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Abstract For two or more classes (or types) of points, nearest neighbor contingency
tables (NNCTs) are constructed using nearest neighbor (NN) frequencies and are used
in testing spatial segregation of the classes. Pielou’s test of independence, Dixon’s
cell-specific, class-specific, and overall tests are the tests based on NNCTs (i.e., they
are NNCT-tests ). These tests are designed and intended for use under the null pattern
of random labeling (RL) of completely mapped data. However, it has been shown
that Pielou’s test is not appropriate for testing segregation against the RL pattern
while Dixon’s tests are. In this article, we compare Pielou’s and Dixon’s NNCT-tests;
introduce the one-sided versions of Pielou’s test; extend the use of NNCT-tests for
testing complete spatial randomness (CSR) of points from two or more classes (which
is called CSR independence, henceforth). We assess the finite sample performance of
the tests by an extensive Monte Carlo simulation study and demonstrate that Dixon’s
tests are also appropriate for testing CSR independence; but Pielou’s test and the
corresponding one-sided versions are liberal for testing CSR independence or RL.
Furthermore, we show that Pielou’s tests are only appropriate when the NNCT is
based on a random sample of (base, NN) pairs. We also prove the consistency of the
tests under their appropriate null hypotheses. Moreover, we investigate the edge (or
boundary) effects on the NNCT-tests and compare the buffer zone and toroidal edge
correction methods for these tests. We illustrate the tests on a real life and an artificial
data set.
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1 Introduction

The analysis of spatial point patterns in natural populations has been extensively
studied in various fields. In particular, spatial patterns in epidemiology, population
biology, and ecology have important implications. A spatial point pattern includes the
locations of some measurements, such as the coordinates of trees in a region of interest.
These locations are referred to as events by some authors, in order to distinguish
them from arbitrary points in the region of interest (Diggle 2003). However in this
article such a distinction is not necessary, as we only consider the locations of events.
Hence points will refer to the locations of events, henceforth. Most point patterns also
include other types of measurements for each point, such as a categorical label (e.g.,
species label) or size (e.g., height of pine saplings). Such labelled data are marked
point patterns generated by marked point processes, which define the distributions
of the “marks” or “labels” to the locations of the points and perhaps are the most
common spatial point patterns. For a general discussion of marked point processes,
see Diggle (2003), Gavrikov and Stoyan (1995), Penttinen et al. (1992), and Schlather
et al. (2004). For convenience and generality, we call the different types of points as
“classes”. From the early days on, the related research has mostly been on only one
class at a time; i.e., on spatial pattern of each class (e.g., density, clumpiness, etc.).
These patterns in a one-class framework fall under the pattern category called spatial
aggregation (Coomes et al. 1999) or clustering. However, it is also of practical interest
to investigate the patterns of one class with respect to the other classes (Pielou 1961).
The spatial relationships between two or more classes have important consequences
especially for plant species. See, for example, Pielou (1961) and Dixon (1994, 2002a),
for more detail. Although we refer to types of points as “classes”, the “class” can be
replaced by any characteristic of an observation at a particular location. For example,
the pattern of spatial segregation has been investigated for species (Diggle 2003), age
classes of plants (Hamill and Wright 1986) and sexes of dioecious plants (Nanami
et al. 1999). We also note that many of the epidemiological applications are for a
two-class system of case/control labels (Waller and Gotway 2004).

In various fields, there are many tests available for spatial point patterns. An exten-
sive survey is provided by Kulldorff who enumerates more than 100 such tests, most of
which need adjustment for some sort of inhomogeneity (Kulldorff 2006). He also pro-
vides a general framework to classify these tests. The most widely used tests include
Pielou’s test of segregation for two classes (Pielou 1961) due to its ease of computation
and interpretation and Ripley’s K or L-functions (Ripley 2004). The abundance of
tests results because (i) the tests for which Monte Carlo critical values are the only
criteria receive wide acceptance in various fields; (ii) there are many different types
of segregation patterns and some tests are designed to detect only certain types of seg-
regation patterns; and (iii) the lack of cross-fertilization between different scientific
fields so that new tests are proposed unbeknownst to the developers of similar tests.

Nearest neighbor (NN) methods for spatial patterns include at least six different
groups (see, e.g., Dixon 2002b). The methods utilize some measure of (dis)similarity
between a point and its NN; such as the distance between the points or the class types
of the points. The latter type of similarity is used in the NN methods considered in this
article. Nearest neighbor contingency tables (NNCTs) are constructed using the NN
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frequencies of classes and are used in testing spatial patterns. Pielou (1961) proposed
tests (for segregation, symmetry, niche specificity, etc.) based on NNCTs under the
RL of locations in the study region and Dixon devised cell-specific, class-specific,
and overall tests based on NNCTs for the two-class case (Dixon 1994) and extended
his methodology to the multi-class case (Dixon 2002a) under RL. Pielou’s tests have
been used for the two-class case only. However it has been demonstrated that Pielou’s
test is not appropriate for the NNCTs constructed under the RL of points (Meagher
and Burdick 1980).

In this article, we discuss the tests of spatial segregation based on NNCTs.
We describe the necessary assumptions and hypotheses, the tests, and the under-
lying sampling frameworks for Pielou’s and Dixon’s tests. We propose one-sided
versions of Pielou’s test to detect the direction of deviation from the RL pattern;
then extend the use of Pielou’s and Dixon’s tests for the CSR of points from two
or more classes in the region of interest (i.e., for CSR independence). However, we
demonstrate that under CSR independence, Dixon’s tests are conditional tests, and
propose a method to remove this conditional nature of Dixon’s test. We also com-
pare the empirical sizes of the NNCT-tests by an extensive Monte Carlo simula-
tion study, where we demonstrate that Pielou’s test and the corresponding one-sided
versions are liberal in rejecting RL or CSR independence, while Dixon’s tests are
about the desired nominal level. We also prove the consistency of the tests under
their appropriate null hypotheses; show that Pielou’s test is only appropriate when
the NNCT is based on a random sample of (base, NN) pairs (which is not real-
istic in practical situations). We also investigate the edge (or boundary) effects on
the NNCT-tests under CSR independence only since edge effects is not a concern
under RL.

We describe the spatial point patterns of RL and CSR independence in Sect. 2;
describe the NNCT-tests in Sect. 3, in particular we describe the construction of the
NNCTs in Sect. 3.1, Pielou’s test in Sect. 3.2, Dixon’s NNCT-tests in Sect. 3.3, extend
Dixon’s test for the CSR independence pattern in Sect. 3.4. We prove the consistency
of the NNCT-tests in Sect. 4 (and defer the proofs to the Appendix Section); present
our extensive Monte Carlo simulation analysis in Sect. 5, in particular we compare
the empirical significance levels of the tests under RL in Sect. 5.1, under CSR inde-
pendence in Sect. 5.2, under the independence of rows and cell counts in NNCTs in
Sec. 5.3. We also consider the edge correction methods under the CSR independence
pattern in Sect. 6; illustrate our methods on two example data sets in Sect. 7. We provide
our discussions and conclusions as well as guidelines for using the tests in Sect. 8.

2 Spatial point patterns

For simplicity, we describe the spatial point patterns for two-class populations; the
extension to the multi-class case is straightforward.

In the univariate (i.e., one-class) spatial point pattern analysis, the null hypothesis
is usually complete spatial randomness (CSR) (Diggle 2003). Given a spatial point
pattern P = {Xi · I(Xi ∈ D), i = 1, . . . , n : D ⊂ R

2} where Xi stands for the location
of event i (i.e., point i) and I(Xi ∈ D) is the indicator function which denotes the
Bernoulli random variable denoting the event that point i is in region D. The pattern
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P exhibits CSR if given n events (ie., locations of the points) in domain D, the
events are an independent random sample from the uniform distribution on D. Note
that this condition also implies that there is no spatial interaction; i.e., the locations
of these points have no influence on one another. Furthermore, when the reference
region D is large, the number of points in any planar region with area A(D) follows
(approximately) a Poisson distribution with intensity (i.e., number of points per unit
area) denoted by λ and mean λ · A(D).

To investigate the spatial interaction between two or more classes in a bivariate
process, usually there are two benchmark hypotheses: (i) independence, which implies
two classes of points are generated by a pair of independent univariate processes and
(ii) random labeling (RL), which implies that the class labels are randomly assigned
to a given set of locations in the region of interest (Diggle 2003). In this article, we
will consider two random pattern types as our null hypotheses: CSR of points from
two classes (this pattern is called CSR independence) or RL.

In CSR independence, points from each of the two classes satisfy the CSR pattern in
the region of interest. On the other hand, RL is the pattern in which, given a fixed set of
locations in a region, class labels are assigned to these fixed locations randomly so that
the labels are independent of the locations. So, RL is less restrictive than CSR indepen-
dence, in the sense that RL does not impose any restrictions on the distribution of the
locations of the events, but CSR independence is a process defining the spatial distribu-
tion of event locations.The RL or CSR independence patterns imply a more refined null
hypothesis for the NNCT-tests, namely, Ho : randomness in the NN structure.When
the points from each class are assumed to be uniformly distributed over the region of
interest, then randomness in the NN structure is implied by the CSR independence
pattern, which is also referred to as (a type of) “population independence” by some
authors (Goreaud and Pélissier 2003). Note that this type of CSR is equivalent to the
case where the RL procedure is applied to a given set of points from a CSR pattern in
the sense that after points are generated uniformly in the region, the class labels are
assigned randomly. When only the labeling of a set of fixed points (the allocation of
the points could be regular, aggregated, or clustered, or of lattice type) is random, the
randomness in the NN structure is implied by RL pattern.

The distinction between the RL and CSR independence is very important when
defining the appropriate null model which depends on the particular ecological con-
text. Goreaud and Pélissier (2003) discuss the differences between independence and
RL patterns and show that the incorrect specification of the null pattern may result in
incorrect results, e.g., for Ripley’s K or L-functions. They also propose some guide-
lines to determine which null hypothesis is appropriate for a given situation. For the
null case of CSR independence (just independence in Goreaud and Pélissier 2003)
the locations of the points from two classes are a priori the result of (perhaps) differ-
ent processes (e.g., individuals of different species or age cohorts), whereas for the
null case of RL some processes affect a posteriori the individuals of a single popu-
lation (e.g., diseased versus non-diseased individuals of a single species). Notice that
although CSR independence and RL are not same, they lead to the same null model
(i.e., randomness in NN structure) for tests using NNCT, which does not require
spatially-explicit information.
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Deviations from the null patterns (RL or CSR independence) were first called
(positive or negative) segregation. In Pielou’s approach, two classes can be described
as “unsegregated” if the NN of an individual is as likely to be of the same class as
the other class; that is, neither class has a tendency to occur in one-class clumps or
clusters. Negative segregation occurs if the NN of a point is more likely to be from
a different class than the class of the point. Positive segregation occurs if the NN
of a point is more likely to be of the same class as the class of the point; i.e., the
members of the same class tend to be clumped or clustered (see, e.g., Pielou 1961).
The concept of “negative segregation” as described above, is more commonly referred
to as association, whereas “positive segregation” is merely called segregation. See,
for example, Cressie (1993) and Coomes et al. (1999) for more detail. Two classes
may exhibit many different forms of segregation (Pielou 1961). Although it is not
possible to list all segregation types, existence of segregation can be tested by using
NNCTs. In the statistical literature, association in contingency tables generally refers
to categorical association. To avoid confusion between this general association and
the spatial pattern of association, we call the former as “categorical association” and
the latter as “spatial association”. No such confusion occurs for segregation.

3 Tests based on nearest neighbor contingency tables

In this section, we present the construction of NNCTs and then Pielou’s and Dixon’s
tests based on NNCTs.

