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Abstract
In this article, we use longitudinal morphometry (shape and size) measures of hippocampus in
subjects with mild dementia of Alzheimer type (DAT) and nondemented controls in logistic
discrimination. The morphometric measures we use are volume and metric distance measures at
baseline and follow-up (two years apart from baseline). Morphometric differences with respect to
a template hippocampus were measured by the metric distance obtained from the large
deformation diffeomorphic metric mapping (LDDMM) algorithm. LDDMM assigns metric
distances on the space of anatomical images, thereby allowing for the direct comparison and
quantization of morphometric changes. We also apply principal component analysis (PCA) on
volume and metric distance measures to obtain principal components that capture some salient
aspect of morphometry. We construct classifiers based on logistic regression to distinguish
diseased and healthy hippocampi (hence potentially diagnose the mild form of DAT). We consider
logistic classifiers based on volume and metric distance change over time (from baseline to
follow-up), on the raw volumes and metric distances, and on principal components from various
types of PCA analysis. We provide a detailed comparison of the performance of these classifiers
and guidelines for their practical use. Moreover, combining the information conveyed by volume
and metric distance measures by PCA can provide a better biomarker for detection of dementia
compared to volume, metric distance, or both.
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1 Introduction
Alzheimer’s disease (AD) at its early stages is characterized by the accumulation of
neurofibrillary tangles and amyloid plaques within the hippocampus [1–5]. Neuronal
damage and death associated with this accumulation [6] may manifest as macroscopic gray
matter losses, which are detectable in living subjects using currently available magnetic
resonance imaging (MRI). Specifically, volume losses within the hippocampus have been
reported in individuals with mild AD [7–12], and hippocampal volume losses have been
shown to correlate with AD neuropathology [13]. Progressive atrophy of the entire brain has
been observed in AD cases [14]. However, due to the complexity of the human brain and the
non-uniform distribution of AD neuropathology early in the course of disease, detailed
examination of specific brain regions (e.g., hippocampus) known to be affected early in the
AD disease process may be preferred for distinguishing preclinical and very mild forms of
AD from normal aging [15–17].

The development of Computational Anatomy (CA) has enabled us to quantify and compare
brain volumes and shapes in neurological diseases [18–23]. These methods combine image-
based diffeomorphic maps between MR scans with representations of brain structures as
smooth manifolds using mathematical principles of general pattern theory [16–17, 21, 24–
25] and may be especially sensitive to changes in brain structures associated with early
forms of AD. Using such methods, we previously demonstrated that the combined
assessment of hippocampal volume loss and shape deformity optimally distinguished
individuals with very mild dementia of the Alzheimer type (DAT) from both cognitively
normal elderly individuals [8, 26]. These methods were also extended to quantify changes in
neuroanatomical volumes and shapes within the same individuals over time [27].

Other longitudinal neuroimaging analyses of hippocampal structures in individuals with AD
have also emerged [28–39]. In particular, studies of shape have been carried out by
comparison of anatomical structures via vector field displacements generated by large
deformation diffeomorphic metric mapping (LDDMM) between two shapes [40–41]. The
construction of such a metric space allows one to quantify similarities and differences
between anatomical shapes [42–43]. This is the vision laid out by D’Arcy W. Thompson
almost one hundred years ago [44].

In this paper, we present an analysis based on generating metric distances of shapes relative
to a template [40–41]. This approach could provide us a powerful tool in analyzing subtle
shape changes over time with considerably less computational load. In previous work [27,
45], we compared rates of change in hippocampal volume and shape in subjects with very
mild DAT and age and gender matched cognitively normal elderly individuals. The change
in hippocampal shape over time was defined as a residual vector field resulting from rigid-
body motion registration, and changes in patterns were analyzed via a principal components
analysis (PCA) of these residual vectors. In this study, we compute and analyze metric
distances based on the data used in [27] and [26]. We provide the details of mathematical
methodology to obtain the metric distances in the Appendix section and statistical
methodology for our analysis in [26]. For two groups of hippocampi, we estimate their
metric distances to a template. These distances are computed on baseline and follow-up
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scans in both groups. We then implement PCA on the morphometric measures of volume
and metric distances in order to extract salient features of morphometry. We use the
principal components obtained from PCA in logistic discrimination and compare the
performance of the logistic classifiers and provide guidelines for diagnostic purposes. We
demonstrate that the logistic classifier based on principal components from PCA analysis
has the best performance in discrimination of diseased hippocampi from healthy ones. We
briefly describe the data set in Section 2.1, statistical methods we employ in Section 2.2,
results in Section 3, discussion in Section 4, and computation of metric distances via
LDDMM in the Appendix.

