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Abstract Nearest neighbor (NN) methods are widely employed for drawing infer-
ences about spatial point patterns of two or more classes. We introduce a method for
testing reflexivity in the NN structure (i.e., NN reflexivity) based on a contingency
table which will be called reflexivity contingency table (RCT) henceforth. The RCT
is based on the NN relationships among the data points and was used for testing niche
specificity in literature, but we demonstrate that it is actually more appropriate for
testing the NN reflexivity pattern. We derive the asymptotic distribution of the entries
of the RCT under random labeling and introduce tests of reflexivity based on these
entries. We also consider Pielou’s approach on RCT and show that it is not appropriate
for completely mapped spatial data. We determine the appropriate null hypotheses and
the underlying conditions/assumptions required for all tests considered. We investi-
gate the finite sample performance of the tests in terms of empirical size and power
by extensive Monte Carlo simulations and illustrate the methods on two real-life eco-
logical data sets.
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1 Introduction

The spatial point patterns in natural populations of one or multiple classes have received
considerable attention in statistical literature. In this article, the term “class” refers
to species or any other characteristic of the subjects such as sex, age group, health
condition, etc. Two frequently studied spatial patterns between multiple classes or
species are segregation and association (Dixon 2002a). In our setting, the data consists
of the locations of events and the mark (e.g., species) at each location. Usually, these
data are completely mapped and are from a marked spatial point pattern, although
other sampling schemes are possible. Previously, the patterns on this type of data
were analyzed by using a contingency table called nearest neighbor contingency table
(NNCT) based on the class labels (i.e., marks) of the NN pairs (see, e.g., Dixon 1994,
2002a; Ceyhan 2010, 2008). Here we construct another contingency table, called
reflexivity contingency table (RCT), by classifying NN pairs according to whether they
are reflexive or not and whether they are of the same class or not. That is, a NNCT is
obtained by cross-classifying NN pairs according to their class labels, whereas RCT
is constructed by cross-classifying NN pairs according to reflexivity and type of NN
pairs (as self or mixed). Indeed, NN reflexivity pattern and tests are inspired by one
of Pielou’s tests which was introduced for testing niche specificity (Pielou 1961), but
the specifics of Pielou’s analysis of an RCT (e.g., the use of the usual Pearson’s test of
independence on it) are not correct for completely mapped data. In this manuscript, we
develop the correct sampling distribution of the entries in the RCT based on completely
mapped data and demonstrate that this contingency table intended for testing niche
specificity is more appropriate for testing reflexivity in the NN structure, hence the
name reflexivity contingency table.

A pair of points (p1, p2) is called a base-NN pair, if p2 is a NN of p1 where
p1 is the base point and p2 is the NN point. In the base-NN pair (p1, p2), we also
write N N (p1) = p2. NN reflexivity occurs if for a pair of points (p1, p2), p1 is
a NN of p2 and p2 is a NN of p1. NN reflexivity is a type of spatial interaction
(i.e., interdependence) of points from the same or different classes. A base-NN pair
is called a reflexive pair, if the elements of the pair are NN to each other; a non-
reflexive pair, if the elements of the pair are not NN to each other; a self pair, if
the elements of the pair are from the same class; a mixed pair, if the elements of
the pair are from different classes. Thus, NN reflexivity patterns for multiple classes
are of four types: self-reflexivity (p1 and p2 are NNs to each other and are from the
same class), mixed-reflexivity (p1 and p2 are NNs to each other but are from different
classes), self-nonreflexivity and mixed-nonreflexivity which are defined similarly. The
reflexivity in the NN structure is also referred to as “NN reflexivity ” or for brevity
“reflexivity” henceforth. In NN reflexivity, the members in the NN pair exhibit a
spatially symmetric interdependence (i.e., one subject occurs closest to the other and
vice versa in a particular environment). In the self-reflexivity pattern, conspecifics
or members of the same class exhibit such interdependence, while in the mixed-
reflexivity pattern, members from different classes exhibit such interdependence (as,
e.g., in mutualistic symbiosis). Unless stated otherwise, NN relationships are based
on the usual Euclidean distance throughout the article.
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NN reflexivity is closely related to spatial interaction patterns like niche specificity,
segregation and mutualism. The pattern of niche specificity is much broader than
self-NN reflexivity. Niche/habitat specificity is the collection of biotic and abiotic
conditions favoring the development and hence the existence and abundance of a
species on a spatial scale (Ranker and Haufler 2008). That is, niche specificity is the
dependence of an organism on an environment (i.e., niche or habitat). Niche specificity
can be determined by tolerance to various factors such as climate, exposure to light,
soil and nutrient properties and so on (Lindenmayer and Burgman 2005). NN self-
reflexivity can be viewed as a special form of spatial niche specificity (i.e., Pielou’s
approach was not entirely missing the point). Self-reflexivity might be a result of niche
specificity or segregation. On the other hand, mixed-reflexivity might be a result of
association or interspecific interactions like mutualism or beneficial symbiosis.

