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Spatial Clustering Tests Based on the Domination
Number of a New RandomDigraph Family
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We use the domination number of a parametrized random digraph family called
proportional-edge proximity catch digraphs (PCDs) for testing multivariate spatial
point patterns. This digraph family is based on relative positions of data points from
various classes. We extend the results on the distribution of the domination number
of proportional-edge PCDs, and use the domination number as a statistic for testing
segregation and association against complete spatial randomness. We demonstrate
that the domination number of the PCD has binomial distribution when size of one
class is fixed while the size of the other (whose points constitute the vertices of the
digraph) tends to infinity and has asymptotic normality when sizes of both classes
tend to infinity. We evaluate the finite sample performance of the test by Monte Carlo
simulations and prove the consistency of the test under the alternatives. We find the
optimal parameters for testing each of the segregation and association alternatives.
Furthermore, the methodology discussed in this article is valid for data in higher
dimensions also.
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1. Introduction

In statistical literature, the problem of clustering received considerable attention.
The spatial interaction between two or more classes has important implications
especially for plant species; see, for example, Dixon (1994, 2002a), Stoyan and
Penttinen (2000), and Perry et al. (2006). Recently, a new clustering test based on
the relative allocation of points from two or more classes has been developed. The
method is based on a graph-theoretic approach and is used to test the spatial pattern
of complete spatial randomness (CSR) against segregation or association. Rather
than the pattern of points from one-class with respect to the ground, the patterns of
points from one class with respect to points from other classes are investigated. CSR
is roughly defined as the lack of spatial interaction between the points in a given

Received January 29, 2009; Accepted December 28, 2009
Address correspondence to Elvan Ceyhan, Department of Mathematics, Koç University,

34450 Sarıyer, Istanbul, Turkey; E-mail: elceyhan@ku.edu.tr

1363

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
1
4
:
3
8
 
2
2
 
M
a
r
c
h
 
2
0
1
1



1364 Ceyhan

study area. Segregation is the pattern in which points of one class tend to cluster
together, i.e., form one-class clumps. On the other hand, association is the pattern
in which the points of one class tend to occur more frequently around points from
the other class.

Many methods to analyze spatial clustering have been proposed in the
literature (Kulldorff, 2006). These include Ripley’s K- or L-functions (Ripley,
2004), comparison of NN distances (Cuzick and Edwards, 1990), and analysis of
nearest neighbor contingency tables (NNCTs) which are constructed using the NN
frequencies of classes (Dixon, 1994, 2002a; Pielou, 1961). The tests (i.e., inference)
based on Ripley’s K- or L-functions are only appropriate when the null pattern can
be assumed to be the CSR independence pattern, but not if the null pattern is the
random labeling (RL) of points from an inhomogeneous Poisson pattern (Kulldorff,
2006). But, there are also variants of K�t� that explicitly correct for inhomogeneity
(see Baddeley et al., 2000). Cuzick and Edward’s k-NN tests are designed for
testing bivariate spatial interaction and mostly used for spatial clustering of cases
or controls in epidemiology. Diggle’s D-function is a modified version of Ripley’s
K-function (Diggle, 2003) and is appropriate for the case in which the null pattern is
the RL of points where the points are a realization from an arbitrary point pattern.
Ripley’s and Diggle’s functions are designed to analyze univariate or bivariate
spatial interaction at various scales (i.e., inter-point distances).

In recent years, the use of mathematical graphs has also gained popularity in
spatial analysis (Roberts et al., 2000), providing a way to move beyond Euclidean
metrics for spatial analysis. Although only recently introduced to landscape ecology,
graph theory is well suited to ecological applications concerned with connectivity
or movement (Minor and Urban, 2007). Conventional graphs do not explicitly
maintain geographic reference, reducing utility of other geo-spatial information. Fall
et al. (2007) introduced spatial graphs that integrate a geometric reference system
that ties patches and paths to specific spatial locations and spatial dimensions
thereby preserving the relevant spatial information. However, after a graph is
constructed using spatial data, usually the scale is lost (see for instance, Su
et al., 2007). Many concepts in spatial ecology depend on the idea of spatial
adjacency which requires information on the close vicinity of an object. Graph
theory conveniently can be used to express and communicate adjacency information
allowing one to compute meaningful quantities related to spatial point pattern.
Adding vertex and edge properties to graphs extends the problem domain to
network modeling (Keitt, 2007). Wu and Murray (2008) proposed a new measure
based on graph theory and spatial interaction, which reflects intra-patch and inter-
patch relationships by quantifying contiguity within patches and potential contiguity
among patches. Friedman and Rafsky (1983) also proposed a graph-theoretic
method to measure multivariate association, but their method is not designed to
analyze spatial interaction between two or more classes; instead it is an extension of
generalized correlation coefficient (such as Spearman’s � or Kendall’s �) to measure
multivariate (possibly nonlinear) correlation.

Priebe et al. (2001) introduced a data random digraph called class cover catch
digraph (CCCD) in � and extended it to multiple dimensions. DeVinney et al.
(2002), Marchette and Priebe (2003), and Priebe et al. (2003a,b) demonstrated
relatively good performance of CCCDs in classification. Their methods involve
data reduction (condensing) by using approximate minimum dominating sets as
prototype sets (since finding the exact minimum dominating set is an NP-hard
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Spatial Clustering Tests Using Random Digraphs 1365

problem in general—e.g., for CCCD in multiple dimensions—(see DeVinney and
Priebe, 2006). For the domination number of CCCDs for one-dimensional data, a
SLLN result is proved in DeVinney and Wierman (2003), and this result is extended
by Wierman and Xiang (2008); furthermore, a CLT is also proved by Xiang and
Wierman (2009). The asymptotic distribution of the domination number of CCCDs
for non uniform data in � is also calculated in a rather general setting (Ceyhan,
2008a). Although intuitively appealing and easy to extend to higher dimensions,
the distribution of the domination number of CCCDs is not analytically tractable
for d > 1. As alternatives to CCCD, Ceyhan and Priebe (2003) introduced an
(unparametrized) type of PCDs called central similarity PCDs; Ceyhan and Priebe
(2005) also introduced another parametrized family of PCDs called proportional-edge
PCDs and used the domination number of this PCD with a fixed parameter for testing
spatial patterns. The relative (arc) density of the central similarity and proportional-
edge PCDs are also used for testing the spatial patterns in Ceyhan et al. (2006, 2007).
Ceyhan and Priebe (2007) derived the asymptotic distribution of the domination
number of proportional-edge PCDs for uniform data. An extensive treatment of the
PCDs based on Delaunay tessellations is available in Ceyhan (2005).

In this article, we investigate the use of the domination number of proportional-
edge PCDs, whose asymptotic distribution was computed in Ceyhan and Priebe
(2007) for testing spatial patterns of segregation and association. Furthermore, we
extend this result for the whole range of the expansion parameter in a more general
setting. In addition to the mathematical tractability and applicability to testing
spatial patterns and classification, this new family of PCDs is more flexible as it
allows choosing an optimal parameter for testing against various types of spatial
point patterns.

We define proximity maps and the associated PCDs in Sec. 2. We present the
asymptotic distribution of the domination number for uniform data in one triangle
and in multiple triangles in Sec. 3. In Sec. 4, we describe the alternative patterns
of segregation and association. In Sec. 5, we present the Monte Carlo simulation
analysis to assess the empirical size and power performance. In Sec. 6, we suggest an
adjustment for data points from the class of interest which are outside the convex
hull of data from the other class. In Sec. 7, we provide an example data set. In
Sec. 8, we describe the extension of proportional-edge PCDs to higher dimensions.
We also provide the guidelines in using this test in Sec. 9.

2. Proximity Maps and the Associated PCDs

Our PCDs are based on the proximity maps which are defined in a fairly general
setting. Let ����� be a measurable space. The proximity map N�·� is defined as
N � � → 2�, where 2� is the power set of �. The proximity region associated with
x ∈ �, denoted N�x�, is the image of x ∈ � under N�·�. The points in N�x� are
thought of as being “closer” to x ∈ � than are the points in �\N�x�. Hence, the term
“proximity” in the name proximity catch digraph. The �1-region �1�·� = �1�·��� �
� → 2� associates the region �1�x� �= 	z ∈ � � x ∈ N��z�
 with each point x ∈ �.
Proximity maps are the building blocks of the proximity graphs of Toussaint (1980);
an extensive survey on proximity maps and graphs is available in Jaromczyk and
Toussaint (1992).

The proximity catch digraph D has the vertex set � = {
p1� p2� � � � � pn

}
; and the

arc set � is defined by �pi� pj� ∈ � iff pj ∈ N�pi� for i �= j. Notice that the proximity
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1366 Ceyhan

catch digraph D depends on the proximity map N�·� and if pj ∈ N�pi�, then we call
the region N�pi� (and the point pi) catches point pj . Hence, the term “catch” in the
name proximity catch digraph. If arcs of the form �pi� pi� (i.e., loops) were allowed,
D would have been called a pseudodigraph according to some authors (see, e.g.,
Chartrand and Lesniak, 1996).

In a digraph D = �� ���, a vertex v ∈ � dominates itself and all vertices of
the form 	u � �v� u� ∈ �
. A dominating set SD for the digraph D is a subset of �
such that each vertex v ∈ � is dominated by a vertex in SD. A minimum dominating
set S∗

D is a dominating set of minimum cardinality and the domination number
��D� is defined as ��D� �= �S∗

D� where � · � denotes the set cardinality functional. See
Chartrand and Lesniak (1996) and West (2001) for more on graphs and digraphs.
If a minimum dominating set is of size one, we call it a dominating point. Note that
for �� � = n > 0, 1 ≤ ��D� ≤ n, since � itself is always a dominating set.

We construct the proximity regions using two data sets �n and �m of sizes n

and m from classes � and �, respectively. Given �m ⊆ �, the proximity map N��·� �
� → 2� associates a proximity region N��x� ⊆ � with each point x ∈ �. The region
N��x� is defined in terms of the distance between x and �m. More specifically, our
proportional-edge proximity maps will be based on the relative position of points
from �n with respect to the Delaunay tessellation of �m. In this article, a triangle
refers to the closed region bounded by its edges; see Fig. 1 for an example with
n = 200 � points iid �

(
�0� 1�× �0� 1�

)
, the uniform distribution on the unit square

and the Delaunay triangulation (which yields 13 triangles) is based on m = 10 �
points which are also iid �

(
�0� 1�× �0� 1�

)
and 77 of these � points are inside the

convex hull of � points.
If �n =

{
X1� X2� � � � � Xn

}
is a set of �-valued random variables then N��Xi� and

�1�Xi� are random sets. If Xi are iid then so are the random sets N��Xi�. The same
holds for �1�Xi�. We define the data-random proximity catch digraph D—associated

Figure 1. Plotted left is a realization of 200 � points (pluses, +) and the Delaunay
triangulation based on 10 � points (circles, �). Plotted right is the 77 � points which are in
the convex hull of � points. Both �n and �m are random samples from �

(
�0� 1�× �0� 1�

)
,

the uniform distribution on the unit square.
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Spatial Clustering Tests Using Random Digraphs 1367

with N��·�—with vertex set �n = 	X1� X2� � � � � Xn
 and arc set � by

�Xi� Xj� ∈ � ⇐⇒ Xj ∈ N��Xi��

Since this relationship is not symmetric, a digraph is used rather than a graph. The
random digraph D depends on the (joint) distribution of Xi and on the map N��·�.
For �n =

{
X1� X2� � � � � Xn

}
, a set of iid random variables from F , the domination

number of the associated data-random PCD based on the proximity map N�·�,
denoted ���n� N�, is the minimum number of point(s) that dominate all points in
�n. The random variable ���n� N� depends explicitly on �n and N�·� and implicitly
on F . Furthermore, in general, the distribution, hence the expectation E���n� N��,
depends on n, F , and N ; 1 ≤ E���n� N�� ≤ n� In general, the variance of ���n� N�
satisfies, 1 ≤ Var���n� N�� ≤ n2/4. For example, the CCCD of Priebe et al. (2001)
can be viewed as an example of PCDs.

