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a b s t r a c t

Multivariate interaction between two or more classes (or species) has important
consequences inmany fields andmay causemultivariate clustering patterns such as spatial
segregation or association. The spatial segregation occurs when members of a class tend to
be found near members of the same class (i.e., near conspecifics) while spatial association
occurswhenmembers of a class tend to be foundnearmembers of the other class or classes.
These patterns can be studied using a nearest neighbor contingency table (NNCT). The
null hypothesis is randomness in the nearest neighbor (NN) structure, which may result
from – among other patterns – random labeling (RL) or complete spatial randomness (CSR)
of points from two or more classes (which is called the CSR independence, henceforth).
New versions of overall and cell-specific tests based on NNCTs (i.e., NNCT-tests) are
introduced and compared with Dixon’s overall and cell-specific tests and various other
spatial clustering methods. Overall segregation tests are used to detect any deviation from
the null case, while the cell-specific tests are post hoc pairwise spatial interaction tests that
are applied when the overall test yields a significant result. The distributional properties
of these tests are analyzed and finite sample performance of the tests are assessed by an
extensiveMonte Carlo simulation study. Furthermore, it is shown that the newNNCT-tests
have better performance in terms of Type I error and power estimates. The methods are
also applied on two real life data sets for illustrative purposes.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate clustering patterns such as segregation and association may result from multivariate interaction between
two or more classes (or species). Such patterns are of interest in ecological sciences and other application areas. See, for
example, Pielou (1961), Whipple (1980) and Dixon (1994, 2002). For convenience and generality, we refer to the different
types of points as ‘‘classes’’ (which are widely termed as ‘marks’ in the point pattern analysis literature (Cressie, 1993)),
but the class can stand for any characteristic of an observation at a particular location. For example, the spatial segregation
pattern has been investigated for species (Diggle, 2003), age classes of plants (Hamill andWright, 1986), and sexes of dioecious
plants (Nanami et al., 1999). Many of the epidemiological applications are for a two-class system of case and control labels
(Waller and Gotway, 2004). For simplicity, we discuss the spatial clustering patterns between two and three classes only;
the extension to the case with more classes is straightforward. The null pattern is usually one of the two (random) pattern
types: random labeling (RL) or complete spatial randomness (CSR). We consider twomajor types of spatial clustering patterns
as alternatives: segregation and association. Segregation (association) occurs when members of a given class have NNs that
are more (less) frequently of the same (other) class than would be expected if there were randomness in the NN structure.
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In statistical and other literature,many univariate andmultivariate spatial clustering tests have been proposed (Kulldorff,
2006). These include comparison of Ripley’s K and L-functions (Ripley, 2004), comparison of nearest neighbor (NN)
distances (Cuzick and Edwards, 1990; Diggle, 2003), and analysis of nearest neighbor contingency tables (NNCTs) which are
constructed using the NN frequencies of classes (Pielou, 1961; Meagher and Burdick, 1980). Pielou (1961) proposed various
tests and Dixon (1994) introduced an overall test of segregation, cell-specific and class-specific tests based on NNCTs in a
two-class setting and extended his tests tomulti-class case in (Dixon, 2002). For the two-class case, Ceyhan (2006) discussed
these tests and demonstrated that Pielou’s test is liberal under CSR independence or RL and only appropriate for a random
sample of (base, NN) pairs. Furthermore, he introduced three new overall segregation tests based on NNCTs and suggested
an empirical adjustment for Pielou’s test (Ceyhan, 2008a).
In this article, we introduce a new overall segregation test and new cell-specific tests of segregation based on NNCTs

for testing spatial clustering patterns in a multi-class setting. We compare these tests with Dixon’s NNCT-tests which are
introduced for testing against the RL of points (Dixon, 1994). We extend the use of these tests for the CSR independence
pattern also. We also compare the NNCT-tests with Ripley’s K or L-functions and pair correlation function g(t) (Stoyan
and Stoyan, 1994), which are methods for second-order analysis of point patterns. We only consider completely mapped
data; i.e., for our data sets, the locations of all events in a defined area are observed. We show through simulation that the
newly proposed cell-specific tests perform better (in terms of empirical size and power) than Dixon’s cell-specific tests.
Likewise the new overall test tends to have higher power compared to Dixon’s overall test under segregation of the classes.
Furthermore, we demonstrate that NNCT-tests and Ripley’s L-function and related methods (i.e., second-order analysis)
answer different questions about the pattern of interest.
Weprovide the null and alternative patterns in Section 2, describe theNNCTs in Section 3, provide the cell-specific tests in

Section 4, overall tests in Section 5, empirical significance levels in the two- and three-class cases in Section 6, rejection rates
of the tests under various Poisson processes in Section 7, empirical power comparisons under the segregation in Section 8,
under the association alternatives in Section 9, examples in Section 10, and our conclusions and guidelines for using the
tests in Section 11.

2. Null and alternative patterns

In the univariate spatial point pattern analysis, the null hypothesis is usually complete spatial randomness (CSR) (Diggle,
2003). To investigate the spatial interaction between two or more classes in a multivariate process, usually there are
two benchmark hypotheses: (i) independence, which implies two classes of points are generated by a pair of independent
univariate processes and (ii) random labeling (RL), which implies that the class labels are randomly assigned to a given set
of locations in the region of interest (Diggle, 2003). In this article, we will consider two random pattern types as our null
hypotheses: CSR of points from two classes (this pattern will be called the CSR independence, henceforth) or RL. In the CSR
independence pattern, points from each of the two classes independently satisfy the CSR pattern in the region of interest.
Our null hypothesis is

Ho : randomness in the NN structure.

Although CSR independence and RL are not same, they lead to the same null model in NNCT-tests, since a NNCT does not
require spatially-explicit information. That is, when the points from two classes are assumed to be independently uniformly
distributed over the region of interest, i.e., under the CSR independence pattern, or when only the labeling (or marking) of a
set of fixed points is considered, i.e., under the RL pattern, there is randomness in the NN structure. The distinction between
CSR independence and RL is very important when defining the appropriate null model in practice. Goreaud and Pélissier
(2003) state that CSR independence implies that the two classes are a priori the result of different processes (e.g., individuals
of different species or age cohorts), whereas RL implies that some processes affect a posteriori the individuals of a single
population (e.g., diseased vs. non-diseased individuals of a single species). We provide the differences in the proposed tests
under these two patterns. For amore detailed discussion of CSR and RL patterns, see the technical report by Ceyhan (2008b).
However, in the ecological and epidemiological settings, CSR independence is the exception rather than rule.

Furthermore, it is conceivable for othermodels to imply randomness in the NN structure also.We also consider patterns that
deviate from stationarity or homogeneity in the point process. In particular, we consider various types of Poisson cluster
processes (Diggle, 2003) and other inhomogeneous Poisson processes (Baddeley and Turner, 2005). Randomness in the
NN structure will hold if both classes independently follow the same process with points having the same support. For
example, in a Poisson cluster process, NN structure will be random if parents are the same for each class which is not
realistic in practical situations. If classes have different parent sets, then the Poisson cluster process will imply segregation
of the classes. If parents and offspring are treated as two different classes, then Poisson cluster process will imply association
of the two classes. Further, if the two classes are from the same inhomogeneous Poisson pattern, again randomness in the
NN structurewill follow. Butwhen the two classes follow different inhomogeneous Poisson patternswhose point intensities
differ in space, it might imply the segregation or association of the classes.
As clustering alternatives, we consider twomajor types of spatial patterns: segregation and association. Segregation occurs

if the NN of an individual is more likely to be of the same class as the individual than to be from a different class; i.e., the
members of the same class tend to be clumped or clustered (see, e.g., Pielou (1961)). For instance, one type of plantmight not
grow well around another type of plant and vice versa. In plant biology, one class of points might represent the coordinates
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Table 1
The NNCT for two classes

NN class Sum
Class 1 Class 2

Base class Class 1 N11 N12 n1
Class 2 N21 N22 n2

Sum C1 C2 n

of trees froma specieswith large canopy, so that other plants (whose coordinates are the other class of points) that need light
cannot grow (well or at all) around these trees. See, for instance, Dixon (1994) and Coomes et al. (1999). In epidemiology,
one class of points might be the geographical coordinates of residences of cases and the other class of points might be the
coordinates of the residences of controls. Furthermore, social and ethnic segregation of residential areas can be viewed as a
special type of segregation. Given the locations of the residences, the ethnic identity or social status of the residents can be
viewed as class labels assigned randomly or not. For example, the residents of similar social status or same ethnic identity
might tend to gather in certain neighborhoods which is an example of segregation as opposed to RL of the residences.
Association occurs if the NN of an individual is more likely to be from another class than to be of the same class as the

individual. For example, in plant biology, the two classes of points might represent the coordinates of mutualistic plant
species, so the species depend on each other to survive. As another example, the points fromone classmight be the geometric
coordinates of parasitic plants exploiting the other plant whose coordinates are the points of the other class.
The patterns of segregation and association do not only result frommultivariate interaction between the classes. It is also

conceivable to have either of these patterns without any interaction between the point processes; for example, consider
the case where species happen to have the same or different fine-scale habitat preferences. Each of the two patterns of
segregation and association are not symmetric in the sense that, when two classes are segregated (or associated), they do
not necessarily exhibit the same degree of segregation (or association). For example, when points from each of two classes
labeled as X and Y are clustered at different locations, but class X is loosely clustered (i.e., its point intensity in the clusters
is smaller) compared to class Y so that classes X and Y are segregated but class Y is more segregated than class X . Similarly,
when class Y points are clustered around class X points but not vice versa, classes Y and X are associated, but class Y is
more associated with class X compared to the other way around. Although it is not possible to list all of the many different
forms of segregation (and association), its existence can be tested by an analysis of the NN relationships between the classes
(Pielou, 1961).

