/Z} X [ql(x),az/\/g]}
By symmetry,

P({Xz,X3} - NéS(Xl)) = 6P({X2,X3} C Nés(Xl), X1 S Ts),

and

1/2 wl/\/ﬁA NT. 2
P({X2, X3} € Nig(Xy), Xy € T2) :/0 /0 (A(;S(;‘)l)?dyl day = 74/90,

whereA(NZg(x1)) = 3v3 7242, Hence,
P({X2,X3} C N&g(Xq)) = 74/15.
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Next, by symmetry,

P({Xz,X3} C FI(Xl)) = 6P({X2,X3} (- FI(Xl),Xl S TS),
and

4
P({Xz,Xg} C FI(Xl),Xl c TS) = ZP({Xz,X;g} C FI(X]_),X:[ S RJ)

j=1
FOI’Xl = (xl,yl) S R1,
1/2  rqs3(x) A FT x1))2
P({X27X3} C FI(Xl),Xl S Rl) = / / A((le—' yl) Z)’, dyy dxy
1-1)

90 (1 + 27)2(1 +7)5’
where

7'2\/§y2

AT (x1)) =3

(r—1227+1)
Forx; = (z1,y1) € Ro,

P({X2, X3} CT(Xy), X € RQ)

z1/V3 A l-vr 1/2 2 (1) A Iw— 2
= / / dy1 d:r1+/ / (x1 )Z dyy dxy
45 (1) as(z)  ATD))

(475 +67° —127' —217’ + 1472 —|—407’—|—20)( —7)
45 (27 4+ 1)2(1 + 2)%(t + 1)° ’

where

AT} (x1)) = 3V3 (231 +2V3xyn T — 27T — 22 + 231y — 3Y3)T
1Ay = 41-1)274+1)(1+2) '

Forx; = (z1,41) € Rs,

P({Xg,Xg} - FI(Xl),Xl € Rg) = / / 1;) dyy dxy
g2(z1)

1—7-)(67- — 3574+ 13072 + 160 7 + 60)
90(27 + 1)2(7 +2)%2(7 + 1) ’

where

AT (x1)) = —3V37T(22272 + 2372 — Aot — 22y T2+ Ay + 23y T2
S 427+ 1) (1 —1)%(r +2)
203 +4xT+6yF + 72 —2x1—2\fy1—27'—|—1)
- 12T+ (- 12(r +2)

Forx; = (z1,41) € Ry,

z1/V3 A(FT(
1(11) ( (y

r1/\fA (x1 ))2
dyy dxy
/ /(13(901) y)3

P({X3, X3} CI7(X1), X1 € Ry) = /1/2/

><
kA
Nl N
w\_/
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1/2 rqiz(z1) X1))2
dyy dz
/ /> AT

75(r2 — 57 + 10)
15 (27 + 1)2(1 +2)2’

where ( 73 )
- - 37(32% +3y? — 321 —V3y1 —7+1
AT 6a)) = : 2(2;+1)(i+2) 1 '
So
. B —(r2 =77 -2)r*
P({X2, X5} CT{(X1)) = 6(90 +1)(2T+1)(T+2))

(T
—(r2 =77 -2)r*
Br+DHE2r+1)(r+2)
Furthermore, by symmetry,

4
P(Xz S NéS(X]_),Xg c PI(XI)) =6 (Z P(X2 c Nés(Xl),X;; S FI(X1)7X1 c Rj)),
j=1
whereP (X, € NZg(X1), X3 € I'[(X1), X1 € R;) can be calculated with the same regions
of integration with integrand being replaced by

A(NEs(x2) AT (1))

A(T(D))?
Then
(274 —37% —472 + 107 + 4)7*
P(Xs € NLo(X1), X3 € I'T(X = 6
( 2 € CS( 1)7 3 €< 1( 1)) ( 180(27+1)<T+2)
B (274 —37% 472 + 107 + 4)7*
3027+ 1)(t+2)
Hence .
4270 — 74 =573 + 1272 4+ 287+ 8)
E [hi2 hs]
I5(r+1)(27+1)(7+2)
Therefore,

TH67° =37 —257° + 72 + 497 4 14)
45 (r+1)2T7+ 1) (7 +2)