2.1. The Proportional-Edge Proximity Maps

Note that in � the CCCDs are based on the intervals whose end points are from
class �. This interval partitioning can be viewed as the Delaunay tessellation of �
based on �m. So in higher dimensions, we use the Delaunay triangulation based on
�m to partition the space.

Let �m = 	y1� y2� � � � � ym
 be m points in general position in �d and Ti be the
ith Delaunay cell for i = 1� 2� � � � � Jm, where Jm is the number of Delaunay cells.
Let �n be a set of iid random variables from distribution F in �d with support
� �F� ⊆ 	H��m� where 	H��m� stands for the convex hull of �m. In particular, for
illustrative purposes, we focus on �2 where a Delaunay tessellation is a triangulation,
provided that no more than three points in �m are cocircular (i.e., lie on the same
circle). Furthermore, for simplicity, let �3 = 	y1� y2� y3
 be three non collinear points
in �2 and T��3� = T�y1� y2� y3� be the triangle with vertices �3. Let �n be a set
of iid random variables from F with support � �F� ⊆ T��3�. If F = ��T��3��, a
composition of translation, rotation, reflections, and scaling will take any given
triangle T��3� to the basic triangle Tb = T��0� 0�� �1� 0�� �c1� c2�� with 0 < c1 ≤ 1/2,
c2 > 0, and �1− c1�

2 + c22 ≤ 1, preserving uniformity. That is, if X ∼ ��T��3�� is
transformed in the same manner to, say X′, then we have X′ ∼ ��Tb�. In fact, this
will hold for any distribution F up to scale.

For r ∈ 1��, define Nr
PE�·�M� �= N�·�M� r��3� to be the (parametrized)

proportional-edge proximity map with M-vertex regions as follows (see also Fig. 2
with M = MC and r = 2). For x ∈ T��3�\�3, let v�x� ∈ �3 be the vertex whose
region contains x; i.e., x ∈ RM�v�x��. In this article, M-vertex regions are constructed
by the lines joining any point M ∈ �2\�3 to a point on each of the edges of T��3�.
Preferably, M is selected to be in the interior of the triangle T��3�

o. For such an M ,
the corresponding vertex regions can be defined using the line segment joining M
to ej , which lies on the line joining yj to M . With MC , the lines joining M and �3

are the median lines, that cross edges at Mj for j = 1� 2� 3. M-vertex regions, among
many possibilities, can also be defined by the orthogonal projections from M to the
edges; see Ceyhan (2005) for a more general definition. The vertex regions in Fig. 2
are center of mass vertex regions (i.e., MC-vertex regions). If x falls on the boundary
of two M-vertex regions, we assign v�x� arbitrarily. Let e�x� be the edge of T��3�
opposite of v�x�. Let ��v�x�� x� be the line parallel to e�x� and passes through x. Let
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1368 Ceyhan

Figure 2. Construction of proportional-edge proximity region, Nr=2
PE �x�MC� (shaded region)

for an x in the MC-vertex region for y1, RMC
�y1�.

d�v�x�� ��v�x�� x�� be the Euclidean (perpendicular) distance from v�x� to ��v�x�� x�.
For r ∈ 1��, let �r�v�x�� x� be the line parallel to e�x� such that

d�v�x�� �r�v�x�� x�� = r d�v�x�� ��v�x�� x�� and

d���v�x�� x�� �r�v�x�� x�� < d�v�x�� �r�v�x�� x���

Let Tr�x� be the triangle similar to and with the same orientation as T��3� having
v�x� as a vertex and �r�v�x�� x� as the opposite edge. Then the proportional-edge
proximity region Nr

PE�x�M� is defined to be Tr�x� ∩ T��3�. Notice that ��v�x�� x�

divides the edges of Tr�x� (other than the one lies on �r�v�x�� x�) proportionally with
the factor r. Hence, the name proportional-edge proximity region.

Notice that r ≥ 1 implies x ∈ Nr
PE�x�M� for all x ∈ T��3�. Furthermore,

limr→ Nr
PE�x�M� = T��3� for all x ∈ T��3�\�3, so we define N

PE�x�M� = T��3� for
all such x. For x ∈ �3, we define Nr

PE�x�M� = 	x
 for all r ∈ 1��.
The proportional-edge PCD has vertices �n and arcs �xi� xj� iff xj ∈ Nr

PE�xi�M�;
see Fig. 3 for a realization of �n with n = 7 in one triangle (i.e., m = 3). Let
�n�r�M� �= ���n� N

r
PE��M��. Then for r = 3/2, the number of arcs is 12 and the

domination number �n�r = 3/2� = 1; and for r = 5/4, the number of arcs is 9 and
�n�r = 5/4� = 3. By construction, note that as x gets closer to M (or equivalently
further away from the vertices in vertex regions), Nr

PE�x�M� increases in area, hence
it is more likely for the outdegree of x to increase. So, if more � points are around
the center M , then it is more likely for the domination number �n�r�M� to decrease;
on the other hand, if more � points are around the vertices �3, then the regions
get smaller, hence it is more likely for the outdegree for such points to be smaller,
thereby implying �n�r�M� to increase. We exploit this probabilistic behavior of
�n�r�M� in testing spatial patterns of segregation and association.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
1
4
:
3
8
 
2
2
 
M
a
r
c
h
 
2
0
1
1



Spatial Clustering Tests Using Random Digraphs 1369

Figure 3. A realization of 7 � points generated iid ��T��3��, the uniform distribution on
T��3� and the corresponding arcs of proportional-edge PCD with M = MC for r = 3/2 (left)
and r = 5/4 (right).

Note also that, Nr
PE�x�M� can be viewed as a homothetic transformation

(enlargement) with r ≥ 1 applied on a translation of the region Nr=1
PE �x�M�.

Furthermore, this transformation is also an affine similarity transformation.

2.2. Some Auxiliary Tools Associated with Proportional-Edge PCDs

First, notice that Nr
PE�x�M� is similar to T��3� with the similarity ratio being

equal to

min
(
d
(
v�x�� e�x�

)
� rd

(
v�x�� ��v�x�� x�

))/
d�v�x�� e�x���

To define the �1-region, let �i�x� be the line such that �i�x� ∩ T��3� �= ∅ and
rd�yi� �i�x�� = d�yi� ��yi� x�� for i = 1� 2� 3; see also Fig. 4. Then �r

1 �x�M� =⋃3
i=1

(
�r
1 �x�M� ∩ RM�yi�

)
where �r

1 �x�M� ∩ RM�yi� = 	z ∈ RM�yi� � d�yi� ��yi� z�� ≥
d�yi� �i�x�
, for i = 1� 2� 3. Notice that r ≥ 1 implies x ∈ �r

1 �x�M�. Furthermore,
limr→ �r

1 �x�M� = T��3� for all x ∈ T��3�\�3, and so we define �
1 �x�M� = T��3�

for all such x.
For Xi

iid∼ F , with the additional assumption that the non degenerate two-
dimensional probability density function f exists with support in T��3�, implies
that the special cases in the construction of Nr

PE—X falls on the boundary of
two vertex regions or on the vertices of T��3�—occur with probability zero. Note
that for such an F , Nr

PE�x�M� is a triangle a.s. and �r
1 �x�M� is a star-shaped

(not necessarily convex) polygon. Let Xe �= argminX∈�n
d�X� e� be the (closest) edge

extremum for edge e (i.e., closest point among �n to edge e). Then it is easily seen
that �r

1 ��n�M� = ⋂3
i=1 �

r
1 �Xei

�M�, where ei is the edge opposite vertex yi, for i =
1� 2� 3. So �r

1 ��n�M� ∩ RM�yi� = 	z ∈ RM�yi� � d�yi� ��yi� z� ≥ d�yi� �i�Xei
��
, for i =

1� 2� 3.
Let the closest edge extrema (if exist) be Xi�1� �= argminX∈�n∩RM�yi�

d�X� ei�. Then
�n�r�M� ≤ 3 with probability 1, since �n ∩ RM�yi� ⊂ Nr

PE�Xi�1��M� for each of i =
1� 2� 3. Thus,

1 ≤ E�n�r�M�� ≤ 3 and 0 ≤ Var�n�r�M�� ≤ 9/4�

In T��3�, drawing the lines qi�r� x� such that d�yi� ei� = r d�yi� qi�r� x�� for i ∈
	1� 2� 3
 yields another triangle, denoted as 
r , for r < 3/2; see Fig. 5 for 
r with
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1370 Ceyhan

Figure 4. Construction of the �1-region, �
2
1 �x�MC� (shaded region).

r = √
2. The functional form of 
r in the standard equilateral triangle is given by


r = T

((
3�r − 1�

2r
�

√
3�r − 1�
2r

)
�

(
3− r

2r
�

√
3�r − 1�
2r

)
�

(
1
2
�

√
3�2− r�

r

))
� (1)

The triangle 
r given in Eq. (1) plays an important role in the distribution of the
domination number of the proportional-edge PCDs.

Figure 5. The triangle 
r with r = √
2 (the hatched region).
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Spatial Clustering Tests Using Random Digraphs 1371

3. The Asymptotic Distribution of Domination Number
for Uniform Data

3.1. The One-Triangle Case

For simplicity, we consider � points iid uniform in one triangle only. The null
hypothesis we consider is a type of complete spatial randomness; that is,

Ho � Xi

iid∼ ��T ��3�� for i = 1� 2� � � � � n�

where ��T ��3�� is the uniform distribution on T ��3�. If it is desired to have the
sample size be a random variable, we may consider a spatial Poisson point process
on T ��3� as our null hypothesis. As before, let �n�r�M� stand for the domination
number of the PCD based on Nr

PE with �n, a set of iid random variables from
��T��3��, with M-vertex regions.

We present a “geometry invariance” result for Nr
PE�·�M� where M-vertex regions

are constructed using the line segment joining M to edge ei on the line joining yi
to M , rather than the orthogonal projections from M to the edges. This invariance
property will simplify the notation in our subsequent analysis by allowing us to
consider the special case of the (standard) equilateral triangle.

Theorem 3.1 (Geometry Invariance Property). Suppose �n is a set of iid random
variables from ��T��3��. Then for any r ∈ 1�� the distribution of �n�r�M� is
independent of �3 and hence the geometry of T��3�.