There are many methods available for testing various types of spatial patterns in
literature. These methods include tests of segregation (Pielou 1961), nearest neighbor
(NN) methods (Dixon 2002b), K -function (Ripley 2004), J -function (Lieshout and
Baddeley 1999) and so on. An extensive survey for the tests of spatial point patterns
is provided by Kulldorff (2006) who categorized and compared more than 100 such
tests. These tests are for testing spatial clustering in a one-class setting or testing
segregation of points in a multi-class setting. Most of the tests for multiple classes deal
with presence or lack of spatial interaction usually in the form of spatial segregation
or association between the classes. The second order methods such as K -function,
J -function, pair-correlation function, and mark-connection function p12(r) (Ripley
2004; Stoyan and Stoyan 1994; Illian et al. 2008, respectively) are used for testing
bivariate spatial interaction at various scales, but K and J functions are unreliable at
large scales and pair- and mark-correlation functions are unreliable at small scales.
We use the NN relationships for testing spatial pattern of reflexivity. The scale of NN
distances is data-dependent; that is, NN distances are of smaller (resp. larger) scale
for a given data set when the class sizes are large (resp. small). Hence NN methods
provide valuable information about the pattern in addition to the information provided
by the above second-order methods. Furthermore, NN relations, including reflexivity,
are studied by many authors (see, e.g., Henze 1987; Cox 1981; Schilling 1986). But,
these references almost exclusively pertain to the NN patterns in a one class setting.
The number of reflexive pairs is also of interest in the NNCT tests as variances and
covariances of the cell counts in the NNCT depend on it (Dixon 1994). The approach
in this article explicitly requires a multi-class setting; moreover, to the best of authors’
knowledge, the proposed test of reflexivity in the NN structure is the only method
available in literature for assessing such a pattern.

We investigate the underlying assumptions for the less known—hence less applied
compared to tests of segregation—tests of NN reflexivity and Pielou’s approach on
RCT (i.e., the use of Pearson’s test of independence on RCT). We show why Pielou’s
approach on RCT is not appropriate for completely mapped spatial data. We derive
the asymptotic normality for the entries of the RCT for completely mapped data
under RL, hence propose Z -tests for the diagonal entries in the RCT and then show
joint normality of the diagonal entries of the RCT thereby introducing an overall χ2

test of NN reflexivity combining the Z -tests. Finite sample empirical size and power
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Table 1 A list of abbreviations
used in the article CSR Complete spatial randomness

NN Nearest neighbor

NNCT Nearest neighbor contingency table

RCT Reflexivity contingency table

RL Random labeling

comparisons are performed by Monte Carlo simulations. A list of abbreviations used
in the article is provided in Table 1.

We describe and discuss the patterns of reflexivity and related patterns together
with the appropriate null patterns for them in Sect. 2. We discuss the tests for RCT
(namely, the newly introduced tests of reflexivity and Pielou’s approach), provide the
asymptotic distribution for the cell counts (i.e., entries) of the RCT in Sect. 3. We
prove consistency of the tests in Sect. 4, and provide an extensive empirical size and
power analysis by Monte Carlo simulations in Sect. 5. We illustrate the methodology
on two ecological data sets in Sect. 6 and provide discussion and guidelines for using
the tests in Sect. 7.