2 Methods
2.1 Subjects and Data Acquisition

A detailed description of subject recruitment can be found in [27]. Briefly, semi-structured
interviews were conducted annually by experienced clinicians with informants and the
subjects to assess each subject’s cognitive and functional performance; neurological
examinations were also obtained. The clinician determined 3 the presence or absence of
dementia and, when present, its severity with the clinical dementia rating (CDR). Overall
CDR score of 0 indicates no dementia, while CDR scores of 0.5, 1, 2, and 3 indicate very
mild, mild, moderate, and severe dementia, respectively [46]. CDR assessments have been
shown to have an inter-rater reliability of κ =0.74 (weighted kappa coefficient [47] κ of
0.87) [48], which has been confirmed in multi-center dementia studies [49]. Elderly subjects
with no clinical evidence of dementia (i.e., CDR0) have been confirmed with normal brains
at autopsy with 80% accuracy; i.e., approximately 20% of such individuals show evidence
of AD [50]. CDR0.5 subjects have subtle cognitive impairment, and 93% of them progress
to more severe stages of illness (i.e., CDR score larger than 0.5) and show neuropathological
signs of AD at autopsy [50–52]. Although elsewhere the CDR0.5 individuals in our sample
may be considered to have mild cognitive impairment (MCI) [53], they fulfill our diagnostic
criteria for very mild DAT and at autopsy overwhelmingly have neuropathological AD [54].

This study included previously generated longitudinal hippocampal surface data from 18
DAT subjects (CDR 0.5, 11 male, 7 female, 74±4.4 years old) and 26 age-matched
nondemented subjects (CDR 0, 12 male and 14 female, 73±7.0 years old) ([55]). These data
were generated at 2 (range 1–2.6) and 2.2 (range 1.4–4.1) years apart, respectively. MR data
from an additional nondemented subject (male, age = 69, same scanning protocol) was used
as a neuroanatomical template; for details see [55]. Expert-produced manual outlines of the
left and right hippocampus in the template scan created from using methods previously
described [56–57] were used as binary templates.

For the left and right hippocampal surfaces of each subject generated at baseline and follow-
up, binary volumetric images were created by flood filling the inside of the surfaces,
followed by smoothing with a Gaussian filter of 9×9×9 -voxel window and one voxel
standard deviation. Before converting to volumetric binary images, each individual
hippocampal surface was first scaled by a factor of 2 and aligned with the template surface,
which was also scaled by a factor of 2, by a rigid-body rotation and translation. We showed
that mapping accuracy could be enhanced at higher resolutions because of smaller voxels –
voxels at the periphery of the structure (i.e., surface) account for much more of the structural
volume at 1 mm3 voxel resolution versus 0.5 mm3 [56]. The left hippocampi at baseline for
CDR0.5 subjects are labeled as LB-CDR0.5 and those at follow-up are labeled as LF-
CDR0.5; CDR0 subjects are labeled as LB-CDR0 and LF-CDR0 accordingly. Similar
labeling is done for the right hippocampi.

Ceyhan et al. Page 3

Curr Alzheimer Res. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The LDDMM algorithm yields metric distances in left hemisphere at baseline (b) and at

follow-up (f) denoted , respectively, and in the right hemisphere at baseline (b) and at

follow-up (f) denoted , respectively, for k =1,…,44, as illustrated in Figure 1 (see also
Appendix). We also have the volume measures of hippocampi similarly labeled as

 for k = 1,…,44. The metric distance measures the morphometric
difference between a given hippocampus and a known healthy one.

2.2 Statistical Methods
We apply logistic discrimination with metric distances and volumes, since the diagnosis has
only two levels, namely CDR0 and CDR0.5. We use logistic regression to estimate the risk
or probability of having DAT (for more on logistic regression and logistic discrimination,
see [58] and [59], respectively). We consider the logistic model with the response logit p =
log[p/(1−p)] where p = P(Y = 1) (i.e., the probability that the subject is diagnosed with
CDR0.5). First we model logit p with all volume and metric distance measures as the
predictor variables (called the full model). On this full model, we choose a reduced model
by a two-step model selection procedure: First an Akaike Information Criteria (AIC) in a
stepwise algorithm, and a stepwise backward elimination procedure on the resulting model
[60]. We stop the elimination procedure when all the remaining variables are significant at α
= 0.05 level. Based on the final model with significant predictors, we apply logistic
discrimination as follows: If the estimated probability is larger than a prespecified value p0,
the subject is classified as CDR0.5, otherwise the subject is classified as CDR0 (i.e.,
healthy). This threshold probability p0 can also be optimized with respect to a cost function
which incorporates correct classification rates, sensitivity, and/or specificity [61]. We apply
the same model selection procedure and construct the logistic classifier as described above
in each of the models we consider.

