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Various methods to control the influence of a covariate on a response variable are
compared. These methods are ANOVA with or without homogeneity of variances
(HOV) of errors and Kruskal–Wallis (K–W) tests on (covariate-adjusted) residuals
and analysis of covariance (ANCOVA). Covariate-adjusted residuals are obtained
from the overall regression line fit to the entire data set ignoring the treatment levels
or factors. It is demonstrated that the methods on covariate-adjusted residuals are
only appropriate when the regression lines are parallel and covariate means are
equal for all treatments. Empirical size and power performance of the methods are
compared by extensive Monte Carlo simulations. We manipulated the conditions
such as assumptions of normality and HOV, sample size, and clustering of the
covariates. The parametric methods on residuals and ANCOVA exhibited similar size
and power when error terms have symmetric distributions with variances having the
same functional form for each treatment, and covariates have uniform distributions
within the same interval for each treatment. In such cases, parametric tests have
higher power compared to the K–W test on residuals. When error terms have
asymmetric distributions or have variances that are heterogeneous with different
functional forms for each treatment, the tests are liberal with K–W test having higher
power than others. The methods on covariate-adjusted residuals are severely affected
by the clustering of the covariates relative to the treatment factors when covariate
means are very different for treatments. For data clusters, ANCOVA method exhibits
the appropriate level. However, such a clustering might suggest dependence between
the covariates and the treatment factors, so makes ANCOVA less reliable as well.

Keywords Allometry; ANOVA; Clustering; Homogeneity of variances;
Isometry; Kruskal–Wallis test; Linear models; Parallel lines model.
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1. Introduction

In an experiment, the response variable may depend on the treatment factors
and quite often on some external factor that has a strong influence on the
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2020 Ceyhan and Goad

response variable. If such external factors are qualitative or discrete, then
blocking can be performed to remove their influence. However, if the external
factors are quantitative and continuous, the effect of the external factor can be
accounted for by adopting it as a covariate (Kuehl, 2000), which is also called
a concomitant variable (Milliken and Johnson, 2002; Ott, 1993). Throughout this
article, a covariate is defined to be a variable that may affect the relationship
between the response variable and factors (or treatments) of interest, but is not of
primary interest itself. Maxwell et al. (1984) compared methods of incorporating a
covariate into an experimental design and showed that it is not correct to consider
the correlation between the dependent variable and covariate in choosing the best
technique. Instead, they recommend considering whether scores on the covariate are
available for all subjects prior to assigning any subject to treatment conditions and
whether the relationship of the dependent variable and covariate is linear.

In various disciplines such as ecology, biology, medicine, etc., the goal is
comparison of a response variable among several treatments after the influence of
the covariate is removed. Different techniques are used or suggested in statistical
and biological literature to remove the influence of the covariate(s) on the response
variable (Huitema, 1980). For example, in ecology one might want to compare
richness-area relationships among regions, shoot ratios of plants among several
treatments, and of C:N ratios among sites (Garcia-Berthou, 2001). There are three
main statistical techniques for attaining this goal: (i) analysis of the ratio of response
to the covariate; (ii) analysis of the residuals from the regression of the response
with the covariate; and (iii) analysis of covariance (ANCOVA).

Analysis of the ratios is perhaps the oldest method used to remove the covariate
effect (e.g., size effect in biology) (see Albrecht et al., 1993, for a comprehensive
review). Although many authors recommend its disuse (Atchley et al., 1976; Packard
and Boardman, 1988), it might still appear in literature on occasion (Albrecht
et al., 1993). For instance, in physiological and nutrition research, the data are
scaled by taking the ratio of the response variable to the covariate. Using the
ratios in removing the influence of the covariate on the response depends on the
relationship between the response and the covariate variables (Raubenheimer and
Simpson, 1992). Regression analysis of a response variable on the covariate(s)
is common to detect such relationships, which are categorized as isometric or
allometric relationships (Small, 1996). Isometry occurs when the relationship between
a response variable and the covariate is linear with a zero intercept. If the
relationship is nonlinear or if there is a non zero intercept, it is called allometry.
In allometry, the influence of the covariate cannot be removed by taking the ratio
of the response to the covariate. In both of allometry and isometry cases, ANOVA
on ratios (i.e., response/covariate values) introduces heterogeneity of variances in
the error terms. Hence, ANOVA on ratios may give spurious and invalid results
for treatment comparisons, so ANCOVA is recommended over the use of ratios
(Raubenheimer and Simpson, 1992). See Ceyhan (2000) for a detailed discussion on
the use of ratios to remove the covariate influence.

An alternative method to remove the effect of a covariate on the response
variable in biological and ecological research is the use of residuals (Garcia-Berthou,
2001). In this method, an overall regression line is fitted to the entire data set
and residuals are obtained from this line (Beaupre and Duvall, 1998). Henceforth,
these residuals will be referred to as covariate-adjusted residuals. This method was
recommended in ecological literature by Jakob et al. (1996) who called it “residual
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Analysis of Residuals and ANCOVA 2021

index” method. Then treatments are compared with ANOVA with HOV on these
residuals.

Due to the problems associated with the use of ratios in removing the influence
of the covariate from the response, ANOVA (with HOV) on covariate-adjusted
residuals and ANCOVA were recommended over the use of ratios (Atchley et al.,
1976; Packard and Boardman, 1988). For example, Beaupre and Duvall (1998)
used ANOVA on covariate-adjusted residuals in a zoological study. Ceyhan (2000)
compared the ANCOVA and ANOVA (with HOV) on covariate-adjusted residuals.
ANCOVA has been widely applied in ecology and it was shown to be a superior
alternative to ratios by Garcia-Berthou (2001) who also pointed out problems with
the residual index and recommends ANCOVA as the correct alternative. He also
discussed the differences between ANCOVA and ANOVA on the residual index.
They argued that the residual analysis is totally misleading as (i) residuals are
obtained from an overall regression on the pooled data, (ii) the residual analysis
uses the wrong degrees of freedom in inference, and (iii) residuals fail to satisfy the
ANOVA assumptions even if the original data did satisfy them. In fact, Maxwell
et al. (1985) also demonstrated the inappropriateness of ANOVA on residuals.