2 NN reflexivity and related patterns

NN reflexivity, segregation/association and niche specificity are related but different
patterns. In this article, we only consider multivariate spatial patterns which are basi-
cally concerned with the (spatial) interaction between two or more classes of points.
For multivariate spatial data analysis, the benchmark pattern is usually complete spatial
randomness (CSR) independence or random labeling (RL) (Diggle 2003) depending
on the context. Under CSR independence, the points from each class are independently
uniformly distributed in the region of interest conditioned on the class sizes. That is, the
points from each class are independent realizations of Homogeneous Poisson Process
(HPP) with fixed class sizes (i.e., from the uniform binomial process). However we call
independence with uniform binomial processes as (restricted) CSR independence in
this article. On the other hand, under RL, class labels are independently and randomly
assigned to a set of given locations which could be a realization from any pattern such
as HPP or some clustered or regular pattern. There are two major forms of deviation
from these benchmark patterns in the multivariate spatial pattern analysis. These inter-
action patterns are segregation and association. Under segregation, the members of a
class or species enjoy the company of the conspecifics, hence form one class clumps or
clusters, while under association they tend to coexist with members of other class(es)
and form mixed clumps or clusters (see, e.g., Ceyhan 2008 for more detail). Hence,
under segregation, it is more conceivable to have the entries in the self column (i.e.,
the self-reflexive and self-nonreflexive counts) to be larger than their expected values,
as segregation does not impose a restriction on reflexivity, but implies an abundance
of self NN pairs. Similarly, under association, the entries in the mixed column (i.e.,
mixed-reflexive and mixed-nonreflexive counts) are usually larger than their expected
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values. NN reflexivity pertains to the pair types as self or mixed among the reflexive
base-NN pairs. In particular, self-reflexivity in NN structure can account for segre-
gation and so can niche specificity. But there is an important distinction between the
two patterns. Niche specificity is a biological cause of where a species occurs (i.e.,
the locations) while reflexivity is more of a consequence of locations, not a biolog-
ical cause of the locations. However, niche specificity and self-reflexivity in the NN
structure are not mutually exclusive, in the sense that they can coexist under a segre-
gation pattern. In the presence of segregation, if the niches of the classes are about the
same, then self-reflexivity in NN structure accounts more for segregation. If the niches
of the classes are considerably different, niche specificity accounts for segregation,
but still self-reflexivity in NN structure might partially account for segregation. On
the other hand, mixed-reflexivity in the NN structure might imply association in the
form of, e.g., mutualistic symbiosis between the species. Symbiosis is an interaction
between species in which there is a close physical contact during most of lives of both
participants in the form of physiological connection or integration. Note that the def-
inition makes no statement about direction of interaction, which may be mutualistic,
parasitic, or commensalistic. See, e.g., Freeman (2002). Each type of these symbiosis
patterns can be viewed as a factor causing association between the species. Both CSR
independence and RL patterns imply that self-reflexivity or mixed-nonreflexivity in
the NN structure exist at the expected levels.

As the reflexivity, segregation/association and niche specificity patterns are
different, the corresponding null hypotheses for them are also different. For segre-
gation/association alternatives, the null case is that there is some sort of randomness
in the spatial pattern as in random labeling (RL) or independence. However, for inde-
pendence, we will only consider a restricted type of complete spatial randomness
(CSR) independence with fixed class sizes. In particular, this null hypothesis follows
provided that there is randomness in the NN structure in such a way that the probabil-
ity of a NN of a point being from a class is proportional to the relative frequency of
that class. This assumption holds, e.g., under RL or CSR independence of the points
from each class. Both CSR independence and RL patterns imply that self-reflexivity
or mixed-nonreflexivity in the NN structure exists at its expected levels. In fact, it is
conceivable that other independence patterns (in which all classes are independently
generated from the same process or distribution) can yield the same null hypotheses,
but we restrict our attention to the (restricted) CSR independence or RL as they are
commonly considered to be the benchmark patterns in spatial data analysis. The null
case for the niche specificity is that there is no relation between the spatial distribu-
tion of a class/species and its niche or habitat, and the null case for NN reflexivity is
that values of self-reflexive and mixed-nonreflexive pairs are as expected under CSR
independence or RL (these expected values will be explicitly provided in Sect. 3.1
below).

For m = 2 classes, we label the classes as X and Y (or interchangeably 1 and 2,
respectively). Let Xn1 be a data set of size n1 from class X and Yn2 be a data set of size
n2 from class Y . Then under CSR independence, we have Xn1 = {X1, X2, . . . , Xn1}
and Yn2 = {Y1, Y2, . . . , Yn2} which are independent random samples from U(S), the
uniform distribution on the common support S ⊂ R

d for classes X and Y . Unless
stated otherwise, for simplicity and practical purposes, we take d = 2 throughout the

123



74 Environ Ecol Stat (2017) 24:69–108

article. We combine Xn1 and Yn2 into one data set together with the labels of the points
and obtain Zn = {(Z1, L1), (Z2, L2), . . . , (Zn, Ln)} where n = n1 + n2 and Li is
in {0, 1} or {X, Y } which are the class labels. Notice that under CSR independence,
the randomness is in the locations of the points for each class and the class label is a
fixed characteristic of the subject that occupies the point. Under the RL pattern, the
class labels or marks are assigned randomly to points whose locations are given. The
spatial pattern generating these point locations for RL is referred to as the background
pattern henceforth. n1 (resp. n2) of these background points are assigned as class X
(resp. Y ) randomly; i.e., the labels Li are 1 or X with probability approximately n1/n
(resp. 2 or Y with probability approximately n2/n) independently for i = 1, 2, . . . , n.

The distinction between CSR independence and RL could be very important in
practice. Under CSR independence the (locations of the) points from two classes are a
priori the result of different processes (for instance, individuals of different species or
age cohorts). On the other hand, under RL, some processes affect the individuals of a
single population a posteriori (for instance, diseased versus non-diseased individuals
of a single plant species) (Goreaud and Pélissier 2003).