Proof. See Ceyhan and Priebe (2007) for the proof.

Note that geometry invariance of �n�r = �M� follows trivially for all �n from
any F with support in T��3�\�3, since for r = , we have �n�r = �M� = 1 a.s.
Based on Theorem 3.1 we may assume that T��3� is a standard equilateral triangle
with �3 = 	�0� 0�� �1� 0��

(
1/2�

√
3/2

)

 for Nr

PE�·�M� with M-vertex regions.

Remark 3.1. Notice that we proved the geometry invariance property for Nr
PE�·�

where M-vertex regions are defined with the lines joining �3 to M . If we had
used the orthogonal projections from M to the edges, the vertex regions (hence
Nr

PE) would depend on the geometry of the triangle. That is, the orthogonal
projections from M to the edges will not be mapped to the orthogonal projections
in the standard equilateral triangle. Hence, the exact and asymptotic distribution of
�n�r�M� will depend on c1� c2 of Tb, so one needs to do the calculations for each
possible combination of c1� c2.

The domination number �n�r�M� of the PCD has the following asymptotic
distribution (Ceyhan and Priebe, 2007). As n → ,

�n�r�M�
�−→



2+ BER�1− pr� for r ∈ 1� 3/2� and M ∈ 	t1�r�� t2�r�� t3�r�
�

1 for r > 3/2 and M ∈ T��3�
o�

3 for r ∈ 1� 3/2� and M ∈ 
r\	t1�r�� t2�r�� t3�r�
�
(2)
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1372 Ceyhan

where
�−→ stands for “convergence in law” and BER�p� stands for Bernoulli

distribution with probability of success p, 
r and ti�r� are defined in Eq. (1), and
for r ∈ 1� 3/2� and M ∈ 	t1�r�� t2�r�� t3�r�
,

pr =
∫ 

0

∫ 

0

64r2

9�r − 1�2
w1w3 exp

(
4r

3�r − 1�
�w2

1 + w2
3 + 2r�r − 1�w1w3�

)
dw3w1� (3)

and for r = 3/2 and M = MC = �1/2�
√
3/6�, pr ≈ 0�7413, which is not computed

as in Eq. (3); for its computation, see Ceyhan and Priebe (2005). For example,
for r = 5/4 and M ∈ 	t1�r� =

(
3/10�

√
3/10

)
� t2�r� =

(
7/10�

√
3/10

)
� t3�r� =(

1/2� 3
√
3/5

)

, pr ≈ 0�6514; see Fig. 6 for the plot of the numerically computed (by

numerical integration) values of pr as a function of r according to Eq. (3). Notice
that in the non degenerate case in (2), E�n�r�M�� = 3− pr and Var�n�r�M�� =
pr�1− pr�.

We also estimate the distribution of �n�r�M� for various values of n, r, and
M using Monte Carlo simulations. At each Monte Carlo replication, we generate
n points iid ��T��3�� and compute the value of �n�r�M�. The frequencies of
�n�r�M� = k out of N = 1�000 Monte Carlo replicates are presented in Tables 1

Figure 6. Plotted is the probability pr = limn→ P ��n�r�M� = 2� given in Eq. (3) as a
function of r for r ∈ 1� 3/2� and M ∈ 	t1�r�� t2�r�� t3�r�
.
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Table 1
The number of �n�r�M� = k out of N = 1�000 Monte Carlo replicates with

M = MC and r = 2 (left) and r = 5/4 (right). Here, “r = 2 and M = MC” is an
example of the case “r > 3/2 and M ∈ T��3�

o”, and “r = 5/4 and M = MC” is an
example of the case “r ∈ 1� 3/2� and M ∈ 
r\	t1�r�� t2�r�� t3�r�
”
r = 2 and M = MC r = 5/4 and M = MC

k\n 10 20 30 50 100 k\n 10 20 30 50 100

1 961 1000 1000 1000 1000 1 9 0 0 0 0
2 34 0 0 0 0 2 293 110 30 8 0
3 5 0 0 0 0 3 698 890 970 992 1000

and 2. Notice that as the sample size n increases, the values on these tables get closer
and closer to the expected values under their asymptotic distribution.

Theorem 3.2. Let �n�r�M� = ���n���T��3��� N
r
PE�M�. Then r1 < r2 implies that

�n�r2�M� <ST �n�r1�M� where <ST stands for “stochastically smaller than”.

Proof. Suppose r1 < r2. Then P��n�r2�M� = 1� > P��n�r1�M� = 1� and P��n�r2�

M� = 2� > P��n�r1�M� = 2� and P��n�r2�M� = 3� < P��n�r1�M� = 3�. Hence, the
desired result follows.

Table 2
The number of �n�r�M� = k out of N = 1�000 Monte Carlo replicates with r = 5/4,
M = �3/5�

√
3/10� (top), and M = �7/10�

√
3/10� (middle), and with r = 3/2 and

M = MC (bottom). Here, “r = 5/4 and M = �3/5�
√
3/10�” is an example of the

case “r ∈ 1� 3/2� and M ∈ 
r\	t1�r�� t2�r�� t3�r�
” with M being on the line segment
joining t1�r� and t2�r�; “r = 5/4 and M = �7/10�

√
3/10�” is an example of the case

“r ∈ 1� 3/2� and M ∈ 
r\	t1�r�� t2�r�� t3�r�
” with M = t2�r�; and “r = 3/2 and
M = MC” is an example of the case discussed in (Ceyhan and Priebe, 2005)

k\n 10 20 30 50 100 500 1000 2000

r = 5/4 and M = (
3/5�

√
3/10

)
1 118 60 51 39 15 1 2 1
2 462 409 361 299 258 100 57 29
3 420 531 588 662 727 899 941 970

r = 5/4 and M = (
7/10�

√
3/10

)
1 174 118 82 61 22 5 1 1
2 532 526 548 561 611 617 633 649
3 294 356 370 378 367 378 366 350

r = 3/2 and M = MC

1 151 82 61 50 27 2 3 1
2 602 636 688 693 718 753 729 749
3 247 282 251 257 255 245 268 250
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1374 Ceyhan

3.2. The Multiple Triangle Case

In this section, we present the asymptotic distribution of the domination number
of the proportional-edge PCDs in multiple Delaunay triangles. Suppose �m =
	y1� y2� � � � � ym
 ⊂ �2 be a set of m points in general position with m > 3 and no
more than 3 points are cocircular. Then there are Jm > 1 Delaunay triangles each of
which is denoted as Tj (Okabe et al., 2000). We wish to investigate

Ho � Xi

iid∼ ��CH��m�� for i = 1� 2� � � � � n (4)

against segregation and association alternatives (see Sec. 4). Figure 10 (middle)
presents a realization of 1,000 observations independent and identically distributed
as ��CH��m�� for m = 10 and Jm = 13.

Let Mj� be the point in Tj that corresponds to M in Te, 

j
r be the triangle that

corresponds to 
r in Te, and t
j
i �r� be the vertices of 


j
r that correspond to ti�r� in Te

for i ∈ 	1� 2� 3
. Moreover, let nj �= ��n ∩ Tj�, the number of � points in Delaunay
triangle Tj . The digraph D is constructed using Nr

PE�·�Mj�� as described in Sec. 2.1,
where the three points in �m defining the Delaunay triangle Tj are used as �m�j�.
Then we have ≥ Jm disconnected sub-digraphs. For �n ⊂ 	H��m�, let �j��r� be the
domination number of the digraph induced by vertices of Tj and �n ∩ Tj . Then the
domination number of the proportional-edge PCD in Jm triangles is

�n�m�r�M� =
Jm∑
j=1

�j��r��

see Fig. 7 for two examples of the proportional edge PCDs based on the
77 � points that are in 	H��m� out of the 200 � points plotted in Fig. 1.
The arcs are constructed for M = MC with r = 3/2 (left) and r = 5/4 (right)
and the corresponding domination number values are �n�10�3/2�MC� = 22 and

Figure 7. The arcs for the 77 � points (dots, �) in the convex hull of � points (circles, �)
given in Fig. 1 for the proportional-edge PCD with M = MC for r = 3/2 (left) and r = 5/4
(right).
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Spatial Clustering Tests Using Random Digraphs 1375

�n�10�5/4�MC� = 26. For fixed m (or fixed Jm), as n → , so does each nj .
Furthermore, as n → , each component �j��r� become independent. Therefore,
using Eq. (2), we can obtain the asymptotic distribution of �n�m�r�M�. For fixed Jm,
as n → ,

�n�m�r�M�
�−→



2Jm + BIN�Jm� 1− pr� for Mj� ∈

{
t
j
1�r�� t

j
2�r�� t

j
3�r�

}
and r ∈ 1� 3/2��

Jm for r > 3/2 and for all Mj� �= �3�

3Jm for M ∈ 
 j
r \
{
t
j
1�r�� t

j
2�r�� t

j
3�r�

}
and r ∈ 1� 3/2��

(5)

where BIN�n� p� stands for binomial distribution with n trials and probability
of success p, for r ∈ 1� 3/2� and M ∈ 	t1�r�� t2�r�� t3�r�
, pr is given in Eq. (3)
and j = 1� 2� � � � � Jm. Observe that in the non degenerate case in Eq. (5), we have
E�n�m�r�M�� = Jm�3− pr� and Var�n�m�r�M�� = Jm · pr · �1− pr�.

Theorem 3.3 (Asymptotic Normality). Suppose nj and Jm are sufficiently large with
nj � Jm. Then the asymptotic null distribution of the mean domination number (per
triangle) G�r�M� �= 1

Jm

∑Jm
j=1 �j��r� = �n�m�r�M�

Jm
is approximately normal; i.e., for large

nj � Jm

G�r�M�
approx∼ � ��� �2/Jm��

where � = 3− pr and �2 = pr�1− pr�/Jm.

Proof. For fixed Jm sufficiently large and each nj sufficiently large with n =∑Jm
j=1 nj � Jm, �j��r� are approximately independent identically distributed as in

Eq. (2). Then the desired result follows from normal approximation to binomial
distribution.

In Fig. 8 (top), we plot the histograms and the approximating normal curves
for G�r�M� with r = 3/2 and M = MC for n = 100� 1�000, and 5,000 � points
generated iid ��CH��m�� where �m (which yields Jm = 13 triangles) is given in
Fig. 1. Notice that, even though the distribution looks symmetric with n = 100,
the normal approximation is not appropriate, since not all nj are sufficiently large
to make the binomial distribution hold as in Eq. (5), but as n increases (see n =
1�000 and n = 5�000 cases) the histograms and the corresponding normal curves
become more similar indicating that the asymptotic normal approximation gets
better, since all nj are large. Larger Jm values require larger sample sizes in order
to obtain approximate normality. With J20 = 30 triangles based on the Delaunay
triangulation of 20 � points iid uniform on the unit square (not presented), we
plot the histograms and the approximating normal curves for r = 3/2 and M = MC

in Figure 8 (bottom). Observe that with more triangles (i.e., as Jm increases), the
normal approximation gets better.