Although ANCOVA is a well-established and highly recommended tool, it also
has critics. However, the main problem in literature is not the inappropriateness
of ANCOVA, rather its misuse and misinterpretation. For example, Rheinheimer
and Penfield (2001) investigated how the empirical size and power performances
of ANCOVA are affected when the assumptions of normality and HOV, sample
size, number of treatment groups, and strength of the covariate-dependent variable
relationship are manipulated. They demonstrated that for balanced designs,
the ANCOVA F test was robust and was often the most powerful test through
all sample-size designs and distributional configurations. Otherwise, it was not the
best performer. In fact, the assumptions for ANCOVA are crucial for its use;
especially, the independence between the covariate and the treatment factors is
an often ignored assumption resulting incorrect inferences (Miller and Chapman,
2001). This violation is very common in fields such as psychology and psychiatry,
due to non random group assignment in observational studies, and Miller and
Chapman (2001) also suggested some alternatives for such cases. Hence, the
recommendations in favor on ANCOVA (including ours) are valid only when the
underlying assumptions are met.

In this article, we demonstrate that it is not always wrong to use the residuals.
We also discuss the differences between ANCOVA and analysis of residuals,
provide when and under what conditions the two procedures are appropriate
and comparable. Then under such conditions, we not only consider ANOVA
(with HOV), but also ANOVA without HOV and Kruskal–Wallis (K–W) test on
the covariate-adjusted residuals. We provide the empirical size performance of each
method under the null case and the empirical power under various alternatives using
extensive Monte Carlo simulations.

The nonparametric analysis by K–W test on the covariate-adjusted residuals
is actually not entirely nonparametric, in the sense that, the residuals are obtained
from a fully parametric model. However, when the covariate is not continuous but
categorical data with ordinal levels, then a nonparametric version of ANCOVA
can be performed (see, e.g., Akritas et al., 2000; Tsangari and Akritas, 2004a).
Further, the nonparametric ANCOVA model of Akritas et al. (2000) is extended
to longitudinal data for up to three covariates (Tsangari and Akritas, 2004b).
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2022 Ceyhan and Goad

Additionally, there are nonparametric methods such as Quade’s procedure, Puri
and Sen’s solution, Burnett and Barr’s rank difference scores, Conover and Iman’s
rank transformation test, Hettmansperger’s procedure, and the Puri–Sen–Harwell–
Serlin test which can be used as alternatives to ANCOVA (see Rheinheimer and
Penfield, 2001, for the comparison of the these tests with ANCOVA and relevant
references). In fact, Rheinheimer and Penfield (2001) showed that with unbalanced
designs, with variance heterogeneity, and when the largest treatment-group variance
was matched with the largest group sample size, these nonparametric alternatives
generally outperformed the ANCOVA test.

The methods to remove covariate influence on the response are presented
in Sec. 2, where the ANCOVA method, ANOVA with HOV and without HOV
on covariate adjusted residuals, and K–W test on covariate-adjusted residuals are
described. A detailed comparison of the methods, in terms of the null hypotheses,
and conditions under which the parametric tests are equivalent are provided in
Sec. 3. The Monte Carlo simulation analysis used for the comparison of the methods
in terms of empirical size and power is provided in Sec. 4. A discussion together
with a detailed guideline on the use of the discussed methods is provided in Sec. 5.

2. ANCOVA and Methods on Covariate-Adjusted Residuals

2.1. ANCOVA Method

For convenience, only ANCOVA with a one-way treatment structure in a
completely randomized design and a single covariate is investigated. A simple linear
relationship between the covariate and the response for each treatment level is
assumed.

Suppose there are t levels of a treatment factor, with each level having si
observations; and there are rij replicates for each covariate value for treatment level
i for i = 1� 2� � � � � t and j = 1� 2� � � � � ni where ni is the number of distinct covariate
values at treatment level i. Let n be the total number of observations in the entire
data set, then si =

∑ni
j=1 rij and n = ∑t

i=1 si. ANCOVA fits a straight line to each
treatment level. These lines can be modeled as

Yijk = �i + �iXij + eijk� (1)

where Xij is the jth value of the covariate for treatment level i, Yijk is the kth
response at Xij , �i is the intercept and �i is the slope for treatment level i, and eijk
is the random error term for i = 1� 2� � � � � t, j = 1� 2� � � � � ni, and k = 1� 2� � � � � rij .
The assumptions for the ANCOVA model in Eq. (1) are: (a) the Xij (covariate)

values are assumed to be fixed (i.e., Xij is not a random variable); (b) eijk
iid∼ N�0� �2

e�

for all treatments where
iid∼ stands for “independently identically distributed as”.

This implies Yijk are independent of each other and Yijk ∼ N��i + �iXij� �
2
e�; (c) the

covariate and the treatment factors are independent. Then the straight line fitted
by ANCOVA to each treatment can be written as Ŷij = �̂i + �̂iXij , where Ŷij is the
predicted response for treatment i at Xij , �̂i is the estimated intercept, and �̂i is the
estimated slope for treatment i.

In the analysis, first we test

�i� Ho � �1 = �2 = · · · = �t = 0 (all slopes are equal to zero)�
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Analysis of Residuals and ANCOVA 2023

If Ho is not rejected, then the covariate is not necessary in the model. Then a regular
one-way ANOVA can be performed to test the equality of treatment means. If Ho

in (i) is rejected, then we test

�ii� Ho � �1 = �2 = · · · = �t (the slopes are equal)�

If Ho in (ii) is not rejected, then the lines are parallel, otherwise they are non parallel
(Milliken and Johnson, 2002).

The parallel lines model is given by

Yijk = �i + �Xij + eijk� (2)

where � is the common slope for all treatment levels. With this model, testing the
equality of the intercepts, i.e., Ho � �1 = �2 = · · · = �t, is equivalent to testing the
equality of treatment means at any value of the covariate. For the non parallel lines
case, the comparison of treatments may give different results at different values of
the covariate.