3 Reflexivity contingency table and the associated tests

Recall that RCT is based on the cross-tabulation of the points with respect to NN
reflexivity and pair type. The resultant categories are (self,reflexive), (mixed,reflexive),
(self,non-reflexive), and (mixed,non-reflexive) pairs. Hence the NN reflexivity patterns
are essentially of two types: self-reflexivity or mixed-nonreflexivity. We ignore the
patterns of mixed-reflexivity and self-nonreflexivity under RL, since these patterns
are just the opposites of self-reflexivity and mixed-nonreflexivity, respectively. That
is, under RL, self-reflexivity occurs if and only if there is lack of mixed-reflexivity
and mixed-nonreflexivity occurs if and only if there is lack of self-nonreflexivity.

The patterns of self-reflexivity and mixed-nonreflexivity in the NN structure can be
tested by using the RCT. Let Ns,r be the observed number of self-reflexive pairs, Ns,nr

be the observed number of self-nonreflexive pairs, Nm,r be the observed number of
mixed-reflexive pairs, and Nm,nr be the observed number of mixed-nonreflexive pairs.
With the partitioning of base-NN pairs according to NN reflexivity and pair type as
self or mixed, we obtain a 2 × 2 RCT. See also Table 2 where the column sum Cs is
the number of self pairs, and Cm is the number of mixed pairs, while the row sum Nr

is the number of reflexive pairs, and Nnr is the number of nonreflexive pairs.

Table 2 The contingency table
for self-reflexivity or
mixed-nonreflexivity in the NN
structure, i.e., the RCT

Pair type Total
Self Mixed

NN reflexivity

Reflexive Ns,r Nm,r Nr

Non-reflexive Ns,nr Nm,nr Nnr

Total Cs Cm n
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We write the entries in the RCT as linear combinations of indicator random vari-
ables. Under RL, let

ri j =
{

1 if zi and z j are reflexive NNs

0 otherwise ;

and for every 1 ≤ u ≤ m, let

zu
i j =

{
1 if Li = L j = u,

0 otherwise .

Then, letting N u
r = ∑n

i=1
∑n

j=1 ri j zu
i j , it is easy to see that

Ns,r =
m∑

u=1

N u
r .

For every 1 ≤ a �= b ≤ m, let

zab
i j =

{
1 if Li = a and L j = b,

0 otherwise ,

then N ab
r = ∑n

i=1
∑n

j=1 ri j zab
i j . So

Nm,r =
∑

1≤a �=b≤m

N ab
r .

Let

yi j =
{

1 if N N (zi ) = z j and N N (z j ) �= zi ,

0 otherwise .

and N u
nr = ∑n

i=1
∑n

j=1(yi j + y ji )zu
i j , then it follows that

Ns,nr =
m∑

u=1

N u
nr .

Finally, letting N ab
nr = ∑n

i=1
∑n

j=1 yi j zab
i j , we get

Nm,nr =
∑

1≤a �=b≤m

N ab
nr .

Notice also that
∑

1≤i, j≤n yi j = n−R. Moreover, we have Nr = R = ∑n
i=1

∑n
j=1 ri j

which is the number of ordered reflexive NNs (Dixon 1994), and so Nnr = n − R.
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Remark 3.1 (Ties in the NN structure) If Xn is a random sample of size n from
a continuous distribution in its support (e.g., under CSR independence), then each
point has one NN a.s. However, under RL, it is possible to have ties in the NN rela-
tions; i.e., a point might have multiple NNs. In this case, the ties should be broken
and corresponding counts should be modified so as to take the actual NN relations
into account and thus avoid information loss and to keep Nr + Nnr = n. Along
this line, we let N nn

i be the number of NNs of point Zi , then any quantity (implic-
itly) involving the quantity I(Z j is a NN of Zi ) should be scaled by 1/N nn

i where
I() stands for the indicator function. For example, without ties in the NN structure,
ri j = I(z j is a NN of zi )I(zi is a NN of z j ); but in the presence of ties, it is adjusted
as ri j = (1/N nn

i )I(z j is a NN of zi )(1/N nn
j )I(zi is a NN of z j ). Similarly, yi j can be

adjusted as yi j = (1/N nn
i )I(z j is a NN of zi )I(zi is not a NN of z j ).

3.1 Sampling distribution of the entries of the RCT under RL

Let zi , z j , zk, zl be four distinct points from the sample (i.e., distinct events) and
u, v, w, t be not necessarily distinct class labels. Define the probabilities

puv = P(Li = u, L j = v),

puvw = P(Li = u, L j = v, Lk = w),

puvwt = P(Li = u, L j = v, Lk = w, Ll = t).

In particular, for pairwise distinct class labels a, b, c, d, we have

paa = na(na − 1)

n(n − 1)
and pab = nanb

n(n − 1)
;

paaa = na(na − 1)(na − 2)

n(n − 1)(n − 2)
, paab = na(na − 1)nb

n(n − 1)(n − 2)
, and

pabc = nanbnc

n(n − 1)(n − 2)
;

paaaa = na(na − 1)(na − 2)(na − 3)

n(n − 1)(n − 2)(n − 3)
, paaab = na(na − 1)(na − 2)nb

n(n − 1)(n − 2)(n − 3)
,

paabb = na(na − 1)nb(nb − 1)

n(n − 1)(n − 2)(n − 3)
,

paabc = na(na − 1)nbnc

n(n − 1)(n − 2)(n − 3)
, and pabcd = nanbncnd

n(n − 1)(n − 2)(n − 3)
.