3. Nearest neighbor contingency tables

NNCTs are constructed using the NN frequencies of classes. We describe the construction of NNCTs for two classes;
extension to multi-class case is straightforward. Consider two classes with labels {1, 2}. Let Ni be the number of points from
class i for i ∈ {1, 2} and n be the total sample size, so n = N1 + N2. If we record the class of each point and the class of its
NN, the NN relationships fall into four distinct categories: (1, 1), (1, 2); (2, 1), (2, 2) where in cell (i, j), class i is the base
class, while class j is the class of its NN. That is, the n points constitute n (base, NN) pairs. Then each pair can be categorized
with respect to the base label (row categories) and NN label (column categories). Denoting Nij as the frequency of cell (i, j)
for i, j ∈ {1, 2}, we obtain the NNCT in Table 1 where Cj is the sum of column j; i.e., number of times class j points serve
as NNs for j ∈ {1, 2}. Furthermore, we adopt the convention that random variables are denoted by upper case letters and
fixed quantities are denoted by lower case letters. Hence, column sums and cell counts are random, while row sums and the
overall sum are fixed quantities in our NNCT.
By construction, if Nij is larger than expected, then class j serves as NN more frequently to class i than expected, which

implies segregation if i = j and association of class jwith class i if i 6= j. On the other hand, ifNij is smaller than expected, then
class j serves as NN less frequently to class i than expected, which implies lack of segregation if i = j and lack of association
of class jwith class i if i 6= j.
Pielou (1961) used Pearson’s χ2 test of independence for testing segregation. Due to the ease in computation and

interpretation, Pielou’s test of segregation is used frequently (Meagher and Burdick, 1980). For example, Pielou’s test is
used for the segregation betweenmales and females in dioecious species (see, e.g., Herrera (1988) and Armstrong and Irvine
(1989)) and between different species (Good and Whipple, 1982). However Pielou’s test is not appropriate for completely
mapped data (Meagher and Burdick, 1980; Dixon, 1994), since the χ2 test of independence requires independence between
cell-counts (and rows or columns also), which is violated under CSR independence or RL. In fact, independence between
cell-counts is violated for spatial data in general and in particular it is violated under the null patterns, so Pielou’s test is not
of the desired size. In fact, Ceyhan (2006) showed that it is liberal under CSR independence or RL. The inappropriateness of
Pielou’s test was first noted byMeagher and Burdick (1980) who identify the main source of it to be reflexivity of (base, NN)
pairs. A (base, NN) pair (X, Y ) is reflexive if (Y , X) is also a (base, NN) pair. As an alternative, they suggest using Monte Carlo
simulations for Pielou’s test. Dixon (1994) derived the appropriate asymptotic sampling distribution of cell counts using
Moran join count statistics (Moran, 1948) and hence the appropriate test which also has a χ2-distribution asymptotically.



Author's personal copy

E. Ceyhan / Computational Statistics and Data Analysis 53 (2009) 2786–2808 2789

4. Cell-specific tests of segregation

4.1. Dixon’s cell-specific test of segregation

The level of segregation can be estimated by comparing the observed cell counts to the expected cell counts in a NNCT.
Dixon demonstrates that under RL, one can write down the cell frequencies as Moran join count statistics (Moran, 1948).
He then derives the means, variances, and covariances of the cell counts (i.e., frequencies) (see, Dixon (1994, 2002)).
Under RL, the expected count for cell (i, j) is

E[Nij] =
{
ni(ni − 1)/(n− 1) if i = j,
ni nj/(n− 1) if i 6= j, (1)

where ni is the fixed sample size for class i for i = 1, 2, . . . , q. Observe that the expected cell counts depend only on the size
of each class (i.e., row sums), but not on column sums.
The test statistic suggested by Dixon is given by

ZDij =
Nij − E[Nij]√

Var[Nij]
, (2)

where

Var[Nij] =
{
(n+ R) pii + (2 n− 2 R+ Q ) piii + (n2 − 3 n− Q + R) piiii − (n pii)2 if i = j,
n pij + Q piij + (n2 − 3 n− Q + R) piijj − (n pij)2 if i 6= j,

(3)

with pxx, pxxx, and pxxxx are the probabilities that a randomly picked pair, triplet, or quartet of points, respectively, are the
indicated classes and are given by

pii =
ni (ni − 1)
n (n− 1)

, pij =
ni nj

n (n− 1)
,

piii =
ni (ni − 1) (ni − 2)
n (n− 1) (n− 2)

, piij =
ni (ni − 1) nj

n (n− 1) (n− 2)
,

piiii =
ni (ni − 1) (ni − 2) (ni − 3)
n (n− 1) (n− 2) (n− 3)

, piijj =
ni (ni − 1) nj (nj − 1)
n (n− 1) (n− 2) (n− 3)

.

(4)

Furthermore, R is twice the number of reflexive pairs and Q is the number of points with shared NNs, which occurs when
two or more points share a NN. Then Q = 2 (Q2+ 3Q3+ 6Q4+ 10Q5+ 15Q6)where Qk is the number of points that serve
as a NN to other points k times. Under RL, Q and R are fixed quantities, as they depend only on the location of the points,
not the types of NNs. So the sampling distribution is appropriate under RL (see also Remark 5.1) and ZDii asymptotically
has N(0, 1) distribution. But unfortunately, for q > 2 the asymptotic normality of the off-diagonal cells in NNCTs is not
rigorously established yet, although Dixon (2002) showed the approximate normality for large samples by extensive Monte
Carlo simulations. One-sided and two-sided tests are possible for each cell (i, j) using the asymptotic normal approximation
of ZDij (Dixon, 1994).
Under CSR independence, the expected cell counts in Eq. (1) and the cell-specific test in Eq. (2) and the relevant discussion

are similar to the RL case. The only difference is that under RL, the quantitiesQ andR are fixed,while under CSR independence
they are random. That is, under CSR independence, ZDij asymptotically has N(0, 1) distribution conditional on Q and R.

4.2. New cell-specific tests of segregation

In standard cases like multinomial sampling with fixed row totals and conditioning on the column totals, the expected
cell count for cell (i, j) in contingency tables is E[Nij] =

Ni Cj
n . We first consider the difference∆ij := Nij −

Ni Cj
n for cell (i, j).

Notice that under RL, Ni = ni are fixed, but Cj are random quantities and Cj =
∑q
i=1 Nij, hence∆ij = Nij −

ni Cj
n . Then under

RL, E[∆ij] =
(
ni(ni−1)
(n−1) −

n2i
n

)
I(i = j) +

(
ni nj
(n−1) −

ni nj
n

)
I(i 6= j) (Ceyhan, 2008b). Notice that the expected value of ∆ij is not

zero under RL. Hence, instead of∆ij, we suggest the following test statistic:

Tij =


Nij −

(ni − 1)
(n− 1)

Cj if i = j,

Nij −
ni

(n− 1)
Cj if i 6= j.

(5)

Then we have E[Tij] = 0. For the variance of Tij, we have
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Var[Tij] =


Var[Nij] +

(ni − 1)2

(n− 1)2
Var[Cj] − 2

(ni − 1)
(n− 1)

Cov[Nij, Cj] if i = j,

Var[Nij] +
n2i

(n− 1)2
Var[Cj] − 2

ni
(n− 1)

Cov[Nij, Cj] if i 6= j,
(6)

where Var[Nij] are as in Eq. (3), Var[Cj] =
∑q
i=1 Var[Nij]+

∑
k6=i
∑
i Cov[Nij,Nkj] and Cov[Nij, Cj] =

∑q
k=1 Cov[Nij,Nkj]with

Cov[Nij,Nkl] are as in Eqs. (4)–(12) of Dixon (2002).
As a new cell-specific test, we propose

ZNij =
Tij√

Var[Tij]
. (7)

Recall that in the two-class case, each cell count Nij has asymptotic normal distribution (Cuzick and Edwards, 1990).
Hence, ZNij also converges in law to N(0, 1) as n→∞. Moreover, one and two-sided versions of this test are also possible.
Under CSR independence, the distribution of the test statistics above is similar to the RL case. The only difference is that

ZNij asymptotically has N(0, 1) distribution conditional on Q and R.
Dixon’s cell-specific test in (2) depends on the frequencies of (base, NN) pairs (i.e., cell counts), and measures deviations

from expected cell counts. On the other hand, the new cell-specific test in (7) can be seen as a difference of two statistics
and has expected value is 0 for each cell. For the cell-specific tests, the z-score for cell (i, j) indicates the level and direction
of the interaction of spatial patterns of base class i and NN class j. If ZDii > 0 (or Z

N
ii > 0) then class i exhibits segregation

from other classes and if ZDii < 0 (or Z
N
ii < 0) then class i exhibits lack of segregation from other classes. Furthermore, in the

multi-class case cell-specific test for cell (i, j)measures the interaction of class j with class i. When i = j this interaction is
the segregation for class i, but if i 6= j, it is the association of class j with class i. Hence for i 6= j the cell-specific test for cell
(i, j) is not symmetric, as interaction of class j with class i could be different from the interaction of class i with class j. The
new cell-specific tests use more of the information in the NNCT compared to Dixon’s tests, hence they potentially will have
better performance in terms of size and power.
In the two-class case, segregation of class i from class j implies lack of association between classes i and j (i 6= j) and lack

of segregation of class i from class j implies association between classes i and j (i 6= j), since ZDi1 = −Z
D
i2 for i = 1, 2. The same

holds for the new cell-specific tests, since ZN1j = −Z
N
2j for j = 1, 2. In the multi-class case with q > 2, a positive z-score for

the diagonal cell (i, i) indicates segregation, but it does not necessarily mean lack of association between class i and class j
(i 6= j), since it could be the case that class i could be associated with one class, yet not associated with another one.

5. Overall tests of segregation

5.1. Dixon’s overall test of segregation

In the multi-class case with q classes, combining the q2 cell-specific tests in Section 4.1, Dixon (2002) suggests the
quadratic form to obtain the overall segregation test as follows.