3.1 Construction of nearest neighbor contingency tables

Consider two classes labelled as {1, 2}. NNCTs are constructed using NN frequencies
for each class. Let ni be the number of points from class i for i ∈ {1, 2} and n = n1+n2.
If we record the class of each point and its NN, the NN relationships fall into 4
categories: (1, 1), (1, 2); (2, 1), (2, 2), where in cell (i, j), class i is the base class,
while class j is the class of its NN. That is, a (base, NN) pair is categorized according
to its label. Denoting Ni j as the observed frequency of cell (i, j) for i, j ∈ {1, 2}, we
obtain the NNCT in Table 1 where C j is the sum of column j ; i.e., number of times
class j points serve as nearest neighbors for j ∈ {1, 2}. Note also that n = ∑

i, j Ni j ,

ni = ∑2
j = 1 Ni j , and C j = ∑2

i = 1 Ni j . We adopt the convention that capital letters
stand for random quantities, while lower case letters stand for fixed quantities.

Table 1 The NNCT for two
classes

NN class

Class 1 Class 2 Total

Base class

Class 1 N11 N12 n1

Class 2 N21 N22 n2

Total C1 C2 n
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Let πi j = P(U = i, V = j) be the probability that the pair of points (U, V ) falls
in cell (i, j); i.e., the point V is from class j and is a NN of the point U which is
from class i . Furthermore, let νi = πi1 + πi2 for i = 1, 2, that is, the probability of
a base point to be of class i . Similarly, let κ j =π1 j + π2 j for j = 1, 2, that is, the
probability of a NN point to be of class j . The sample versions of these probabilities
are π̂i j = Ni j/n for πi j , ν̂i = ni/n for νi , and κ̂ j = C j/n for κ j .

A (base, NN) pair can be categorized as reflexive or non-reflexive, regardless of
the classes of the members of the pair. For a (base, NN) pair, (X, Y ), (i.e., Y is a NN
of X ), if X is a NN of Y (i.e., (Y, X) is also a (base, NN) pair), then the pair (X, Y )

is called reflexive. If a (base, NN) pair is not reflexive, then it is a non-reflexive pair.
Moreover, a point can serve as NN to none or several other points. That is, a point can
be a shared NN to k (k < 6) other points in R

2 (Clark and Evans 1955).

3.2 Pielou’s test of segregation

Pielou constructed NNCTs based on NN frequencies which yield tests that are inde-
pendent of quadrat size (Pielou 1961; Krebs 1972). In the two-class case, Pielou used
the usual Pearson’s χ2 test of independence (with 1 df) to test for presence or lack
of segregation (Pielou 1961). Due to the ease in computation and interpretation, her
test of segregation is widely used in ecology (Meagher and Burdick 1980) for both
completely mapped or sparsely sampled data. In particular, Pielou has described and
used her test of segregation for completely mapped data, although her test is not appro-
priate for such data (see Meagher and Burdick (1980) and Dixon (1994)). A data set
is completely mapped, if the points (i.e., locations of all events) in a defined space are
observed. Alternatively, sparse sampling might be suitable for the use of Pielou’s test
as suggested by Dixon (1994). Although sparse sampling is not clearly defined in the
literature, it can be classified into two types. The sparse sampling schemes depend on
the events (members of a class occupying a location) or arbitrary points in the region
of interest. The most well known sparse sampling method is the quadrat sampling,
in which the number of events falling into each of several (preferably random) small
subregions (quadrats) is recorded. However construction of NNCTs may not even be
possible in such a scheme, since the NN information may be lost when only the num-
ber of events are recorded for each quadrat. The second sparse sampling scheme is
the distance sampling, in which the basic unit is an arbitrary point (not necessarily
from the events) and the information based on the distance to the nearest event is
recorded (Solow 1989). Notice that this type of distance sampling scheme does not
yield sufficient information for the construction of NNCTs either.

Pearson’s χ2 test of independence for a 2 × 2 contingency table, in general, can
be assumed to develop from one of the following frameworks: Poisson, row-wise
binomial, or overall multinomial sampling frameworks. Below we briefly describe
these frameworks for 2 × 2 contingency tables. Let π̃i j be the probability of a point to
fall in cell (i, j) in the contingency table, and ν̃i and κ̃ j be the probabilities that the
point is of row category i and of column category j , respectively.
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The test statistic for Pielou’s test (which is same as Pearson’s test) is given by

X 2
P =

2∑

i = 1

2∑

j = 1

(Ni j − E[Ni j ])2

E[Ni j ] . (1)

Poisson sampling framework: Each category count in the contingency table is
assumed to be an independent Poisson variate. Another key feature is the indepen-
dence of cell counts, which would imply that π̃i j = ν̃i κ̃ j for all (i, j)∈ {1, 2}. This
independence can be tested by Pearson’s χ2 test for large samples and Fisher’s exact
test or the exact version of the Pearson’s test for small samples (Agresti 1992). The null
hypothesis in this framework is Ho : π̃i j = ν̃i κ̃ j , and E[Ni j ] of Eq. 1 is

Ni C j
n . Among

the alternatives, Ha : π̃i i > ν̃i κ̃i is suggestive of positive categorical association for
classes i = 1, 2, while Ha : π̃12 < ν̃1 κ̃2 or Ha : π̃21 < ν̃2 κ̃1 is suggestive of negative
categorical association between classes 1 and 2.

However, in the case of NNCTs, cell counts, e.g., N12 and N21 are not indepen-
dent under RL or CSR independence. Because, a (base, NN) pair is more likely to be a
reflexive pair, rather than a non-reflexive pair under RL or CSR independence (Meagher
and Burdick 1980). Thus under Poisson sampling framework, Pielou’s test would be
inappropriate for testing RL or CSR independence.

Row-wise binomial sampling framework: In this framework, we assume that Ni = ni

are given and Ni j ∼ BIN(ni , π̃i j ), the binomial distribution with ni trials and proba-
bility of success being π̃i j . Notice that for more than two classes, this will be row-wise
multinomial framework.

Then the null hypothesis for this test is Ho : π̃11 = π̃21 which also implies
π̃12 = π̃22. The alternative Ha : π̃11 > π̃21 would correspond to positive categor-
ical association which would also imply π̃22 > π̃12. Similarly, the alternative Ha :
π̃11 < π̃21 would correspond to negative categorical association which would also
imply π̃22 < π̃12.

Under Ho, we can parametrize the null model as Ni j ∼ BIN(ni , κ̃ j ) where κ̃ j can
be estimated as C j/n and is assumed to equal the expectation E[C j/n]. Then Ho :
π̃11 = π̃21 = κ̃1 is equivalent to Ho : E[N11/n1] = E[N21/n2] = κ̃1 which is equivalent
to Ho : E[N11] = n1 κ̃1 and E[N21] = n2 κ̃1 which, for large n, n1, and n2, is equiva-
lent to Ho : E[N11/n] = n1 κ̃1/n = ν̃1 κ̃1 and E[N21/n] = n2 κ̃1/n = ν̃2 κ̃2.Under Ho,
if κ̃ j are known, X 2

P is approximately distributed as χ2
2 (i.e., χ2 distribution with 2

degrees of freedom) for large ni ; if κ̃ j are not known, but estimated as C j/n, then X 2
P

is approximately distributed as χ2
1 for large ni . In most practical situations, the latter

case will occur, so χ2
1 distribution is used for this test.

In the two-class case, (N11, N12) and (N21, N22) are assumed to be independent and
so are the individual trials, namely, (base, NN) pairs. Under RL or CSR independence,
this assumption is invalid for completely mapped data. Because the trials that constitute
Nii for i = 1, 2 are not independent due to reflexivity and shared NN structure; likewise,
N12 and N21 are not independent. Hence, Pielou’s test is not appropriate for RL or
CSR independence in this framework either.
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Overall multinomial sampling framework: An alternative sampling framework for
contingency tables, in general, is that the cell counts are assumed to be from indepen-
dent multinomial trials. That is, for the two-class case,

N = (N11, N12, N21, N22) ∼ M (n, π̃11, π̃12, π̃21, π̃22)

hence the name overall multinomial framework. The null hypothesis in this framework
is Ho : (π̃11, π̃12)= (π̃21, π̃22) and E[Ni j ] in Eq. 1 is Ni C j/n. The multinomial counts
are not independent (since they are negatively correlated) when conditioned on their
total. This dependence alleviates as the sample size increases, but might confound the
small sample results. In addition to this mild dependence, the NNCT cell counts are
not independent due to, e.g., reflexivity. Hence the overall multinomial framework is
not appropriate for NNCTs based on RL or CSR independence either.

Note that conditional on Ni = ni , the overall multinomial framework reduces to the
row-wise multinomial framework. Furthermore, when the parameters are not known
but estimated from the marginal sums, all frameworks yield tests that are approximately
distributed as χ2

1 for large n.

3.2.1 One-sided versions of Pielou’s test of segregation

Pielou’s test is a general two-sided test, hence it does not indicate the direction of
the deviation (e.g., positive or negative categorical association) from the null case. To

determine the direction, one needs to check the NNCT. Since X 2
P

approx∼ χ2
1 , for large n,

we can write X 2
P = Z2

n where Zn
approx∼ N (0, 1), the standard normal distribution. By

some algebraic manipulations, among other possibilities, for the row-wise multinomial
framework, Zn can be written as

Zn =
(

N11

n1
− N21

n2

) √
n1 n2 n

C1 C2
. (2)

See Bickel and Doksum (1977) for the sketch of the derivation. Positive values of
Zn indicate positive categorical association, while negative values indicate negative
categorical association. When cell counts are independent, a reasonable α-level test
is rejecting Ho if Zn > z1−α for positive categorical association or if Zn < zα for
negative categorical association. The α-level χ2 test in which we reject for X 2

P >

χ2
1 (1 − α) is equivalent to the two-sided α-level test based on Zn .

The corresponding test statistic for the overall multinomial framework can be
written as

Z̃n =
(

N11 − n1 c1

n

)
√

n3

n1 n2 c1 c2
. (3)

Once again, we point out that these one-sided tests are not appropriate for testing
RL or CSR independence, due to inherent dependence of cell counts in NNCTs based
on such patterns.
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Remark 3.1 Appropriate null case for Pielou’s tests: In Pielou’s test, each of the Pois-
son and row-wise binomial sampling frameworks for cell counts assumes that the
trials (i.e., the cross-categorization of base-NN pairs) are independent and in the over-
all multinomial framework, there is mild dependence between the cell counts. The
independence of rows and individual trials (i.e., cells) would follow if NNCT were
based on a random sample of (base label, NN label) pairs. But unfortunately, this
usually is not realistic in practice, although it might have theoretical appeal. When we
have a random sample of (base label, NN label) pairs (which are also called the (base,
NN) pairs), the null hypothesis for Pielou’s test is equivalent to the case that the vector
of probabilities for the cell frequencies for each row are identical. Hence if the NNCT
is based on a random sample of (base, NN) pairs, then any of the sampling frameworks
would be appropriate which in turn implies the appropriateness of Pearson’s test of
independence for the NNCT. The null hypothesis in each of the sampling frameworks
will imply independence between the patterns of the two classes. On the other hand the
alternatives of positive categorical association will correspond to segregation of the
classes, while negative categorical association will correspond to spatial association
of the classes. ��

3.3 Dixon’s NNCT-tests

Dixon proposed a series of tests for segregation based on NNCTs, namely, cell- and
class-specific tests, and overall test of segregation under RL (Dixon 1994).

3.3.1 Dixon’s cell-specific tests

The level of segregation is estimated by comparing the observed NNCT cell counts
to the expected NNCT cell counts under RL of fixed points. Dixon demonstrates
that under RL, one can write down the cell frequencies as Moran join-count statistics
(Moran 1948). He then derives the means, variances, and covariances of the cell counts
(i.e., frequencies) (Dixon 1994, 2002a).

When the null hypothesis is RL, we have

E[Ni j ] =
{

ni (ni − 1)/(n − 1) if i = j ,

ni n j/(n − 1) if i �= j ,
(4)

or equivalently

πi j = ni (ni − 1)

n(n − 1)
I(i = j) + ni n j

n(n − 1)
I(i �= j).