Notice that the probabilities above are independent of i, j, k, l, and invariant under
any permutation of the indices; i.e., pab = pba , paab = paba = pbaa and so on. Also,
let
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Paa =
m∑

a=1

paa, Pab =
∑

1≤a �=b≤m

pab, Paab =
∑

1≤a �=b≤m

paab, Pabc =
∑

1≤a �=b �=c≤m

pabc,

Paaaa =
m∑

a=1

paaaa, Paaab =
∑

1≤a �=b≤m

paaab, Paabb =
∑

1≤a �=b≤m

paabb,

Paabc =
∑

1≤a �=b �=c≤m

paabc, Pabcd =
∑

1≤a �=b �=c �=d≤m

pabcd ,

where a �= b �= c means that a, b, c are pairwise distinct, and a �= b �= c �= d

means that a, b, c, d are pairwise distinct. Notice that we have Paa =
(∑m

u=1 n2
u
)−n

n(n−1)
and

Pab =
∑

u �=v nunv

n(n−1)
and Paa is the probability of a reflexive pair being a self pair and Pab

is the probability of a non-reflexive pair being a mixed pair. Notice that Paa + Pab = 1;

and for m = 2, we have Paa = na(na−1)
n(n−1)

+ nb(nb−1)
n(n−1)

= n2
a+n2

b−n
n(n−1)

and Pab = 2nanb
n(n−1)

.
Let Q be the number of shared NNs (i.e., number of triplets (zi , z j , zk) with

N N (zi ) = N N (z j ) = zk) and T be the number of triplets (zi , z j , zk) with
“N N (zi ) = N N (z j ) = zk and N N (zk) = z j ”. One can construct a NN digraph
for a data set Xn with vertices Xn and there is an arc from xi to x j if N N (xi ) = x j

for xi , x j ∈ Xn . Note that in the NN digraph, T + R is the sum of the indegrees of the
points in the reflexive pairs.

For m ≥ 4 classes, we show that

E [Ns,r ] = R Paa, E [Nm,nr ] = (n − R)Pab, (1)

Var [Ns,r ] = R2
(

Paaaa + Paabb − (Paa)2
)

+ 2R (Paa − Paaaa − Paabb) ,

(2)

Var [Nm,nr ] = (n − R)2(2Paabb + 4Paabc + Pabcd − (Pab)
2) + (n − R)Pab

+(2n − 2R + Q − 4T )(Paab + Pabc)

+(−3n + 3R − Q + 4T )(2Paabb + 4Paabc + Pabcd), (3)

Cov [Ns,r , Nm,nr ] = R(n − R)(2Paaab + Paabc − Paa Pab)

+2T (Paab − 2Paaab − Paabc). (4)

See Appendix for the derivation of these quantities under RL. Notice that for the
case m ≤ 3, one can consider a null or void class (i.e. a class with no elements) or
classes as if they exist no elements to make the number of classes equal to 4; hence
in the equations above, the sum Pabcd vanishes for m = 3, and the sums Pabcd , Pabc

and Paabc vanish for m = 2.
In the self-reflexivity (resp. mixed-nonreflexivity) pattern, self-reflexive (resp.

mixed-nonreflexive) pairs are more frequent than expected under RL. The other pat-
terns of mixed-reflexivity and self-nonreflexivity are defined similarly. The null case
for NN reflexivity is that values of self-reflexive and mixed-nonreflexive pairs are as
expected under CSR independence or RL (these expected values are explicitly pro-
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vided below). Under RL, the total number of reflexive and non-reflexive base-NN pairs
are fixed quantities.

Then, for the NN reflexivity tests, we have Ho : “The entries of the RCT are equal
to their expected values” or equivalently,

Ho : E [Ns,r ] = R Paa and E [Nm,nr ] = (n − R)Pab (5)

as our null hypothesis. The other entries are omitted, since the row sums are fixed
under RL. That is, Nm,r = nr − Ns,r and Ns,nr = nnr − Nm,nr , and so if (5) holds,
the other entries are also equal to their expected values. The alternative hypotheses for
self-reflexivity and mixed-nonreflexivity in the NN structure are

Ha : E [Ns,r ] > R Paa and Ha : E [Nm,nr ] > (n − R)Pab,

respectively. We also show that the joint distribution of all Ns,r and Nm,nr is asymp-
totically bivariate normal under RL where Q, R and T are fixed quantities. In our
analysis, we assume that R/n → r , Q/n → q, T/n → t and ni/n → λi for all
1 ≤ i ≤ m, as n → ∞ (see Appendix A4 for the derivations).