CD = (N− E[N])′Σ−D (N− E[N]), (8)

whereN is the q2×1 vector of q rows of NNCT concatenated row-wise, E[N] is the vector of E[Nij]which are as in Eq. (1),ΣD
is the q2 × q2 variance–covariance matrix for the cell count vector N with diagonal entries being equal to Var[Nii] and off-
diagonal entries being Cov[Nij, Nkl] for (i, j) 6= (k, l). The explicit forms of the variance and covariance terms are provided
in Dixon (2002). Moreover, Σ−D is a generalized inverse of ΣD (Searle, 2006) and

′ stands for the transpose of a vector or
matrix. Then under RL, CD has a χ2q(q−1) distribution asymptotically. The test statistics Z

D
ij are dependent, hence their squares

do not sum to CD. Under CSR independence, the distribution of CD is conditional on Q and R.

5.2. A new overall test of segregation

Instead of combining the cell-specific tests in Section 4.1, we can also combine the new cell-specific tests in Section 4.2.
Let T be the vector of q2Tij values, i.e.,

T = [T11, T12, . . . , T1q, T21, T22, . . . , T2q, . . . , Tqq]′,

and let E[T] be the vector of E[Tij] values. Note that E[T] = 0. Hence to obtain a new overall segregation test, we use the
following quadratic form:

CN = T′Σ−N T, (9)

whereΣN is the q2 × q2 variance–covariance matrix of T. Under RL, CN has a χ2(q−1)2 distribution asymptotically, since rank
ofΣN is (q− 1)2. Furthermore, the test statistics ZNij are dependent, hence their squares do not sum to CN .
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Under RL, the diagonal entries in the variance–covariance matrix ΣN are Var[Tij] which are provided in Eq. (6). For the
off-diagonal entries inΣN , i.e., Cov[Tij, Tkl]with (i, j) 6= (k, l), there are four cases to consider:
Case 1: i = j and k = l, then

Cov[Tii, Tkk] = Cov
[
Nii −

(ni − 1)
(n− 1)

Ci,Nkk −
(nk − 1)
(n− 1)

Ck

]
= Cov[Nii,Nkk] −

(nk − 1)
(n− 1)

Cov[Nii, Ck] −
(ni − 1)
(n− 1)

Cov[Nkk, Ci] +
(ni − 1)(nk − 1)

(n− 1)2
Cov[Ci, Ck]. (10)

Case 2: i = j and k 6= l, then

Cov[Tii, Tkl] = Cov
[
Nii −

(ni − 1)
(n− 1)

Ci,Nkl −
nk

(n− 1)
Cl

]
= Cov[Nii,Nkl] −

nk
(n− 1)

Cov[Nii, Cl] −
(ni − 1)
(n− 1)

Cov[Nkl, Ci] +
(ni − 1)nk
(n− 1)2

Cov[Ci, Cl]. (11)

Case 3: i 6= j and k = l, then Cov[Tij, Tkk] = Cov[Tkk, Tij],which is essentially Case 2 above.
Case 4: i 6= j and k 6= l, then

Cov[Tij, Tkl] = Cov
[
Nij −

ni
(n− 1)

Cj,Nkl −
nk

(n− 1)
Cl

]
= Cov[Nij,Nkl] −

nk
(n− 1)

Cov[Nij, Cl] −
ni

(n− 1)
Cov[Nkl, Cj] +

nink
(n− 1)2

Cov[Cj, Cl]. (12)

In all the above cases, Cov[Nij,Nkl] are as (Dixon, 2002), Cov[Nij, Cl] =
∑q
k=1 Cov[Nij,Nkl] and Cov[Ci, Cj] =∑q

k=1
∑q
l=1 Cov[Nki,Nlj].

Under CSR independence, the distribution of CN is as in the RL case, except that it is conditional on Q and R.
Dixon’s overall test combines Dixon’s cell-specific tests in one compound summary statistic, while new overall test

combines the new cell-specific tests. Hence the new overall test might have better performance in terms of size and power,
as it depends on the new cell-specific tests.

Remark 5.1 (The Status of Q and R under RL and CSR Independence). Under RL, Q and R are fixed quantities, but under CSR
independence they are random. The variances and covariances Var[Nij] and Cov[Nij,Nkl] and all the quantities depending
on these quantities also depend on Q and R. Hence under CSR independence, they are variances and covariances conditional
on Q and R. The unconditional variances and covariances can be obtained by replacing Q and R by their expectations.
Unfortunately, given the difficulty of calculating the expectations ofQ and R under CSR independence, it is reasonable and

convenient to use test statistics employing the conditional variances and covariances even when assessing their behavior
under CSR independence. Alternatively, one can estimate the expected values of Q and R empirically and substitute these
estimates in the expressions. For example, for the homogeneous planar Poisson process, we have E[Q/n] ≈ .632786 and
E[R/n] ≈ 0.621120 (estimated empirically based on 1000000 Monte Carlo simulations for various values of n on unit
square). When Q and R are replaced by 0.63n and 0.62n, respectively, we obtain the so-called QR-adjusted tests. However,
as shown in Ceyhan (2008c), QR-adjustment does not improve on the unadjusted versions. �

6. Empirical significance levels under CSR independence

6.1. The two-class case

First, we consider the two-class case with classes X and Y . We generate n1 points from class X and n2 points from class Y
both ofwhich are independently uniformly distributed on the unit square, (0, 1)×(0, 1). Hence, allX points are independent
of each other and so are Y points; and X and Y are independent data sets. Thus, we simulate the CSR independence
pattern for the performance of the tests under the null case. We generate X and Y points for some combinations of
n1, n2 ∈ {10, 30, 50, 100} and repeat the sample generation Nmc = 10 000 times for each sample size combination in
order to obtain sufficient precision of the results in reasonable time. At each Monte Carlo replication, we compute the
overall and cell-specific tests. Out of these 10000 samples the number of significant outcomes by each test at α = .05
is recorded. The empirical sizes are calculated as the ratio of number of significant results to the number of Monte Carlo
replications, Nmc . For example empirical size for Dixon’s overall test, denoted by α̂D, for a particular (n1, n2), is calculated
as α̂D :=

∑Nmc
i=1 I(CD,i ≥ χ22 (.05)) where CD,i is the value of Dixon’s overall test statistic for iteration i, χ

2
2 (.05) is the 95th

percentile of χ22 distribution, and I(·) is the indicator function.
Wepresent the empirical significance levels for theNNCT-tests in Table 2,where α̂Di,j and α̂

N
i,j are the empirical significance

levels of Dixon’s and the new cell-specific tests, respectively, α̂D is for Dixon’s and α̂N is for the new overall tests of
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Table 2
The empirical significance levels for Dixon’s and new cell-specific and overall tests in the two-class case under Ho : CSR independencewith Nmc = 10 000,
n1, n2 in {10, 30, 50, 100} at the nominal level of α = .05

Empirical significance levels under CSR independence

Sizes Dixon’s New Overall
(n1, n2) α̂D1,1 α̂D2,2 α̂N1,1 α̂N2,2 α̂D α̂N

(10, 10) .0454c .0465 .0452c .0459c .0432c .0484
(10, 30) .0306c .0485 .0413c .0420c .0440c .0434c
(10, 50) .0270c .0464 .0390c .0396c .0482 .0408c
(30, 30) .0507 .0505 .0443c .0442c .0464 .0453c

(30, 50) .0590` .0522 .0505 .0510 .0443c .0512
(50, 50) .0465 .0469 .0500 .0502 .0508 .0506
(50, 100) .0601` .0533 .0514 .0515 .0560` .0525
(100, 100) .0493 .0463c .0485 .0486 .0504 .0489
c : empirical size significantly less than .05; i.e., the test is conservative. `: empirical size significantly larger than .05; i.e., the test is liberal. α̂Di,i and α̂

N
i,i are

for the empirical significance levels of Dixon’s and the new cell-specific tests, respectively, for i = 1, 2; α̂D is for Dixon’s and α̂N is for the new overall tests
of segregation.

segregation. The empirical sizes significantly smaller (larger) than .05 are marked with c (`), which indicate that the
corresponding test is conservative (liberal). The asymptotic normal approximation to proportions is used in determining
the significance of the deviations of the empirical sizes from .05. For these proportion tests, we also use α = .05 as the
significance level. With Nmc = 10 000, empirical sizes less than .0464 are deemed conservative, greater than .0536 are
deemed liberal at α = .05 level. Notice that in the two-class case α̂D1,1 = α̂

D
1,2 and α̂

D
2,1 = α̂

D
2,2, since N12 = n1 − N11 and

N21 = n2 − N22. Similarly α̂N1,1 = α̂
N
2,1 and α̂

N
1,2 = α̂

N
2,2, since T11 = −T21 and T12 = −T22. So only α̂

D
1,1, α̂

D
2,2, α̂

N
1,1, α̂

N
2,2, α̂D,

and α̂N are presented in Table 2.
Observe that Dixon’s cell-specific test for cell (2, 2) (i.e., the diagonal entry with base and NN classes are from the larger

class) is about the desired level for almost all sample size combinations. On the other hand, Dixon’s cell-specific test for cell
(1, 1) (i.e., the diagonal entry for the smaller class) is about the desired level for equal and large samples (i.e., n1 = n2 ≥ 30).
is conservative or liberal when sample sizes are different. The new cell-specific tests yield very similar empirical sizes for
both cells (1, 1) and (2, 2) and are both conservative when n1 ≤ 30 and about the desired level otherwise. However, new
cell-specific test for cell (1, 1) is less conservative than that of Dixon’s, since T11 is less likely to be small because it also
depends on the column sum.
Dixon’s overall test is about the desired level for equal and large samples (i.e., n1 = n2 ≥ 30), is conservative when at

least one sample is small (i.e., ni ≤ 10), liberal when sample sizes are large but different (i.e., 30 ≤ n1 < n2). It is most
conservative for (n1, n2) = (10, 50). The new overall segregation test is conservative for small samples and has the desired
level for moderate to large samples.
For Dixon’s cell-specific tests, if at least one sample size is small, the normal approximation is not appropriate. Dixon

(1994) recommendsMonte Carlo randomization instead of the asymptotic approximation for the corresponding cell-specific
testswhen cell counts are≤10; and for the overall testwhen some cell counts are≤10.When sample sizes are small, ni ≤ 10
or large but different 30 ≤ n1 < n2 it is more likely to have cell count for cell (1, 1) to be <5, however for cell (2, 2) cell
counts are usually much larger than 5, hence normal approximation is more appropriate for cell (2, 2). Moreover, we not
only vary sample sizes but also the relative abundance of the classes in our simulation study. The differences in the relative
abundance of classes seem to affect Dixon’s tests more than the new tests. See for example cell-specific tests for cell (1, 1)
for sample sizes (30, 50) and (50, 100), where Dixon’s test suggests that class X (i.e., class with the smaller size) is more
segregated which is only an artifact of the difference in the relative abundance. Likewise, Dixon’s overall test seems to be
affected more by the differences in the relative abundance. On the other hand, the new tests are more robust to differences
in the relative abundance, since they depend on both row and column sums.