2.2. Analysis of Covariate-Adjusted Residuals

First an overall regression line is fitted to the entire data set as:

Ŷij = �̂ + �̂∗Xij� for i = 1� 2� � � � � t and j = 1� 2� � � � � ni� (3)

where �̂ is the estimated overall intercept and �̂∗ is the estimated overall slope.
The residuals from this regression line are called covariate-adjusted residuals and are
calculated as:

Rijk = Yijk − Ŷij = Yijk − �̂ − �̂∗Xij� for i = 1� 2� � � � � t� j = 1� 2� � � � � ni�

and k = 1� 2� � � � � rij� (4)

where Rijk is the kth residual of treatment level i at Xij .

2.2.1. ANOVA with or without HOV on Covariate-Adjusted Residuals. In ANOVA
with or without HOV procedures, the covariate-adjusted residuals in Eq. (4) are
taken to be the response values, and tests of equal treatment means are performed
on residual means. The means model and assumptions for the one-way ANOVA
with HOV on these covariate-adjusted residuals are:

Rijk = 	i + 
ijk� for i = 1� 2� � � � � t� j = 1� 2� � � � � ni� and k = 1� 2� � � � � rij� (5)

where 	i is the mean residual for treatment i, 
ijk are the (independent) random
errors such that 
ijk ∼ N�0� �2


�. However, Rijk are not independent of each other,
since

∑t
i=1

∑ni
j=1

∑rij
k=1 Rijk = 0, which also implies that the overall mean of the

residuals is zero.
For the non parallel lines model in Eq. (1), the residuals in Eq. (4) will take the

form:

Rijk = Yijk − Ŷij = �i + �i Xij + eijk −
(
�̂ + �̂∗Xij

) = ��i − �̂�+ (
�i − �̂∗)Xij + eijk�

(6)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
1
8
:
5
9
 
2
9
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



2024 Ceyhan and Goad

Hence, the influence of the covariate will be removed if and only if (iff)

�̂∗ = �i for all i = 1� 2� � � � � t� (7)

that is, iff the treatment-specific lines in Eq. (1) and the overall regression in Eq. (3)
are parallel. Notice that the residuals from the treatment-specific models in Eq. (1)
cannot be used as response values in an ANOVA with HOV, because treatment
sums of squares of such residuals are zero (Ceyhan, 2000).

In ANOVA without HOV on covariate-adjusted residuals, the only difference
from ANOVA with HOV is that 
ijk are the (independent) random errors such that

ijk ∼ N�0� �2

i �. Notice that HOV is not necessarily assumed in this model.
K–W test is an extension of the Mann–Whitney U test to three or more groups;

and for two groups K–W test and Mann–Whitney U test are equivalent (Siegel and
Castellan, 1988). K–W test on the covariate-adjusted residuals which are obtained
as in model (4) tests the equality of the residual distributions for all treatment levels.
Notice that contrary to the parametric models and tests in previous sections, only
the distributional equality is assumed, neither normality nor HOV.

3. Comparison of the Methods

ANOVA with or without HOV or K–W test on covariate-adjusted residuals and
ANCOVA can be compared when the treatment-specific lines and the overall
regression line are parallel. For two treatments, the null hypotheses tested by
“ANCOVA”, “ANOVA with or without HOV”, and “K–W test” on covariate-
adjusted residuals are Ho � “Intercepts are equal for all treatments”, Ho � “Residual
means are equal for all treatments”, and Ho � “Residuals have the same distribution
for all treatments”, respectively. More formally, these null hypotheses are

Ho � �1 = �2 �or �1 − �2 = 0� (8)

Ho � 	1 = 	2 �or 	1 − 	2 = 0� (9)

and

Ho � FR1
= FR2

�or R1
d= R2�� (10)

respectively, where FRi
is the residual distribution function for treatment i, i = 1� 2,

and
d= stands for “equal in distribution”.
In Eq. (9), 	i can be estimated by the sample residual mean, Ri��. Averaging the

residuals in Eq. (6) for treatment i yields

Ri�� = 	i + 
i�� = ��i − �̂�+ (
�i − �̂∗)Xi� + ei��� i = 1� 2� (11)

where Xi� is the sample mean of covariate values for treatment i, ei�� =∑ni
j=1

∑rij
k=1 eijk/ni and 
i�� =

∑ni
j=1

∑rij
k=1 
ijk/ni, i = 1� 2. Under the assumptions of

ANCOVA and ANOVA (with or without HOV) on covariate-adjusted residuals,
taking the expectations in (11) yields

E�Ri��� = 	i = �i + �i Xi� − � − �∗Xi� = �i − � + ��i − �∗�Xi�� i = 1� 2� (12)
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Analysis of Residuals and ANCOVA 2025

since E�ei��� = 0 and E�
i��� = 0, for i = 1� 2. Hence, Ho in (9) can be rewritten as Ho �

��1 − �2�+ ��1 − �∗�X1� − ��2 − �∗�X2� = 0. Then the hypotheses in Eqs. (8) and (9)
are equivalent iff

��1 − �∗�X1� = ��2 − �∗�X2� (13)

Using condition (7) and repeating the above argument for all pairs of treatments,
the condition in (13) can be extended to more than two treatments.

Notice that the conditions that will imply (13) will also imply the equivalence
of the hypotheses in (8) and (9). The overall regression slope can be estimated as

�̂∗ =
∑2

i=1

∑ni
j=1

∑rij
k=1 �Xij − X����Yijk − Y ����

E∗
xx

=
∑2

i=1

∑ni
j=1

∑rij
k=1 �Xij − X���Yijk

E∗
xx

(14)

where X�� is the overall covariate mean, Y ��� is the overall response mean, and

E∗
xx =

2∑
i=1

ni∑
j=1

rij�Xij − X���
2 =

2∑
i=1

ni∑
j=1

rij�Xij − X���Xij�

Furthermore, the treatment-specific slope used in model (1) is estimated as

�̂i =
∑ni

j=1

∑rij
k=1

(
Xij − Xi�

)(
Yijk − Y i��

)
Exx�i

�

where Exx�i =
∑ni

j=1 rij�Xij − Xi��
2, and Y i�� is the mean response for treatment i.