Then, the test statistics for self-reflexivity and mixed-nonreflexivity,

Zs,r = Ns,r − E [Ns,r ]√
Var [Ns,r ]

and Zm,nr = Nm,nr − E [Nm,nr ]√
Var [Nm,nr ]

, (6)

approximately have N (0, 1) distribution for large large nr and nnr , respectively. Notice
that under RL, we have Zs,r = −Zm,r since Nm,r = Nr − Ns,r where Nr is fixed
and Zm,nr = −Zs,nr since Ns,nr = Nnr − Nm,nr where Nnr is fixed. We can com-
bine the test statistics Zs,r and Zm,nr into an overall test of reflexivity as follows.
Let Vref = (Ns,r , Nm,nr )

t and E [Vref ] = (E [Ns,r ], E [Nm,nr ])t , and �re f be the

variance-covariance matrix of Vref , then Vref
L→ N (E [Vref ], �re f ) as nr and nnr

tend to infinity. So, it follows that the quadratic form

X 2
R = (Vref − E [Vref ])t�−1

re f (Vref − E [Vref ]) (7)

has asymptotically χ2
2 distribution as both R and n − R are tending to infinity (Moser

1996).
Here alternatively, for the overall test, we could also combine the entries of the

RCT and obtain an overall test of reflexivity as follows. Let

Ṽref = (Ns,r , Nm,r , Nm,r , Nm,nr )
t

and

E
[
Ṽref

] = (
E [Ns,r ], E [Nm,r ], E [Nm,r ], E [Nm,nr ]

)t
,
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and �̃re f be the variance-covariance matrix of Ṽref , then one can get the following
quadratic form

X̃ 2
R = (

Ṽref − E
[
Ṽref

])t
�̃−

re f

(
Ṽref − E

[
Ṽref

])
(8)

where �̃−
re f is the generalized inverse of �̃re f (Searle 2006). However, under RL,

Nm,r = R − Ns,r and Nm,r = n − R − Nm,nr , where R is a fixed quantity. Hence
all the information in the RCT is contained in Vref , so �̃re f is of rank 2 (hence the
use of generalized inverse in the quadratic form above). Therefore, this version of
the overall reflexivity test, X̃ 2

R , also has asymptotically χ2
2 distribution as both R and

n − R are tending to infinity (Moser 1996). Indeed, in practice one would observe that
X̃ 2

R = X 2
R , so for convenience, we only use the overall test provided in Eq. (7) in the

rest of the article.
When X 2

R is significant, it would only imply a significant deviation from the NN
reflexivity structure under Ho in Eq. (5). But the two types of alternatives of self-
reflexivity or mixed-nonreflexivity in the NN structure are not distinguishable by the
usual χ2 test. To determine the direction of this deviation, one can use both of the
Z -tests, Zs,r and Zm,nr , for the left- and right-sided alternatives.

Remark 3.2 (Status of Q, R, and T under RL and CSR independence) The quantities
Q, R and T are fixed under RL, while they are random under CSR independence.
Hence the tests in Eqs. (6) and (7) are conditional on the observed values of Q, R and
T under CSR independence while no such conditioning is required under RL. The
quantities given in Eqs. (1)–(4), and all the quantities depending on them also depend
on Q, R, and T . Hence these expressions are appropriate under the RL pattern. Under
the CSR independence pattern, they are conditional on Q, R, and T , as these are
random quantities. But under CSR independence, it is conceivable that they converge
in probability to their expected values and hence, by an appropriate application of
Slutsky’s Theorem, one can replace Q, R, and T with their expectations and can
still use asymptotic normal approximation for the test statistics. However, given the
difficulty of calculating the expectations of Q, R, and T for spatial data under CSR
independence, it is convenient and reasonable to use the observed values of Q, R, and
T as plug-in estimators even when assessing their behavior under CSR independence.
Alternatively, one can estimate the expected values of Q, R, and T empirically and
substitute these estimates in the expressions. For example, for the uniform binomial
process on the unit square, we have E [Q/n] ≈ .6324, E [R/n] ≈ 0.6219, and
E [T/n] ≈ 0.2753. (estimated empirically based on 10000 Monte Carlo simulations
for various values of n). When Q, R, and T are replaced by 0.63 n, 0.62 n, and 0.275 n,
respectively, we obtain the so-called QRT-adjusted reflexivity tests.