6.2. The three-class case

The symmetry in cell counts for rows in Dixon’s cell-specific tests and columns in the new cell-specific tests occur only
in the two-class case. Therefore, in order to better evaluate the performance of cell-specific tests in the absence of such
symmetry, we also consider the three-class case with classes X , Y , and Z under CSR independence. We generate n1, n2, n3
points distributed independently uniformly on the unit square (0, 1)× (0, 1) from classes X, Y , and Z , respectively, at each
of some combinations of n1, n2, n3 ∈ {10, 30, 50, 100} for Nmc = 10 000 times. The empirical sizes and the significance of
their deviation from .05 are calculated as in Section 6.1.
We plot the empirical significance levels for the tests in Fig. 1. The actual values of empirical significance levels are

tabulated in the technical report by Ceyhan (2008b). Notice that when at least one class is small (i.e., ni ≤ 10) tests are
usually conservative, with the Dixon’s cell-specific tests being the most conservative. The empirical sizes for the new cell-
specific tests are closer to the nominal level for all sample size combinations, while Dixon’s cell-specific tests fluctuate
around .05 with larger deviations. In the three-class case, both of the overall tests exhibit similar performance in terms of
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Fig. 1. The empirical size estimates of Dixon’s overall and cell-specific tests (circles (◦)) and the new overall and cell-specific tests (triangles (4))
for cells (1, 1)–(3, 3) under the CSR independence pattern in the three-class case. The horizontal lines are located at .0464 (upper threshold for
conservativeness), .0500 (nominal level), and .0536 (lower threshold for liberalness). The horizontal axis labels are: 1 = (10, 10, 10), 2 = (10, 10, 30),
3 = (10, 10, 50), 4 = (10, 30, 30), 5 = (10, 30, 50), 6 = (30, 30, 30), 7 = (10, 50, 50), 8 = (30, 30, 50), 9 = (30, 50, 50), 10 = (50, 50, 50),
11 = (50, 50, 100), 12 = (50, 100, 100), 13 = (100, 100, 100).

empirical size, with Dixon’s test being slightly more conservative for small samples. Thus, the new cell-specific tests are
more robust to the differences in sample sizes (i.e., differences in relative abundance) and have empirical size closer to .05
compared to Dixon’s cell-specific tests.

Remark 6.1 (Main Result of Monte Carlo Simulations for Empirical Sizes). Dixon (1994) recommends Monte Carlo
randomization test when some cell count(s) are smaller than 10 in a NNCT for his cell-specific tests and when some cell
counts are less than 5 for his overall tests and we concur with his suggestion and extend it to the new cell-specific test for
cell (i, j) when sum of column j is <10 which happens less frequently than Nij being <10. Dixon’s and new overall tests
exhibit similar performance in terms of empirical sizes: they are usually conservative for small samples and are about the
nominal level otherwise. Furthermore, Dixon’s cell-specific and overall tests are confounded by the differences in the relative
abundance of the classes. On the other hand, the new cell-specific tests are more robust to differences in relative abundance
of the classes. �

Remark 6.2 (Empirical Significance Levels under RL). The NNCT-tests we consider are conditional under CSR independence
but not under RL. To evaluate their empirical size performance better, we also performMonte Carlo simulations under three
RL cases in the two-class case and two RL cases in the three-class case in Ceyhan (2008b). In these RL cases, we apply RL
procedure to points fromahomogeneous Poison process or fromvarious cluster processes.We find that for large samples the
new cell-specific tests have better empirical size performance compared to Dixon’s cell-specific tests and are more robust
to differences in relative abundance. The new and Dixon’s overall tests exhibit similar performance under each RL Case. �

7. Finite sample performance of NNCT-tests under various Poisson and inhomogeneous point processes

We provide the finite sample performance of the NNCT-tests under point patterns that are different from CSR
independence or RL. In particular, we will consider various versions of Poisson cluster processes and some other
inhomogeneous processes (Diggle, 2003).

First Version of (Bivariate) Poisson Cluster Process (PCP1(np, n1, n2, σ )): In this process, first we generate np parents
iid on the unit square, (0, 1)× (0, 1). Then for each parent n1/np offspring are generated for sample X and n2/np for sample
Y from radially symmetric Gaussian distribution with parameter σ . Hence we generate n1X and n2Y points, respectively. In
the first case, we use the same parent set for both X and Y points. In the second case, we use different parent sets for each
of X and Y points.

Second Version of (Bivariate) Poisson Cluster Process (PCP2(np, n1, n2, σ )): In this process, we generate np parents and
n1X and n2Y offspring as in the first version PCP1, except the offspring are randomly allocated amongst the parents.
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For both versions of the above Poisson cluster processes, we take σ ∈ {0.05, .10, .20} and (n1, n2) ∈ {(30, 30), (30, 50),
(50, 50)}.

(Bivariate) Matern Cluster Process (MCP(κ, n1, n2, r, µ)): In this process, first we generate a Poisson point process of
‘‘parent’’ points with intensity κ . Then each parent point is replaced by a random cluster of points. The number of points
in each cluster are random with a Poisson(µ) distribution, and the points are placed independently and uniformly inside
a disc of radius r centered on the parent point. The parent points are not restricted to lie in the unit square; the parent
process is effectively the uniform Poisson process on the infinite plane. We consider κ = 5, r ∈ {.05, .10, .20} for both
X and Y points and µ = n1/5 for X points and µ = n2/5 for Y points. In case 1, we use the same parents for both X
and Y offspring, while in case 2, we generate different sets of parents with κ = 5. For each of the above cases, we take
(n1, n2) ∈ {(50, 50), (50, 100), (100, 100)}. For more on Matern cluster processes, see Mat’ern (1986) and Waagepetersen
(2007).

(Bivariate) Inhomogeneous Poisson Cluster Process (IPCP(λ1(x, y), λ2(x, y))): In this process, the intensity of the
Poisson process for the first sample (i.e., sample X) is set to be λ1(x, y) which is a function of (x, y). We generate a
realization of the inhomogeneous Poisson process with intensity function λ1(x, y) at spatial location (x, y) inside the unit
square by random ‘‘thinning’’. That is, we first generate a uniform Poisson process of intensity λ(x, y), then randomly
delete or retain each point, independently of other points, with retention probability p(x, y) = λ1(x, y)/`max where
`max = sup(x,y)∈(0,1)×(0,1) λ1(x, y). The second sample (i.e., sample Y ) is generated similarly. We take λ1(x, y) = n1

√
x+ y

for sample X for all the three cases we will consider. Then for sample Y , we take λ2(x, y) = n2
√
x+ y in case 1,

λ2(x, y) = n2
√
x y in case 2, and λ2(x, y) = n2|x − y| in case 3. That is, in case 1 X and Y points are from the same

inhomogeneous Poisson process; in cases 2 and 3, they are from different processes. For each of the above cases, we take
(n1, n2) ∈ {(50, 50), (50, 100), (100, 100)}. For more on inhomogeneous Poisson cluster processes, see Diggle (2003) and
Baddeley and Turner (2005).
The empirical rejection rates of the NNCT-tests are provided in Table 7. Observe that under PCP1 with same parents, the

rejection rates are slightly (but significantly) larger than 0.05. Hence under PCP1 with the same parents, the two classes are
slightly segregated. Under PCP1 with different parents, the two classes are strongly segregated. Under PCP2 with the same
parents, the two classes satisfy randomness in the NN structure, while under PCP2 with different parents, the two classes
are strongly segregated. Notice that under these implementations of PCP, the rejection rates decrease as σ increases; i.e., the
level of segregation is inversely related to σ . Under MCP with the same parents, the two classes satisfy randomness in NN
structure; butwith different parents, the classes are strongly segregated. Furthermore, as r increases, the level of segregation
decreases underMCPwith different parents. Under IPCP patterns, the two classes satisfy randomness in NN structure as long
as the density functions are same or similar (see cases 1 and 2); but if the density functions are very different, we observe
moderate segregation between the two classes. Notice also that this segregation is detected better by the new NNCT-tests.

8. Empirical power analysis under segregation

8.1. The two-class case

For the segregation alternatives, we generate Xi
iid
∼ U((0, 1− s)× (0, 1− s)) and Yj

iid
∼ U((s, 1)× (s, 1)) for i = 1, . . . , n1

and j = 1, . . . , n2. Notice the level of segregation is determined by the magnitude of s ∈ (0, 1). We consider the following
three segregation alternatives:

H IS : s = 1/6, H IIS : s = 1/4, and H IIIS : s = 1/3. (13)

Observe that, from H IS to H
III
S (i.e., as s increases), the segregation gets stronger in the sense that X and Y points tend to

form one-class clumps or clustersmore andmore frequently.We calculate the power estimates using the asymptotic critical
values based on the standard normal distribution for the cell-specific tests and the corresponding χ2-distributions for the
overall tests.
The power estimates based on the asymptotic critical values are plotted in Fig. 2. The actual values of empirical power

estimates are provided in the technical report by (Ceyhan, 2008b). We omit the power estimates of the cell-specific tests for
cells (1, 2) and (2, 1), since β̂D1,1 = β̂

D
1,2 and β̂

D
2,1 = β̂

D
2,2; and β̂

N
1,1 = β̂

N
2,1 and β̂

N
1,2 = β̂

N
2,2. Observe that, for both cell-specific

tests, as n = (n1 + n2) gets larger, the power estimates get larger; for the same n = (n1 + n2) values, the power estimate
is larger for classes with similar sample sizes; and as the segregation gets stronger, the power estimates get larger at each
sample size combination. For both cells (1, 1) and (2, 2), the new cell-specific tests have higher power estimates compared
to those of Dixon’s. Furthermore, the new overall test has higher power estimates compared to Dixon’s overall test.