The volume and metric distance measures tend to be correlated, since they measure related
(but not the same) aspects of morphometry. See Figure 2 for the scatter plot matrix for each
pair of the variables where the volume measures seem to be highly correlated with each
other and metric distance measures are also correlated with each other but to a smaller
extent. We perform PCA to obtain a set of uncorrelated variables that represent some
identifiable aspect of the morphometry [59, 62]. We apply three types of PCA on these
variables. In the first one, we perform PCA on the metric distances and volumes of
hippocampi with eigenvalues based on the covariance matrix. However, since the volumes
are in mm3 and metric distances are unitless, the data are not to scale (the volumes are
recorded in thousands while metric distances in unitary digits and variance of volumes is
much larger than that of metric distances). To remove the influence of the scale, we apply
two transformations on the variables. First, we multiply the metric distance values by 1000
to make the location and scale of the metric distance to be on the same order with those of
volumes. Secondly, we standardize each variable so that each variable has the same scale,
that is, PCA is applied with eigenvalues based on the correlation matrix. Then we perform
logistic regression based on the principal components obtained from these PCA types.

We also estimate the empirical cumulative distribution functions (cdf) of the metric
distances and compare them pairwise (i.e., compare the cdfs of metric distances for two
independent groups at a time) by Kolmogorov-Smirnov (K-S) test [63]. In all the two-
sample comparisons, when a test yields significant result we also provide its direction, hence
report a p -value based on the one-sided version of the test. On the contrary, when a test
yields insignificant results, then there is no direction to indicate (i.e., there is no significant
difference between the two groups) and hence the two-sided p -value is reported.
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3 Results
3.1 Principal Component Analysis on Metric Distances and Volumes

When PCA is applied on the volumes and metric distances (i.e., on the variables

), we find that the first principal component accounts for
almost all (~ 91%) of the variation (see Table 1). Let PCi stand for principal component i,
for i = 1,2,…,8. Considering the variable loadings, we see that PC1 seems to be the volume
(i.e., size) component, PC2 is the contrast between left and right hippocampal volumes, PC3
is the contrast between baseline and follow-up hippocampal volumes, PC4 is the volume
contrast between baseline left hippocampi and follow-up left hippocampi, PC5 is the metric
distance (i.e., shape) component, PC6 is the contrast between left and right hippocampus
distances, PC7 is the contrast between baseline and follow-up metric distances, and PC8 is
the contrast between baseline left and follow-up right metric distances with baseline right
and follow-up left distances. There seems to be a clear distinction between principal
components associated with volume and metric distances: the first four principal
components are associated with the volume measures and account for almost all the
variation, while the last four principal components are associated with metric distances, and
explain only a negligible portion of the variation.

When we perform PCA on metric distances and volumes of hippocampi with eigenvalues
based on the correlation matrix, the first three principal components account for 90% of the
variation (see Table 2). Comparing the variable loadings (not presented), we do not have a
clear separation between volume and metric distance components, but, for example, the PC6
is the contrast between left and right volumes, and PC7 is the contrast between baseline and
follow-up distances. When we perform PCA on volumes and scaled metric distances (i.e.,
1000 × metric distances) of hippocampi with eigenvalues based on the covariance matrix,
the first three principal components account for 87% of the variation (see Table 2). Similar
to the PCA on correlation, we do not have a clear distinction of factors in principal
components, but PC1 is the contrast between volume and metric distances. The variable
loadings in the PCA analysis suggest that volume is mostly a measure of size and partly
related to shape and metric distance is mostly a measure of shape and partly related to size.
Hence, one should use both of volume and metric distance in morphometric analysis of brain
tissues in order not to lose any relevant information, which is in agreement with [26].

We also compare the cdfs of metric distances by K-S test which requires independence
between the groups compared. Hence we only compare the cdf of LB-CDR0.5 with cdf of
LB-CDR0 groups, cdf of RB-CDR0.5 with cdf of RB-CDR0 groups, cdf of LF-CDR0.5
with cdf of LF-CDR0 groups, and cdf of RF-CDR0.5 with cdf of RF-CDR0 groups. But we
cannot compare, e.g., cdfs of LB-CDR0 and LF-CDR0 groups or cdfs of LB-CDR0 and RB-
CDR0 groups due to dependence between the groups. At α = 0.05 level, the cdf of RF-
CDR0.5 distances is significantly smaller than the cdf of RF-CDR0 distances (p=0.0259).
That is, metric distances RF-CDR0.5 are stochastically larger than RF-CDR0 metric
distances. The cdf of LF-CDR0.5 distances is almost significantly smaller than the cdf of
LF-CDR0 distances (p=0.0604), but the cdfs of LB-CDR0.5 and LB-CDR0 are not
significantly different (p=0.6932) and the cdfs of RB-CDR0.5 and RB-CDR0 are not
significantly different either (p=0.8997).