3.2 Pielou’s test for the reflexivity contingency table

We provide a detailed treatment of Pielou’s approach on RCT to determine when it is
appropriate to use and why it fails for completely mapped spatial data. Pielou (1961)
uses the usual χ2 test of independence on the RCT in order to detect presence of niche
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specificity, but RCT is by construction more appropriate for testing the spatial pattern
of NN reflexivity. Moreover, Pielou’s test on the RCT is used to detect independence
between the row and column categories (i.e., NN reflexivity of the pairs and pair type
as self or mixed). Such independence would imply

E [Ns,r ] = Cs Nr/n, E [Nm,r ] = Cm Nr/n,

E [Ns,nr ] = Cs Nnr/n, and E [Nm,nr ] = Cm Nnr/n. (9)

Hence an excess of Ns,r from its expected value above would imply a positive depen-
dence; on the other hand, if Ns,r is less than expected, it would imply a negative
dependence between a pair being reflexive and self pair. The deviations of other
entries from their expected values have similar interpretations. Therefore, in Pielou’s
approach, the actual null hypothesis is

Ho There is independence between row and column categories

(i.e., independence of “NN reflexivity” and “pair type as self or mixed”). (10)

For the RCT, recall that Pielou (1961) suggests the use of Pearson’s usual χ2 test
with 1 df,

X 2
P = (Ns,r − Cs Nr/n)2

Cs Nr/n
+ (Nm,r − Cm Nr/n)2

Cm Nr/n
+ (Ns,nr − Cs Nnr/n)2

Cs Nnr/n

+ (Nm,nr − Cm Nnr/n)2

Cm Nnr/n
(11)

and Ho is rejected when the p-value based on this χ2 test is significant. Equivalently,
the independence between the NN reflexivity and pair type can also be tested using
the directional test statistic

Zdir =
(

Ns,r

Nr
− Ns,nr

Nnr

) √
Nr Nnr n

Cs Cm
. (12)

Notice that the tests in Eqs. (11) and (12) are used to test the same null hypothesis
with the same underlying assumptions, but the former is for the two-sided alternative
only, while the latter can be used for both two- and one-sided alternatives.

Under positive (resp. negative) dependence, we expect Zdir > 0 (resp. Zdir < 0).
Under the usual row-wise multinomial framework, for large n, Zdir approximately
has a N (0, 1) distribution. Thus for the negative dependence alternative, Ho is rejected
when Zdir < zα where zα is the 100αth percentile of the standard normal distribution;
and for the positive dependence alternative, Ho is rejected when Zdir > z1−α . The
two types of deviations from independence are not distinguishable by the usual χ2

test. Hence one can resort to the directed test statistic, Zdir , for this purpose.
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3.3 Problems with Pielou’s approach

The niche (or habitat) of a species might have an impact on or account for the existence
of segregation. If (spatial) niche specificity is operating, among the reflexive pairs, self
pairs will be more frequent than mixed pairs (Pielou 1961). But this does not necessarily
imply that the entries in the RCT would be significantly different from their expected
frequencies under RL. Pielou described a test based on the RCT and suggested the
use of Pearson’s usual χ2 test of independence (hence, implicitly the corresponding
one-sided directed tests). However, a class can be restricted to a niche (i.e., can have
niche specificity), but still the self-reflexive pairs can be similar to their expected
frequencies under RL. Additionally, independence of row and column categories in a
RCT does not necessarily imply that RCT has the cell counts at the expected levels
of self-reflexivity or mixed-nonreflexivity. Therefore RCT is more useful to test the
existence of self-reflexivity or mixed-nonreflexivity in the NN structure, rather than
niche specificity.

In general, a contingency table may result from four sampling models: (i) Poisson
sampling model: cell counts are independent Poisson random variables, and hence
all margins and the overall sum are all random quantities; (ii) (Overall) Multinomial
sampling model: the total sample size n is fixed but row and column sums are random,
so, the cell counts are from a multinomial distribution; (iii) Independent multinomial
sampling or product multinomial sampling or row-wise multinomial sampling: row
totals are assumed fixed and each row (independent of other rows) is from the same
multinomial distribution; and (iv) Hypergeometric sampling: both row and column
sums are assumed to be fixed. In the 2 × 2 contingency table, the rows will have two
entries, so the row-wise multinomial distribution reduces to a binomial distribution.
If the data set for each class independently comes from a HPP, then Poisson frame-
work would be the most appropriate. But we assume the overall sample size is fixed
which renders the Poisson framework inappropriate in our setting. The hypergeomet-
ric framework does not seem to fit to a RCT under any reasonable setting as well (see
Remark 3.3). In the overall multinomial framework, all of the cell counts (viewed as
a vector) are assumed to arise from independent multinomial trials. Conditional on
the row sums, the overall multinomial framework reduces to the row-wise multino-
mial framework. In the RCT, row sums Nr and Nnr are fixed under RL; hence, under
RL, row-wise multinomial framework is more appropriate compared to the overall
multinomial framework. Under CSR independence we consider, row sums would be
random quantities, so the overall multinomial framework would be more appropriate
compared to the row-wise multinomial framework. However, a RCT based on spatial
data is unlikely to result from either row-wise or overall multinomial frameworks. In
a RCT, a trial is the “categorization of a base-NN pair with respect to NN reflexivity
and pair type as self or mixed”. In general, in a 2×2 contingency table under the row-
wise framework, the entries (N11, N12) and (N21, N22) are assumed to be independent
and so are the individual trials. This assumption is invalid when the RCT is based on
completely mapped spatial data, because independence between rows is violated. A
similar result holds under CSR independence with overall multinomial framework,
since again independence between trials is violated. Thus Pielou’s test is influenced
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by deviations not only from the null case in Eq. (10) but also from dependence of
trials.