As a corollary to Theorem 3.2, it follows that for r1 < r2, we have G�r2�M� <ST

G�r1�M�.
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1376 Ceyhan

Figure 8. Depicted in the top row are G�r = 3/2�M = MC�
approx∼ � �� ≈ 2�2587� �2/J10 ≈

�1918/J10� for J10 = 13 and n = 100 (left), n = 1�000 (middle), and n = 5�000 (right). In the
bottom row, depicted are G�r = 3/2�M = MC�

approx∼ � �� ≈ 2�2587� �2/J20 ≈ �1918/J20� for
J20 = 30 and n = 100 (left), n = 1�000 (middle), and n = 5�000 (right). Histograms are based
on 1�000 Monte Carlo replicates and the curves are the associated approximating normal
curves.

4. Alternative Patterns: Segregation and Association

In a two-class setting, the phenomenon known as segregation occurs when members
of one class have a tendency to repel members of the other class. For instance, it
may be the case that one type of plant does not grow well in the vicinity of another
type of plant, and vice versa. This implies, in our notation, that Xi are unlikely to
be located near elements of �. Alternatively, association occurs when members of
one class have a tendency to attract members of the other class, as in symbiotic
species, so that Xi will tend to cluster around the elements of �, for example; see,
for instance, Dixon (1994) and Coomes et al. (1999).

These alternatives can be parametrized as follows. In the one triangle case,
without loss of generality let �3 = 	�0� 0�� �1� 0�� �c1� c2�
 and Tb = T��3� with y1 =
�0� 0�� y2 = �1� 0�, and y3 = �c1� c2�. For the basic triangle Tb, let Q� �= 	x ∈ Tb �
d�x��3� ≤ �
 for � ∈ �0� �c21 + c22�/2� and S�F� be the support of F . Then consider

S �= 	F � S�F� ⊆ Tb and PF�X ∈ Q�� < PU�X ∈ Q��


and

A �= 	F � S�F� ⊆ Tb and PF�X ∈ Q�� > PU�X ∈ Q��


where PF and PU are probabilities with respect to distribution function F and the

uniform distribution on Tb, respectively. So if Xi

iid∼ F ∈ S , the pattern between �
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and � points is segregation, but if Xi

iid∼ F ∈ A, the pattern between � and � points
is association. For example, the distribution family

�S �= 	F � S�F� ⊂ Tb and the associated pdf f increases as d�x��3� increases


is a subset of S and yields samples from the segregation alternatives. Likewise, the
distribution family

�A �= 	F � S�F� ⊂ Tb and the associated pdf f increases as d�x��3� decreases


is a subset of A and yields samples from the association alternatives.
In the basic triangle, Tb, we define the HS

� and HA
� with � ∈

(
0�

√
3/3

)
, for

segregation and association alternatives, respectively. Under HS
� , 4�

2/3× 100% of
the area of Tb is chopped off around each vertex so that the � points are
restricted to lie in the remaining region. That is, for yj ∈ �3, let ej denote the
edge of Tb opposite vertex yj for j = 1� 2� 3, and for x ∈ Tb let �j�x� denote the
line parallel to ej through x. Then define Tj��� = 	x ∈ Tb � d�yj� �j�x�� ≤ �j
 where
�1 = 2�c2

3
√

c22+�1−c1�
2
, �2 = 2�c2

3
√

c21+c22

, and �3 = 2�c2
3 . Let 
� �=

⋃3
j=1 Tj���. Then under HS

�

we have Xi

iid∼ � �Tb\
��. Similarly, under HA
� we have Xi

iid∼ �
(

√

3/3−�

)
. Thus, the

segregation model excludes the possibility of any Xi occurring around a yj , and
the association model requires that all Xi occur around yj’s. The

√
3/3− � is used

in the definition of the association alternative so that � = 0 yields Ho under both
classes of alternatives. Thus, we have the below distribution families under this
parametrization.

�S
� �= 	F � F = ��Tb\
��
 and �A

� �= 	F � F = ��
√
3/3−��
� (6)

Clearly, �S
� � S and �A√

3/3−�
� A, but �

S
� � �S and �A√

3/3−�
� �A.

These alternatives HS
� and HA

� with � ∈
(
0�

√
3/3

)
, can be transformed into the

equilateral triangle as in Ceyhan et al. (2006, 2007).
For the standard equilateral triangle, in Tj��� = 	x ∈ Te � d�y� �j�x�� ≤ �j
 we

have �1 = �2 = �3 = �. Thus, HS
� implies Xi

iid∼ � �Te\
�� and HA
� be the model under

which Xi

iid∼ �
(

√

3/3−�

)
; see Fig. 9 for a depiction of the above segregation and the

association alternatives in Te.

Remark 4.1. The geometry invariance result of Theorem 3.1 still holds under the
alternatives HS

� and HA
� . In particular, the segregation alternative with � ∈ �0�

√
3/4�

in the standard equilateral triangle corresponds to the case that in an arbitrary
triangle, �× 100% of the area is carved away as forbidden from the vertices
using line segments parallel to the opposite edge where � = 4�2 (which implies � ∈
�0� 3/4�). But the segregation alternative with � ∈ �

√
3/4�

√
3/3� in the standard

equilateral triangle corresponds to the case that in an arbitrary triangle, �× 100% of
the area is carved away as forbidden from each vertex using line segments parallel
to the opposite edge where � = 1− 4�1−√

3��2 (which implies � ∈ �3/4� 1�). This
argument is for the segregation alternative; a similar construction is available for
the association alternative.
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1378 Ceyhan

Figure 9. An example for the segregation alternative for a particular � (shaded region),
and its complement is for the association alternative (unshaded region) on the standard
equilateral triangle.

4.1. Asymptotic Distribution under the Alternatives

Let �Sn�F� r�M� be the domination number under segregation for F ∈ S
� . Under

this alternative with M = MC , the domination number will have a multinomial
distribution as pF

j �= P��n = j� for j = 1� 2� 3 and pF
1 + pF

2 + pF
3 = 1. Clearly, pF

j

values depend on the distribution F and their explicit forms for finite n or in
the asymptotics are not always analytically tractable. The same holds for the
domination number under association �An �F� r�M� for F ∈ A

� .
However, under the alternatives HS

� and HA
� , the asymptotic distribution of

the domination number is much easier to find. Let �Sn��� r�M� and �An ��� r�M�
be the domination numbers under segregation and association alternatives,
respectively. Under HS

� with M = MC , the distribution of the domination number
is non degenerate when r = 3/2− �

√
3/2 which implies r ∈ �9/8� 3/2� for � ∈

�0�
√
3/4�, and r ∈ �1� 9/8� for � ∈ �

√
3/4�

√
3/3�. In particular, the asymptotic

distribution of the domination number for uniform data in one triangle is as follows.
As n → , under HS

� with M = MC and � ∈ �0�
√
3/4�,

�Sn��� r�MC�
�−→



2+ BER

(
1− pS

r��

)
for r = 3/2− �

√
3/2�

1 for r > 3/2�

2 for 3/2− �
√
3/2 < r < 3/2�

3 for 9/8 < r < 3/2− �
√
3/2�

(7)

where pS
r�� can be calculated similarly as in (3) for fixed numeric �.

Furthermore, as n → , under HS
� with M = MC and � ∈ �

√
3/4�

√
3/3�,

�Sn��� r�MC�
�−→



2+ BER

(
1− pS

r��

)
for r = 3/2− �

√
3/2�

1 for r > 2−√
3��

2 for 3/2− �
√
3/2 < r < 2−√

3��

3 for 1 < r < 3/2− �
√
3/2�

(8)
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Spatial Clustering Tests Using Random Digraphs 1379

Under HA
� with M = MC , the domination number �n is non degenerate when

r = √
3/�2 �� which implies r > 2 for � ∈ �0�

√
3/4�, and � ∈ �3/2� 2� for � ∈

�
√
3/4�

√
3/3�. In particular, the asymptotic distribution of the domination number

for uniform data in one triangle is as follows. As n → , under HA
� with M = MC

and � ∈ �0�
√
3/3�,

�An ��� r�MC�
�−→



2+ BER

(
1− pA

r��

)
for r = √

3/�2���

1 for r >
√
3/�2 ���

3 for r <
√
3/�2���

(9)

where pA
r�� can be calculated similarly as in (3) for fixed numeric �. However, for

finite n, �An ��� r�MC� is also non degenerate for
√
3/�2��− 1 < r <

√
3/�2��.

Under segregation with general M , suppose M ∈ Te\
⋃

y∈�e
T�y� �� (i.e., M is

in the support of � points under HS
� ). Then for fixed r = ro for which �n is

non degenerate under CSR (i.e., ro is a value such that M ∈ 	t1�ro�� t2�ro�� t3�ro�
),
then �n is non degenerate under HS

� if r = ro�2− 4/�
√
3���. For ro ∈ �4/3� 3/2�, if

M �∈ Te\
⋃

y∈�e
T�y� �� and � > 3

2

(
1− 1

2r

)
, then �n → 1 in probability as n → ; and

the same also holds if
√
3
(
1− 1

r

)
< � < 3

2

(
1− 1

2r

)
. �n is non degenerate when r =

ro�2− 4 �/
√
3�. For general M , if � ∈ �0�

√
3/4�, then �n is non degenerate when r =

ro�1− �/
√
3�.

Under association with general M , when M �∈ ⋃y∈�e
T�y� �� then �n is

non degenerate when r = ro (i.e., M is not in the support of � points under HA
� ). If

M ∈ ⋃y∈�e
T�y� �� then �n is non degenerate when r =

√
3�ro−2�

2��ro−1�+√
3�2ro−3�

.

Theorem 4.1 (Stochastic Ordering). Let �Sn��� r�M� be the domination number under
the segregation alternative with � > 0. Then with �j ∈ �0�

√
3/3�, j = 1� 2, �1 > �2

implies that �Sn��1� r�M� <ST �Sn��2� r�M�.

Proof. Note that for �1 > �2 and finite n, P��Sn��1� r�M� = 1� > P��Sn��2� r�M� = 1�
and P��Sn��1� r�M� = 2� > P��Sn��2� r�M� = 2�, hence the desired result follows.

Note that for Theorem 4.1 to hold in the limiting case when r ∈ 1� 3/2�
and M ∈ 	t1�r�� t2�r�� t3�r�
, �1 ∈ Ii�r� and �2 ∈ Ij�r� should hold for i < j where
I1�r� = ��2− r�/

√
3�

√
3/3�, I2�r� = ��3− 2r�/

√
3� �2− r�/

√
3�, and I3�r� = �0� �3−

2r�/
√
3�. For � ∈ (0�√3/4

]
, �Sn��� r�M� → 2 in probability as n → , and for � ∈

�
√
3/4�

√
3/3�, �Sn��� r�M� → 1 in probability as n → .

Similarly, the stochastic ordering result of Theorem 4.1 holds for association for
all � and n < , with the inequalities being reversed.

Remark 4.2. The Alternatives in the Multiple Triangle Case. In the multiple
triangle case, the segregation and association alternatives, HS

� and HA
� with � ∈

�0�
√
3/3�, are defined as in the one-triangle case, in the sense that, when each

triangle (together with the data in it) is transformed to the standard equilateral
triangle as in Theorem 3.1, we obtain the same alternative pattern described above.