The test statistic suggested by Dixon is given by

Z D
i j = Ni j − E[Ni j ]

√
Var[Ni j ]

(5)
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where

Var[Ni j ]=
{

(n + R)pii + (2n − 2R + Q)piii + (n2 − 3n − Q + R)piii i − (npii )
2 if i = j ,

n pi j + Q pii j + (n2 − 3 n − Q + R) pii j j − (n pi j )
2 if i �= j ,

(6)

with pxx , pxxx , and pxxxx are the probabilities that a randomly picked pair, triplet, or
quartet of points, respectively, are the indicated classes and are given by

pii = ni (ni−1)

n (n − 1)
, pi j = ni n j

n (n − 1)
,

piii = ni (ni − 1) (ni − 2)

n (n − 1) (n − 2)
, pii j = ni (ni − 1) n j

n (n − 1) (n − 2)
,

pii j j = ni (ni − 1) n j (n j − 1)

n (n − 1) (n − 2) (n − 3)
, piiii = ni (ni − 1) (ni − 2) (ni − 3)

n (n − 1) (n − 2) (n − 3)
.

(7)

Furthermore, Q is the number of points with shared NNs, which occurs when
two or more points share a NN and R is twice the number of reflexive pairs. Then
Q = 2 (Q2 + 3 Q3 + 6 Q4 + 10 Q5 + 15 Q6) where Qk is the number of points that
serve as a NN to other points k times.

One-sided and two-sided tests are possible for each cell (i, j) using the asymptotic
normal approximation of Z D

i j given in Eq. 5 (Dixon 1994). In Dixon’s framework,
Ni j are random quantities; and the quantities in the expectations, hypotheses, and
variances are conditional on N = n and Ni = ni for i ∈ {1, 2}. The column sums are
irrelevant for Dixon’s tests.

We describe the setting in a broader context. Let νi be the probability of an
arbitrary point being from class i . Then under RL, πi j = νi ν j and the expression
ni (ni −1)
n(n−1)

I(i = j) + ni n j
n(n−1)

I(i �= j) can be viewed as an estimate of πi j and denoted
as π̂i j . Furthermore, given large N = n, under the null hypothesis of RL the expected
values given in Eq. 4 implies

Ho : πi j = νi ν j

and the test statistic (Ni j/n − πi j )
/√

Var[Ni j ] is approximately equivalent to Z D
i j in

Eq. 5. In Dixon’s framework, for large n and ni , the row marginals satisfy E[Ni/n] = νi

and the column marginals satisfy E[C j/n] = κ j = ∑2
i = 1 νi ν j = ν j .

3.3.2 Dixon’s overall test of segregation

Dixon’s overall test of segregation tests the hypothesis that expected values of the
cell counts in the NNCT are equal to the ones given in Eq. 4. In the two-class case,
he calculates Zii = (Nii − E[Nii ])/√Var[Nii ] for both i ∈ {1, 2} and then combines
these test statistics into a statistic that is asymptotically distributed as χ2

2 (Dixon 1994).
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The suggested test statistic is given by

X 2
D = Y′�−1Y =

[
N11 − E[N11]
N22 − E[N22]

]′
×

[
Var[N11] Cov[N11, N22]
Cov[N11, N22] Var[N22]

]−1

×
[

N11 − E[N11]
N22 − E[N22]

]

(8)

where E[Nii ] are as in Eq. 4, Var[Nii ] are as in Eq. 6, and

Cov[N11, N22] =
(

n2 − 3 n − Q + R
)

p1122 − n2 p11 p22.

Under Ho : E[Nii/n] = ν2
i for i = 1, 2, and E[X 2

D] = 2 and Var[X 2
D] = 4; i.e., the

non-centrality parameter λ = 0. If we parametrize the segregation alternative as H S
a :

E[N11/n] = (ν1+ε1)
2 and E[N22/n] = (1−ν1+ε2)

2 for some ε1, ε2 > 0. Then under
H S

a , the non-centrality parameter satisfies λ = λ(ε1, ε2)> 0 since λ(ε1, ε2)= ES[Y]′
�−1

S ES[Y] where

1

n
ES[Y]′ = [(ν1 + ε1), (1 − ν1 + ε2)]

and �S is the (positive definite) variance-covariance matrix of the cell counts under
H S

a . If the association alternative is parametrized as above with ε1, ε2 < 0 then we
obtain the same non-centrality parameter λ(ε1, ε2).

Dixon (2002a) extends his test for multi-class case (i.e., for the case with three or
more classes). He also partitions the overall test statistic X 2

D into class-specific test
statistics each of which are dependent but approximately follow a χ2 distribution.

3.4 Dixon’s tests under CSR independence

The expected values of the NNCT cell counts given in Eq. 4 are derived under RL or
CSR independence by Dixon (1994). However, the variances and covariances of the
cell counts used in Sects. 3.3.1 and 3.3.2 are derived under the RL pattern only (Dixon
1994, 2002a).

When the null hypothesis is CSR independence, the expressions for the variances
and covariances of the NNCT cell counts are as in RL case, except they are conditional
on Q and R. The quantities Q and R are fixed under RL, but random under CSR inde-
pendence. Hence under CSR independence Dixon’s cell-specific test given in Eq. 5
asymptotically has N (0, 1) distribution and overall test given in Eq. 8 asymptotically
has χ2

2 , conditional on Q and R. Under the CSR independence pattern, the uncon-
ditional variances and covariances (hence the unconditional asymptotic distributions)
can be obtained by replacing Q and R with their expectations.

Unfortunately, given the difficulty of calculating the expectations of Q and R under
CSR independence, it seems reasonable and convenient to use test statistics employing
the unconditional variances and covariances even when assessing their behavior under
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the CSR independence pattern. Alternatively, one can estimate the values of Q and R
empirically, and substitute these estimates in the variance and covariance expressions.
For example, for homogeneous planar Poisson pattern, we have E[Q/n] ≈ .632786
and E[R/n] ≈ 0.621120 (estimated empirically by 1000000 Monte Carlo simulations
for various values of n = n1 + n2 on the unit square).

To assess the influence of conditioning on the performance of Dixon’s tests for
the two-class case, we consider both the conditional version of these tests, as well as
the unconditional version, in which the terms Q and R are replaced by 0.63 n and
0.62 n, respectively. We call the latter type of correction as QR-adjustment and the
transformed tests as QR-adjusted tests, henceforth. QR-adjusted version of Dixon’s
cell-specific test statistic for cell (i, j) is denoted by Z D,qr

i j and of the overall test

statistic is denoted by X 2
D,qr .

Remark 3.2 Extension of NNCT-tests to multi-class case: Dixon has extended his
tests into multi-class situation with three or more classes (Dixon 2002a). For q classes
with q > 2, the corresponding NNCT is of dimension q × q. It is possible to define
q2 cell-specific tests as in Eq. 5, and one can combine the tests into one overall test
similar to the one given in Eq. 8, which will have χ2

q(q−1), asymptotically. On the other
hand, Pielou’s test is defined and has only been used for the two-class spatial patterns.
Its inappropriateness discourages its immediate extension to multi-class patterns. ��

3.5 Comparison of Pielou’s and Dixon’s tests

Dixon points out two problems with Pielou’s test of independence: (i) it fails to identify
certain types of segregation (e.g., mother-daughter processes) and (ii) the sampling
distribution of NNCT cell counts is not appropriate (see Dixon 1994). In a mother-
daughter process, mothers are distributed randomly in the region of interest, while
the daughters are randomly displaced within close vicinity of their mothers. In such a
process, it is possible to obtain a NNCT in which the cell counts are very similar to the
ones expected under the Pielou null hypothesis, while in reality the pattern exhibits
the segregation of the daughters. For more detail on mother-daughter processes and
examples for which Pielou’s test giving misleading results, see Dixon (1994). Problem
(ii) was first noted by Meagher and Burdick (1980) who identify the main source of
it to be reflexivity of (base, NN) pairs. As an alternative, they suggest using Monte
Carlo simulations for Pielou’s test. Dixon shows that Pielou’s test is not appropriate
for completely mapped data, but suggests that it might be appropriate for sparsely
sampled data (Dixon 1994).

In Pielou’s test, each of the sampling frameworks requires that the cell counts are
independent. However, when a trial is label categorization of a (base, NN) pair, the
assumption of independence between trials is violated due to reflexivity and shared
NN structure. Thus Pielou’s test measures deviations not only from the null pattern of
RL or CSR independence but also from the independence of trials. This also suggests
that Pielou’s test would be liberal in rejecting the null hypothesis. The reflexivity and
shared NN structure are not merely finite sample patterns, as they follow a certain
non-degenerate distribution even when n → ∞ (Clark and Evans 1955).
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By construction, Pielou’s test is used to test independence of the class labels of
the (base, NN) pairs, but ignores the spatial information (hence ignores the spatial
dependence, e.g., reflexivity of NNs). On the other hand, Dixon’s tests are used for the
null hypotheses of RL or CSR independence and uses more of the spatial information.
For Dixon’s tests, the underlying sampling framework for cell counts is different
from Poisson, row-wise binomial, or overall multinomial sampling models of the
contingency tables. In his framework, the probability of class j point serving as a
NN of a class i point depends only on the class sizes (i.e., row sums), but not the
total number of times class j serves as a NN (i.e., column sums). On the other hand,
Pielou’s test depends on both row and column sums. In fact, Pielou starts her arguments
with NN probabilities depending on class sizes (row sums) in (Pielou 1961, pp. 257–
258). Then she leaves this track of development because of dependence due to shared
NN structure (i.e., the distribution of Qk (Clark and Evans 1955)). For testing RL or
CSR independence, Dixon’s framework is more appropriate as a sampling distribution
for NNCT cell counts, as it accounts for the inherent spatial dependence between
observations.

4 Consistency of the NNCT-tests

The null hypotheses are different for Pielou’s and Dixon’s framework of testing spatial
patterns, and so are the alternative hypotheses. Hence the acceptance regions are
different (see, e.g., Dixon 1994), and no test is uniformly superior to the other, since
both AD\AP and AP\AD are non-empty, where AD is the acceptance region for
Dixon’s test and AP is the acceptance region for Pielou’s test. That is, there are
situations in which Pielou’s test yields a significant result, while Dixon’s test finds
no significant segregation, and vice versa. For example, a pattern resulting from a
mother/daugter process can fall in AP\AD (see Sect. 3.5). On the other hand, a process
in which row and column sums in a NNCT are close but the cell counts are different than
expected under Pielou null hypothesis, and similar to the ones expected under Dixon
null hypothesis might yield a pattern that falls in AD\AP . Therefore the comparison
of the tests (even for large samples) is inappropriate. But any reasonable test should
have more power as the sample size increases. So, we prove that the tests under
consideration are consistent, although they have appropriate size under different null
hypotheses. The proofs of lemmas and theorems in this section are all deferred to the
Appendix.

In the following theorems we use the consistency of tests based on statistics that
have N (0, 1) or χ2

ν distributions asymptotically. First, we prove the consistency of
Pielou’s test of segregation and the one-sided versions. Let z(α) be the 100(1 − α)th

percentile for the standard normal distribution and χ2
ν (α) be the 100(1−α)th percentile

for χ2 distribution with ν df.

Theorem 4.1 (I) Suppose the NNCT is constructed based on a random sample of
(base, NN) pairs. The test for segregation H S

a : π̃11 > π̃22 (spatial association H A
a :

π̃11 < π̃22) which rejects Ho : π̃11 = π̃22 for Zn > z(1 − α) (for Zn < z(α)) with
Zn given in Eq. 2 has size α and is consistent. Likewise, the test against segregation
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H S
a : E[N11/n] > ν̃1 κ̃1 which rejects Ho : E[N11/n] = ν̃1 κ̃1 for Z̃n > z(1 − α)

with Z̃n given in Eq. 3 has size α and is consistent.
(II) Under RL or CSR independence, the size of the above one-sided tests are larger
than α (i.e., the tests are liberal in rejecting Ho) but consistent (in the sense that the
power goes to 1 as marginal sums tend to ∞ under the alternatives).