3.2 Logistic Discrimination Analysis
We have applied logistic discrimination with metric distances only and demonstrated that
discrimination with metric distances is better than chance (i.e., the correct classification rate
is significantly larger than 50%, in particular the optimal threshold value is p0 = 0.38, the
correct classification rate is 70%, sensitivity is 72%, and specificity is 69%), and using
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metric distances and volumes (for each year and each hemisphere) improves the
performance of the discrimination (the optimal threshold value is p0 = 0.48, and the correct
classification rate, sensitivity, and specificity are 84%, 83%, and 85%, respectively) [26]. In
this article, we also apply logistic discrimination on the volume and metric distance
differences over time, and also to the principal components obtained from the three types of
PCA. For a more detailed discussion of logistic discrimination with various other models,
see [61].

When we apply the logistic discrimination using both volume and metric distance
differences over time (from baseline to follow-up) as predictors, the model selection

procedure yields . The optimal threshold value is p0 =
0.48, and the correct classification rate, sensitivity, and specificity are 77%, 67%, and 85%,
respectively. Notice that logistic classifier with these differences only performs slightly
better than the models based on metric distances only.

In the above analysis, we are considering subjects with hippocampus measurements for both
baseline and follow-up for left and right hemisphere. However, in practice for this method to
be useful in detecting mild DAT, first a new patient’s hippocampus at about the same age of
our subjects (around 75 years old) should be scanned (which would just be the baseline
measurements for this subject), and then if possible rescanned about two years later (which
would be the follow-up measurements for this subject). Hence, to be able to use some type
of classifier with just the baseline measurements, we need a logistic regression model and a
classifier based on baseline measurements only. Therefore, we perform logistic regression

on the baseline variables (i.e., on ), and our model selection procedure

yields  (denoted as Model I in Table 3). With the logistic classifier based
on this model, the optimal threshold value is p0 = 0.30–0.31, and the correct classification
rate, sensitivity, and specificity are 80%, 81%, and 78%, respectively.

We also apply logistic discrimination using the principal components obtained from the
PCA on baseline volume and metric distance measures. After the PCA procedure, we keep
all the principal components instead of just the first few (which explain a large portion of the
variation) for the full model and then apply the model selection procedure that yields only
the principal components that have the most discriminatory power. Notice that by this
procedure, we might end up with a subset of the original principal components some of
which explains only a small portion of the variation. When PCA is performed on these
baseline variables with the covariance matrix, we see that the first two principal components
explain almost all the variation, and PC1 is the volume component, while PC2 is the volume
contrast between left and right hippocampi at baseline (details omitted). When we perform
logistic regression on the principal components with this PCA, our model selection
procedure yields logit pk = β0 + β1PC1 + β2PC2 (denoted as Model IIa in Table 3). With the
logistic classifier based on this model, the optimal threshold value is p0 = 0.43–0.46, and the
correct classification rate, sensitivity, and specificity are 77%, 81%, and 77%, respectively.
When PCA is performed on the volumes and scaled (by 1000) metric distances at baseline
with the covariance matrix, we see that the first three principal components explain almost
all the variation. When we perform logistic regression on the principal components with this
PCA, our model selection procedure yields logit pk = β0 + β1PC2 + β2PC3 (denoted as
Model IIb in Table 3). With the logistic classifier based on this model, the optimal threshold
value is p0 = 0.36–0.37, and the correct classification rate, sensitivity, and specificity are
75%, 83%, and 69%, respectively. Finally, we perform logistic regression on the principal
components with the PCA with the correlation matrix. Our model selection procedure yields
logit pk = β0+ β1PC1 + β2PC2 + β3PC3 (denoted as Model IIc in Table 3). With the logistic
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classifier based on this model, the optimal threshold value is p0 = 0.35–0.38, and the correct
classification rate, sensitivity, and specificity are 80%, 89%, and 73%, respectively.

We apply the logistic discrimination using both volumes and metric distance as predictors.

The model selection procedure yields  (denoted as Model III
in Table 3). With the classifier based on this logistic regression model, the optimal threshold
value is p0 = 0.34–0.44, and the correct classification rate, sensitivity, and specificity are
86%, 94%, and 81%, respectively.

We also apply logistic discrimination using the principal components obtained from the
PCA on volume and metric distance measures. When logistic regression is applied to the
eight principal components from the PCA on the covariance matrix, we see that only the
first four principal components are significant yielding the model logit pk = β0+ β1PC1 +
β2PC2 + β3PC3 + β4PC4 (denoted as Model IVa in Table 3). That is, only the first four
principal components which are the volume component of the morphometry have significant
coefficients. In the discrimination, the optimal threshold value is p0 = 0.35–0.37 with the
correct classification rate, sensitivity, and specificity being 86%, 94%, and 81%,
respectively. When the principal components from the PCA based on the covariance matrix
with volume and scaled (by 1000) metric distances are used in logistic regression, only PC1,
PC2, PC3, PC7, and PC8 are kept after the model selection procedure yielding the model
logit pk = β0+ β1PC1 + β2PC2 + β3PC3 + β4PC7 + β5PC8 (denoted as Model IVb in Table
3). In the logistic discrimination based on these principal components, the optimal threshold
value is p0 = 0.44–0.45 with the correct classification rate, sensitivity, and specificity being
86%, 89%, and 85%, respectively. When the principal components from the PCA based on
the correlation matrix are used in logistic regression, only PC1, PC4, and PC7 are kept after
the model selection procedure yielding the model

(denoted as Model IVc in Table 3). In the logistic discrimination based on these principal
components, the optimal threshold value is p0 = 0.44 with the correct classification rate,
sensitivity, and specificity being 86%, 72%, and 96%, respectively.