Let �Sn�m��� r�M� and �An�m��� r�M� be the domination numbers under segregation
and association alternatives in the multiple triangle case with m triangles,
respectively. The extensions of their distributions from Eqs. (7), (8), and (9) are
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1380 Ceyhan

similar to the extension of the distribution of the domination number from one-
triangle to multiple-triangle case under the null hypothesis in Sec. 3.2. Furthermore,
the stochastic ordering result of Theorem 4.1 extends in a straightforward manner.

4.2. The Test Statistics and Their Distributions

A translated form of the domination number of the PCD is a test statistic for the
segregation/association alternative:

Bn�m �=



�n�r�M�− 2Jm =

Jm∑
j=1

�j��r�− 2Jm if �n�r�M� > 2Jm�

0 otherwise.

(10)

Rejecting for extreme values of Bn�m is appropriate, since under segregation we
expect Bn�m to be small, while under association we expect Bn�m to be large. Using
this test statistic the critical value for finite Jm and large n for the one-sided level
� test against segregation is given by b�, the �× 100th percentile of BIN�Jm� 1−
pr� (i.e., the test rejects for Bn�m ≤ b�), and against association, the test rejects for
Bn�m ≥ b1−�.

Similarly, the mean domination number (per triangle) of the PCD which is
defined as G�r�M� �= 1

Jm

∑Jm
j=1 �j��r�, can also be used as a test statistic for the

segregation/association alternative when n � Jm and both n and Jm are sufficiently
large. Using the standardized test statistic

Sn�m = √
Jm�G�r�M�− ��/�� (11)

where � = 3− pr and �2 = pr�1− pr�, the asymptotic critical value for the one-sided
level � test against segregation is given by z� = �−1��� where ��·� is the standard
normal distribution function. The test rejects for Sn�m < z�. Against association, the
test rejects for Sn�m > z1−�.

Depicted in Fig. 10 are the segregation with � = 3/16, CSR, and association
with � = 1/4 realizations for m = 10 and Jm = 13, and n = 1�000. The associated
mean domination numbers with r = 3/2 are 2�000� 2�1538, and 3�000, for
the segregation alternative, null realization, and the association alternatives,

Figure 10. A realization of segregation (left), CSR (middle), and association (right) for
��� = 10, J10 = 13, and n = 1�000.
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Spatial Clustering Tests Using Random Digraphs 1381

respectively, yielding p-values ≈0�000, 0�6139, and ≈0�000 based on binomial
approximation, and p-values 0�0166, 0�3880, and <0�0001 based on normal
approximation. We also present a Monte Carlo power investigation in Sec. 5 for
these cases.

Theorem 4.2 (Consistency-I). Let �Sn�m�F� r�M� and �An�m�F� r�M� be the domination
numbers under segregation and association alternatives in the multiple triangle case
with m triangles, respectively. The test against segregation with F ∈ S which rejects
for Sn�m < z� and the test against association with F ∈ A which rejects for Sn�m > z1−�

are consistent.

Proof. Given F ∈ S . Let �n�m��� r�M� be the domination number for �n being
a random sample from ��T��3��. Then P��Sn�m�F� r�M� = 1� ≥ P��n�m��� r�M� =
1�; P��Sn�m�F� r�M� ≤ 2� ≥ P��Sn�m��� r�M� ≤ 2�; and P��Sn�m�F� r�M� = 3� ≤
P��Sn�m��� r�M� = 3�. Hence, Sn�m < 0 with probability 1, as n � m → . Hence
consistency follows from the consistency of tests which have asymptotic normality.
The consistency against the association alternative can be proved similarly.

Below, we provide a result which is stronger, in the sense that it will hold for
finite m and n → .

Theorem 4.3 (Consistency-II). Let �Sn�m��� r�M� and �An�m��� r�M� be the domination
numbers under segregation and association alternatives HS

� and HA
� in the multiple

triangle case with m triangles, respectively. Let J ∗��� �� �= ⌈(
�·z�

G�r�M�−�

)2⌉
, where �·� is

the ceiling function and �-dependence is through G�r�M� under a given alternative.
Then the test against HS

� which rejects for Sn�m < z� is consistent for all � ∈ �0�
√
3/3�

and Jm ≥ J ∗��� ��, and the test against HA
� which rejects for Sn�m > z1−� is consistent

for all � ∈ �0�
√
3/3� and Jm ≥ J ∗�1− �� ��.

Proof. Let � > 0. Under HS
� , �

S
n��� r�M� is degenerate in the limit as n → , which

implies G�r�M� is a constant a.s. In particular, for � ∈ �0�
√
3/4�, G�r�M� = 2 and

for � ∈ �
√
3/4�

√
3/3�, G�r�M� ≤ 2 a.s. as n → . Then the test statistic Sn�m =√

Jm�G�r�M�− ��/� is a constant a.s. and Jm ≥ J ∗��� �� implies that Sn�m < z� a.s.
Hence, consistency follows for segregation.

Under HA
� , as n → , G�r�M� = 3 for all � ∈ �0�

√
3/3�, a.s. Then Jm ≥ J ∗�1−

�� �� implies that Sn�m > z1−� a.s., hence consistency follows for association.

Consistency in the sense of Theorems 4.2 and 4.3 also follows for Bn�m similarly.

Remark 4.2 (Asymptotic Efficiency). Pitman asymptotic efficiency (PAE) provides
for an investigation of “local (around Ho) asymptotic power”. This involves the limit
as n →  as well as the limit as � → 0. A detailed discussion of PAE is available
in Kendall and Stuart (1979) and Eeden (1963). For segregation or association
alternatives HS

� and HA
� the PAE is not applicable because the Pitman conditions

(Eeden, 1963) are not satisfied by the test statistic, G�r�M�.
Hodges–Lehmann asymptotic efficiency analysis (Hodges and Lehmann, 1956)

and asymptotic power function analysis (Kendall and Stuart, 1979) are not
applicable here either. However, when M = MC (which also implies r = 3/2), for �
small and n large enough, this test is very sensitive for both alternatives because
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1382 Ceyhan

�Sn��� 3/2�MC� → 2 in probability as n →  for segregation and �An ��� 3/2�MC� →
3 in probability as n →  for association. That is, the test statistic becomes
degenerate in the limit for all � > 0 but in the correct direction for both alternatives.
On the other hand, when M �= MC (i.e., r �= 3/2) this test is very sensitive for the
segregation alternative since �Sn��� r�M� → 2 in probability as n → ; the same
holds for the association alternative, but the test is not as sensitive as in the
segregation case, since we only have �An ��� r�M� <ST �n�r�M�.

However, the variance of �n�r�M� is minimized when pr = 1/2, which happens
when r ≈ 1�395 (obtained numerically). Hence, we expect the test to have higher
power under the alternatives for r around 1.40.

5. Monte Carlo Simulation Analysis

5.1. Empirical Size Analysis under CSR

For the null pattern of CSR, we generate n � points iid ��CH��10�� where �10

is the set of the 10 � points in Fig. 1. We calculate and record the domination
number �n�r�M� and the mean domination number (per triangle), G�r�M� for r =
1�00� 1�01� 1�02� � � � � 1�49 at each Monte Carlo replicate. We repeat the Monte Carlo
procedure Nmc = 1�000 times for each of n = 500� 1�000� 2�000. Using the critical
values based on the binomial distribution for the domination number and the
normal approximation for G�r�M�, we calculate the empirical size estimates for
both right- and left-sided tests. The empirical sizes significantly smaller (larger)
than .05 are deemed conservative (liberal). The asymptotic normal approximation to
proportions is used in determining the significance of the deviations of the empirical
sizes from .05. For these proportion tests, we also use � = �05 as the significance
level. With Nmc = 1�000, empirical sizes less than .039 are deemed conservative,
greater than .061 are deemed liberal at � = �05 level. The empirical sizes together
with upper and lower limits of liberalness and conservativeness are plotted in
Fig. 11. Observe that right-sided tests are liberal with being less liberal when sample
size n increases, and it has about the nominal level for most r values between 1.1
and 1.4. The left-sided test tends to be liberal for small r, and conservative for large
r, but has about the desired nominal level for r around 1.2 and 1.3.

Since pr has a different form when r = 3/2, we estimate the empirical sizes
for r = 3/2 separately. The size estimates for n = 500� 1�000� and 2�000 relative
to segregation and association alternatives are presented in Table 3. Based on
the Monte Carlo simulations under CSR, the use of domination number for r ∈
�1�45� 1�50� is not recommended, as the test is extremely liberal for the segregation
(i.e., left-sided) alternative, while it is extremely conservative for the association (i.e.,
right-sided) alternative. This deviation from the nominal level for the test is due
to the fact that for r ∈ �1�45� 1�50� much larger sample sizes are required for the
binomial and the normal approximations to hold.

5.2. Empirical Power Analysis under the Alternatives

To compare the distribution of the test statistic under CSR, and the segregation
and association alternatives, we generate n points iid ��CH��m�� under CSR, iid
uniformly on the support that corresponds to HS√

3/8
, and iid uniformly on the
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Spatial Clustering Tests Using Random Digraphs 1383

Figure 11. The empirical size estimates for the left-sided alternative (i.e., relative to
segregation) and the right-sided alternative (i.e., relative to association) with n = 500 (left),
n = 1�000 (middle), and n = 2�000 (right) under the CSR pattern. The empirical sizes based
on the binomial distribution are plotted in circles (�) and joined with solid lines, and those
based on the normal approximation are plotted in triangles (�) and joined with dashed lines.
The horizontal lines are located at .039 (upper threshold for conservativeness), .050 (nominal
level), and .061 (lower threshold for liberalness).

support that corresponds to HA√
3/21

for each triangle based on the same �m points.
Under each case, we generate n = 1�000 points with J10 = 13 and n = 5�000 points
with J20 = 30 for 500 Monte Carlo replicates. The kernel density estimates of G�r =
3/2�M = MC� are presented in Figs. 12 and 13. In Fig. 12, we observe empirically
that even under mild segregation we obtain considerable separation between the
kernel density estimates under null and segregation cases for moderate Jm and n
values suggesting high power at � = �05.

In Fig. 13, we observe that even in mild association we obtain considerable
separation for moderate Jm and n values suggesting high power (with J10 = 13 and
n = 1�000, the empirical critical value is 2�46, �̂ = �034 and empirical power is �̂ =
1�0 and with J20 = 30� n = 5�000, the empirical critical value is 2�36, �̂ = �04 and
empirical power is �̂ = 1�0).

For the segregation alternatives, we consider the following three cases: � =√
3/8� � = √

3/4� � = 2
√
3/7 in the 13 Delaunay triangles obtained by the 10� points

in Fig. 1. We generate n = 500� 1�000� 2�000� 5�000 in the convex hull of �10 at
each Monte Carlo replication. We estimate the empirical power of the tests for r =
1�00� 1�01� 1�02� � � � � 1�49 values using Nmc = 1�000 replicates. The power estimates
based on the binomial distribution and normal approximation under HS√

3/8
for n =

1�000� 2�000� 5�000 are plotted in Fig. 14. Observe that the power estimates are
about 1.0 for r � 1�15. Considering the empirical size and power estimates together,
we recommend r values around 1.22 or 1.30 for the segregation alternatives.
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1384 Ceyhan

Figure 12. Two Monte Carlo experiments against the segregation alternatives HS√
3/8

with

� = 1/16. Depicted are kernel density estimates of G�r = 3/2�M = MC� for J = 13 and n =
1�000 with 1�000 replicates (left) and J20 = 30 and n = 5�000 with 1�000 replicates (right)
under the null (solid) and segregation alternative (dashed).