8.2. The three-class case

For the segregation alternatives, we generate Xi
iid
∼ U((0, 1 − 2s) × (0, 1 − 2s)), Yj

iid
∼ U((2s, 1) × (2s, 1)), and

Z`
iid
∼ U((s, 1 − s) × (s, 1 − s)) for i = 1, . . . , n1, j = 1, . . . , n2, and ` = 1, . . . , n3. Notice that the level of segregation is
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Fig. 2. The empirical power estimates for Dixon’s tests (circles (◦)) and new tests (triangles (4)) under the segregation alternatives in the two-class case.
The horizontal axis labels: 1 = (10, 10), 2 = (10, 30), 3 = (10, 50), 4 = (30, 30), 5 = (30, 50), 6 = (50, 50), 7 = (50, 100), 8 = (100, 100). β̂D and
β̂N stand for empirical power estimates for Dixon’s and new overall tests, respectively. β̂Dii and β̂

N
ii stand for empirical power estimates for Dixon’s and

cell-specific tests, respectively, for cell (i, i)with i = 1, 2.

determined by the magnitude of s ∈ (0, 1/2). We consider the following three segregation alternatives:

HS1 : s = 1/12, HS2 : s = 1/8, and HS3 : s = 1/6. (14)

Observe that, from HS1 to HS3 (i.e., as s increases), the segregation gets stronger. Furthermore, for each segregation
alternative, X and Y are more segregated compared to Z and X or Z and Y .
We plot the empirical power estimates for the cell-specific tests in Fig. 3 and for the overall tests in Fig. 4. The test

statistics are mostly positive for diagonal cells which implies segregation of classes and are mostly negative for off-diagonal
cells which implies lack of association between classes. For both cell-specific tests for the diagonal cells (i, i) for i = 1, 2, 3,
as equal sample sizes get larger, the power estimates get larger under each segregation alternative; and as the segregation
gets stronger, the power estimates get larger for each cell at each sample size combination. The higher degree of segregation
between X and Y is reflected in cells (1, 1) and (2, 2). Furthermore, since the sample sizes satisfy n1 ≤ n2 in our simulation
study, cell (2, 2) power estimates tend to be larger. Since class Z is less segregated from the other two classes, cell (3, 3)
power estimates tend to be lower than the other diagonal cell statistics. Notice also that off-diagonal cells are more severely
affected by the differences in relative abundance of the classes.
The higher degree of segregation between classes X and Y can also be observed in power estimates for cells (1, 2) and

(2, 1), since more segregation of these classes imply higher negative values in these cells’ test statistics. The lesser degree
of segregation between classes X and Z can be seen in cells (1, 3) and (3, 1), as they yield much lower power estimates
compared to the other off-diagonal cells. Although Y and Z are segregated in the samedegree asX and Z , the power estimates
for cells (2, 3) and (3, 2) are larger than those for cells (1, 3) and (3, 1), since (n1+ n3) ≤ (n2+ n3) in our simulation study
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Fig. 3. The empirical power estimates of Dixon’s cell-specific tests (circles (◦)) and the new cell-specific tests (triangles (4)) under the segregation
alternatives HS1 (solid lines), HS2 (dashed lines), and HS3 (dotted lines) in the three-class case. The horizontal axis labels are: 1 = (10, 10, 10),
2 = (10, 10, 30), 3 = (10, 10, 50), 4 = (10, 30, 30), 5 = (10, 30, 50), 6 = (30, 30, 30), 7 = (10, 50, 50), 8 = (30, 30, 50), 9 = (30, 50, 50),
10 = (50, 50, 50), 11 = (50, 50, 100), 12 = (50, 100, 100), 13 = (100, 100, 100). Notice that they are arranged in the increasing order for the first
and then the second and then the third entries. The size values for discrete sample size combinations are joined by piecewise straight lines for better
visualization.

Fig. 4. The empirical power estimates of Dixon’s overall test (circles (◦)) and the new overall test (triangles (4)) under the segregation alternatives HS1
(solid lines), HS2 (dashed lines), and HS3 (dotted lines) in the three-class case. The horizontal axis labels are as in Fig. 3.

and larger sample sizes imply higher power under the same degree of segregation. Furthermore, the power estimates for the
new cell-specific tests tend to be higher for each cell under each segregation alternative for each sample size combination.
In summary, in the three-class case, new cell-specific tests have better performance in terms of power. The performance of
the overall tests are similar to the performance of cell-specific tests for the diagonal cells: power estimates increase as the
segregation gets stronger; power estimates increase as the sample sizes increase; and new overall test has higher power
than Dixon’s overall test.
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Fig. 5. The empirical power estimates for Dixon’s tests (circles (◦)) and new tests (triangles (4)) under the association alternatives in the two-class case.
The horizontal axis labels and power estimate notation are as in Fig. 2.

9. Empirical power analysis under association

9.1. The two-class case

For the association alternatives, we consider three cases also. In each case, first we generate Xi
iid
∼ U((0, 1)× (0, 1)) for

i = 1, 2, . . . , n1. Then we generate Yj for j = 1, 2, . . . , n2 as follows. For each j, we pick an i randomly, then generate Yj
as Xi + RYj

(
cos Tj, sin Tj

)′ where RYj iid∼ U(0, ry) with r ∈ (0, 1) and Tj
iid
∼ U(0, 2π). In the pattern generated, appropriate

choices of ry will imply association between classes X and Y . That is, it will be more likely to have (X, Y ) or (Y , X) NN
pairs than same-class NN pairs (i.e., (X, X) or (Y , Y )). The three values of ry we consider constitute the following association
alternatives;

H IA: ry = 1/4, H IIA : ry = 1/7, and H IIIA : ry = 1/10. (15)

Observe that, from H IA to H
III
A (i.e., as ry decreases), the association gets stronger in the sense that X and Y points tend

to occur together more and more frequently. By construction, for similar sample sizes the association between X and Y are
at about the same degree as association between Y and X . For very different samples, larger sample is associated with the
smaller but the abundance of the larger sample confounds its association with the smaller.
The empirical power estimates are plotted in Fig. 5. For the actual values of empirical power estimates, see Ceyhan

(2008b). Observe that the power estimates increase as the association gets stronger at each sample size combination and
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the power estimates increase as the equal sample sizes increase and as the very different sample sizes increase under each
association alternative.
Dixon’s cell-specific test for cell (1, 1) has extremely poor performance for very different small samples (i.e., n1 ≤ 10

and n1 6= n2). On the other hand, for larger samples, the empirical power estimates get larger as association gets stronger
at each sample size combination. When samples are large, class Y is more associated with class X if n2 > n1 and this is
reflected in the empirical power estimates. The power estimates for the new cell-specific test for cell (1, 1) increase as the
association gets stronger and equal sample sizes increase. Both tests have the lowest power estimates for (n1, n2) = (10, 50),
since cell counts and column sums could be very small for this sample size combination. Dixon’s cell-specific test for cell
(2, 2) has higher power estimates under weak association compared to those of the new cell-specific test. When association
gets stronger, power estimates for Dixon’s cell-specific test for cell (2, 2) has higher power for smaller samples and lower
power for larger samples compared to the new cell-specific tests. The new cell-specific test has the worst performance for
(n1, n2) = (10, 50), in which case, column sums could be small. Dixon’s overall test has similar power as the new overall
test for smaller samples; and new overall test has higher power estimates for larger samples.

9.2. The three-class case

For the association alternatives, we also consider three cases. In each case, first we generate Xi
iid
∼ U((0, 1)× (0, 1)) for

i = 1, 2, . . . , n1. Then we generate Yj and Z` for j = 1, 2, . . . , n2 and ` = 1, 2, . . . , n3 as in Section 9.1 with parameters
ry and rz , respectively. In the pattern generated, appropriate choices of ry (and rz) values will imply association between
classes X and Y (and X and Z). The three association alternatives are

HA1 : ry = 1/7, rz = 1/10, HA2 : ry = 1/10, rz = 1/20, HA3 : ry = 1/13, rz = 1/30. (16)

Observe that, from HA1 to HA3 (i.e., as ry and rz decrease), the association between X and Y gets stronger in the sense that Y
points tend to be found more and more frequently around the X points. The same holds for X and Z points. Furthermore, by
construction, classes X and Z are more associated compared to classes X and Y .
We plot the power estimates for the cell-specific tests in Fig. 6 and for the overall tests in Fig. 7. The test statistics tend

to be negative for the diagonal cells, which implies lack of segregation for the classes; positive for cells (1, 2), (2, 1), (1, 3),,
and (3, 1), which implies association between classes X and Y and between classes X and Z; negative for cells (2, 3) and
(3, 2), which implies lack of association (and perhaps mild segregation) between classes Y and Z .
At each sample size combination, as the association gets stronger, the power estimates increase. The higher degree of

association between X and Z compared to that of X and Y are reflected in higher power estimates for cell (1, 3) compared
to cell (1, 2). For the same reason, power estimates for cell (3, 1) are higher than those for cell (2, 1). For cells (1, 2), (2, 1),
(1, 3), and (3, 1) the power estimates get larger as the equal sample sizes increase. The new cell-specific tests have higher
power for cells (1, 2) and (1, 3) and Dixon’s cell-specific tests have higher power for cells (2, 1) and (3, 1). By construction
the classes Y and Z are not associated, instead they can be viewed as mildly segregated from each other. The test statistics
for cells (2, 3) and (3, 2) are negative to indicate such segregation or lack of association between classes Y and Z . However,
cell (3, 2) power estimates are much larger than cell (3, 2), which implies that class Z can be viewed as more segregated
from class Y . As for the diagonal cells, the higher power estimates for cell (1, 1) for larger samples are indicative of high
degree of association of classes Z and Y with class X . Such association, by construction, is barely reflected in cells (2, 2) and
(3, 3).
The power estimates for the overall tests tend to increase as the association gets stronger at each sample size

combination; as the sample sizes tend to increase, except for the sudden decrease at (n1, n2, n3) = (10, 50, 50), in which
case cell (1, 1) counts and column1 sums tend to be very small. Furthermore, Dixon’s overall test has higher power compared
to the new overall test. So Dixon’s overall test is recommended for the association alternative over the new overall test.