Notice that with volume and distance being used together, there is an increase in
performance (i.e., in correct classification rate, sensitivity, and specificity values) compared
to the models based on distance only or volume and distance change over time. However
these increases are slightly significant. Classifying baseline and follow-up metric distances
independently, and calling the result CDR0.5 even if the baseline and follow-up
classifications are divergent is a reasonable approach, since it will increase the chances of
detecting a demented subject. Furthermore, when principal components from PCA are used,
correct classification rate, sensitivity, and specificity values are higher compared to the
values based on the raw volumes and metric distances. In particular, with principal
components based on the PCA with covariance matrix, we get the highest sensitivity, while
with principal components based on PCA with correlation matrix, we get the highest
specificity. Moreover, if volume and metric distances are measured over time as in this
study, they constitute better indicators of mild form of DAT, compared to the case which
uses only the baseline measurements.

4 Discussion and Conclusions
In this study, we use the hippocampal volumes and metric distances obtained by using the
large deformation diffeomorphic metric mapping (LDDMM) algorithm to construct logistic
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classifiers that discriminate subjects with mild form of Dementia of Alzheimer type (DAT)
from healthy subjects. The volume and metric distance measures were obtained in a
longitudinal study in groups of subjects with and without mild DAT (labeled as CDR0.5 and
CDR0 patients, respectively) at baseline and at follow-up (two years apart from baseline).
The subjects in this paper have been previously analyzed using related but different tools. As
a single scalar measure, volumes were used for diagnosis group comparisons at baseline and
follow-up [27] and displacement, momentum vector fields based on LDDMM were used for
discrimination only at baseline [55]. Volumes and metric distances are analyzed for
diagnosis group comparisons and for the logistic discrimination procedure [26]. But
principal component analysis (PCA) on only volumes and metric distances has not been
performed and the principal components obtained from PCA on volumes and metric
distances and the volume and metric distance differences over time from baseline to follow-
up have not hitherto been used in diagnostic classification (with logistic discrimination). The
metric distance gives a single number reflecting the global morphometry (i.e., the size and
shape) while volume measurements only provide information on size. So, metric distances
provide morphometric information that is not conveyed by volume. The results might
completely differ if another template was selected, due to the confounding nature of size for
the metric distance. The metric distance will provide meaningful shape comparisons if the
same template is used for new data as well. The choice of template that yields optimal
discrimination results is a topic of ongoing research.

Differences in morphometry between diagnosis groups or morphometric changes over time
can be detected by metric distances computed via LDDMM and could potentially serve as a
biomarker for the disease. The morphometric changes in the left hippocampus in CDR0.5
subjects from baseline to follow-up are not significantly different from those in the CDR0
subjects (p=0.134), while the morphometric changes in the right hippocampus in the
CDR0.5 group from baseline to follow-up are significantly larger than those in the CDR0
group (p=0.0070).

In this study we apply logistic discrimination based on volumes and metric distances, as
logistic regression not only provides a means for classification, but also yields a probability
estimate for having very mild dementia. Furthermore, one can optimize the threshold
probability with respect to a particular cost function for the entire training data set, or by a
cross-validation technique. Differences and changes (over time) in morphometry can also be
used for diagnostic discrimination of subjects in non-demented (i.e., CDR0) or demented
(i.e., CDR0.5) groups. When logistic classifier was based on metric distance only, the
correct classification rate was about 70% in our logistic regression analysis (with 72%
sensitivity and 69% specificity). Metric distances can be used to distinguish AD from
normal aging quantitatively; however, to be able to use it for diagnostic purposes, the
method should be improved to a greater extent [26]. Metric distances increase and volumes
decrease by time and when the logistic classifier is based on the metric distance and volume
differences over time (from baseline to follow-up) do not provide much additional benefit in
logistic discrimination over the discrimination based on metric distances only (correct
classification rate is 77%, sensitivity is 67%, and specificity is 85%).

Since our goal is to classify or discriminate the demented hippocampi from healthy
hippocampi, and when a subject is scanned for the first time, then we only would have the

baseline measures (i.e., ). So we also construct logistic classifiers based
on the baseline measurements. We perform logistic regression on the baseline raw variables
and principal components from the three types of PCA we consider (see Models I and IIa–c
in Table 3). Each of these classifiers performs better in discrimination compared to the
model based on distance only or based on the volume and metric distance change over time.
The best performing model is the logistic classifier based on the PCA with the correlation
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matrix (i.e., Model IIc) when correct classification rate, sensitivity, and specificity are all
considered.