Substituting Yijk = �̂i + �̂iXij + R′
ijk, i = 1� 2, j = 1� 2� � � � � ni, and k = 1� 2� � � � � rij in

Eq. (14) where R′
ijk is the kth residual at Xij in model (1), the estimated overall slope

becomes

�̂∗ =
∑2

i=1

∑ni
j=1

∑rij
k=1 �Xij − X�����̂i + �̂iXij + R′

ijk�

E∗
xx

= �̂i +
∑2

i=1

∑ni
j=1 rij�Xij − X����̂i

E∗
xx

+
∑2

i=1

∑ni
j=1

∑rij
k=1 �Xij − X���R

′
ijk

E∗
xx

= �̂i +
∑2

i=1

∑ni
j=1 rij�Xij − X����̂i

E∗
xx

+
∑2

i=1

∑ni
j=1

∑rij
k=1 XijR

′
ijk

E∗
xx

� (15)

since
∑2

i=1

∑ni
j=1

∑rij
k=1 X��R

′
ijk = 0. As E�R′

ijk� = 0, taking the expectations in (15)
yields

�∗ = �i +
�1�

∑n1
j=1 rij�X1j − X����+ �2�

∑n2
j=1 rij�X2j − X����

E∗
xx

= �i +
�1n1�X1� − X���+ �2n2�X2� − X���

E∗
xx

(16)
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2026 Ceyhan and Goad

Under Ho � �1 = �2, (16) reduces to �∗ = �i iff

n1

(
X1� − X��

)+ n2

(
X2� − X��

)
E∗

xx

= 0 (17)

provided that E∗
xx �= 0. Indeed, E∗

xx = 0 will hold if and only if all Xij are equal
to a constant for each treatment i, in which case, �̂∗ and �̂i will be undefined.
The condition in (17) holds if X1� = X2��=X���. Recall that Ho � 	1 = 	2 was shown to
be equivalent to Ho � �1 = �2 provided that ��1 − �∗�X1� = ��2 − �∗�X2�, which holds
if X1� = X2� and �1 = �2. So the null hypotheses in (8) and (9) are equivalent when
the treatment-specific lines are parallel and treatment-specific means are equal which
implies the condition stated in (7).

In general for t treatments, Ho in (8) can be tested by

F = MSTrt

MSE

=
(∑t

i=1

∑ni
j=1 rij

[(
Y i�� − Y ���

)− �̂i

(
Xi� − X��

)]2)
/�t − 1�

(∑t
i=1

∑ni
j=1

∑rij
k=1

[
�Yijk − Y i���− �̂i�Xij − Xi��

]2)
/�n− �t + 1��

�

∼ F�t − 1� n− t − 1�� (18)

where MSTrt is the mean square treatment for response values and MSE is the mean
square error for response values.

Similarly, Ho in (9) can be tested by F ∗ = MSTrt∗/MSE∗ where MSTrt∗ is the
mean square treatment for covariate-adjusted residuals and MSE∗ is the mean
square error for covariate-adjusted residuals. These mean square terms can be

calculated as MSTrt∗ =
∑t

i=1
∑ni

j=1 rij �Ri��−R����
2

�t−1� and MSE∗ =
∑t

i=1
∑ni

j=1
∑rij

k=1 �Rijk−Ri���
2

�n−t�
. Using

Ri�� = Y i�� − �̂ − �̂∗ Xi�, i = 1� 2� � � � � t, and R��� = Y ��� − �̂ − �̂∗ X��, we have

F ∗ = MSTrt∗

MSE∗

=
(∑t

i=1

∑ni
j=1 rij

[
�Y i�� − Y ����− �̂∗�Xi� − X���

]2)
/�t − 1�

(∑t
i=1

∑ni
j=1

∑rij
k=1

[
�Yijk − Y i���− �̂∗�Xij − Xi��

]2)
/�n− t�

∼ F
(
t − 1� 
∗

)
� (19)

It might seem that MSE∗ has 
∗ = �n− t� degrees of freedom (df), since there are
t parameters (	i for i = 1� 2� � � � � t) to estimate, so the test statistic in Eq. (19)
is distributed as F ∗ ∼ F�t − 1� n− t�. However, there is one more restriction in
test (9). Since

∑2
i=1

∑ni
j=1

∑rij
k=1 Rijk = 0, F ∗ should actually be distributed as F ∗ ∼

F�t − 1� n− t − 1�. Atchley et al. (1976) did not suggest this adjustment in df, and
Beaupre and Duvall (1998) used the method without such an adjustment. That is,
in both sources F�t − 1� n− t� is used for inference. So, in this article df for MSE∗

has been set to �n− t� as in literature for comparative purposes.
For two treatments, F

d= � 2�n− 3� and F ∗ d= � 2�n− 2� where � �n� is the
t-distribution with n df. As n → �, both F and F ∗ will converge in distribution to
�21. So F and F ∗ will yield similar results for large n.
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Analysis of Residuals and ANCOVA 2027

The above discussion is based on normality of error terms with HOV. Without
HOV the df of the F -tests are calculated with Satterthwaite approximation (Kutner
et al., 2004). On the other hand, K–W test requires neither normality nor HOV, but
implies a more general hypothesis Ho � FR1

= FR2
, in the sense that FR1

= FR2
would

imply 	1 = 	2 without the normality assumption. However, the null hypothesis in
Eq. (9) implicitly assumes normality.

4. Monte Carlo Simulation Analysis

4.1. Sample Generation for Null and Alternative Models

Without loss of generality, the slope in model (2) is arbitrarily taken to be 2 and the
intercept is chosen to be 1. So the response values for the treatments are generated as

�i� Y1jk = 1+ 2X1j + e1jk� j = 1� 2� � � � � n1 and k = 1� 2� � � � � r1j for treatment 1
(20)

and

�ii� Y2jk = �1+ 0�02q�+ 2X2j + e2jk� j = 1� 2� � � � � n2

and k = 1� 2� � � � � r2j for treatment 2� (21)

where eijk
iid∼ Fi, where Fi is the error distribution for treatment i, i = 1� 2 and q is

introduced to obtain separation between the parallel lines. In (20) and (21), Xij is
the jth generated value of the covariate in treatment i, Yijk is the response value
for treatment level i at Xij for i = 1� 2, eijk is the kth random error term. The
covariate ranges, sample sizes (n1 and n2), error distributions (F1 and F2) for the two
treatments, and the number of replicates (reps) at each value of Xij are summarized
in Table 1. In the context of model (2) the common slope is � = 2, and �1 = 1 and
�2 = �1+ 0�02q� are the intercepts for treatment levels 1 and 2, respectively.