For the association alternatives, we consider the following three cases: � =
5
√
3/24� � = √

3/12� � = √
3/21 in the 13 Delaunay triangles obtained by the 10

� points in Fig. 1. We generate n = 500� 1�000� 2�000� 5�000 in the convex hull of
�10 at each Monte Carlo replication. We estimate the empirical power of the tests
for r = 1�00� 1�01� 1�02� � � � � 1�49 values using Nmc = 1�000 replicates. The power
estimates based on the binomial distribution and normal approximation under

Figure 13. Two Monte Carlo experiments against the association alternatives HA√
3/21

, i.e.,

� = 16/49. Depicted are kernel density estimates of G�r = 3/2�M = MC� for J = 13 and
n = 1�000 with 500 replicates (left) and J20 = 30 and n = 5�000 with 100 replicates under the
null (solid) and association alternative (dashed).
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Spatial Clustering Tests Using Random Digraphs 1385

Figure 14. The empirical power estimates under segregation with � = √
3/8� � = √

3/4 and
n = 1�000 (left), n = 2�000 (middle), and n = 5�000 (right). The power estimates based on the
binomial distribution are plotted in circles (�) and joined with solid lines, and those based
on the normal approximation are plotted in triangles (�) and joined with dashed lines.

HA

5
√
3/24

for n = 1�000� 2�000� 5�000 are plotted in Fig. 15. Observe that the power
estimates are about 1.0 for r � 1�33, but the power performance is poor for r
between 1.1 and 1.33. Considering the empirical size and power estimates together,
we recommend r values around 1.35 for the association alternatives.

The empirical power estimates for r = 3/2 and M = MC are presented in Table 3
also.

Remark 5.1. The choice of the null pattern in Sec. 3.2 and the conditions in
Theorem 3.3 seem to be somewhat stringent; i.e., � points are assumed to be
uniformly distributed in the convex hull of � points, which might not be realistic
in practice. However, if the supports of distributions of � and � points do not
intersect, or mildly intersect, then it is clear that the null hypothesis is violated (i.e.,
two classes are segregated) which is easily detected by the test statistics Bn�m or Sn�m
(see Eqs. (10) and (11)) as they tend to be smaller under segregation than expected
under CSR. When their supports have non-empty intersection, then either the �
points are segregated from the � points, or follow CSR, or are associated with the
� points in this intersection. Then we only consider the � points in this support

Figure 15. The empirical power estimates under association with � = 5
√
3/24� � = √

3/12
and n = 1�000 (left), n = 2�000 (middle), and n = 5�000 (right). The power estimates based
on the binomial distribution are plotted in circles (�) and joined with solid lines, and those
based on the normal approximation are plotted in triangles (�) and joined with dashed lines.
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1386 Ceyhan

Table 3
The empirical size and power estimates for r = 3/2 and M = MC under the null
and alternatives. n stands for number of � points, �̂S for empirical size relative

segregation, �̂A for empirical size relative to association, �̂S
1 , �̂

S
2 , and �̂S

3 for
empirical power estimates under HS

� with � = √
3/8� � = √

3/4� and � = 2
√
3/7,

respectively, �̂A
1 , �̂

A
2 , and �̂A

3 for empirical power estimates under HA
� with

� = 5
√
3/24� � = √

3/12� and � = √
3/21, respectively

Empirical size and power estimates for r = 3/2 and M = MC

n �̂S �̂A �̂S
1 �̂S

2 �̂S
3 �̂A

1 �̂A
2 �̂A

3

500 0.161 0.062 0.961 1.000 1.000 1.000 1.000 0.997
1000 0.071 0.082 0.975 1.000 1.000 1.000 1.000 1.000
2000 0.049 0.081 0.995 1.000 1.000 1.000 1.000 1.000

intersection, then our inference will be local (i.e., restricted to this intersection). If
one takes all of the � points, then our inference will be a global one (i.e., for the
entire support of � points).

6. Correction for ��� Points Outside the Convex Hull of ���m

Our null hypothesis in (4) is rather restrictive, in the sense that, it might not be
that realistic to assume the support of � being CH��m� in practice. Until now, our
inference is restricted to the CH��m�. However, crucial information from the data
(hence power) might be lost since a substantial proportion of � points, denoted �out,
might fall outside the CH��m�. We investigate the effect of �out (or restriction to the
CH��m�) on our tests and propose an empirical correction to mitigate this based on
an extensive Monte Carlo simulation study.

We consider the following six cases to investigate how the removal of points
outside CH��m� affects the empirical size and power performance of the tests. We
only consider r = 1�35 and r = 1�5 which have better size and power performances
compared to others. In each case, at each Monte Carlo replication, we generate
�n and �m independently as random samples from ���X� and ���Y �, respectively,
for various values of n and m where �X and �Y are the support sets of � and �
points, respectively. We take �Y = �0� 1�× �0� 1� and manipulate �X in each case to
simulate CSR and various forms of deviations from CSR. We repeat the generation
procedure Nmc times for each combination of m and n. At each Monte Carlo
replication, we record the number of � points outside CH��m� and the domination
number, �m�n�r�.

Case 1. In this case, we also set �X = �0� 1�× �0� 1�.

Case 2. �X = �−�� 1+ ��× �−�� 1+ �� for � ∈ 	�1� �25� �5
.

Case 3. �X = �0� 1�× �0� 1+ �� for � ∈ 	�1� �25� �5
,

Case 4. �X = �0� 1�× ��� 1+ �� for � ∈ 	�1� �25� �5
.

Case 5. Given a realization of � points, �m = 	y1� y2� � � � � ym
, from ���Y =
�0� 1�× �0� 1��, �X = �−�� 1+ ��× �−�� 1+ ���\⋃m

i=1 B�yi� �� with � = 1
2
√
�
= 1

2
√
m

which the expected interpoint distance in a homogeneous Poisson process with
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Spatial Clustering Tests Using Random Digraphs 1387

intensity (expected number of points per unit area) � (Dixon, 2002b) and � = �/k
for k = 1�5� 2�0,

Case 6. Given a realization of � points, �m = 	y1� y2� � � � � ym
, from ���Y �,
�X = ⋃m

i=1 B�yi� �� with � = �/k, � = 1
2
√
m
, and k = 1�0� 1�5.

Notice that in Case 1 both �n and �m have the same support. By construction
the two classes follow CSR independence with very different relative abundances
(i.e., number of � points being larger than number of � points). In Cases 2 and
3, the support of �n contains (but larger than) the support of �m, which suggests
segregation of � points from � points, at least when we move away from the
support of � points (which is the unit square). However, when we restrict our
attention to CH��m� or the unit square, we have CSR or CSR independence,
respectively. Furthermore, the larger the � value, the larger the level of segregation
of � from �. In Case 4, the support of �n and �m overlap, but neither is a
subset of the other, which suggests segregation between � and � points. When we
restrict our attention to CH��m�, there is still segregation between � and � points.
Furthermore, the larger the � value, the larger the level of segregation between �
and � points. In Case 5, � points are segregated from � points both in and outside
CH��m�. Furthermore, the larger the � value, the larger the level of segregation of
� points from � points. Finally, in Case 6, � points are associated with � points.
Furthermore, the smaller the � value, the larger the level of association of � points
with � points.

In Case 1 (i.e., the benchmark case), we consider n = 100� 200� � � � � 900� 1�000�
2�000� � � � � 9�000� 10�000 for each of m = 10� 20� � � � � 50. We generate Nmc = 1�000
replication for each n�m combination. In the other cases, we consider n =
100� 500� 1�000 for m = 10 and n = 500� 1�000 for m = 20; and we generate Nmc =
10�000 replication for each n�m combination.

In Cases 1–6, we estimate the proportion of � points outside the CH��m�. For
each m�n combination we average (over n) this proportion which is denoted as �̂out.
We present the estimated (mean) proportions �̂out for Case 1 in Table 4 and for
Cases 2–6 in technical report (Ceyhan, 2009b). In Cases 2–5, �̂out values are larger
than that in Case 1, while in Case 6, �̂out values are smaller than that in Case 1.

For Case 1, we model the relationship between �̂out and m. Our simulation
results suggest that �̂out ≈ 1�7932/m+ 1�2229/

√
m. Notice that as m → , �̂out → 0.

We present the actual fitted values denoted �̂fit based on this model in Table 4.
Based on our Monte Carlo simulation results (presented in Ceyhan, 2009b)

we propose a coefficient to adjust for the proportion of � points outside CH��m�,

Table 4
The (mean) proportion of � points outside the

CH��m� which is denoted as �̂out and the fitted values
�̂fit for various m values in Case 1

m 10 20 30 40 50

�̂out 0.56 0.37 0.29 0.23 0.20
�̂fit 0.57 0.36 0.28 0.24 0.21
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1388 Ceyhan

namely,

Cch �= 1− �pout − E�̂out�� (12)

where pout is the observed and E�̂out� ≈ 1�7932/m+ 1�2229/
√
m is the expected

(under the conditions stated in Case 1) proportion of � points outside CH��m�. For
the binomial test statistic in Eq. (10), we suggest

Bch
n�m �=



��n�r�M�− 2Jm� · Cch =

( Jm∑
j=1

�j��r�− 2Jm

)
· Cch if �n�r�M� · Cch > 2Jm�

0 otherwise.
(13)

For the mean domination number (per triangle) of the PCD, we suggest

Sch
n�m = Sn�m · Cch� (14)

This (convex hull) adjustment slightly affects the empirical size estimates in Case 1,
since pout and E�̂out� values are very similar. In Cases 2–5, there is segregation when
all data points are considered, and pout values tend to be larger than E�̂out� values,
and in Case 6 (which is the simulation of the association case), pout values tend to
be smaller than E�̂out� values. Hence, in Cases 2–6, the adjustment seems to correct
the power estimates in the desired direction, thereby increasing the power estimates;
see Ceyhan (2009b) for more detail.

Remark 6.1 (Correction for Small Samples). The distributional results in Eqs. (2)
and (5) might require large n for the convergence to hold. In particular, it might
be necessary for the number of � points per Delaunay triangle to be larger than
100 as a practical guide which implies very large samples from � are needed for a
large number of � points. Hence, it might be necessary to propose a correction in
the test statistics for small n also. Based on our extensive Monte Carlo simulations
(of Case 1 above), we suggest that the test statistic Sn�m in Eq. (11) can be
adjusted as Sadj

n�m �= Sn�m−an�m
bn�m

. We provide the explicit forms of an�m and bn�m for
m = 10� 20� � � � � 50 in Ceyhan (2009b). For example for m = 10, Sn�m in Eq. (11)
can be adjusted as Sadj

n�m �= Sn�m−an�m
bn�m

where an�m = −8�80/�n/Jm�− 30�94/
√
n/Jm +

9�09/ 3
√
n/Jm and bn = 1− 18�81/�n/Jm�+ 16�26/

√
n/Jm − 4�42/ 3

√
n/Jm. Observe that

as expected Sadj
n�m converges to Sn�m as n →  for each m value considered provided

n/Jm →  which is a requirement in our testing framework. See the technical report
Ceyhan (2009b) for further details.