When the subject is also scanned about two years later, we would have both baseline and
follow-up measures, so we also construct logistic classifiers based on all these measures

(i.e., ). When (raw) volume and metric distances are
used together (see model III), the classification results improve (correct classification rate is
84%, sensitivity is 83%, and specificity is 85%) compared to results based on distance only
or on volume and metric distance differences over time. We also construct logistic
classifiers based on the principal components from the three versions of the PCA analysis.
With PCA on the covariance matrix (i.e., Model IVa) correct classification rate is 86%,
sensitivity is 94%, and specificity is 81%, with PCA on volume and scaled distances (i.e.,
Model IVb) correct classification rate is 86%, sensitivity is 89%, and specificity is 85%, and
with PCA on the correlation matrix (i.e., Model IVc) correct classification rate is 86%,
sensitivity is 72%, and specificity is 96%. Notice that when the longitudinal measures are
used in logistic discrimination, the classification performance increases compared to the
models based on the baseline measures only. Furthermore, in terms of sensitivity, Model III
and Model IVa are the best performers, while in terms of specificity Model IVc is the best
performer, and with respect all three criteria Model IVb is the best performer. That is, in our
logistic discrimination analysis on the principal components, highest sensitivity values are
obtained when the volume-related principal components (from PCA with covariance matrix)
are used, and highest specificity is obtained when the variables are standardized and their
linear combinations are used (i.e., principal components from PCA with the correlation
matrix). When PCA on volumes and scaled metric distances, all three measures of correct
classification rate, sensitivity, and specificity are simultaneously high and this might also be
desirable in practice. Therefore, we recommend logistic discrimination with principal
components from all three versions of the PCA analysis, and depending on the goal of the
analysis one might prefer one over the others.

When principal components from PCA are used in logistic discrimination, we obtain better
results compared to the raw volumes and metric distances. However in PCA, we recommend
keeping all the principal components (instead of the usual practice of keeping only the first
few components), because some principal component with a low contribution to the total
variation might still be significant in discriminating the two diagnostic groups. Such
principal components are kept after the model selection procedure in our logistic regression.
If the PCA is applied with the covariance matrix (i.e., PCA is applied on the variables in the
original scale), then the size measures (such as volumes) dominate the PCA analysis, and the
first few principal components account for most of the variation. On the other hand, if PCA
is applied with the correlation (i.e., PCA is applied on the standardized variables), principal
components will usually be linear combinations of both volume and metric distance
measures. The same holds for PCA on volumes and scaled metric distances.

In practice, if our classifiers were to be used, first a new subject at age about 75 will have
scans in the baseline, and the logistic discrimination based on the baseline models (Models I
and IIa–c) should be used. Since we will have the baseline measurements only, one can
apply the logistic classifier with raw variables (i.e., Model I in Table 3) or with principal
components from PCA with the correlation matrix. If the subject is scanned roughly two
years later, then we will have the longitudinal measurements, so one can apply the logistic
classifier with the raw variables (i.e., Model III in Table 3) and with principal components
from PCA models (i.e., Models IVa–c in Table 3). The principal components for the new
subject will be obtained using the variables loadings (i.e., the linear combination formulae
that form the principal components) in each PCA type analysis, and these principal
components should be used in the logistic regression modeling.

Ceyhan et al. Page 9

Curr Alzheimer Res. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Changes within a subject may produce a more sensitive measure of shape change. However,
because the template is different for each longitudinal computation (i.e., each subject’s own
baseline), parallel transport analysis of the vector fields is required for statistical comparison
of group change [64–65], which is beyond the scope of this work. Also, alternative average
template computed from the actual populations as in [66] may also result in more sensitive
metric distances. Likewise, metric distances derived from surfaces rather than binary images
via LDDMM-Surface [67] may yield better sensitivity. The advent of large scale multi-site
neuroimaging studies of AD such as the Alzheimer's Disease Neuroimaging Initiative
(ADNI), European-ADNI, Japanese-ADNI and Australian Imaging, Biomarker and Lifestyle
Flagship Study of Ageing (AIBL) [68–69] may provide a useful test bed for a more refined
analysis of metric distances. Furthermore, we have not accounted for structural deformations
in MRI data, which has likely reduced the power. The effects of gradient warping of
structural data are also topic of prospective research.