Theorem 4.2 (I) Suppose the NNCT is based on a random sample of (base, NN) pairs.
The test for Ha : π̃11 �= π̃21 which rejects Ho : π̃11 = π̃21 for X 2

P > χ2
1 (1 − α) with

X 2
P = ∑2

i = 1
∑2

j = 1
(Ni j −E[Ni j ])2

E[Ni j ] is consistent.

(II) Under RL or CSR independence, the level of the test using X 2
P is larger than α

(i.e., it is liberal in rejecting these null patterns) but is consistent (in the sense of part
(II) of Theorem 4.1).

Next, we prove the consistency of Dixon’s cell-specific and overall tests of segre-
gation.

Theorem 4.3 Under RL, Dixon’s cell-specific test for cell (i, j) in a NNCT denoted
by Z D

i j ; i.e., the test rejecting Ho : πi j = ni (ni −1)
n(n−1)

I(i = j) + ni n j
n(n−1)

I(i �= j) (i.e.,

RL ) against the two-sided (and one-sided alternatives) for |Z D
i j | > z(1 − α/2) (and

Z D
i j > z(1 − α) or Z D

i j < z(α)) with Z D
i j = Ni j −E[Ni j ]√

Var[Ni j ] is of size α and is consistent.

Under CSR independence, Z D
i j is consistent conditional on Q and R.

Theorem 4.4 Under RL, Dixon’s overall test of segregation; i.e., the test rejecting
Ho : πi j = ni (ni −1)

n(n−1)
I(i = j)+ ni n j

n(n−1)
I(i �= j) for all i, j ∈ {1, 2} (i.e., RL) against the

alternative Ha : πi j �= ni (ni −1)
n(n−1)

I(i = j) + ni n j
n(n−1)

I(i �= j) for some i, j ∈ {1, 2} for

X 2
D > χ2

2 (1 −α) with X 2
D = (N − E[N])′�−(N − E[N]) is of size α and is consistent.

Under CSR independence, X 2
D is consistent conditional on Q and R.

5 Monte Carlo simulation analysis

Pielou’s test of independence and Dixon’s overall test of segregation are not testing the
same null pattern, so we can not compare the power of the tests under either segregation
or association alternatives and we only implement Monte Carlo simulations to evaluate
the finite sample performance of the tests in terms of empirical size. For the null case,
we simulate the RL, CSR independence patterns, and independence of the rows in the
NNCTs, with two classes labelled as X and Y with sizes n1 and n2, respectively.

5.1 Empirical significance levels of the NNCT-tests under RL

Under RL, we consider four cases. In RL Case (1) we use the locations of the trees
in the swamp tree data (see Fig. 2 and Dixon 1994) as the fixed points, and randomly
assign n1 = 182 points as X and n2 = 91 points as Y points. In each of the other RL
cases, we first determine the fixed locations of points for which class labels are to be
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assigned randomly. Then we apply the RL procedure to these points for respective
sample size combinations as follows.

RL Case (2) First, we generate n = n1 + n2 points iid U((0, 1)× (0, 1)), the
uniform distribution on the unit square, for some combinations of n1, n2 ∈ {10, 30, 50,

100}. In each (n1, n2) combination, the locations of these points are taken to be the
fixed locations for which we assign the class labels randomly. For each sample size
combination (n1, n2), we randomly choose n1 points (without replacement) and label
them as X and the remaining n2 points as Y points, and repeat the RL procedure
Nmc = 10000 times. At each Monte Carlo replication, we compute the NNCT-tests.
Out of these 10000 samples the number of significant outcomes by each test is recorded.
The nominal significance level used in all these tests is α = .05. The empirical sizes
are calculated as the ratio of number of significant results to the number of Monte
Carlo replications, Nmc. That is, for example, empirical size for Dixon’s overall test
for (10, 10), denoted by α̂D , is calculated as α̂D : = ∑Nmc

i = 1 I(X 2
D,i ≥ χ2

2 (.05)) where

X 2
D,i is the value of Dixon’s overall test statistic for iteration i , χ2

2 (.05) is the 95th

percentile of χ2
2 distribution, and I(·) is the indicator function.

RL Case (3) We generate n1 points iid U((0, 2/3)× (0, 2/3)) and n2 points iid
U((1/3, 1)× (1/3, 1)) for some combinations of n1, n2 ∈ {10, 30, 50, 100}. The loca-
tions of these points are taken to be the fixed locations for which we assign the class
labels randomly. The RL procedure is applied to these fixed points Nmc = 10000 times
for each sample size combination and the empirical sizes for the tests are calculated
similarly as in RL Case (2).

RL Case (4) We generate n1 points iidU((0, 1)× (0, 1)) and n2 points iidU((2, 3)×
(0, 1)) for some combinations of n1, n2 ∈ {10, 30, 50, 100}. The RL procedure is
applied and the empirical sizes for the tests are calculated as in the previous RL Cases.

The locations for which the RL procedure is applied in RL Cases (2–4) are plotted
in Fig. 1 for n1 = n2 = 100. Although there are many possibilities for the allocation of
points to which RL procedure can be applied, we only chose the locations of trees in
a real life data set and three generic cases. Observe that in RL Case (2), the allocation
of the points are a realization of a homogeneous Poisson process in the unit square;
in RL Case (3) the points are a realization of two overlapping clusters; in RL Case (4)
the points are a realization of two disjoint clusters.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RL Case (2)

x coordinate 

y 
co

or
di

na
te

 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RL Case (3)

x coordinate 

y 
co

or
di

na
te

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RL Case (4)

x coordinate 

y 
co

or
di

na
te

 

Fig. 1 The fixed locations of points for which RL procedure is applied for RL Cases (2–4) with n = 200
(for the case with n1 = n2 = 100) in the two-class case. Notice that x-axis for RL Case (4) is differently
scaled than others
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Table 2 The empirical significance levels for the tests under RL cases (1–4) at α = .05

Cell-specific One-sided Overall

RL Case (1)

(n1, n2) α̂D
1,1 α̂D

2,2 α̂R α̂L α̂P α̂PY α̂D

(182, 91) .0420a .0487 .1563b .1874b .1228b .0972b .0486

RL Case (2)

(10, 10) .0604b .0557b .0800b .1479b .1219b .0586b .0349a

(10, 30) .0311a .0699b .0824b .1456b .1522b .0618b .0466

(10, 50) .0264a .0472 .0953b .0517 .0640b .0307a .0507

(30, 30) .0579b .0547b .0749b .1065b .1249b .0805b .0497

(30, 50) .0621b .0608b .0896b .1203b .1338b .0826b .0444a

(50, 50) .0512 .0524 .0794b .1058b .1383b .1025b .0497

(50, 100) .0625b .0512 .0905b .1060b .1199b .0926b .0482

(100, 100) .0538b .0534 .0895b .1101b .1321b .1052b .0525

RL Case (3)

(10, 10) .0624b .0657b .0806b .1492b .1220b .0571b .0446a

(10, 30) .0297a .0341a .0803b .1454b .1382b .0517 .0327a

(10, 50) .0251a .0384a .0882b .0463a .0591b .0287a .0508

(30, 30) .0513 .0523 .0839b .1179b .1402b .0933b .0469

(30, 50) .0626b .0594b .0934b .1174b .1367b .0846b .0411a

(50, 50) .0509 .0511 .0800b .1113b .1414b .1047b .0501

(50, 100) .0566b .0421a .0906b .1019b .1182b .0906b .0460a

(100, 100) .0439a .0453a .0942b .1127b .1361b .1098b .0505

RL Case (4)

(10, 10) .0656b .0640b .0798b .1481b .1236b .0536 .0432a

(10, 30) .0281a .0447a .0798b .1525b .1639b .0521 .0324a

(10, 50) .0260a .0404a .0892b .0506 .0618b .0290a .0500

(30, 30) .0549b .0553b .0858b .1183b .1459b .0984b .0484

(30, 50) .0677b .0685b .0936b .1156b .1359b .0861b .0445a

(50, 50) .0504 .0506 .0769b .1094b .1372b .0991b .0488

(50, 100) .0590b .0484 .0882b .1006b .1179b .0887b .0479

(100, 100) .0495 .0476 .0941b .1134b .1406b .1137b .0534

Here α̂D
i,i is the empiricals significance level for Dixon’s cell-specific test for cell (i, i) for i ∈ {1, 2}, α̂R

is for the right-sided version of Pielou’s test, α̂L is for left-sided version of Pielou’s test, α̂P and α̂PY are
for Pielou’s overall test of segregation without and with Yates’ correction, respectively, α̂D is for Dixon’s
overall test of segregation
a The empirical size is significantly smaller than .05; i.e., the test is conservative
b The empirical size is significantly larger than .05; i.e., the test is liberal

The empirical significance levels are presented in Table 2, where α̂D
i,i is the empirical

significance level for cell (i, i) with i ∈ {1, 2}, α̂R and α̂L are the estimated empirical
significance levels for the right- and left-sided versions of Pielou’s test, respectively
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Table 3 The empirical significance levels for the tests under Ho : CSR independence with Nmc = 10000,
n1, n2 ∈ {10, 30, 50, 100} at α = .05 for uniform class X and Y points in the unit square

(n1, n2) Cell-specific One-sided Overall

α̂D
1,1 α̂

D,qr
1,1 α̂D

2,2 α̂
D,qr
2,2 α̂R α̂L α̂P α̂PY α̂D α̂D,qr

(10, 10) .0454a .0360a .0465 .0383a .0844b .1574b .1280b .0608b .0432a .0470

(10, 30) .0306a .0306a .0485 .0427a .0846b .1399b .1429b .0542b .0440a .0411a

(10, 50) .0270a .0270a .0464 .0323a .0947b .0574b .0664b .0318a .0482 .0497

(30, 10) .0479 .0415a .0275a .0275a .0760b .1406b .1383b .0506 .0390a .0402a

(30, 30) .0507 .0577b .0505 .0578b .0803b .1115b .1339b .0836b .0464 .0492

(30, 50) .0590b .0591b .0522 .0549b .0821b .1211b .1319b .0834b .0454a .0411a

(50, 10) .0524 .0346a .0263a .0263a .0955b .0544b .0654b .0310a .0529 .0510

(50, 30) .0535 .0554b .0597b .0597b .0829b .1173b .1275b .0805b .0429a .0405a

(50, 50) .0465 .0456a .0469 .0459a .0804b .1041b .1397b .0999b .0508 .0528

(50, 100) .0601b .0652b .0533 .0535 .0921b .1090b .1223b .0938b .0560b .0556b

(100, 50) .0490 .0493 .0571b .0620b .0909b .1063b .1190b .0904b .0483 .0495

(100, 100) .0493 .0491 .0463a .0455 .0927b .1092b .1324b .1076b .0504 .0513

Here α̂
D,qr
i,i is the empirical significance level for the QR-adjusted cell-specific test for (i, i) for i ∈ {1, 2},

and α̂D,qr is for QR-adjusted Dixon’s overall test of segregation
Other empirical size estimate notation and superscript labeling are as in Table 2

(see Eq. 2), α̂P and α̂PY are for Pielou’s overall test of segregation without and with
Yates’ correction, respectively, α̂D is for Dixon’s overall test of segregation with
n1, n2 ∈ {10, 30, 50, 100} and Nmc = 10000. Notice that among the cell-specific tests
only α̂D

1,1 and α̂D
2,2 are presented in Table 3, since N12 = n1 − N11 and N21 = n2 − N22

which implies α̂D
1,1 = α̂D

1,2 and α̂D
2,1 = α̂D

2,2 in the two-class case. The empirical sizes
significantly smaller (larger) than .05 are marked with a(b) which indicate that the
corresponding test is conservative (liberal). The asymptotic normal approximation to
proportions is used in determining the significance of the deviations of the empirical
size estimates from the nominal level of .05. For these proportion tests, we also use
α = .05 to test against empirical size being equal to .05. With Nmc = 10000, empirical
sizes less (greater) than .0464 (.0536) are deemed conservative (liberal) at α = .05
level. Observe that Dixon’s cell-specific tests are slightly liberal or conservative or
about the desired significance levels in rejecting Ho : RL when n1, n2 ≥ 30. When
ni ≤ 10 for i = 1 or 2, then Dixon’s cell-specific tests tend to be conservative if n1 �= n2
and liberal otherwise. Notice also that when ni ≤ 10 for i = 1 or 2 and n1 �= n2 Dixon’s
cell-specific test is more conservative for cell (1, 1) which corresponds to the class
with smaller size (i.e., class X ) compared to class Y . On the other hand, Pielou’s
overall test and the right sided version of Pielou’s test are extremely liberal for all
sample size combinations; left sided version of Pielou’s test is extremely liberal for all
sample size combinations except for (10, 50). Furthermore, Pielou’s test with Yates’
correction is liberal when min(n1, n2)≥ 30, conservative for (10, 50) and liberal or
about the nominal level for other sample size combinations. Notice also that, α̂PY

values are significantly smaller (based on the tests of equality of the proportions for
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two populations) compared to α̂P values. Dixon’s overall test of segregation tends
to be conservative for (10, 10) and (10, 30) and is about the desired nominal level
for most of the other sample size combinations. These results suggest that under RL,
Dixon’s tests (especially the overall test) are appropriate, but Pielou’s tests are not.