7. Example Data Set

We illustrate the method on a forestry data set (namely, swamp tree data). Good
and Whipple (1982) considered the spatial patterns of tree species along the
Savannah River, South Carolina, U.S.A. From this data, Dixon (2002b) used a
single 50m× 200m rectangular plot to illustrate his nearest neighbor contingency
table (NNCT) methods. All live or dead trees with 4.5 cm or more dbh (diameter at
breast height) were recorded together with their species. Hence, it is an example of

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
1
4
:
3
8
 
2
2
 
M
a
r
c
h
 
2
0
1
1
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Figure 16. The scatter plot of the locations of dead trees (circle �) and live trees (black
squares �) in the swamp tree data. The Delaunay triangulation is based on the locations of
the dead trees.

a realization of a marked multi-variate point pattern. The plot contains 13 different
tree species, 4 of which comprising over 90% of the 734 tree stems; see Ceyhan
(2009a) for more detail on the data.

In this article, we investigate the spatial interaction of live trees with dead ones
(i.e., live trees are taken to be the � points, while dead trees are taken to be the �
points; hence, Delaunay triangulation is based on the locations of dead trees). The
study area contains 630 dead and 104 live trees; see also Fig. 16 which is suggestive
of segregation of live trees from dead trees.

We calculate the domination number, �n�m�r�, for r = 1�01� 1�02� 1�03� � � � �
1.49, 1.50 values (not presented) and the proportion of live trees outside the
convex hull of dead trees to be pout = 0�12 (the expected proportion is �out =
0�14). Without convex hull adjustment, the �n�m�r� values range from 176–206 and
with convex hull adjustment, they range from 179.25–209.81 (since pout < �out).
The corresponding test statistics of Eqs. (10), (11), (13), and (14) (i.e., binomial
and normal approximation test statistics with and without convex hull correction)
yield very small p-values (p < �0001) for the left-sided alternative for each r. We
also perform a Monte Carlo randomization test as follows. First we calculate the
domination number, denoted �obs, for the current data set. Then we randomly assign
104 of the trees as “dead trees” (without replacement) and the remaining trees as
“live trees”, then calculate the domination number for the live trees within the
convex hull of the dead trees. We repeat this procedure 999 times. Combining the
observed �obs with these Monte Carlo randomization � values, we obtain 1,000 �
values. We sort these � values and determine the rank of the �obs value. This rank
divided by 1,000 (or 1 minus rank divided by 1,000) will yield the estimated p-value
for the left sided alternative (or the right sided alternative). Here, we also apply
the convex hull correction by determining the proportion of live trees outside the
convex hull of dead trees, and multiply the � values by the correction coefficient in
Eq. (12). Then we determine the estimated p-value for these convex-hull-corrected �
values as before. With r = 1�5 our Monte Carlo randomization procedure (without
convex hull correction) yields p ≤ �002 and with convex hull correction we get p ≤
�005. With r = 1�35, our Monte Carlo randomization procedure (without convex
hull correction) yields p ≤ �002 and with convex hull correction we get p ≤ �004.
Hence, there is evidence for significant segregation of live trees from dead ones,
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1390 Ceyhan

Table 5
The NNCT for swamp tree data (left) and the corresponding percentages (right)

NN NN

Live Dead Sum Live Dead

Base Live 536 96 632 Live 85% 15% 86%
Dead 73 31 104 Dead 70% 30% 14%
Sum 609 127 736 83% 17% 100%

which might indicate that the factors that cause trees to die (e.g., the soil content or
quality) force the trees to cluster in favorable locations.

We also analyze the same data in a 2× 2 NNCT with Dixon’s overall test of
segregation (Dixon, 2002a) and Ceyhan’s NNCT-test (Ceyhan, 2008b). See Table 5
for the corresponding NNCT and the percentages (observe that the row sum for
live trees is 632 instead of 630 due to ties in nearest neighbor (NN) distances).
The cell percentages are relative to the row sums (i.e., number of dead or live
trees) and marginal percentages are relative to the overall sum. Notice that the
table is suggestive of segregation especially for the nearest NN with respect to
the dead trees. That is, live trees seem to be segregated from the dead trees.
Dixon’s overall test statistic is CD = 19�13 (p = 0�0001) and Ceyhan’s test is CN =
10�01 (p = 0�0016), both of which are suggestive of significant deviation from CSR
independence. Considering the NNCT and Ceyhan’s cell-specific tests (Ceyhan,
2008b), the test statistics for cells 1� 1 and 2� 2 are 3�15 and 3�16, respectively,
with the corresponding p-values being p = 0�0008 for both cells. Dixon’s cell-
specific tests are not presented as they are not robust to differences in relative
abundances (Ceyhan, 2008b). These results support the claim that live trees are
significantly segregated from dead trees. So, NNCT-analysis and our domination
number approach give similar results about the spatial interaction of live trees with
dead ones. However, NNCT and our domination number approach answer different
questions. More specifically, NNCT-tests in this example tests both directions of
the spatial interaction, while the domination number approach only tests the spatial
interaction of live trees with the dead ones, but not vice versa.

8. Extension of Proportional-Edge Proximity Regions
to Higher Dimensions

The extension to �d for d > 2 with M = MC is provided in Ceyhan and Priebe
(2005), the extension for general M is similar: Let � = 	y1� y2� � � � � yd+1
 be d + 1
non coplanar points. Denote the simplex formed by these d + 1 points as � ���. For
r ∈ 1��, define the r-factor proximity map as follows. Given a point x in � ���,
let Qy�M� x� be the polytope with vertices being the d �d + 1�/2 points on the edges,
the vertex y and x so that the faces of Qy�M� x� are formed by d − 1 line segments
each of which joining one of � points, say yi, to M and that are between M and the
face opposite yi. That is, the vertex region for vertex v is the polytope with vertices
given by v and such points on the edges. Let v�x� be the vertex in whose region x
falls. If x falls on the boundary of two vertex regions, we assign v�x� arbitrarily.
Let ��x� be the face opposite to vertex v�x�, and ��v�x�� x� be the hyperplane
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parallel to ��x� which contains x. Let d�v�x�� ��v�x�� x�� be the (perpendicular)
Euclidean distance from v�x� to ��v�x�� x�. For r ∈ 1��, let �r�v�x�� x� be the
hyperplane parallel to ��x� such that d�v�x�� �r�v�x�� x�� = r d�v�x�� ��v�x�� x�� and
d���v�x�� x�� �r�v�x�� x�� < d�v�x�� �r�v�x�� x��. Let �r �x� be the polytope similar to
and with the same orientation as � ��� having v�x� as a vertex and �r�v�x�� x�
as the opposite face. Then the r-factor proximity region Nr

��x� �= �r �x� ∩� ���.
Also, let �j�x� be the hyperplane such that �j�x� ∩� ��� �= ∅ and r d�yj� �j�x�� =
d�yj� ��yj� x�� for j = 1� 2� � � � � d + 1. Then the �1-region is �r

1 �x� =
⋃d+1

j=1 ��
r
1 �x� ∩

RM�yj��, where �r
1 �x� ∩ RM�yj� = 	z ∈ RM�yj� � d�yj� ��yj� z�� ≥ d�yj� �j�x�
, for j =

1� 2� � � � � d + 1.
Let X� �= argminX∈�n

d�X� �� be the closest point among �n to face �. Then
it is easily seen that �r

1 ��n�M� = ⋂d+1
i=1 �r

1 �X�i
�M�, where �i is the face opposite

vertex yi, for i = 1� 2� � � � � d. So �r
1 ��n�M� ∩ RM�yi� = 	z ∈ RM�yi� � d�yi� ��yi� z� ≥

d�yi� �i�X�i
��
, for i = 1� 2� � � � � d.

Let the domination number be �n�r� F�M� d� �= �n��n� F� N
r
PE� d� and the closest

face extrema (if exists) be Xi�1� �= argminX∈�n∩RM�yi�
d�X� �i�. Then �n�r�M� ≤ d + 1

with probability 1, since �n ∩ RM�yi� ⊂ Nr
PE

(
Xi�1��M

)
for each of i = 1� 2� � � � � d.

In � ���, drawing the hypersurfaces Qi�r� x� such that d�yi� �i� = rd�yi� Qi�r� x��
for i ∈ 	1� 2� � � � � d
 yields another polytope, denoted as �r , for r < �d + 1�/d. Let
�n�r�M� d� �= ���n� N

r
PE�M� d� be the domination number of the PCD based on the

extension of Nr
PE�·�M� to �d. Then we conjecture the following.

Conjecture 8.1. Suppose �n is set of iid random variables from the uniform
distribution on a simplex in �d. Then as n → , the domination number �n�r�M� d�
in the simplex satisfies

�n�r�M� d�
�−→




d + BER�1− pr�d� for r ∈ 1� �d + 1�/d� and

M ∈ 	t1�r�� t2�r�� � � � � td+1�r�
�

≤�d − 1� for r > �d + 1�/d and M ∈ � ���o�

d + 1 for r ∈ 1� �d + 1�/d� and

M ∈ �r\	t1�r�� t2�r�� � � � � td+1�r�
�

(15)

where pr�d can be calculated by intensive numerical integration as in the calculation
of Eq. (3) and for r = �d + 1�/d and M = MC , pr�d will be different from the
continuous extension of Eq. (15).

9. Discussion and Conclusions

In this article, we consider the asymptotic distribution of the domination number
of proportional-edge proximity catch digraphs (PCDs), for testing bivariate spatial
point patterns of segregation and association. To our knowledge the PCD-based
methods are the only graph theoretic tools for testing spatial patterns in literature
(Ceyhan and Priebe, 2005; Ceyhan et al., 2006, 2007). The proportional-edge PCDs
lend themselves for such a purpose, because of the geometry invariance property
for uniform data on Delaunay triangles. Let the two samples of sizes n and m be
from classes � and �, respectively, with � points being used as the vertices of
the PCDs and � points being used in the construction of Delaunay triangulation.
For the domination number approach to be appropriate, n should be much larger
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compared to m. This implies that n tends to infinity while m is assumed to be
fixed. That is, the imbalance in the relative abundance of the two classes should
be large for our method. Such an imbalance usually confounds the results of other
spatial interaction tests. Furthermore, we can also use the normal approximation to
binomial distribution for the domination number, provided n is much larger than
m, with both sizes tending to infinity. Therefore, as long as n � m → , we can
remove the conditioning on m.

The null hypothesis is assumed to be CSR of � points, i.e., the uniformness of
� points in the convex hull of � points. Although we have two classes here, the
null pattern is not the CSR independence, since for finite m, we condition on m and
the locations of the � points (assumed not co-circular) are irrelevant. That is, the �
points can result from any pattern that results in a unique Delaunay triangulation.