We provide evidence that LDDMM (together with volumes) can be used for diagnostic
purposes for mild DAT based on structural changes in the hippocampus of the subjects. In
conclusion, volumes and metric distances have the potential to be biomarkers in detecting
morphometric changes in the hippocampus in subjects with very mild dementia. In
particular, when logistic discrimination and PCA are used together, these measures are more
powerful in discrimination of diseased and healthy subjects. Further theory and application
are needed to see how metric distances combined with other biomarkers can be used in
clinical diagnosis of dementia as well as neurological and psychiatric disorders.
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APPENDIX: Computing Metric Distance via LDDMM
Metric distances between the binary images and the template image are obtained by
computing diffeomorphisms between the images. For any pair I, J ∈ ℐ there exists a flow of
diffeomorphisms gt, t ∈[0 1]transforming one shape to the other g ·I ~ J. The metric distance
between any pair I,J is given by the length of the shortest or geodesic curve through the
space of shapes connecting them. The diffeomorphisms are constructed as a flow of ordinary
differential equations ġt = vt(gt), t ∈[0,1] with g0 = id the identity map, and associated vector
fields vt,t ∈[0,1] [56, 70]. The metric distance between two shapes I, J takes the form,

such that g transforms I to J. The norm ‖·‖V is chosen to ensure that the vector fields are
smooth in space (derivatives exist in the squared-energy sense). To calculate the norm we
use LDDMM [40] by introducing a cost function measuring correspondence between
mapped anatomical objects C(g ·I,J) and then computing the geodesic connection to
minimize the cost. Here, we solve the inexact matching problem forcing one shape to map
onto the other, obtaining a matching cost C which is small but not identically zero.
Correspondence is based on the intensity data at the voxel level; reliability has been
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demonstrated [40]. Vector fields connecting each template-subject pair is then used to
compute metric distances in each hemisphere at baseline and at follow-up (see Figure 1).
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Figure 1.

Generation of metric distances  based on binary images for subjects k = 1,2,…,44 at
baseline (b) and at follow-up (f).
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Figure 2.
Pair plots of the volume and metric distance measures for the hippocampi at baseline and
follow-up. HLV: volume of left hippocampus; HRV: volume of right hippocampus; HLM:
metric distance for left hippocampus; HRM: metric distance for right hippocampus. The
numbers 1 and 3 stand for year 1 (i.e., baseline) and year 3 (i.e., follow-up), respectively.

Ceyhan et al. Page 16

Curr Alzheimer Res. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ceyhan et al. Page 17

Ta
bl

e 
1

T
he

 im
po

rt
an

ce
 o

f 
pr

in
ci

pa
l c

om
po

ne
nt

s 
an

d 
va

ri
ab

le
 lo

ad
in

gs
 f

ro
m

 th
e 

pr
in

ci
pa

l c
om

po
ne

nt
 a

na
ly

si
s 

(P
C

A
) 

w
ith

 e
ig

en
va

lu
es

 b
as

ed
 o

n 
th

e 
co

va
ri

an
ce

m
at

ri
x.

 H
L

V
1 

(3
):

 v
ol

um
e 

of
 le

ft
 h

ip
po

ca
m

pu
s 

at
 b

as
el

in
e 

(f
ol

lo
w

-u
p)

; H
L

M
1 

(3
):

 m
et

ri
c 

di
st

an
ce

 o
f 

le
ft

 h
ip

po
ca

m
pu

s 
at

 b
as

el
in

e 
(f

ol
lo

w
-u

p)
; H

R
V

1
(3

):
 v

ol
um

e 
of

 r
ig

ht
 h

ip
po

ca
m

pu
s 

at
 b

as
el

in
e 

(f
ol

lo
w

-u
p)

; H
R

M
1 

(3
):

 m
et

ri
c 

di
st

an
ce

 o
f 

ri
gh

t h
ip

po
ca

m
pu

s 
at

 b
as

el
in

e 
(f

ol
lo

w
-u

p)
; P

C
j s

ta
nd

s 
fo

r
pr

in
ci

pa
l c

om
po

ne
nt

 j 
fo

r 
j =

 1
,2

,…
,8

 ; 
Pr

op
. V

ar
: p

ro
po

rt
io

n 
of

 v
ar

ia
nc

e 
ex

pl
ai

ne
d 

by
 th

e 
pr

in
ci

pa
l c

om
po

ne
nt

s;
 C

um
. P

ro
p:

 c
um

ul
at

iv
e 

pr
op

or
tio

n 
of

 th
e

va
ri

an
ce

 e
xp

la
in

ed
 b

y 
th

e 
pa

rt
ic

ul
ar

 p
ri

nc
ip

al
 c

om
po

ne
nt

.

PC
A

 w
ith

 C
ov

ar
ia

nc
e 

(f
or

 v
ol

um
e 

an
d 

m
et

ri
c 

di
st

an
ce

s)

Im
po

rt
an

ce
 o

f 
C

om
po

ne
nt

s

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PC
8

Pr
op

. V
ar

.9
09

1
.0

63
7

.0
19

6
.0

07
5

~ 
.0

~ 
.0

~ 
.0

~ 
.0

C
um

. P
ro

p.
.9

09
1

.9
72

9
.9

92
4

~1
 .0

~1
 .0

~1
 .0

~1
 .0

1 
.0

V
ar

ia
bl

e 
L

oa
di

ng
s

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PC
8

H
L

V
1

0.
42

0.
50

0.
23

0.
72

~ 
. 0

~ 
.0

~ 
.0

~ 
.0

H
L

V
3

0.
43

0.
62

−
0.