Sketch of the Proof of Theorem Bnder the alternatives, i.ez,> 0, p,,(7) is aU-statistic with
the same symmetric kernk); as in the null case. The meag(7,¢) = E.[p,(7)] = E-[hi12]/2
(andp 4 (7, €)), now a function of bothr ande, is again in[0, 1]. vs(7,¢) = cov c[h12, h13] (@nd
va(T,€)), also a function of both ande, is bounded above by/4, as before. Thus asymptotic
normality obtains provided thats(r,¢) > 0 (va(7,e) > 0); otherwisep,,(7) is degenerate.
The explicit forms ofug(7,¢) andu 4 (7, <) are given, defined piecewise, in Ceyhan, Priebe &
Marchette (2004). Note that undgf®,

vs(T,e) >0
for

(1,e) € ((0, 1] x (0,3\/§/10}) U((W@ X (3\/??/10,\/5/3)>,

and undefH*,

va(r,e) >0 for (r,e) € (0,1] x (0,v3/3).
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Sketch of Proof of Theorem 8ince the variance of the asymptotically normal test stetisnder
both the null and the alternatives, converges to @.as oo (or is degenerate), it remains to
show that the mean under the null;r) = E [p,.(7)], is less than (greater than) the mean under
the alternativeps(r,e) = E[pn(7)] (na(T,€)) against segregation (association) for> 0.
Whence it will follow that power converges to 1 as— co.

It is possible, albeit tedious, to compyte(7,<) and 4 (7, ) under the two alternatives.
The calculations are deferred to the technical report byh@eyPriebe & Marchette (2004) due
to its extreme length and technicality, and the resultinglieit forms are provided in the Ap-
pendix of that report. Detailed analysisof (7, ) andu 4 (T, €) indicates that under segregation
us(r,e) > u(r) foralle > 0 andr € (0,1]. Likewise, detailed analysis @f4 (7, <) indicates
that under association, (7,c) < u(r) foralle > 0 andr € (0,1]. We direct the reader to
the technical report for the details of the calculationsnétethe desired result follows for both
alternatives.

Proof of Corollary 1.In the multiple triangle case,

Blou(r /) = oy 2o 20 F

1<j

w(r, J)

= %E[hlz] = E[I(A12)]
= P(An) = P(Xs € Nig(Xa)).

But, by definition of Nig(-), X2 ¢ Nig(X4) a.s. ifX; andX, are in different triangles. So
by the law of total probability

w(r,J) = P(Xz € NéS(Xl))
J
= > P(Xa e Nis(Xq)|[{X1,Xa} € Tj) P({X1, Xz} C T))

j—l

= ZM {X.]_,X2} C T)
(sinceP (X2 € Ngg(Xa) | {X1, Xz} C Tj) = p(7))

T))/A(CH(Y)))?

I
M“

(sinceP({X1,Xz2} C Tj) = (A(T})/A(CH (V).

Lettingw; := A(T;)/A(Cu(Y)), we getu(r, J) = p(r) - (Zj , w?) wherey(7) is given by

Equation (1).
Furthermore, the asymptotic variance is

v(r,J) = E[hi2hiz] — E[h12]E [hi3]
= P({X2, X3} C Nis(Xq))
+ 2P (X2 € Nig(X1), X35 € I'T(X41))
+ P({Xz, X3} C FI(Xl)) - 4(#(7—7 J))2

Then forJ > 1, we have



2007 TESTING SPATIAL SEGREGATION 23

P({X2,X3} C N&g(Xa))
J
= ZP({X2,X3} C N&g(Xq) [{X1,X2,X3} € T;) P({X1,X2,X3} C T))

J
ZPQN T)/ACH(Y))’ = Py (Z@)

j=1

Similarly, P(X2 € NZg(X1),Xs € I'T(Xy)) = PM(Z] yw?) and P({X2,X3} C

I7(X4)) = Py (X7, w?), hencep(r, J) = (PN+2PM+P{G)(ZJJ L) —dp(r, J)? =

V(T)(Z]J L w?) +4M( )2 (Z;}:l w? — (ijl w?) ), so conditional oW, if v/(r, J) > 0 then

VA (pn(T) = (7)) == N(O,v(7, ).
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