There are many types of parametrizations for the alternatives. The particular
parametrization of the alternatives in Eq. (6) is chosen so that the distribution of
the domination number under the alternatives would be geometry invariant (i.e.,
independent of the geometry of the support triangles). The more natural alternatives
(i.e., the alternatives that are more likely to be found in practice) can be similar
to or might be approximated by our parametrization. Because in any segregation
alternative, the � points will tend to be further away from � points and in any
association alternative � points will tend to cluster around the � points. Such
patterns can be detected by the test statistics based on the domination number, since
under segregation (whether it is parametrized as in Sec. 4 or not) we expect them to
be smaller, and under association (regardless of the parametrization) they tend to
be larger.

By construction our method uses only the � points in CH��m� (the convex
hull of � points) which might cause substantial data (hence information) loss.
To mitigate this, we propose a correction for the proportion of � points outside
CH��m�, because the pattern inside CH��m� might not be the same as the pattern
outside CH��m�. We suggest analysis with our domination number approach in
two steps: (i) analysis restricted to CH��m�, which provides inference only for �
points in CH��m�; (ii) overall analysis with convex hull correction (i.e., for all �
points with respect to �m). When the number of Delaunay triangles based on �
points, denoted Jm, is less than 30, we recommend the use of binomial distribution
as n →  (i.e., for large n); when Jm is larger than 30, we recommend the use
of normal approximation as n → . For small samples, one might use Monte
Carlo simulation or randomization with our approach or apply a finite sample
correction as in Remark 6.1. In the case of small samples with some � points
existing outside CH��m�, convex hull correction can be implemented first, and
then the small sample correction. Furthermore, when testing against segregation
we recommend the parameter r ≈ 1�3, while for testing against association we
recommend the parameter r ≈ 1�35 as they exhibit the best performance in terms
of size and power. The proportional-edge PCDs have applications in classification.
This can be performed building discriminant regions in a manner analogous to the
procedure proposed in Priebe et al. (2003a).

Acknowledgments

Supported by DARPA as administered by the Air Force Office of Scientific
Research under contract DOD F49620-99-1-0213 and by ONR Grant N00014-95-1-
0777 and by TUBITAK Kariyer Project Grant 107T647. We also thank anonymous

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
1
4
:
3
8
 
2
2
 
M
a
r
c
h
 
2
0
1
1



Spatial Clustering Tests Using Random Digraphs 1393

referees, whose constructive comments and suggestions greatly improved the
presentation and flow of this article.

References

Baddeley, A., Møller, J., Waagepetersen, R. (2000). Non- and semi-parametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54(3):329–350.

Ceyhan, E. (2005). An investigation of proximity catch digraphs in delaunay tessellations.
Also available as technical monograph titled “Proximity Catch Digraphs: Auxiliary
Tools, Properties, and Applications” by VDM Verlag, PhD thesis, The Johns Hopkins
University, Baltimore, MD.

Ceyhan, E. (2008a). The distribution of the domination number of class cover catch digraphs
for non-uniform one-dimensional data. Discrete Mathematics 308:5376–5393.

Ceyhan, E. (2008b). Overall and pairwise segregation tests based on nearest neighbor
contingency tables. Computat. Statist. Data Anal. 53(8):2786–2808.

Ceyhan, E. (2009a). Class-specific tests of segregation based on nearest neighbor contingency
tables. Statistica Neerlandica 63(2):149–182.

Ceyhan, E. (2009b). Spatial clustering tests based on domination number of a new random
digraph family. arXiv:0909.3034 [math.ST]. Technical Report # KU-EC-09-6, Koç
University, Istanbul, Turkey.

Ceyhan, E., Priebe, C. (2003). Central similarity proximity maps in Delaunay tessellations.
Proc. Joint Statist. Meeting, Statist. Comput. Sec. Amer. Statist. Assoc., San Francisco,
CA, August 3–7.

Ceyhan, E., Priebe, C. E. (2005). The use of domination number of a random proximity
catch digraph for testing spatial patterns of segregation and association. Statist.
Probab. Lett. 73:37–50.

Ceyhan, E., Priebe, C. E. (2007). On the distribution of the domination number of a new
family of parametrized random digraphs. Model Assist. Statist. Applic. 1(4):231–255.

Ceyhan, E., Priebe, C. E., Marchette, D. J. (2007). A new family of random graphs for
testing spatial segregation. Can. J. Statist. 35(1):27–50.

Ceyhan, E., Priebe, C. E., Wierman, J. C. (2006). Relative density of the random r-factor
proximity catch digraphs for testing spatial patterns of segregation and association.
Computat. Statist. Data Anal. 50(8):1925–1964.

Chartrand, G., Lesniak, L. (1996). Graphs & Digraphs. Boca Raton, FL: Chapman &
Hall/CRC Press LLC.

Coomes, D. A., Rees, M., Turnbull, L. (1999). Identifying aggregation and association in
fully mapped spatial data. Ecology 80(2):554–565.

Cuzick, J., Edwards, R. (1990). Spatial clustering for inhomogeneous populations (with
discussion). J. Roy. Statist. Soc. Ser. B 52:73–104.

DeVinney, J., Priebe, C. E. (2006). A new family of proximity graphs: Class cover catch
digraphs. Discr. Appl. Math. 154(14):1975–1982.

DeVinney, J., Priebe, C. E., Marchette, D. J., Socolinsky, D. (2002). Random walks
and catch digraphs in classification. Proc. 34th Symp. Interface: Computing Science
and Statistics, Vol. 34. Available at: http://www.galaxy.gmu.edu/interface/I02/I2002
Proceedings/DeVinneyJason/DeVinneyJason.paper.pdf

DeVinney, J., Wierman, J. C. (2003). A SLLN for a one-dimensional class cover problem.
Statist. Probab. Lett. 59(4):425–435.

Diggle, P. J. (2003). Statistical Analysis of Spatial Point Patterns. London: Hodder Arnold
Publishers.

Dixon, P. M. (1994). Testing spatial segregation using a nearest-neighbor contingency table.
Ecology 75(7):1940–1948.

Dixon, P. M. (2002a). Nearest-neighbor contingency table analysis of spatial segregation for
several species. Ecoscience 9(2):142–151.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
1
4
:
3
8
 
2
2
 
M
a
r
c
h
 
2
0
1
1



1394 Ceyhan

Dixon, P. M. (2002b). Nearest neighbor methods. In: El-Shaarawi, A. H., Piegorsch, W. W.,
eds. Encyclopedia of Environmetrics. New York: John Wiley & Sons Ltd., Vol. 3,
pp. 1370–1383.

Eeden, C. V. (1963). The relation between Pitman’s asymptotic relative efficiency of two
tests and the correlation coefficient between their test statistics. Ann. Mathemat. Statist.
34(4):1442–1451.

Fall, A., Fortin, M. J., Manseau, M., O’Brien, D. (2007). Ecosystems. Int. J. Geograph.
Inform. Sci. 10(3):448–461.

Friedman, J. H., Rafsky, L. C. (1983). Graph-theoretic measures of multivariate association
and prediction. Ann. Statist. 11(2):377–391.

Good, B. J., Whipple, S. A. (1982). Tree spatial patterns: South Carolina bottomland and
swamp forests. Bull. Torrey Botanical Club 109:529–536.

Hodges, J. L. J., Lehmann, E. L. (1956). The efficiency of some nonparametric competitors
of the t-test. Ann. Mathemat. Statist. 27(2):324–335.

Jaromczyk, J. W., Toussaint, G. T. (1992). Relative neighborhood graphs and their relatives.
Proc. IEEE 80:1502–1517.

Keitt, T. (2007). Introduction to spatial modeling with networks. Presented at the
Workshop on Networks in Ecology and Beyond Organized by the PRIMES (Program
in Interdisciplinary Math, Ecology and Statistics) at Colorado State University, Fort
Collins, Colorado.

Kendall, M., Stuart, A. (1979). The Advanced Theory of Statistics. 4th ed. Vol. 2. London:
Griffin.

Kulldorff, M. (2006). Tests for spatial randomness adjusted for an inhomogeneity: a general
framework. J. Amer. Statist. Assoc. 101(475):1289–1305.

Marchette, D. J., Priebe, C. E. (2003). Characterizing the scale dimension of a high
dimensional classification problem. Pattern Recogn. 36(1):45–60.

Minor, E. S., Urban, D. L. (2007). Graph theory as a proxy for spatially explicit population
models in conservation planning. Ecolog. Applic. 17(6):1771–1782.

Okabe, A., Boots, B., Sugihara, K., Chiu, S. N. (2000). Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. New York: Wiley.

Perry, G., Miller, B., Enright, N. (2006). A comparison of methods for the statistical analysis
of spatial point patterns in plant ecology. Plant Ecol. 187(1):59—-82.

Pielou, E. C. (1961). Segregation and symmetry in two-species populations as studied by
nearest-neighbor relationships. J. Ecol. 49(2):255–269.

Priebe, C. E., DeVinney, J. G., Marchette, D. J. (2001). On the distribution of the
domination number of random class cover catch digraphs. Statist. Probab. Lett.
55:239–246.

Priebe, C. E., Marchette, D. J., DeVinney, J., Socolinsky, D. (2003a). Classification using
class cover catch digraphs. J. Classific. 20(1):3–23.

Priebe, C. E., Solka, J. L., Marchette, D. J., Clark, B. T. (2003b). Class cover catch digraphs
for latent class discovery in gene expression monitoring by DNA microarrays.
Computat. Statist. Data Anal. Visual. 43-4:621–632.

Ripley, B. D. (2004). Spatial Statistics. New York: Wiley-Interscience.
Roberts, S. A., Hall, G. B., Calamai, P. H. (2000). Analysing forest fragmentation

using spatial autocorrelation, graphs and GIS. Int. J. Geograph. Inform. Sci. 14(2):
185–204.

Stoyan, D., Penttinen, A. (2000). Recent applications of point process methods in forestry
statistics. Statist. Sci. 15(1):61–78.

Su, W. Z., Yang, G. S., Yao, S. M., Yang, Y. B. (2007). Scale-free structure of town
road network in southern Jiangsu Province of China. Chin. Geograph. Sci. 17(4):
311–316.

Toussaint, G. T. (1980). The relative neighborhood graph of a finite planar set. Patt. Recogn.
12(4):261–268.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
1
4
:
3
8
 
2
2
 
M
a
r
c
h
 
2
0
1
1



Spatial Clustering Tests Using Random Digraphs 1395

West, D. B. (2001). Introduction to Graph Theory. 2nd ed. Englewood Cliffs, NJ: Prentice
Hall.

Wierman, J. C., Xiang, P. (2008). A general SLLN for the one-dimensional class cover
problem. Statist. Probab. Lett. 78(9):1110–1118.

Wu, X., Murray, A. T. (2008). A new approach to quantifying spatial contiguity using graph
theory and spatial interaction. Int. J. Geograph. Inform. Sci. 22(4):387–407.

Xiang, P., Wierman, J. C. (2009). A CLT for a one-dimensional class cover problem. Statist.
Probab. Lett. 79(2):223–233.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
1
4
:
3
8
 
2
2
 
M
a
r
c
h
 
2
0
1
1