5.2 Empirical significance levels of the NNCT-tests under CSR independence

Under CSR independence, at each of Nmc = 10000 replicates, we generate points
iid from U((0, 1)× (0, 1)), for some combinations of n1, n2 ∈ {10, 30, 50, 100}. Let
X = {X1, . . . , Xn1} be the set of class 1 points and Y = {Y1, . . . , Yn2} be the set of
class 2 points.

We present the empirical significance levels for Pielou’s tests and Dixon’s tests in
Table 3, where α̂

D,qr
i,i is Dixon’s cell-specific test for cell (i, i) and α̂D,qr is Dixon’s

overall test with Q and R are replaced with their (empirical) expected values and
notations for the other tests are as in Sect. 5.1. The empirical sizes are calculated
for some combinations of n1, n2 ∈ {10, 30, 50, 100} and Nmc = 10000. Observe that
Dixon’s cell-specific tests tend to be slightly liberal or conservative or about the desired
significance level for most sample size combinations. In particular, they have about
the desired nominal level for n1 = n2 ≥ 30; are extremely conservative for the smaller
class when ni = 10 for one of i = 1, 2 (see, e.g., α̂D

1,1 for (n1, n2)= (10, 50) and α̂D
2,2

for (n1, n2)= (50, 10)). The QR-adjusted versions of cell-specific tests tend to have
different sizes than the uncorrected versions when ni ≤ 30 for i = 1 or 2. For larger
samples, QR-adjustment does not improve the sizes compared to the uncorrected
ones. Pielou’s overall test and one-sided versions are extremely liberal for all sample
sizes (however, notice that Pielou’s overall and left-sided tests are least liberal for
(n1, n2)= (10, 50) and (n1, n2)= (50, 10)). Pielou’s test with Yates’ correction is
at the nominal level for (n1, n2)= (30, 10), conservative for (n1, n2)= (10, 50) and
(n1, n2)= (50, 10), and liberal for other sample size combinations. Notice also that
α̂PY values are significantly smaller than α̂P values (i.e., Yates’ correction significantly
reduces the empirical size for Pielou’s overall test). As for Dixon’s overall test, it tends
to be conservative for small sample size combinations, and is about the desired level
for most large sample size combinations. As in the cell-specific tests, QR-adjustment
does not improve on the uncorrected versions. For more detail on QR-adjustment for
NNCT-tests, see (Ceyhan 2008). Hence in the following sections, we only provide the
uncorrected versions of Dixon’s tests.

Remark 5.1 Proportion of agreement between Pielou’s and Dixon’s overall tests: At
each sample size combination under the RL Cases (2–4) and CSR independence, we
also record the number of times both Pielou’s and Dixon’s overall tests simultane-
ously yield significant results at α = .05. The ratio of number of significant results
by both tests to the number of Monte Carlo replications, Nmc, is the proportion
of agreement between the tests in rejecting the particular null pattern. That is, for
example the proportion of agreement between Pielou’s and Dixon’s overall tests
denoted by α̂P,D for (n1, n2)= (10, 10) under RL Case (2) is calculated as α̂P,D :=
∑Nmc

i = 1 I(X 2
P,i ≥χ2

1 (0.95))I(X 2
D,i ≥ χ2

2 (0.95)) where X 2
P,i is the value of Pielou’s
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Table 4 The proportion of agreement between Pielou’s and Dixon’s overall segregation tests α̂P,D for
rejecting the RL Cases (2–4) and CSR independence with Nmc = 10000, n1, n2 ∈ {10, 30, 50, 100} at
α = .05

(n1, n2) (10, 10) (10, 30) (10, 50) (30, 30) (30, 50) (50, 50) (50, 100) (100, 100)

RL Case (2) .0255 .0245 .0344 .0317 .0275 .0321 .0302 .0336

RL Case (3) .0226 .0189 .0321 .0323 .0275 .0331 .0289 .0320

RL Case (4) .0208 .0192 .0335 .0329 .0250 .0292 .0298 .0355

CSR independence .0277 .0242 .0340 .0296 .0270 .0321 .0342 .0314

overall test statistic for iteration i . The estimates of the proportion of agreement
values are presented in Table 4. Observe that α̂P,D values are significantly smaller
than min(̂αP , α̂D)= α̂D at each sample size combination under each null case. This
supports the discussion in the first paragraph of Sect. 4; that is, the rejection regions
(hence acceptance regions) for both tests are significantly different and neither one is
uniformly superior to the other. ��

5.3 Empirical significance levels of the tests under indenpendence of rows and cell
counts in NNCTs

For the independence of rows and cell counts in the NNCTs, we consider two cases:
overall multinomial and row-wise binomial frameworks. In the overall multinomial
case, we generate all four cell counts using multinomial distribution, M (n, π̃11, π̃12,

π̃21, π̃22), with π̃11 = π̃21 = n1
2(n1+n2)

and π̃12 = π̃22 = n2
2(n1+n2)

. The NNCT constructed
in such a way is (approximately) equivalent to one based on a random sample of
(base, NN) pairs. In the row-wise binomial case, we generate the two cell counts in
each row using binomial distribution, N11 ∼ BIN(n1, n1/(n1 + n2)), and N21 ∼
BIN(n2, n1/(n1 + n2)). The NNCT constructed in this way is also equivalent to one
based on a random sample of (base, NN) pairs.

For such NNCTs, we can only compute Pielou’s test and the one-sided versions, but
not Dixon’s tests, since Dixon’s tests require more information on the NN structure in
the spatial distribution of the points, e.g., the quantities such as Q and R, which are not
available these cases. That is, in any spatial allocation of points, the NN relations of
each point is dependent on the relations of neighboring points, which in turn implies
that it is not realistic to have a random sample of (base, NN) pairs in practice.

In Table 5, we present the empirical significance levels for all tests except Dixon’s
tests under the independence of cells and rows case. Observe that Pielou’s test with
Yates’ correction is extremely conservative under both of the frameworks. On the other
hand Pielou’s one-sided tests and Pielou’s test without Yates’ correction have about
the desired nominal level.

Remark 5.2 Main result of Monte Carlo simulations for empirical sizes: Based on the
simulation results under CSR independence of the points, we recommend the disuse
of Pielou’s test in practice, as it is extremely liberal, hence it might give false alarms
when the pattern is actually not significantly different from RL or CSR independence.
Moreover Yates’ correction does not seem to fix the problems with Pielou’s test, since
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Table 5 The empirical significance levels for the tests under independence of cells and rows with
Nmc = 10000, n1, n2 ∈ {10, 30, 50, 100} at α = .05 for contingency tables based on the overall multinomial
and row-wise binomial frameworks

(n1, n2) Overall multinomial Row-wise binomial

One-sided Overall One-sided Overall

α̂R α̂L α̂P α̂PY α̂R α̂L α̂P α̂PY

(10, 10) .0542b .0521 .0415a .0102a .0603b .0612b .0426a .0124a

(10, 30) .0535 .0560b .0525 .0213a .0575b .0495 .0510 .0174a

(10, 50) .0489 .0534 .0556b .0261a .0864b .0000a .0468 .0152a

(30, 10) .0559b .0511 .0500 .0187a .0575b .0453a .0504 .0186a

(30, 30) .0470 .0445a .0500 .0268a .0487 .0491 .0518 .0269a

(30, 50) .0493 .0504 .0492 .0272a .0537b .0541 .0554b .0263a

(50, 10) .0579b .0440a .0551b .0254a .0707b .0205a .0410a .0132a

(50, 30) .0504 .0493 .0492 .0272a .0539b .0531 .0526 .0274a

(50, 50) .0483 .0487 .0534 .0344a .0451a .0466 .0592b .0357a

(50, 100) .0495 .0493 .0503 .0336a .0509 .0487 .0488 .0333a

(100, 50) .0493 .0495 .0503 .0336a .0512 .0460a .0510 .0350a

(100, 100) .0499 .0500 .0537a .0379a .0528 .0490 .0538b .0378a

The empirical size notation and superscript labeling are as in Table 2

the problems are not caused by the discrete nature of the cell counts. However, Yates’
correction seems to improve the performance of Pielou’s test, in the sense that empirical
size of Pielou’s test with Yates’ correction gets closer to the nominal level compared
to the uncorrected one. Even Dixon’s tests fail to have the desired level when at least
one sample size is small so that the cell count(s) in the corresponding NNCT have a
high probability of being ≤5. This usually corresponds to the case that at least one
sample size is ≤10 or the sample sizes (i.e., relative abundances) are very different in
our simulation study. When sample sizes are small (hence the corresponding NNCT
cell counts are ≤5), the asymptotic approximation of Dixon’s tests is not appropriate.
So Dixon (1994) recommends Monte Carlo randomization for his test when some
NNCT cell count(s) are ≤5 under RL. We concur with the same recommendation
for the RL pattern and extend this recommendation for CSR independence. In fact,
this recommendation is also partly consistent with the inapplicability of asymptotic
results for contingency tables in general (not just for NNCTs) when cell counts are
too small. In general contingency tables, the chi-squared approximation seems to be
valid in most cases if all expected cell counts are larger than 0.5 and at least half are
greater than 1.0 (Conover 1999). On the other hand, Cochran (1952) states that the
approximation may be poor if any expected cell count is less than 1 or if more than
20% of the expected cell counts are less than 5. ��

6 Edge correction for the CSR independence pattern

In this section, we investigate the edge or boundary effects on the NNCT-tests used
under CSR independence. Edge effects arise because CSR independence assumes an
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unbounded region, which is not the case in practical situations. Edge effects on spatial
pattern analysis and various correction methods are discussed extensively in spatial
pattern literature (Clark and Evans 1954; Cressie 1993). However, the effectiveness
of edge correction depends on the type of the statistic used (see, e.g., Yamada and
Rogersen 2003). For example, when the study region is rectangular, the edge effects can
be minimized by including a buffer zone or area around the rectangle, or alternatively,
the rectangular region is transformed into a torus (Dixon 2002b). In literature, buffer
area is also referred to as guard area (Yamada and Rogersen 2003). The general idea
is the same for buffer zone and toroidal edge corrections, but they are implemented in
different ways. In buffer zone correction we assume the properties of the process are
the same, even if we continue into the buffer area. In toroidal correction, the process
is exactly the same outside of the study area.