Remark 9.1 (Main Result of Monte Carlo Power Analysis). Considering the empirical significance levels and power estimates,
for small samples we recommendMonte Carlo randomization tests. For large samples, when testing against the segregation
alternatives, we recommend the new overall and cell-specific tests over the use of Dixon’s tests, as the new tests either have
about the same power as or have larger power than Dixon’s tests. Furthermore, if one wants to see the level of segregation
between pairs of classes, we recommend using the diagonal cells, (i, i) for i = 1, 2, 3 as they are more robust to the
differences in class sizes (i.e., relative abundance) and more sensitive to the level of segregation. When testing against the
association alternatives, we recommend both Dixon’s and new overall and cell-specific tests. �

Remark 9.2 (Power Comparison Based on Monte Carlo Critical Values). When some cell counts or column sums are <5 (or
<10), then it will not be appropriate to use the asymptotic approximation hence the asymptotic critical values for the
overall (or cell-specific) tests of segregation. See Remark 6.1 for further detail. In order to better evaluate the empirical
power performance of the tests, for each sample size combination, we generate two and three sets of points under the CSR
independence cases of Sections 6.1 and 6.2, respectively. We find the 95th percentiles of the recorded test statistics at each
sample size combination and use them as ‘‘Monte Carlo critical values’’ for the power estimation in Ceyhan (2008b). We
find that the power estimates based on the Monte Carlo critical values under segregation or association alternatives are
very similar to – but tend to be slightly larger – compared to the ones using the asymptotic critical values. Furthermore,
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Fig. 6. The empirical power estimates of Dixon’s cell-specific tests (circles (◦)) and the new cell-specific tests (triangles (4)) under the association
alternatives HA1 (solid lines), HA2 (dashed lines), and HA3 (dotted lines) in the three-class case. The horizontal axis labels are as in Fig. 3.

Fig. 7. The empirical power estimates of Dixon’s overall test (circles (◦)) and the new overall test (triangles (4)) under the association alternatives HA1
(solid lines), HA2 (dashed lines), and HA3 (dotted lines) in the three-class case. The horizontal axis labels are as in Fig. 3.

these differences do not influence the trend in the power estimates, e.g., new tests tend to have higher power based on
either asymptotic critical values or Monte Carlo critical values under segregation. �

Remark 9.3 (Edge Correction for NNCT-Tests). The CSR independence pattern assumes that the study region is unbounded
for the analyzed pattern, which is not the case in practice. So the edge (or boundary) effects might confound the test results
in the analysis of empirical (i.e., bounded) data sets if the null pattern is the CSR independence andmuch effort has gone into
the development of edge correctionsmethods (Yamada and Rogersen, 2003). Two correctionmethods for the edge effects on
NNCT-tests, namely buffer zone correction and toroidal correction, are investigated in Ceyhan (2006, 2007)where it is shown
that the empirical sizes of theNNCT-tests are not affected by the toroidal edge correction under CSR independence. However,
toroidal correction is biased for non-CSR patterns. In particular if the pattern outside the plot (which is often unknown) is not
the same as that inside it it yields questionable results (Haase, 1995; Yamada and Rogersen, 2003). The bias is more severe
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Table 3
The NNCT for Pielou’s data and the corresponding percentages (left), where the cell percentages are with respect to the row sums (i.e., species sizes) and
the marginal percentages are with respect to the total sample size; the overall and cell-specific test statistics for Dixon’s tests (middle) and the new tests
(right) and the corresponding p-values (in parentheses) based on asymptotic approximation, denoted by pasy , for Pielou’s data

NN Sum
D.F. P.P.

Base D.F. 137 23 160
P.P. 38 30 68
Sum 175 53 228

NN
D.F. P.P.

Base D.F. 86% 15% 70%
P.P. 56% 44% 30%

77% 23% 100%

Dixon’s tests
Overall test
CD = 19.67 (pasy = .0001)

Cell-specific tests
D.F. P.P.

D.F. 4.36 (<.0001) −4.36 (<.0001)
P.P. −2.29 (.0221) 2.29 (.0221)

New tests
Overall test
CN = 13.11 (pasy = .0003)

Cell-specific tests
D.F. P.P.

D.F. 3.63 (.0003) −3.61 (.0003)
P.P. −3.63 (.0003) 3.61 (.0003)

D.F.= Douglas-firs, P.P.= ponderosa pines; CD and CN stand for the value of Dixon’s and new overall test statistic, respectively.

especially when there are clusters around the edges. The (outer) buffer zone edge correction method seems to have slightly
stronger influence on the tests compared to toroidal correction. But for these tests, buffer zone correction does not change
the sizes significantly for most sample size combinations. This is in agreement with the findings of Barot et al. (1999) who
say NN methods only require a small buffer area around the study region. A large buffer area does not help much since one
only needs to be able to see far enough away from an event to find its NN. Once the buffer area extends past the likely NN
distances (i.e., about the average NN distances), it is not adding much helpful information for NNCTs. Hence we recommend
inner or outer buffer zone correction for NNCT-tests with the width of the buffer area being about the average NN distance.
We do not recommend larger buffer areas, since they are wasteful with little additional gain. For larger distances, the gain
might not be worth the effort. Empirical edge corrections are available for other nearest neighbor tests (Sinclair, 1985). They
are potentially applicable to the NNCT-tests, however the buffer zone correction analysis in Ceyhan (2007) suggests that
such a correction will not make much difference. �

10. Examples

We illustrate the tests on two ecological data sets: Pielou’s Douglas-fir/Ponderosa Pine data (Pielou, 1961) and a swamp
tree data (Good and Whipple, 1982).

10.1. Pielou’s data

Pielou (1961) used a completely mapped data set that is comprised of two tree species: Douglas-fir trees (Pseudotsuga
menziesii formerly P. taxifolia) and Ponderosa Pine (Pinus ponderosa) from a region in British Columbia. Her data set was also
used by Dixon as an illustrative example (Dixon, 1994). The question of interest is the type of spatial interaction between
the two tree species. The corresponding 2 × 2 NNCT and the percentages for each cell are provided in Table 3. The cell
percentages are with respect to the sample sizes of each species, for example, 86% of Douglas-firs have NNs from Douglas-
firs and remaining 15% of Douglas-firs have NNs from Ponderosa Pines. The row and column percentages are marginal
percentages with respect to the total sample size. The percentage values are suggestive of segregation for both species.
The raw data are not available, hence we can not perform Monte Carlo simulation nor randomization versions of the

tests. Fortunately, Pielou (1961) provided Q = 162 and R = 134, hence we can calculate the test statistics and use the
asymptotic approximation for these tests. The overall and cell-specific test statistics and the corresponding p-values (in
parentheses) based on the asymptotic approximation, denoted by pasy, are also provided in Table 3. Although the locations
of the trees are not known, they can be viewed a priori resulting from different processes rather than some process affecting
a posteriori the individuals of a single population. So themore appropriate null hypothesis is CSR independence of the trees.



Author's personal copy

E. Ceyhan / Computational Statistics and Data Analysis 53 (2009) 2786–2808 2801

Fig. 8. The scatter plot of the locations of water tupelos (triangles 4), black gum trees (pluses +), Carolina ashes (crosses ×), bald cypress trees
(diamonds �), and other trees (inverse triangles O).

Table 4
The NNCT for swamp tree data (left) and the corresponding percentages (right), where the cell percentages are with respect to the row sums and marginal
percentages are with respect to the total size

NN Sum
W.T. B.G. C.A. B.C. O.T.

W.T. 112 (52%) 40 (19%) 29 (13%) 20 (11%) 14 (9%) 215 (29%)
B.G. 38 (19%) 117 (57%) 26 (13%) 16 (8%) 8 (4%) 205 (28%)

Base C.A. 23 (15%) 23 (15%) 82 (53%) 22 (14%) 6 (4%) 156 (21%)
B.C. 19 (19%) 29 (30%) 29 (30%) 14 (14%) 7 (7%) 98 (13%)
O.T. 7 (12%) 8 (13%) 5 (8%) 7 (12%) 33 (55%) 60 (8%)

Sum 199 (27%) 217 (30%) 171 (23%) 79 (11%) 68 (9%) 734 (100%)

W.T.=water tupelos, B.G.= black gum, C.A.= Carolina ashes, B.C.= bald cypresses, and O.T.= other tree species.

Hence our inference will be a conditional one (see Remark 5.1). Observe that Dixon’s and new overall test statistics yield
significant p-values, implying some sort of deviation from CSR independence. In order to see the type of deviation, we apply
the cell-specific tests. Both versions of the cell-specific tests for each cell are significant, implying significant deviation from
CSR independence. The cell-specific test statistics are positive for the diagonal cells (1, 1) and (2, 2) (and negative for the
off-diagonal cells (1, 2) and (2, 1)), implying segregation for both species. This is in agreementwithwhat the NNCT suggests
and the findings of Dixon (1994). However, Dixon’s cell (1, 1) statistics are much larger than cell (2, 2) statistics, whichmay
be interpreted as clustering of Douglas-firs is stronger than the clustering of Ponderosa Pines. Our simulation study indicates
that this might be an artifact of the relative abundance of the tree species. On the other hand, new cell (1, 1) and cell (2, 2)
statistics are very similar, hence the segregation of both tree species are at about the same degree.