As q increases the treatment-specific response means become farther apart
at each covariate value and the power of the tests is expected to increase. q is
incremented from 1 to mu in case-u, for u = 1� 2� � � � � 16 (Table 1) where mu is
estimated by the standard errors of the intercepts of the treatment-specific regression
lines. In the simulation no further values of q are chosen when the power is expected
to approach 1.00 that occurs when the intercepts are approximately 2.5 standard
errors apart, as determined by equating the intercept difference, 0�02q = 2�5s�̂i , with
q replaced by mu. A pilot sample of size 6,000 is generated (q = 0� 1� 2� 3� 4� 5 with
1,000 samples at each q), and maximum of the standard errors of the intercepts is
recorded. Then mu � 2�5maxi�s�̂i �/0�02 for i = 1� 2 in case u.

Henceforth, all cases labeled with “a” have one replicate and all cases labeled
with “b” have two replicates per covariate value, henceforth. For example, in case 1a
the most general case is simulated with iid N�0� 1� error variances, and 20 uniformly
randomly generated covariate values in the interval �0� 10� for both treatments. In
case 1b, the data is generated as in case 1a with two replicates per covariate value.

In cases 1, 5–8, 9, and 12–16, error variances are homogeneous; in cases 1 and
5–8 error terms are generated as iid N�0� 1�. In case 9, error terms are generated
as iid��−√

3�
√
3�; in case 12, error terms are iidDW�0� 1� 3�, double-Weibull

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
1
8
:
5
9
 
2
9
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



2028 Ceyhan and Goad

Table 1
The simulated cases for the comparison of ANCOVA and methods on

covariate-adjusted residuals. eijk: error term;
ind∼: independently distributed as;

ni: sample size for treatment level i = 1� 2. N��� �2� is the normal distribution with
mean � and variance �2; ��a� b� is the uniform distribution with support �a� b�;
DW�a� b� c� is the double Weibull distribution with location parameter a� scale
parameter b� and shape parameter c; ��a� b� is the Beta distribution with shape
parameters a and b; �22 is the chi-square distribution with 2 df; LN�a� b� is the

log-normal distribution with location parameter a and scale parameter b

Error term Sample sizes Ranges of covariate for

Case e1jk
ind∼ e2jk

ind∼ n1 n2 Treatment 1 Treatment 2

1 N�0� 1� N�0� 1� 20 20 (0, 10) (0, 10)
2 N�0� 1� N�0� 6� 20 20 (0, 10) (0, 10)
3 N�0� 1� N�0�

√
x� 20 20 (0, 10) (0, 10)

4 N�0�
√
x� N�0�

√
x� 20 20 (0, 10) (0, 10)

5 N�0� 1� N�0� 1� 28 12 (0, 10) (0, 10)
6 N�0� 1� N�0� 1� 20 20 (0, 6) (4, 10)
7 N�0� 1� N�0� 1� 20 20 �0� 3� ∪ �7� 10� (4, 10)
8 N�0� 1� N�0� 1� 20 20 �0� 4� ∪ �6� 10� (3, 7)
9 ��−√

3�
√
3� ��−√

3�
√
3� 20 20 (0, 10) (0, 10)

10 ��−√
3�

√
3� ��−2

√
3� 2

√
3� 20 20 (0, 10) (0, 10)

11 ��−√
3�

√
3� ��−√

x�
√
x� 20 20 (0, 10) (0, 10)

12 DW�0� 1� 3� DW�0� 1� 3� 20 20 (0, 10) (0, 10)
13

√
48���6� 2�− 3/4�

√
48���6� 2�− 3/4� 20 20 (0, 10) (0, 10)

14 �22 − 2 �22 − 2 20 20 (0, 10) (0, 10)
15 LN�0� 1�− e1/2 LN�0� 1�− e1/2 20 20 (0, 10) (0, 10)
16 N�0� 2� �22 − 2 20 20 (0, 10) (0, 10)

distribution with location parameter 0, scale parameter 1, and shape parameter 3
whose probability density function (pdf) is f�x� = �3/2�x2 exp

(− 
x
3) for all x; in
case 13, error terms are iid

√
48���6� 2�− 3/4� where ��6� 2� is the Beta distribution

with shape parameters 6 and 2 whose pdf is f�x� = 42x5�1− x�I�0 < x < 1� where
I�·� is the indicator function; in case 14, error terms are iid�22 − 2 where �22 is
the chi-square distribution with 2 df; in case 15, error terms are iidLN�0� 1�− e1/2

where LN�0� 1� is the log-normal distribution with location parameter 0 and scale
parameter 1 whose pdf is f�x� = 1

x
√
2�
exp

(− 1
2 �log x�

2
)
I�x > 0�, and in case 16, error

terms are iidN�0� 2� for treatment 1 and iid�22 − 2 for treatment 2.
In cases 2–4, heterogeneity of variances for normal error terms is introduced

either by unequal but constant variances (case 2), unequal but a combination of
constant and x-dependent variances (case 3), or equal and x-dependent variances
(case 4). In case 10, error terms are iid��−√

3�
√
3� for treatment 1 and

iid��−2
√
3� 2

√
3� for treatment 2; in case 11, error terms are iid��−√

3�
√
3�

treatment 1 and iid��−√
x�

√
x� for treatment 2.

The x-dependence of variances is a realistic but not a general case. For
example, Beaupre and Duvall (1998) who explored the differences in metabolism
(O2 consumption) of the Western diamondback rattlesnakes with respect to their
sex, the O2 consumption was measured for males, non reproductive females, and

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
1
8
:
5
9
 
2
9
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



Analysis of Residuals and ANCOVA 2029

vitellogenic females. To remove the influence of body mass which was deemed as a
covariate on O2 consumption, ANOVA with HOV on covariate-adjusted residuals
was performed. In their study, the variances of O2 consumption for sexual groups
have a positive correlation with body mass. In this study,

√
x is taken as the variance

term to simulate such a case. Heterogeneity of variances conditions violate one
of the assumptions for ANCOVA and ANOVA with HOV on covariate-adjusted
residuals, and are simulated in order to evaluate the sensitivity of the methods to
such violations. In case 5, different sample sizes are taken from that of other cases
to see the influence of unequal sample sizes.