Without any edge correction the cell counts in a NNCT can be written as

Ni j =
n∑

k = 1

n∑

l = 1

wkl SklI(l �= k)=
n∑

k,l = 1

wkl SklI(l �= k)

where Skl is 1 if point l is of class j and point k is of class i , and 0 otherwise; wkl is
1 if point l is the NN of point k, and 0 otherwise.

The quantities Q and R can be written as

Q =
n∑

m,k,l = 1

wklwmlI(m �= k �= l) and R =
n∑

k,l = 1

wklwlkI(l �= k),

with the understanding that I(m �= k �= l)= I(m �= k)I(m �= l)I(k �= l).

6.1 Buffer zone correction for the CSR independence pattern

In the buffer zone correction method, a guard area is selected inside or outside the
study region and the points in the guard area are used only as destinations (not the
base points) in NN relations. In the NN pair (U, V ), point U is the base point, and
point V is the destination point. When the buffer area is sufficiently large, the edge
effects can be completely eliminated, but this is a wasteful procedure, because the
large buffer area may contain many observations.

Let RO be the original study area, RB be the outer buffer area, and Rb be the inner
buffer area and let n be the number of points that fall in RO . In the outer buffer zone
correction, let nB be the number of points that fall in RO ∪ RB , and points with indices
1, 2, . . . , n lie in RO , and points with indices (n +1), (n +2), . . . , nB lie in RB . With
the outer buffer zone correction, the NNCT cell counts are

Ni j =
n∑

k = 1

nB∑

l = 1

wkl SklI(k �= l).
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Furthermore, the quantities Q and R are also modified as follows:

Q =
nB∑

m,k = 1

n∑

l = 1

wklwmlI(m �= k �= l) and

R =
nB∑

k,l = 1

wklwlkI(k �= l) −
nB∑

k,l = (n+1)

wklwlkI(k �= l).

In the inner buffer zone correction, let nb be the number of points in the inner
buffer area Rb, and points with indices 1, 2, . . . , (n − nb) lie in RO\Rb, and points
with indices (n − nb + 1), (n − nb + 2), . . . , n lie in Rb. Then, with the inner buffer
zone correction, the NNCT cell counts are

Ni j =
n−nb∑

k = 1

n∑

l = 1

wkl SklI(k �= l).

Furthermore, the quantities Q and R are

Q =
n∑

m,k = 1

n−nb∑

l = 1

wklwmlI(m �= k �= l) and

R =
n∑

k,l = 1

wklwlkI(k �= l) −
nB∑

k,l = (n−nb+1)

wklwlkI(k �= l).

In our simulation study, we consider the edge correction by outer buffer zone
correction only. For CSR independence, we generate points iid from U((−.5, 1.5)×
(−.5, 1.5)) until there are n1 class X points and n2 class Y points in the unit square
for some combinations of n1, n2 ∈ {10, 30, 50, 100}. We repeat this procedure Nmc =
10000 times for each n1, n2 combination. The corresponding empirical significance
levels are provided in Table 6. Observe that compared to the uncorrected sizes, with
the (outer) buffer zone edge correction, the empirical sizes of the right-sided version
of Pielou’s test do not significantly change; empirical sizes of the left-sided version of
Pielou’s test significantly decrease for smaller samples, do not significantly change for
other sample size combinations; empirical sizes of Pielou’s test with Yates’ correction
do not significantly change (except for (10, 10)); empirical sizes of Dixon’s cell-
specific tests do not change for most sample size combinations. On the other hand,
for Dixon’s test, the empirical sizes significantly increase to become liberal for n1 +
n2 ≤ 80. Furthermore Pielou’s overall and one-sided tests still tend to be liberal with
the (outer) buffer zone correction; Pielou’s test with Yates’ correction is liberal when
n1 + n2 ≥ 40. Dixon’s cell-specific tests become about the desired level when ni ≥ 50
for both i = 1, 2, the sizes do not change or improve in one direction for smaller
samples.

Remark 6.1 Inner versus outer buffer zone correction: The main difference between
inner and outer buffer zone correction is the time of the selection of the buffer zone.
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Table 6 The empirical significance levels for the overall tests under Ho with Nmc = 10000,
n1, n2 ∈ {10, 20, 30, 40, 50} at α = .05 for uniform class X and Y points in the unit square when edge
correction with buffer zone is applied

(n1, n2) Cell-specific One-sided Overall

α̂D
1,1 α̂D

2,2 α̂R α̂L α̂P α̂PY α̂D

(10, 10) .0464e .0442a,e .0811b,e .1402b,c .1169b,c .0506c .0604b,d

(10, 30) .0317a,e .0602b,d .0830b,e .1296b,c .1283b,c .0530e .0572b,d

(10, 50) .0258a,e .0526d .0946b,e .0502c .0625b,e .0294a,e .0569b,d

(30, 10) .0565b,d .0289a,e .0799 b,e .1273b,c .1235b,c .0485e .0540b,d

(30, 30) .0518e .0522e .0782b,e .1104b,e .1284b,e .0848b,e .0545b,d

(30, 50) .0608b,e .0554b,e .0886b,e .1088b,c .1253b,e .0769b,e .0521d

(50, 10) .0537b,e .0269a,e .0959b,e .0553b,e .0669b,e .0297b,e .0599b,d

(50, 30) .0573b,e .0640b,e .0870b,e .1122b,e .1257b,e .0822b,e .0540b,d

(50, 50) .0463a,e .0471e .0820b,e .0998b,e .1330b,e .0946b,e .0510e

(50, 100) .0513c .0519e .0939b,e .1040b,e .1209b,e .0905b,e .0544b,e

(100, 50) .0527e .0497c .0906b,e .1038b,e .1211b,e .0903b,e .0481e

(100, 100) .0473e .0475e .0922b,e .1069b,e .1314b,e .1039b,e .0493e

The empirical size notation is as in Table 2
a The empirical size is significantly smaller than .05; i.e., the test is conservative
b The empirical size is significantly larger than .05; i.e., the test is liberal
c Empirical size significantly smaller than the uncorrected size
d Empirical size significantly larger than the uncorrected size
e Empirical size not significantly different from the uncorrected size

In the outer buffer zone correction, a larger region than the intended region of inter-
est is selected prior to recording the observations; while in the inner buffer zone
correction some part of the original study region is designated as the buffer zone
after the data is collected. Hence, theoretically the inner and outer buffer zones
behave similarly. Indeed, RO\Rb in the inner buffer zone correction acts like the
original region RO of the outer buffer zone correction, and likewise Rb in inner
buffer zone correction acts like RB of the outer buffer zone correction. Thus, we
only simulate the outer buffer zone correction, as it can also be equivalently viewed
as the inner buffer zone correction. That is, the square (−.5, 1.5)× (−.5, 1.5) can
be viewed as RO and [(−.5, 1.5)× (−.5, 1.5)]\[(0, 1)× (0, 1)] can be viewed as
Rb. ��

6.2 Toroidal edge correction for the CSR independence pattern

In the toroidal edge correction, the original area is surrounded by eight copies of the
original study area and the points in these additional copies are used only as destination
points. For the toroidal edge correction, clusters around the boundaries might cause
bias. Moreover, while toroidal correction applies only to rectangular study regions,
buffer zone correction applies to any type of study region (see Yamada and Rogersen
2003).
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Let RO be the original study area, RT be the eight copies appended to RO so as to
obtain NN structure for the points in RO as if RO is part of a torus. For the toroidal
correction, let nT be the number of points that fall in RO ∪ RT , and points with indices
1, 2, . . . , n lie in RO , and points with indices (n+1), (n+2), . . . , nT lie in the toroidal
area RT . With the toroidal correction, the NNCT cell counts are

Ni j =
n∑

k = 1

nT∑

l = 1

wkl SklI(k �= l).

Furthermore, the quantities Q and R are also modified as follows:

Q =
nT∑

m,k = 1

n∑

l = 1

wklwmlI(m �= k �= l), and

R =
nT∑

k,l = 1

wklwlkI(k �= l) −
nT∑

k,l = (n+1)

wklwlkI(k �= l).

For toroidal correction, under Ho : CSR independence, we generate n1 X -points
and n2 Y -points iid from U((0, 1)× (0, 1)) for some combinations of n1, n2 ∈ {10, 30,

50, 100}. We repeat this procedure Nmc = 10000 times for each n1, n2 combination.
The corresponding empirical significance levels are presented in Table 7. Observe
that toroidal edge correction does not significantly affect the empirical sizes of the
NNCT-tests.

Remark 6.2 Main result of edge correction analysis: The Monte Carlo analysis in
Sect. 6 suggests that the empirical sizes of the NNCT-tests are not affected by the
toroidal edge correction because in our Monte Carlo simulations, we have generated
the CSR independence pattern on the unit square. Any clusters in a realization of CSR
are due to chance and are equally likely to occur anywhere, so the clusters are more
likely to occur away from the boundary of the region. However, the (outer) buffer
zone edge correction method seems to have stronger influence on the tests compared
to toroidal correction. In particular, the empirical sizes of the Dixon’s test tend to
significantly increase with buffer zone correction. But for all other tests, buffer zone
correction does not change the sizes significantly for most sample size combinations.

This is in agreement with the findings of Barot et al. (1999) which says NN methods
only require a small buffer area around the study region. A large buffer area does not
help too much since one only needs to be able to see far enough away from an event
to find its NN. Once the buffer area extends past the likely NN distances (i.e., about
the average NN distances), it is not adding much helpful information for NNCTs.
Furthermore, since buffer (inner or outer) zone correction methods are wasteful, and
strongly depend on the size of the zone, we do not recommend their use for NNCT-
tests. On the other hand, one can use toroidal edge correction, but the gain might not
be worth the effort. ��
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Table 7 The empirical significance levels for the overall tests under Ho with Nmc = 10000,
n1, n2 ∈ {10, 20, 30, 40, 50} at α = .05 for uniform class X and Y points in the unit square when toroidal
edge correction is applied

(n1, n2) Cell-specific One-sided Overall

α̂D
1,1 α̂D

2,2 α̂R α̂L α̂P α̂PY α̂D

(10, 10) .0414a,e .0430a,e .0782b,e .1531b,e .1285b,e .0620b,e .0413a,c

(10, 30) .0318a,e .0492e .0845b,e .1397b,e .1434b,e .0536e .0383a,e

(10, 50) .0265a,e .0466e .0958b,e .0561b,e .0670b,e .0323a,e .0490e

(30, 10) .0453a,e .0285a,e .0777b,e .1412b,e .1412b,e .0508e .0376a,e

(30, 30) .0494e .0474e .0800b,e .1147b,e .1338b,e .0871b,e .0447a,e

(30, 50) .0592b,e .0500e .0832b,e .1127b,e .1233b,e .0783b,e .0437a,e

(50, 10) .0481e .0267a,e .0969b,e .0549b,e .0660b,e .0309a,e .0499e

(50, 30) .0518e .0604b,e .0827b,e .1204b,e .1297b,e .0785b,e .0447a,e

(50, 50) .0457a,e .0444a,e .0804b,e .1026b,e .1401b,e .1009b,e .0454a,e

(50, 100) .0533c .0518e .0923b,e .1114b,e .1260b,e .0958b,e .0528e

(100, 50) .0503e .0522e .0903b,e .1079b,e .1245b,e .0946b,c .0485e

(100, 100) .0487e .0465e .0954b,e .1069b,e .1344b,e .1077b,c .0467e

The empirical size notation and superscript labeling are as in Table 6

7 Examples

We illustrate the tests on two example data sets: Dixon’s swamp tree data (Dixon
2002b) and an artificial data set. We present the corresponding NNCTs, test statis-
tics, and edge correction results for both examples. Since an outer buffer zone is not
provided in these examples, inner buffer zone correction is the only type of buffer
zone correction we can apply. Moreover, since the regions are rectangular, we can also
apply toroidal edge correction in these examples.