10.2. Swamp tree data

Good and Whipple (1982) considered the spatial interaction between tree species along the Savannah River, South
Carolina, USA. From this data, Dixon (2002) used a single 50m×200m rectangular plot to illustrate his NNCT-tests. All live or
dead trees with 4.5 cm ormore dbh (diameter at breast height) were recorded together with their species. The plot contains
13 different tree species, four of which comprises over 90% of the 734 tree stems. The remaining tree stemswere categorized
as ‘‘other trees’’. The plot consists of 215water tupelos (Nyssa aquatica), 205 black gums (Nyssa sylvatica), 156 Carolina ashes
(Fraxinus caroliniana), 98 bald cypresses (Taxodium distichum), and 60 stems from 8 additional species (i.e., other species).
A 5 × 5 NNCT-analysis is conducted for this data set. If segregation among the less frequent species is important, a more
detailed 12 × 12 NNCT-analysis should be performed. The locations of these trees in the study region are plotted in Fig. 8
and the corresponding 5×5 NNCT together with percentages based on row and grand sums are provided in Table 4. Observe
that the percentages and Fig. 8 are suggestive of segregation for all tree species, especially for Carolina ashes, water tupelos,
black gums, and the ‘‘other’’ trees since the observed percentages of species with themselves as the NN aremuch larger than
the row percentages.
The locations of the tree species can be viewed a priori resulting from different processes, so the more appropriate null

hypothesis is the CSR independence pattern.We calculateQ = 472 and R = 454 for this data set.We present Dixon’s overall
test of segregation and cell-specific test statistics and the associated p-values in Table 5, where pmc is the p-value based on
10000 Monte Carlo replication of CSR independence in the same plot and prand is based on Monte Carlo randomization of
the labels on the given locations of the trees 10000 times. Notice that pasy, pmc, and prand are very similar for each test. We
present the new overall test of segregation and cell-specific test statistics and the associated p-values in Table 6, where
p-values are calculated as in Table 5. Again, all three p-values in Table 6 are similar for each test.
Dixon’s and the new overall test of segregation are both significant implying significant deviation from the CSR

independence pattern for at least one pair of the tree species. Then to determine which pairs exhibit segregation or
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Table 5
Test statistics and p-values for Dixon’s overall and cell-specific tests and the corresponding p-values (in parentheses)

Dixon’s overall test
CD = 275.64 (pasy <.0001, pmc <.0001, prand <.0001)

Dixon’s cell-specific tests
W.T. B.G. C.A. B.C. O.T.

W.T.

6.39 −3.11 −2.87 −1.82 −0.94
pasy (<.0001) (.0019) (.0041) (.0682) (.3484)
pmc (<.0001) (.0014) (.0043) (.0702) (.3489)
prand (<.0001) (.0015) (.0048) (.0670) (.3286)

B.G.

−3.44 8.05 −3.09 −2.43 −2.34
pasy (.0006) (<.0001) (.0020) (.0150) (.0194)
pmc (.0004) (<.0001) (.0014) (.0179) (.0192)
prand (.0005) (<.0001) (.0012) (.0172) (.0198)

C.A.

−4.05 −3.73 8.08 0.28 −2.04
pasy (.0001) (.0002) (<.0001) (.7820) (.0410)
pmc (<.0001) (.0004) (<.0001) (.7810) (.0430)
prand (<.0001) (.0001) (<.0001) (.7580) (.0409)

B.C.

−2.18 −0.36 2.04 0.25 −0.38
pasy (.0295) (.7180) (.0418) (.8011) (.7008)
pmc (.0292) (.7129) (.0410) (.7601) (.6739)
prand (.0293) (.6861) (.0419) (.7910) (.6555)

O.T.

−3.02 −2.54 −2.47 −0.39 10.77
pasy (.0025) (.0112) (.0135) (.6952) (<.0001)
pmc (.0028) (.0112) (.0115) (.6582) (<.0001)
prand (.0021) (.0121) (.0158) (.6490) (<.0001)

W.T.=water tupelos, B.G.= black gums, C.A.= Carolina ashes, B.C.= bald cypress and O.T.= other tree species. pasy , pmc , and prand stand for the p-values
based on the asymptotic approximation, Monte Carlo simulation, and randomization of the tests, respectively.

Table 6
Test statistics and p-values for the new overall and cell-specific tests and the corresponding p-values (in parentheses)

New overall test
CN = 263.10 (pasy <.0001, pmc <.0001, prand <.0001)

New cell-specific tests
W.T. B.G. C.A. B.C. O.T.

W.T.

7.55 −4.08 −4.06 −0.74 −1.74
pasy (<.0001) (<.0001) (.0001) (.4584) (.0819)
pmc (<.0001) (<.0001) (<.0001) (.4564) (.0860)
prand (<.0001) (<.0001) (<.0001) (.4645) (.0824)

B.G.

−3.04 8.16 −4.25 −1.45 −3.27
pasy (.0023) (<.0001) (<.0001) (.1479) (.0011)
pmc (.0028) (<.0001) (<.0001) (.1550) (.0013)
prand (.0018) (<.0001) (<.0001) (.1493) (.0008)

C.A.

−3.71 −4.52 7.96 1.36 −2.77
pasy (.0002) (<.0001) (<.0001) (.1745) (.0056)
pmc (.0001) (.0001) (<.0001) (.1776) (.0064)
prand (.0001) (<.0001) (<.0001) (.1806) (.0064)

B.C.

−1.78 0.00 1.61 0.89 −0.82
pasy (.0754) (.9977) (.1081) (.3725) (.4097)
pmc (.0702) (.9952) (.1098) (.3771) (.4105)
prand (.0723) (.9958) (.1114) (.3796) (.4071)

O.T.

−2.72 −2.90 −2.94 0.21 10.71
pasy (.0066) (.0037) (.0033) (.8335) (<.0001)
pmc (.0060) (.0031) (.0027) (.8375) (<.0001)
prand (.0070) (.0036) (.0026) (.8354) (<.0001)

The labeling of the species and p-values are as in Table 5.

association, we perform the cell-specific tests. Dixon’s and the new cell-specific tests agree for all cells (i.e., pairs) in term of
significance at .05 level except for (B.G., B.C.), (BC,W.T), and (B.C., C.A.) pairs. The statistics are all negative for the off-diagonal
cells, except for (B.C., C.A.) and (C.A., B.C.) pairs. Based on the Monte Carlo simulation analysis, the new test is more reliable
to attach significance to these situations. So using the new tests, the spatial interaction is significant between each pair
which does not contain bald cypresses. That is, the new cell-specific test statistics are positive for the diagonal cells (i, i)
for i = 1, 2, . . . , 5 and are significant for i = 1, 2, 3, 5 at .05 level (which also holds for Dixon’s tests); and are negative
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for the off-diagonal cells (i, j) with i, j ∈ {1, 2, 3, 5} and i 6= j and significant for most of them. Hence each tree species
except bald cypresses exhibits significant segregation from each other. These findings are mostly in agreement with the
results of Dixon (2002). Hence except for bald cypresses, each tree species seem to result from a (perhaps) different first
order inhomogeneous Poisson process.
The results based on NNCT-tests pertain to small scale interaction at about the average NN distances. We might also be

interested in the causes of the segregation and the type and level of interaction between the tree species at different scales
(i.e., distances between the trees). To answer such questions, we also present the second-order analysis of the swamp tree
data (Diggle, 2003) using the functions (or some modified version of them) provided in spatstat package in R (Baddeley
and Turner, 2005). We use Ripley’s univariate and bivariate L-functions which are modified versions of his K -functions. The
estimator K̂(t) of K(t) is approximately unbiased for K(t) at each fixed t . Bias depends on the geometry of the study area
and increases with t . For a rectangular region it is recommended to use t values up to 1/4 of the smaller side length of
the rectangle. So we take the values t ∈ [0, 12.5] in our analysis, since the rectangular region is 50 × 200 m. But Ripley’s
K -function is cumulative, so interpreting the spatial interaction at larger distances is problematic (Wiegand et al., 2007).
The (accumulative) pair correlation function g(t) is better for this purpose (Stoyan and Stoyan, 1994). The pair correlation
function of a (univariate) stationary point process is defined as

g(t) =
K ′(t)
2π t

where K ′(t) is the derivative of K(t). Ripley’s univariate L-functions and the pair correlation functions for all trees combined
and each species for the swamp tree data are presented in Ceyhan (2008b) where it is observed that each species exhibit
spatial aggregation at different scales (i.e., at different ranges of the interpoint distances). Hence, segregation of the species
might be due to different levels and types of aggregation of the species in the study region.
We also calculate Ripley’s bivariate L-function L̂ij(t). By construction, Lij(t) is symmetric in i and j in theory, that is,