The error terms are generated from normal distributions in cases 1–8, non
normal distributions in cases 9–15. The distribution of the error variances are
symmetric around 0 in cases 9–12, but not in cases 13–15. Notice that cases 13–
15 are normalized to have zero mean, and furthermore case 13 is scaled to have
unit variance. The influence of non normality and asymmetry of the distributions
are investigated in these cases. In case 16, the influence of distributional differences
(normal vs asymmetric non normal) in the error term is investigated.

In cases 1–5 and 9–16, covariates are uniformly randomly generated, without
loss of generality, in �0� 10�, hence X1� ≈ X2� is expected to hold. In these cases
the influence of replications (or magnitude of equal sample sizes), heterogeneity
of variances, and non normality of the variances on the methods are investigated.
Cases 6–8 address the issue of clustering which might result naturally in a data
set. Clustering occurs if the treatments have distinct or partially overlapping ranges
of covariates. Extrapolation occurs if the clusters are distinct or the mean of the
covariate is not within the covariate clusters for at least one treatment. In case
6 there is a mild overlap of the covariate clusters for treatments 1 and 2, such
that covariates are uniformly randomly generated within �0� 6� for treatment 1, and
�4� 10� for treatment 2, so X1� and X2� are expected to be different. In fact, this case
is expected to contain the largest difference between X1� and X2�. In case 7, treatment
1 has two clusters, such that each treatment 1 covariate is randomly assigned to
either �0� 3� or �7� 10� first, then the covariate is uniformly randomly generated in
that interval. Treatment 2 covariates are generated uniformly within the interval of
�4� 10�. Note that X1� and X2� are expected to be very different, but not as much
as case 6. See Ceyhan and Goad (2009) for realizations of cases 6 and 7. Notice
that the second cluster of treatment 1 is completely inside the covariate range of
treatment 2. These choices of clusters are inspired by the research of Beaupre and
Duvall (1998). In case 8, treatment 1 has two clusters, each treatment 1 covariate
is uniformly randomly generated in the randomly selected interval of either �0� 4�
or �6� 10�. Treatment 2 covariates are uniformly randomly generated in the interval
�3� 7�. Hence X1� and X2� are expected to be similar. Notice that treatment 2 cluster
is in the middle of the treatment 1 clusters with mild overlaps.

4.2. Monte Carlo Simulation Results

4.2.1. Empirical Size Comparisons. In the simulation process, for each case, Nmc =
10�000 samples are generated with q = 0 using the relationships in (20) and (21).
Out of these 10,000 samples the number of significant treatment differences detected
by the methods is recorded and is used to estimate the empirical sizes. The nominal
significance level used in all these tests is � = 0�05. The number of differences
detected concurrently by each pair of methods is also recorded to estimate the
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2030 Ceyhan and Goad

proportion of agreement between each pair of methods. Using the asymptotic
normality of proportions, the 95% confidence intervals are constructed for empirical
sizes of the methods (not presented) to see whether they contain the nominal
significance level of 0.05 and the 95% confidence interval for the difference in
the proportions (not presented either) to check whether the sizes are significantly
different from each other.

The empirical size estimates in cases 1a–16a and 1b–2b are presented in Table 2.
Observe that ANCOVA method is liberal in case 2a and conservative in cases 14a
and 15a, and has the desired nominal level 0.05 for the other cases. The liberalness
in case 2a weakens as the number of replicates is doubled (see case 2b). ANOVA
with or without HOV are liberal in cases 1a, 2a, and 3a, and conservative in cases
6a–8a, and 14a–15a and have the desired nominal level for the other cases. However,
the liberalness of the tests weakens in cases 1a–3a, as the number of replicates is
doubled. K–W test is liberal in cases 1a–3a, 10a, 11a, and 16a, and conservative
in cases 6a, 7a, and 14a, and has the desired nominal level for the other cases.

Table 2
The empirical sizes and their comparisons for ANCOVA and methods on

covariate-adjusted residuals for the 16 cases listed in Table 1 based on 10,000
Monte Carlo samples: �̂i: empirical size of method i; �i� j�: empirical size

comparison of method i vs. method j for i� j = 1� 2� 3� 4 with i �= j where method
i = 1 is for ANCOVA, i = 2 and i = 3 are for ANOVA with and without HOV on
covariate-adjusted residuals, respectively, i = 4 is for K–W test covariate-adjusted
residuals. ��c): Empirical size is significantly larger (smaller) than 0.05; i.e., method
is liberal (conservative). ≈: Empirical sizes are not significantly different from each
other; i.e., methods do not differ in size. < (>�: Empirical size of the first method

is significantly smaller (larger) than the second

Empirical sizes Size comparison

Case �̂1 �̂2 �̂3 �̂4 (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)

1a .0531 .0541� .0540� .0532 ≈ ≈ ≈ ≈ ≈ ≈
1b .0507 .0493 .0493 .0510 ≈ ≈ ≈ ≈ ≈ ≈
2a .0581� .0576� .0546� .0612� ≈ ≈ < ≈ < <
2b .0531 .0515 .0493 .0630� ≈ ≈ < ≈ < <
3a .0606� .0602� .0567� .0693� ≈ ≈ ≈ ≈ ≈ <
4a .0523 .0525 .0519 .0511 ≈ ≈ ≈ ≈ ≈ ≈
5a .0490 .0496 .0499 .0502 ≈ ≈ ≈ ≈ ≈ ≈
6a .0556� .0024c .0024c .0033c > > > ≈ ≈ ≈
7a .0465 .0339c .0337c .0332c > > > ≈ ≈ ≈
8a .0474 .0437c .0433c .0440c ≈ ≈ ≈ ≈ ≈ ≈
9a .0485 .0489 .0484 .0488 ≈ ≈ ≈ ≈ ≈ ≈
10a .0508 .0505 .0490 .0595� ≈ ≈ ≈ ≈ ≈ <
11a .0522 .0515 .0511 .0576� ≈ ≈ < ≈ < <
12a .0490 .0494 .0492 .0491 ≈ ≈ ≈ ≈ ≈ ≈
13a .0486 .0481 .0480 .0473 ≈ ≈ ≈ ≈ ≈ ≈
14a .0442c .0435c .0417c .0451c ≈ ≈ ≈ ≈ ≈ ≈
15a .0383c .0386c .0357c .0521 ≈ ≈ < ≈ < <
16a .0510 .0514 .0502 .0701� ≈ ≈ < ≈ < <
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Analysis of Residuals and ANCOVA 2031