10
−

0.
65

~ 
. 0

~ 
.0

~ 
.0

~ 
.0

H
R

V
1

0.
58

−
0.

50
0.

62
−

0.
18

~ 
. 0

~ 
.0

~ 
.0

~ 
.0

H
R

V
3

0.
55

−
0.

34
−

0.
75

0.
16

~ 
.0

~ 
.0

~ 
.0

~ 
.0

H
L

M
1

~ 
.0

~ 
.0

~ 
.0

~ 
.0

−
0.

56
0.

43
−

0.
24

0.
67

H
L

M
3

~ 
.0

~ 
.0

~ 
.0

~ 
.0

−
0.

64
0.

25
0.

50
−

0.
52

H
R

M
1

~ 
.0

~ 
.0

~ 
.0

~ 
.0

−
0.

48
−

0.
55

−
0.

63
−

0.
28

H
R

M
3

~ 
.0

~ 
.0

~ 
.0

~ 
.0

−
0.

21
−

0.
67

0.
55

0.
45

Curr Alzheimer Res. Author manuscript; available in PMC 2013 October 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ceyhan et al. Page 18

Ta
bl

e 
2

T
he

 im
po

rt
an

ce
 o

f 
pr

in
ci

pa
l c

om
po

ne
nt

s 
fr

om
 th

e 
PC

A
 w

ith
 e

ig
en

va
lu

es
 b

as
ed

 o
n 

th
e 

co
rr

el
at

io
n 

m
at

ri
x 

(t
op

) 
an

d 
on

 th
e 

co
va

ri
an

ce
 m

at
ri

x 
w

ith
 v

ol
um

e
an

d 
sc

al
ed

 d
is

ta
nc

es
 (

bo
tto

m
).

 V
ar

ia
bl

e 
la

be
lin

g 
an

d 
ab

br
ev

ia
tio

ns
 a

re
 a

s 
in

 T
ab

le
 1

.

Im
po

rt
an

ce
 o

f 
C

om
po

ne
nt

s 
PC

A
 w

ith
 C

or
re

la
tio

n 
(f

or
 v

ol
um

e 
an

d 
m

et
ri

c 
di

st
an

ce
s)

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PC
8

Pr
op

. V
ar

.5
46

1
.2

29
1

.1
15

4
.0

47
4

.0
32

1
.0

18
4

.0
07

0
.0

04
5

C
um

. P
ro

p.
.5

46
1

.7
75

1
.8

90
6

  .
93

79
.9

70
0

.9
88

5
.9

95
5

1 
.0

Im
po

rt
an

ce
 o

f 
C

om
po

ne
nt

s 
PC

A
 w

ith
 C

ov
ar

ia
nc

e 
(f

or
 v

ol
um

e 
an

d 
sc

al
ed

 (
by

 1
00

0)
 m

et
ri

c 
di

st
an

ce
s)

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PC
8

Pr
op

. V
ar

.4
85

6
.2

66
3

.1
23

4
.0

60
8

.0
46

9
.0

10
5

.0
04

3
.0

02
0

C
um

. P
ro

p.
.4

85
6

.7
52

0
.8

75
4

  .
93

62
.9

83
2

.9
93

7
.9

98
0

1 
.0

Curr Alzheimer Res. Author manuscript; available in PMC 2013 October 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ceyhan et al. Page 19

Table 3

The correct classification rates (CCR), sensitivity, and specificity values with optimal p0 = popt for the logistic
classifiers based on the models in the first column. In Models IIa–c, PCi are obtained from PCA on the
baseline measures, and in Models Iva-c, PCi are obtained from PCA on all measures. In Models IIa–c, and
IIIa–c, “a” is for PCA on the raw variables, “b” is for the PCA on volume and scaled metric distances, and “c”
is for PCA on standardized variables.

Model popt CCR sensitivity specificity

.30–.31 80% 81% 78%

IIa : logit pk = β0 + β1PC1 + β2PC2 .43–.46 77% 81% 77%

IIb : logit pk = β0 + β1PC2 + β2PC3 .36–.37 75% 83% 69%

IIc : logit pk = β0 + β1PC1 + β2PC2 + β3PC3 .35–.38 80% 89% 73%

.34–.44 86% 94% 81%

IVa: logit pk = β0 + β1PC1 + β2PC2 + β3PC3 + β4PC4 .35–.37 86% 94% 81%

IVb: logit pk = β0 + β1PC1 + β2PC2 + β3PC3 + β4PC7 + β5PC8 .44–.45 86% 89% 85%

IVc: logit pk = β0 + β1PC1 + β2PC4 + β3PC7 .60 86% 72% 96%
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