Lij(t) = Lji(t) for all i 6= j. But in practice edge corrections will render it slightly asymmetric, i.e., L̂ij(t) 6= L̂ji(t). But
the corresponding estimates are pretty close in our example, so only one bivariate plot per pair is presented. Under CSR
independence, we have Lij(t) − t = 0. If the bivariate pattern is segregation, then Lij(t) − t tends to be negative; if it is
association then Lij(t)− t tends to be positive. See Diggle (2003) for more detail. In Fig. 9, we present the bivariate plots of
L̂ij(t) − t functions together with the upper and lower (pointwise) 95% confidence bounds for each pair of species (due to
the symmetry of L̂ij(t) there are only 10 different pairs). The same definition of the pair correlation function can be applied
to Ripley’s bivariate K or L-functions as well. The benchmark value of Kij(t) = π t2 corresponds to g(t) = 1; g(t) < 1
suggests segregation of the classes; and g(t) > 1 suggests association of the classes. The bivariate pair correlation functions
for the species in swamp tree data are plotted in Fig. 10. However the pair correlation function estimates might have critical
behavior for small t if g(t) > 0 since the estimator variance and hence the bias are considerably large. This problem gets
worse especially in cluster processes (Stoyan and Stoyan, 1996). See for example Fig. 10 where the confidence bands for
smaller t values are much wider compared to those for larger t values. So pair correlation function analysis is more reliable
for larger distances and it is safer to use g(t) for distances larger than the average NN distance in the data set. Comparing
Figs. 9 and 10we see that Ripley’s L and pair correlation functions usually detect the same large-scale pattern but at different
ranges of distance values. Ripley’s L suggests that the particular pattern is significant for a wider range of distance values
compared to g(t), since values of L at small scales confound the values of L at larger scales where g(t) is more reliable to use
(Wiegand and Moloney, 2004; Loosmore and Ford, 2006).
So, in Fig. 9, we only consider distances up to the average NN distance, which is about t = 2 m. Water tupelos and black

gums exhibit significant segregation (̂L12(t) − t is below the lower confidence bound); water tupelos and Carolina ashes
are significantly segregated; water tupelos and bald cypresses do not have significant deviation from the CSR independence
pattern; water tupelos and the other trees do not deviate significantly from CSR independence. Black gums and Carolina
ashes do not deviate significantly from CSR independence; neither do the black gums and bald cypresses; black gum
and other trees are significantly segregated. Carolina ashes and bald cypresses do not deviate significantly from CSR
independence; and neither do Carolina ashes and the other trees. Likewise bald cypresses and other trees do not deviate
significantly from CSR independence.
In Fig. 10we consider distances larger than 2m, since pair correlation function is unreliable for smaller distances. Observe

that water tupelos and black gums do not deviate from CSR independence; water tupelos and Carolina ashes are segregated
for about 2.5 m and are associated for values about 6 m; water tupelos and bald cypresses are segregated for 5.5, 9.5, and
11 m and are associated for 6.5 m; water tupelos and other trees are segregated for about 7 m and are associated for 8 m;
black gums and Carolina ashes are segregated for 2–2.5, 3.5–4.5, 6–8.5, and 9.5–12 m; black gums and bald cypresses are
segregated for 3.5, 5.5–6.5, 7, and 9.5 m; black gums and other trees are segregated for 5 and 6–7.5 m; Carolina ashes and
bald cypresses are associated for 2–3, 5.5, and 7m; Carolina ashes and other trees are associated for 5 and 9–10m; and bald
cypresses and other trees are segregated for 4 m and are associated for 3–4 and 6.5–7.5 m.
While second order analysis (using Ripley’s K and L-functions or pair correlation function) provides information on the

univariate and bivariate patterns at all scales (i.e., for all distances), NNCT-tests summarize the spatial interaction for the
smaller scales (for distances about the average NN distance between the points). In particular, for the swamp tree data
average NN distance (± standard deviation) is about 1.8 (±1.04) meters and notice that Ripley’s L-function and NNCT-tests
usually yield similar results for distances about 2 m.
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Fig. 9. Second-order analysis of swamp tree data by Ripley’s bivariate L-functions L̂ij(t) − t for i, j = 1, 2, . . . , 5 and i 6= j where i = 1 stands for
water tupelos, i = 2 for black gums, i = 3 for Carolina ashes, i = 4 for bald cypresses, and i = 5 for other trees. Wide dashed lines around 0 (which is
the theoretical value) are the upper and lower (pointwise) 95% confidence bounds for the L-functions based on Monte Carlo simulations under the CSR
independence pattern. W.T.=water tupelos, B.G.= black gums, C.A.= Carolina ashes, B.C.= bald cypresses, and O.T.= other tree species.
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Fig. 10. Pair correlation functions for each pair of species in the swamp tree data.Wide dashed lines around 1 (which is the theoretical value) are the upper
and lower (pointwise) 95% confidence bounds for the L-functions based on Monte Carlo simulations under the CSR independence pattern. W.T. = water
tupelos, B.G.= black gums, C.A.= Carolina ashes, B.C.= bald cypresses, and O.T.= other tree species.
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11. Discussion and conclusions

In this article we introduce new overall and cell-specific tests of segregation based on nearest neighbor contingency
tables (NNCTs) and compare them with Dixon’s NNCT-tests and exploratory methods such as Ripley’s L-function and
pair correlation function. We demonstrate that NNCT-tests are conditional on Q and R under CSR independence, but
unconditional under RL. Based on our Monte Carlo simulations, we conclude that the asymptotic approximation for the
cell-specific-tests is appropriate only when the corresponding cell count in the NNCT is larger than 10; and for the overall
test when all cell counts are larger than 4. For smaller samples, Monte Carlo randomization versions of the tests are
recommended. For larger samples the new versions of the segregation tests have empirical significance levels closer to
the nominal level. Further, Type I error rates (empirical significance levels) of the new cell-specific tests are more robust
to the differences in relative abundance. Based on the size and power estimates, we recommend the new cell-specific and
overall tests for the segregation alternatives. For the association alternatives, we recommend both versions (i.e., Dixon’s and
the new versions) of the overall and cell-specific tests.
NNCT-tests summarize the pattern in the data set for small scales around the average NN distance between all points. On

the other hand, pair correlation function g(t) and Ripley’s classical K or L-functions and other variants provide information
on the pattern at various scales. Ripley’s classical K or L-functions can be used when the null pattern can be assumed to be
CSR independence; that is, when the null pattern assumes first-order homogeneity for each class. When the null pattern is
the RL of points from an inhomogeneous Poisson process they are not appropriate (Kulldorff, 2006); Cuzick–Edward’s k-NN
tests are designed for testing bivariate spatial interaction and mostly used for spatial clustering of cases in epidemiology;
Diggle’s D-function is a modified version of Ripley’s K -function (Diggle, 2003) and adjusts for any inhomogeneity in the
locations of, e.g., cases and controls. Furthermore, there are variants of K -function that explicitly correct for inhomogeneity
(see Baddeley et al. (2000)). Our example illustrates that for distances around the average NN distance, NNCT-tests and
Ripley’s bivariate L-function yield similar results.
The NNCT-tests and Ripley’s L-function provide similar information in the two-class case at small scales. For q-class case

with q > 2 classes, overall tests provide information on the (small-scale) multivariate spatial interaction in one compound
summary measure; while the Ripley’s L-function requires performing all bivariate spatial interaction analysis. The cell-
specific tests can serve as pairwise post hoc analysis only when the overall test is significant. Furthermore, the cell-specific
tests are testing the spatial clustering of one class or bivariate interaction between two classes as part of the multivariate
interaction between all the classes. On the other hand, Ripley’s univariate K - or L-functions are restricted to one class and
bivariate K - or L-functions are restricted to two classes they pertain to, ignoring the potentially important multivariate
interaction between all classes in the study area. However, there are forms of the J-function which is derived from the well-
knownG and F functions (van Lieshout and Baddeley, 1999) and dealwith thismulti-type setting (i.e., consider the pattern of
type i in the context of the pattern of all other types). van Lieshout and Baddeley (1999) define two basic types of J-functions.
First is a type-i-to-type-j function which considers the points of type i in the context of the points of type j. The second one
is the type-i-to-any-type function which considers the points of type i in the context of points of all types including type
i. Other forms can be derived from them by re-defining the types. For example, if we want to consider the points of type
i in the context of points of all other types, then we collapse all the other types j (i.e., all j which are not equal to i) into a
single type i′ and then use the type-i-to-type-i′ function. Several authors have written about the bivariate K -function, which
is of the type-i-to-type-j form (Diggle and Chetwynd, 1991; Haase, 1995; Diggle, 2003). Type-i-to-type-j K -function can
easily be modified to type-i-to-any-type K -function. Thus, essentially there is only one family of multi-type K -functions in
literature. But type-i-to-type-j K -function is comparablewith a NNCT analysis based on a 2×2NNCT restricted to the classes
i and j. Similarly, type-i-to-type-i′ K -function is comparable with the NNCT analysis based on a 2 × 2 NNCT with classes i
and the rest of the classes labeled as i′. Since pairwise analysis of q classes with 2× 2 NNCTs might yield conflicting results
compared to q × q NNCT analysis (Dixon, 2002), Ripley’s L-function and NNCT-tests might also yield conflicting results
at small distances. Hence Ripley’s L-function and NNCT-tests may provide similar but not identical information about the
spatial pattern and the latter might detect small-scale interaction that is missed by the former. Since the pair correlation
functions are derivatives of Ripley’s K -function, most of the above discussion holds for them also, except g(t) is reliable
only for large scale interaction analysis. Hence NNCT-tests and pair correlation function are not comparable but provide
complimentary information about the pattern in question.
Ripley’s univariate and bivariate K - or L-functions (and hence the corresponding pair correlation functions) are

symmetric (in theory) in the classes they pertain to. Cell-specific tests for diagonal cells in a NNCT are also symmetric, but
cell-specific tests for two different classes (i.e., off-diagonal cells in the NNCT) are not symmetric. Hence, at small scales, the
cell-specific test for an off-diagonal cell, provides the type and different levels of spatial interaction for the corresponding
two classes, while Ripley’s L-function and pair correlation function provide only the type of spatial interaction, but can not
distinguish the class-specific level of interaction for each of the two classes in question.
For a data set for which CSR independence is the reasonable null pattern, we recommend the overall segregation test if

the question of interest is the spatial interaction at small scales (i.e., about the mean NN distance). If it yields a significant
result, then to determine which pairs of classes have significant spatial interaction, the cell-specific tests can be performed.
One can also performRipley’sK or L-function and only consider distances up to around the averageNNdistance and compare
the results with those of NNCT analysis. If the spatial interaction at higher scales is of interest, pair correlation function is
recommended (Loosmore and Ford, 2006), due to the cumulative nature of Ripley’s K - or L-functions for larger distances. On



Author's personal copy

2808 E. Ceyhan / Computational Statistics and Data Analysis 53 (2009) 2786–2808

the other hand, if the RL pattern is the reasonable null pattern for the data, we recommend the NNCT-tests if the small-scale
interaction is of interest and Diggle’s D-function if the spatial interaction at higher scales is also of interest.
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