Liberalness of the test in case 1a weakens as the number of replicates is doubled
(see case 1b). Notice that the ANCOVA method has the desired size when the
error term is normally distributed or has a symmetric distribution, tends to be
slightly liberal when HOV is violated, and is conservative when error distribution
is non normal and not symmetric. On the other hand, ANOVA with or without
HOV have about the same size for all cases. Both methods have the desired size
when error terms are normally distributed, or have symmetric distribution, and the
covariates have similar means. When error terms are normal without HOV, both
methods are liberal with ANOVA without HOV being less liberal. When error terms
are non normal with asymmetric distributions, both methods tend to be slightly
conservative. But, when the covariate means are extremely different, both methods
are extremely conservative (see cases 6 and 7). See Fig. 1 for the empirical size
estimates for ANCOVA and ANOVA with HOV on covariate-adjusted residuals as
a function of distance between treatment-specific means. As the distance between
treatment-specific means increase the empirical size for the ANOVA with HOV
on covariate-adjusted residuals decreases, while the empirical size for ANCOVA is
stable about the desired nominal level 0.05. K–W test has the desired level when
error terms have symmetric and identical distributions, is liberal when errors have
the same distribution without HOV and different distributions, and is conservative
when errors have asymmetric distributions provided the covariates have similar
means. But when the covariate means are very different, KW test is also extremely
conservative (see cases 6 and 7).

Moreover, when the covariates have similar means, ANCOVA and ANOVA
(with or without HOV) methods have similar empirical sizes. These three methods
have similar sizes as K–W test when the error distributions have HOV. Without
HOV, K–W test has significantly larger empirical size. When the covariate means are

Figure 1. Empirical sizes for ANCOVA and ANOVA (with HOV) on covariate-adjusted
residuals versus the distance between the treatment-specific means, d = X1� − X2�, with the
corresponding 95% confidence bands.
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2032 Ceyhan and Goad

considerably different, ANCOVA method has significantly larger size than others.
ANOVA with or without HOV methods have similar empirical sizes for all cases.

As seen in Table 3, the proportion of agreement between the empirical size
estimates are usually not significantly different from the minimum of each pair
of tests for ANCOVA and ANOVA with or without HOV, but the proportion
of agreement is usually significantly smaller for the cases in which K–W test
is compared with others. Therefore, ANCOVA and ANOVA with or without
HOV have the same null hypothesis, with similar acceptance/rejection regions,
while K–W test has a different null hypothesis hence different acceptance/rejection
regions. Both ANOVA methods have the same null hypothesis, and have similar
acceptance/rejection regions for this simulation study.

4.2.2. Empirical Power Comparisons. Empirical power of the tests are estimated
under the alternatives of treatment differences (i.e., 0�02q for q ≥ 1). Then the power
curves are plotted as a function of intercept difference (i.e., 0�02q) in Figs. 2 and 3.
In Fig. 3, we present cases 2a, 4a, 6a, 10a, 12a, and 15a only. For other cases, see
Ceyhan (2000) and Ceyhan and Goad (2009).

Table 3
The proportion of agreement values for pairs of methods in rejecting the null

hypothesis for the 16 cases listed in Table 1 based on 10,000 Monte Carlo samples:
�̂i�j : proportion of agreement between method i and method j in rejecting the null
hypothesis for i� j = 1� 2� 3� 4 with i �= j where method labeling is as in Table 2. n:
Proportion of agreement, �̂i�j , is not significantly different from the minimum of �̂i
and �̂j .

s: Proportion of agreement, �̂i�j , is significantly smaller than the minimum
of �̂i and �̂j

Proportion of agreement

Case �̂1�2 �̂1�3 �̂1�4 �̂2�3 �̂2�4 �̂3�4

1a .0520n .0519n .0429s .0540n .0432s .0431s

1b .0490n .0490n .0415s .0493n .0413s .0413s

2a .0560n .0545n .0419s .0546n .0415s .0405s

2b .0513n .0493n .0383s .0493n .0377s .0369s

3a .0581n .0565n .0468s .0567n .0469s .0453s

4a .0507n .0505n .0382s .0519n .0380s .0378s

5a .0473n .0389s .0382s .0396s .0392s .0388s

6a .0024n .0024n .0033n .0024n .0015n .0015n

7a .0338n .0336n .0286s .0337n .0260s .0260s

8a .0426n .0423n .0346s .0433n .0340s .0338s

9a .0475n .0473n .0417s .0484n .0422s .0420s

10a .0498n .0488n .0420s .0490n .0421s .0412s

11a .0507n .0504n .0456s .0511n .0457s .0454s

12a .0477n .0476n .0378s .0492n .0383s .0383s

13a .0476n .0476n .0369s .0480n .0371s .0371s

14a .0425n .0412n .0274s .0417n .0275s .0272s

15a .0367n .0355n .0253s .0357n .0252s .0246s

16a .0497n .0493n .0394s .0502n .0392s .0389s
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Analysis of Residuals and ANCOVA 2033

Figure 2. Empirical power estimates vs. intercept difference for cases 1a and 1b.