7.1 Swamp tree data

Dixon (2002b) illustrates NN-methods on tree species in a 50 m by 200 m rectangular
plot of hardwood swamp in South Carolina, USA. The plot contains trees from 13
different tree species, of which we only consider the live trees from two species,
namely, black gums and bald cypresses. If spatial interaction among the less frequent
species were important, a more detailed 12 × 12 NNCT-analysis should be performed.
For more detail on the data, see Dixon (2002b). The locations of these trees in the
study region are plotted in Fig. 2.

Dixon (2002a) applies his methodology for this data set assuming the null pattern
is the RL of tree species to the given locations. But it is more reasonable to assume that
the locations of the tree species a priori result from different processes. Hence the more
appropriate null hypothesis would be the CSR independence pattern, which implies
that NNCT-test results are conditional ones. The question of interest is whether the two
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Fig. 2 The scatter plots of the locations of black gum trees (solid circles) and bald cypress trees (triangles)

Table 8 The NNCT for swamp tree data (top left) and the artificial data (bottom left) and the corresponding
percentages (right). B.G. = black gums, B.C. = bald cypresses

Swamp tree data NN NN

B.G. B.C. Sum B.G. B.C. Sum

Base B.G. 149 33 182 82% 18% 67%

B.C. 43 48 91 47% 53% 23%

Sum 192 581 273 34% 66% 100%

Artificial data NN NN

X Y Sum X Y Sum

Base X 30 20 50 60% 40% 50%

Y 19 31 50 38% 62% 50%

Sum 49 51 100 49% 51% 100%

tree species are segregated, associated, or do not deviate from the CSR independence
pattern. The corresponding NNCT and the percentages are provided in Table 8. The
percentages for the cells are based on the sample size of each species. That is, for
example 82% of black gums have NNs from black gums, and remaining NNs of
black gums are from bald cypresses. The row and column percentages are marginal
percentages with respect to the total sample size. The percentage values are also
suggestive of segregation, especially for black gum trees.

For the raw data (i.e., data not corrected for edge effects), we find Q = 178 and
R = 156. The test statistics are provided in Table 9, where X 2

D stands for Dixon’s
overall segregation test, X 2

P and X 2
PY for Pielou’s test without and with Yates’ cor-

rection, respectively, Zn for the directional Z -test. The p-values are for the general
alternative of deviation from CSR independence for X 2

D , X 2
P , and X 2

PY ; and for Zn ,
the first p-value in the parenthesis is for the association alternative, while the sec-
ond is for the segregation alternative. Observe that all two-sided tests are significant,
implying significant deviation from CSR independence. The directional (one-sided)
tests indicate that black gum trees and bald cypresses are significantly segregated.
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Table 9 The values of the NNCT-test statistics and the corresponding p-values (in parenthesis) for the
swamp tree data (top) and artificial data set (bottom)

Correction Cell-specific One-sided Overall

Z D
11 Z D

22 Zn X 2
P X 2

PY X 2
D

Test statistics and the associated p-values for swamp tree data

None 4.47 3.54 5.90 34.84 33.20 23.77

(<.0001) (.0004) (≈ 1, <.0001) (<.0001) (<.0001) (<.0001)

Toroidal 4.31 3.31 5.62 31.60 30.04 21.29

(<.0001) (.0009) (≈ 1, <.0001) (<.0001) (<.0001) (<.0001)

Buffer zone 3.95 4.04 6.08 37.00 35.10 23.39

(k = 0) (.0001) (.0001) (≈ 1, <.0001) (<.0001) (<.0001) (<.0001)

Buffer zone 3.61 4.08 5.90 34.77 32.86 21.92

(k = 1) (.0003) (.0001) (≈ 1, <.0001) (<.0001) (<.0001) (<.0001)

Test statistics and the associated p-values for the artificial data

None 1.38 1.64 2.20 4.84 4.00 3.36

(.1670) (.1000) (.9861, .0139) (.0278) (.0455) (.1868)

Toroidal 1.38 1.38 2.00 4.00 3.24 2.65

(.1672) (.1672) (.9772, .0228) (.0455) (.0719) (.2660)

Buffer zone 1.07 1.28 1.72 2.95 2.22 2.09

(k = 0) (.2843) (.2004) (.9572, .0428) (.0857) (.1365) (.3511)

Buffer zone 0.61 0.58 0.81 0.66 0.32 0.54

(k = 1) (.5391) (.5597) (.7922, .2078) (.4156) (.5697) (.7637)

X 2
D : Dixon’s overall segregation test, X 2

P and X 2
PY : Pielou’s test without and with Yates’ correction,

respectively, Zn : directional Z -test. The p-values are for the general alternative of any deviation from CSR
independence except for Zn , for which the first p-value in the parenthesis is for the association alternative,
while the second is for the segregation alternative

Table 9 also contains the p-values when the edge correction methods are applied.
The toroidal correction does slightly change the test statistics, but not the conclusions.
For the inner buffer zone correction, we first estimate the density of the combined
species, namely λ̂ = (n1 + n2)/Ar where Ar is the area of the study region. Let W be
the distance from a randomly chosen event to its NN, then under CSR independence,

E[W ] = 1
/ (

2
√

λ
)

and Var[W ] = (4 − π)/(4 π λ), where λ is the intensity of the

point process (Dixon 2002b). So, we move the boundaries inside the rectangular study

area by E[W ]+k
√

Var[W ] = 1
/ (

2
√

λ̂
)
+k

√

(4 − π)
/ (

4 π λ̂
)

where k determines

how much of the study region is regarded as the buffer zone. We implement the inner
buffer zone correction with k = 0, 1, 2, 3, but only present the results for k = 0, 1, since
each case yields similar test statistics and the same conclusions.

Based on the NNCT-tests, we conclude that the tree species exhibit significant devi-
ation from the CSR independence pattern. Considering Fig. 2 and the corresponding
NNCT in Table 8, this deviation is toward the segregation of the tree species. However,
the results of NNCT-tests pertain to small scale interaction, i.e., at about the average
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Fig. 3 Second-order properties of swamp tree data. Functions plotted are Ripley’s univariate L-functions
L̂i i (t) − t for i = 1, 2, and bivariate L-function L̂12(t) − t where i = 1 for black gums and i = 2 for bald
cypresses. The thick dashed lines around 0 are the upper and lower 95% confidence bounds for the L-
functions based on Monte Carlo simulation under the CSR independence pattern. Notice also that vertical
axes are differently scaled

NN distances. To understand (possible) causes of the segregation and the type and level
of interaction between the tree species at different scales (i.e., distances between the
trees) we also provide Ripley’s univariate and bivariate L-functions in Fig. 3, where
the spatial interaction is analyzed for distances up to 50 m.

In Fig. 3, we present the plots of Ripley’s univariate L-function L̂ii (t) − t for
both species, and bivariate L-function L̂12(t) for the pair of tree species. Due to
the symmetry of Li j (t), we omit L̂21(t). We also present the upper and lower 95%
confidence bounds for each L̂ii (t)−t and L̂12(t)−t under CSR independence. Observe
that black gums exhibit significant aggregation for distances t > 1 m (the L11(t) − t
curve is above the upper confidence bound); bald cypresses exhibit no deviation from
CSR around t � 5 m, then they exhibit significant spatial aggregation for t up to 30 m,
then for larger distances (t > 45 m) they exhibit spatial regularity. Observe also that
black gums and bald cypresses are significantly segregated for distances up to t ≈ 42 m
(L̂12(t)− t is below the lower confidence bound), for larger distances their interaction
does not deviate significantly from CSR independence. Therefore, the segregation of
the species might be due to different levels and types of aggregation of the species in
the study region. Note also that average NN distance for swamp tree data is 3.08 ± 1.70
(mean ± standard deviation) and results of bivariate L-function and NNCT-analysis
agree for distances around t = 3 m.

7.2 Artificial data set

In the swamp tree example, although the expected NNCT cell counts (not presented)
are different for the NNCT-tests and p-values for Dixon’s tests are larger than others,
we have the same conclusion: there is strong evidence for segregation of tree species.
Below, we present an artificial example, a random sample of size 100 (with 50 X -points
and 50 Y -points uniformly generated on the unit square). The question of interest is
the spatial interaction between X and Y classes. We plot the locations of the points in
Fig. 4 and the corresponding NNCT together with percentages are provided in Table 8.
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Fig. 4 The scatter plots of the
locations of X points (solid
circles) and Y points (triangles)
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Observe that the percentages are suggestive of mild segregation, with equal degree for
both classes.

The data is generated to resemble the CSR independence pattern, so we assume the
null pattern is CSR independence, which implies that our inference will be a conditional
one. Observe that in Table 9, Pielou’s tests are significant while Dixon’s test are not,
which might be interpreted as evidence of deviation from CSR independence. The
graph in Fig. 4 is not suggestive of any such deviation from CSR independence, and
the dependence between NNCT cell counts might be confounding the conclusions
based on Pielou’s tests. With toroidal correction, all p-values increase, but only for
Pielou’s test with Yates’ correction becomes insignificant after the correction. With
buffer zone correction with k = 0, all p-values get to be insignificant, except for the
one-sided test for segregation. Furthermore, with k = 1, the changes in p-values are
more dramatic. We also have similar changes with k = 2, 3 (not presented). Thus, inner
buffer zone edge correction, might make a big difference if the pattern is a close call
between CSR independence and segregation/association. That is, if a segregation test
has a p-value about .05, when a subregion is reserved as the inner buffer zone, either we
might have a pattern different from CSR independence in the area for the base points
(i.e., RO\Rb) or after the loss of data in the buffer zone the power of the tests might
decrease. We also point out that, inner and outer buffer zone correction methods are not
recommended in literature for spatial pattern analysis with, e.g., Ripley’s K -function
(Yamada and Rogersen 2003), and we concur with this suggestion for NNCT-tests.

Since Pielou’s and Dixon’s tests give different results in terms of significance, we
also provide Ripley’s univariate and bivariate L-functions in Fig. 5, where the spatial
interaction is analyzed for distances up to t = 0.25. Observe that X points exhibit
significant regularity for distances .18 < t < .24 and no deviation from CSR for other
distance values. Y points do not deviate significantly from CSR for all distances
considered, although they are close to being regular. Observe also that X and Y points
are significantly associated for distances around t ≈ 0.06 and t ≈ 0.10, for all other
distances their interaction does not deviate significantly from CSR independence.
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Fig. 5 Second-order properties of the artificial data. Functions plotted are Ripley’s univariate L-functions
L̂i i (t) − t for i = 1, 2, and bivariate L-functions L̂12(t) − t where i = 1 for X and i = 2 for Y points. The
thick dashed lines around 0 are the upper and lower 95% confidence bounds for the L-functions based on
Monte Carlo simulation under the CSR independence pattern. Notice also that vertical axes are differently
scaled

Hence we conclude that the significant segregation implied by Pielou’s test seems
to be a false alarm, since in fact, the spatial interaction between the points is not
significantly different from CSR independence. Note also that average NN distance
for the artificial data is .052 ± .03 and results of the bivariate L-function and NNCT-
analysis agree around t = .05.

8 Discussion and conclusions

In this article we discuss segregation tests based on nearest neighbor contingency
tables (NNCTs). These NNCT-tests include Pielou’s test (with or without Yates’ cor-
rection), Dixon’s cell-specific and overall tests, and the newly introduced one-sided
versions of Pielou’s tests. A summary of the test statistics together with the underly-
ing assumptions, the appropriate null hypotheses, and the quantities the statistics are
conditional on are presented in Table 10.