The first intercept difference value at which the power reaches 1 are denoted
as � and are provided in Table 4 for all cases. Observe also that power curves
are steeper when error variances are smaller. In cases 1, 9–11, and 16 (of
which only case 10a is presented in Fig. 3), the power estimates for ANCOVA
and ANOVA methods are similar but all are larger than the K–W test power
estimates. In these cases, except in cases 11 and 16, the error distributions are
identical for both treatment levels, and are all symmetric; furthermore, uniform
distribution approaching asymptotic normality considerably fast seems to satisfy the
assumptions of the parametric tests. In cases 3, 4, 14, and 15 (of which only cases
4a and 15a are presented in Fig. 3), power estimates for ANCOVA and ANOVA
methods are similar but all are smaller than those of the K–W test. In these cases,
either HOV is violated as in cases 3 and 4, or normality is violated as in cases 14 and
15 with the error distribution being asymmetric. Since K–W test is non parametric,
it is robust to non normality, and since it tests distributional equality, it is more
sensitive to departures from HOV in normal cases. In case 5, power estimates of
ANCOVA and ANOVA with HOV are similar, with both being larger than that
of ANOVA without HOV whose power estimate is larger than that of K–W test.
In this case, the sample sizes for the treatments are different with everything else
being same. In cases 6–8 (of which only case 6a is presented in Fig. 3), the power
estimate of ANCOVA method is significantly larger than those of the ANOVA
methods whose empirical sizes are larger than that of K–W test. In these cases, the
covariates are clustered with very different treatment-specific means in cases 6 and
7, and similar means in case 8. In cases 2 and 12 (both of which are presented in
Fig. 3), for smaller values of intercept difference (i.e., between 0 to 0.5 in case 2
and 0 to 0.8 in case 12), ANCOVA and ANOVA methods have similar power with
all having a smaller power than that of K–W test, while for larger values of the
intercept difference (i.e., between 0.5 to 4 in case 2 and 0.8 to 2 in case 12), the
order is reversed for the power estimates. In case 2, error terms have different but
constant variances, and in case 12, error terms are non normal but symmetric.
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2034 Ceyhan and Goad

Figure 3. Empirical power estimates versus intercept difference for cases 2a, 4a, 6a, 10a,
12a, and 15a.
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5. Discussion and Conclusions

In this article, we discuss various methods to remove the covariate influence on
a response variable when testing for differences between treatment levels. The
methods considered are the usual ANCOVA method and the analysis of covariate-
adjusted residuals using ANOVA with or without homogeneity of variances (HOV)
and Kruskal-Wallis (K–W) test. The covariate-adjusted residuals are obtained from
the fitted overall regression line to the entire data set (ignoring the treatment levels).
For covariate-adjusted residuals to be appropriate for removing the covariate
influence, the treatment-specific lines and the overall regression line should be
parallel. On the other hand, ANCOVA can be used to test the equality of treatment
means at specific values of the covariate. Furthermore, the use of ANCOVA is
extended to the non parallel treatment-specific lines also (Kowalski et al., 1994).

The Monte Carlo simulations indicate that when the covariates have similar
means and have similar distributions (with or without HOV), ANCOVA, ANOVA
with or without HOV methods have similar empirical sizes; and K–W test
is sensitive to distributional differences, since the null hypotheses for the first
three tests are about same while it is more general for K–W test. When
the treatment-specific lines are parallel, treatment-specific covariate ranges and
covariate distributions are similar. ANCOVA and ANOVA with or without HOV
on covariate-adjusted residuals give similar results if error variances have symmetric
distributions with or without HOV and sample sizes are similar for treatments; give
similar results if error variances are homogeneous and sample sizes are different but
large for treatments. In these situations, parametric tests are more powerful than
K–W test. The methods give similar results but are liberal if error variances are
heterogeneous with different functional forms for treatments. In these cases, usually
K–W test has better performance.

When the treatment-specific lines are parallel, but treatment-specific covariate
ranges are different; i.e., there exist clustering of the covariate relative to the
treatment factors, ANCOVA and ANOVA on covariate-adjusted residuals yield
similar results if treatment-specific covariate means are similar, very different results
if treatment-specific covariate means are different since overall regression line will
not be parallel to the treatment-specific lines. In such a case, methods on covariate-
adjusted residuals tend to be extremely conservative whereas the size of ANCOVA
F test is about the desired nominal level. Moreover, ANCOVA is much more
powerful than ANOVA on covariate-adjusted residuals in these cases. The power
of ANOVA on covariate-adjusted residuals gets closer to that of ANCOVA, as the
difference between the treatment-specific covariate means gets smaller. However,
in the case of clustering of covariates relative to the treatments, one should also
exercise extra caution due to the extrapolation problem. Moreover in practice, such
clustering is suggestive of an ignored grouping factor as in blocking. The discussed
methods are meaningful only within the overlap of the clusters or in the close
vicinity of them. However, when there are clusters for the groups in terms of the
covariate, it is very likely that covariate and the group factors are dependent, which
violates an assumption for ANCOVA. If this dependence is strong, then ANCOVA
method will not be appropriate. On the other hand, the residual analysis is extremely
conservative which might be viewed as an advantage in order not to reach spurious
and confounded conclusions in such a case.

Different treatment-specific covariate distributions within the same interval
or different intervals might also cause treatment-specific covariate means to be
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different. In such a case, ANCOVA should be preferred against the methods on
covariate-adjusted residuals.

In conclusion, we recommend the following strategy for the use of the above
methods: (i) First, one should check the significance of the effect of the covariates
for each treatment, i.e., test Hi

o � “all treatment-specific slopes are equal to zero”.
If Hi

o is not rejected, then the usual (one-way) ANOVA or K–W test can be used.
(ii) If Hi

o is rejected, the covariate effect is significant for at least one treatment
factor. Hence one should test Hii

o � “equality of all treatment-specific slopes”. If Hii
o

is rejected, then the covariate should be included in the analysis as an important
variable and the usual regression tools can be employed. (iii) If Hii

o is not rejected,
check the covariate ranges. If they are similar or have a considerable intersection
for treatment factors, then ANCOVA and methods on residuals are appropriate.
Then one should check the underlying assumptions for the methods and then pick
the best method among them. (iv) If covariate ranges are very different, then it is
very likely that treatment and covariate are not independent, hence ANCOVA is
not appropriate. On the other hand, the methods on residuals can be used but they
are extremely conservative. In this case, one may apply some other method, e.g.,
MANOVA on (response, covariate) data for treatment differences.
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