Pielou’s and Dixon’s tests were both defined under the null hypothesis of random
labeling (RL) of a fixed set of points (Pielou 1961; Dixon 1994, 2002a). It has been
shown that Pielou’s test is not appropriate for testing RL, but Dixon’s tests are. The
main problem with Pielou’s NNCT-tests (including the one-sided versions) discussed
in this article is the dependence between trials (i.e., categorization of (base, NN) pairs)
and between the NNCT cell counts.

In this article, we extend the use of the NNCT-tests for the CSR of points from
two classes (i.e., CSR independence). We demonstrate that Pielou’s tests are liberal
for rejecting RL or CSR independence, while Dixon’s tests are appropriate for large
samples. For smaller samples (i.e., when some cell count in the NNCT is ≤5) we
recommend the Monte Carlo randomization version for NNCT-tests. We also show
that Pielou’s tests are only appropriate for a NNCT based on a random sample of (base,
nearest neighbor (NN)) pairs (which is not a realistic situation in practice). We prove
the consistency of the tests under appropriate null hypotheses; evaluate the empirical
size performance of these tests based on an extensive Monte Carlo simulation study
under RL, CSR independence, and independence of cell counts and rows in Sect. 5.
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Based on the Monte Carlo analysis, for moderate to large sample sizes Dixon’s tests
are recommended.

Under CSR independence, edge or boundary effects might be a potential concern
for the NNCT-tests. Based on Monte Carlo analysis for edge correction methods,
with buffer zone correction, we find that the uncorrected and corrected results are
not significantly different. In particular, buffer zone correction methods (with larger
distances than the average NN distances) are not recommended, as they are wasteful
procedures and do not serve the purpose of correcting for the edge effects. The outer
buffer zone correction with large buffer areas is redundant hence not worth the effort,
while inner buffer zone correction with large buffer areas is wasteful and might cause
bias and loss of power in the analysis. With toroidal correction only significant change
occurs for Dixon’s overall change, but corrected versions are usually liberal. Hence
edge effects are not significantly confounding the results of the NNCT-tests (under
CSR independence).

In this article, NNCTs are based on NN relations using the usual Euclidean distance.
But, this method can be extended to the case that NN relation is based on dissimilar-
ity measures between observations in finite or infinite dimensional space. It is even
possible to have situations that are completely non-spatial and yet one can conduct
NNCT analysis based on dissimilarity measures. In this general context the NN of
object x refers to the object with the minimum dissimilarity to x . The extension of RL
pattern is straightforward, but extra care should be taken for such an extension of CSR
independence. For example, in either case, the term Q (in Dixon’s tests) which is the
number of points with shared NNs needs to be revised as Q̃ : = 2

∑N
k = 1

(k
2

)
Qk . We

conjecture that these tests when applied to other fields for high dimensional data and
NN relations based on dissimilarity measures, can be useful.

Acknowledgements I would like to thank Prof. Philip M. Dixon and an anonymous referee for their
comments and suggestions on earlier versions of this manuscript. Most of the Monte Carlo simulations pre-
sented in this article were executed on the Hattusas cluster of Koç University High Performance Computing
Laboratory.

Appendix

Proof of Theorem 4.1 (I) Suppose under Ho, NNCT is based on a random sample
of (base, NN) pairs. For the two-class case, we parametrize the segregation alternative
as H S

a : π̃11 = π̃21 + ε for ε ∈ (0, 1 − π̃21). Then the hypotheses become Ho : ε = 0
and H S

a : ε > 0. The rejection criterion in the theorem is equivalent to Zn > z(1−α)

where Zn is defined as in Eq. 2. Then E[Zn|Ho] = 0 and E
[
Zn|H S

a

] = ε > 0.
In the row-wise binomial framework with N11 ∼ BIN(n1, π̃11) and N21 ∼ BIN(n2,

π̃12) being independent, consider Tn = (N11/n1 − N21/n2). Under Ho, E[Tn|
Ho] = 0 and under H S

a , the expected value of Tn becomes E
[
Tn|H S

a

] =ε > 0. Under
both null and alternative hypotheses the test statistic (Tn −E[Tn])/√Var[Tn] has nor-
mal distribution asymptotically. By an appropriate application of Slutsky’s Theorem,

Zn = (N11/n1 − N21/n2)
√

n1 n2 n
C1 C2

and (Tn −E[Tn])/√Var[Tn] have the same asymp-

totic distribution. Hence the size of the test is α. Furthermore, consistency follows by
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the asymptotic normality. The consistency for spatial association for the two-class
case follows similarly.

In the multinomial framework with N = (N11, N12, N21, N22) ∼ M (n, ν̃1κ̃1,

ν̃1κ̃2, ν̃2κ̃1, ν̃2κ̃2), we parametrize the segregation alternative as H S
a : E [N11/n] =

ν̃1 κ̃1 + ε. Consider the test statistic Tn : = N11/n − ν̃1 κ̃1. Then expected value of
Tn under Ho is E[Tn|Ho] = 0 and (Tn − E[Tn])/√Var[Tn] is approximately nor-
mal for large n under both null and alternative hypotheses. By an appropriate appli-
cation of Slutsky’s Theorem and some algebraic manipulations, one can see that
(Tn − E[Tn])/√Var[Tn] and Z̃n given in Eq. 3 are asymptotically equivalent and
converge in law to the standard normal distribution under Ho and the same normal
distribution under Ha . So, the test has size α and using Tn , consistency of the test
for H S

a follows. The consistency for spatial association for the two-class case follows
similarly.

(II) Under RL or CSR independence, E[Tn] = n1 − 1

n − 1
− n1

n − 1
= −1

n − 1
which con-

verges to zero as n → ∞. Let VarI I [Tn] be the variance of Tn under RL or CSR
independence and VarI [Tn] be the variance of Tn under the case that (base, NN) pairs
are independent. Then our claim (which is proved below) that

VarI I [Tn] > VarI [Tn] (9)

for large n. Hence, Tn rejects RL or CSR independence in favor of segregation or
spatial association more frequently than it should; i.e., it is liberal in rejecting these
null patterns, or equivalently, its nominal significance level is larger than the pre-
specified level α. However, under the above parametrization of segregation, we have
E

[
Tn|H S

a

] = ε > 0 and VarI I [Tn] converges to zero as n → ∞. Hence, consistency
for segregation follows. Consistency for the spatial association alternative follows
similarly. ��

Proof of the Claim in Eq. 9 For large n, the probabilities in Eq. 7 take the form

pii = ν2
i , pi j = νi ν j , piii = ν3

i , pii j = ν2
i ν j ,

pii j j = ν2
i ν2

j , piiii = ν4
i for i, j ∈ {1, 2}.

Then variance of Tn under RL or CSR independence is

VarI I [Tn] = Var[N11/n1] + Var[N21/n2] − 2 Cov[N11/n1, N21/n2].

Using Eq. 6 in Sect. 3.3.1 and Eq. 6 in (Dixon 2002a), we have,

Var[N11/n1] = 1

n2 ν2
1

[
(n + R) ν2

1 + (2 n − 2 R + Q) ν3
1 + (n2 − 3 n − Q + R) ν4

1 − (n ν2
1 )2

]

= 1

n2

[
n + R + (2 n − 2 R + Q) ν1 + (R − 3 n − Q) ν2

1

]
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and

Var[N21/n2] = 1

n2 ν2
2

[
n ν1 ν2 + Q ν2

2 ν1 + (n2 − 3 n−Q + R) ν2
1 ν2

2 − (n ν1 ν2)
2
]

= 1

n2 ν2

[
n ν1 + Q ν1 ν2 + (R − 3 n − Q) ν2

1 ν2

]

and

Cov[N11/n1, N21/n2]
= 1

n2 ν1 ν2

[
(n − R − Q) ν2

1 ν2 + (n2 − 3 n − Q + R) ν3
1 ν2 − n2 ν3

1 ν2

]

= 1

n2

[
(n − R − Q) ν1 + (R − 3 n − Q) ν2

1

]
.

Hence by algebraic manipulations, we get

VarI I [Tn] = n + R

n2 + ν1

n ν2
.

Furthermore, under RL or CSR independence, κi = νi for i = 1, 2. Then for large
n, variance of Tn under RL or CSR independence is

VarI [Tn] = π11(1 − π11)

n1
+ π21(1 − π21)

n2
= ν1 κ1(1 − ν1 κ1)

n ν1
+ ν2 κ1(1 − ν2 κ1)

n ν2

= ν2
1 (1 − ν2

1 )

n ν1
+ ν2 ν1(1 − ν2 ν1)

n ν2
= ν1(1 − ν2

1 )

n ν1
+ ν1(1 − ν2 ν1)

n ν2

= ν1 (2 − ν1)

n
.

Then we need to show that,
n + R

n
+ ν1

ν2
= 1+ R

n
+ ν1

ν2
> ν1 (2−ν1) which trivially

follows, since 1 > ν1 (2 − ν1) which follows from (ν1 − 1)2 > 0. ��
Proof of Theorem 4.2 (I) Suppose under Ho, NNCT is based on a random sample of

(base, NN) pairs. In the two-class case, deviations from Ho are as in Theorem 4.1. With
such a deviation from Ho; i.e., under Ha , for large n, X 2

P is approximately distributed
as a χ2 distribution with non-centrality parameter λ(ε) and 1 degrees of freedom (d.f.),
which is denoted as χ2

1 (λ(ε)). The non-centrality parameter is a quadratic form which
can be written as µ(ε)′ A µ(ε) for some positive definite 2 × 2 matrix A of rank 1 (see
Moser 1996) hence λ(ε) > 0 under Ha . Then as n → ∞, the null and alternative
hypotheses are equivalent to Ho : λ = 0 versus Ha : λ = λ(ε) > 0. Then the size of
the test is α and the consistency follows.
(II) Under RL or CSR independence, the dependence in the row sums or column
sums, which causes the reduction in d.f. is not the only type of dependence present
in the NNCT. In addition to this, the NNCT cell counts are also dependent due to
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reflexivity and shared NN structure. Hence, even under RL or CSR independence, the
corresponding distribution is still a scaled version of central χ2 distribution, but has a
larger variance than χ2

1 distribution, hence the nominal level of the test is larger than
the prespecified α. On the other hand, as n → ∞, the power of the test goes to 1. ��
Proof of Theorem 4.3 Consider the one-sided alternative with Ha : πi j > νi j . Let
Tn = Ni j/n − νi j . Then (Tn − E[Tn])/√Var[Tn] = Z D

i j . Under RL, E[Tn] = 0 and
Var[Tn] is given in Eq. 6. Consider the parametrization of the alternative as Ha :
πi j = νi j + ε for ε ∈ (0, 1 − νi j ). Then under Ha , E[Tn|Ha] = ε > 0. As ni → ∞,
Nii have asymptotic normal distribution (Cuzick and Edwards 1990). This implies
N12 is also asymptotically normal, as n1 → ∞, since N12 = n1 − N11. Similarly,
N21 has asymptotically normal distribution as n2 → ∞. Thus under both null and
alternative hypothesis, (Tn − E[Tn])/√Var[Tn] has asymptotic normal distribution.
Then the size of the test is α and consistency follows. The consistency for the other
types of alternatives follow similarly. ��
Proof of Theorem 4.4 Under RL, Y = N − E[N] is approximately distributed as
N (0, �) for large n. Let �− be the generalized inverse of � whose rank is 2. Then
by Theorem 3.1.2 of Moser (1996), under Ho, Y′�−Y ∼ χ2

2 (λ = 0). Hence the test
has size α. Consider any deviation from Ho. Then under Ha , E[Y|Ha] = µa and Y
have multivariate normal distribution with mean µa . Then by Theorem 3.1.2 of Moser
(1996), under Ha , Y′�−Y ∼ χ2

2 (λ = µ′
a�−µa). Since �− is positive definite and

µa is nonzero, the mean of the quadratic form X 2
D is λ + 2 with λ > 0. So for large

N , the null and alternative hypotheses are equivalent to Ho : λ = 0 and Ha : λ > 0.
Then consistency follows. ��
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