If the RCT is constructed using a random sample of labels of base-NN pairs in
terms of NN reflexivity and pair type as self or mixed, then the usual contingency
table assumptions under the row-wise multinomial framework would hold. The spatial
dependence can not merely be avoided by random sub-sampling but can be circum-
vent by an appropriate sparse sampling (Diggle 1979). When the data were properly
sparsely sampled, we will assume that the RCT satisfies the usual independence
assumptions in the row-wise multinomial framework henceforth. In this framework,
the explicit form of the null hypothesis is as in Eq. (10). Under CSR independence
with sparse sampling, the overall multinomial framework is able to model the RCT,
but again this would only be an approximate modeling, because of the inherent cor-
relation between the components or entries of a multinomially distributed random
variable. The assessment of various sparse sampling schemes for these tests is a topic
of prospective research.

Our suggestion for Pielou’s test on the RCT is that if the data is properly sparsely
sampled, then it is safe to use. But if the data is completely mapped, to remove the
influence of spatial dependence on Pielou’s test on RCT, we suggest the usual Monte
Carlo randomization where class labels are randomly assigned to the given points a
large number of times and test statistics are computed. The corresponding p-value
of the test is based on the rank (divided by the number of Monte Carlo replications)
of the test statistic of the original data in the sample of test statistics obtained from
the Monte Carlo randomization procedure. This suggestion is similar to the one by
Meagher and Burdick (1980) except for the fact that in our suggestion, the class sizes
are fixed at each Monte Carlo replication, while in Meagher and Burdick (1980), in
a two-class setting each point is labeled as a class with probability being equal to
proportion of that class size to the total sample size (in the original data) at each
Monte Carlo replication, hence in their simulated data class sizes are random as well.
Alternatively, if the supports of the classes in an independence setting satisfy the
superposition setting (i.e., if the supports are rectangular and the processes generating
the data sets are stationary), the tests could be employed with toroidal-shifts as well
(Dixon 2002c).

Remark 3.3 (Fisher’s exact test for the RCT) For the RCT, one could also consider
Fisher’s exact test which is frequently used for contingency tables with small cell
counts and marginal sums (see Agresti 1992). However, the counts in the reflexivity
contingency table are not independent and hence there are two sufficient statistics for
the 2 × 2 RCT, while the sampling distribution for Fisher’s exact test (i.e., hyperge-
ometric sampling distribution) has only one. Yet, our simulations suggested that this
dependence between the counts is negligible. Hence in the technical report Ceyhan
(2014), we investigate the use of Fisher’s exact test with the four variants for the one-
sided alternative as in Ceyhan (2010) and demonstrate that one of the variants (called
the table-inclusive version) has the appropriate significance level while others are lib-
eral in rejecting the null hypothesis. But this variant of the exact test has a relatively
low power performance under various alternatives (Ceyhan 2014), so we do not pursue
nor present this line of research in this article.
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3.4 How to perform the tests for m > 2 classes

The extension of the RCT to multi-class case with m > 2 is straightforward, since
the base-NN pairs in any multi-class data set can be categorized into the four groups
as in Table 2 based on the relation between reflexiveness and pair type (as self or
mixed). Hence RCT is of dimension 2 × 2 regardless of the number of classes, m.
Although the dimension of the RCT is same for any number of classes, the distri-
bution of the column sums (Cs, Cm) depends on m. In particular, if m gets larger,
the likelihood of reflexive NN pairs being mixed increases and hence Cm tends to
increase with increasing m. But this will not confound the expected cell counts in
the contingency table, since the expected values of the cell counts take the class sizes
into account in our approach (in Eq. (5)) and the row and column sums in Pielou’s
approach (in Eq. (9)). Thus a test of deviation from the expected cell counts in the
RCT would not be (substantially) affected by the number of classes in the multi-class
case.

In the multi-class case with m > 2, we recommend the following strategy for
the practical implementation of these tests: First perform an overall omnibus test
(as in ANOVA F-test for multi-group comparisons) and then if the omnibus test is
significant, then perform post-hoc (or follow-up) tests to determine the specifics of
the differences. These post-hoc tests could be pairwise tests (as in the pairwise t-tests)
or one-vs-rest tests, where one class is compared with respect to all other classes
combined. More specifically, with m > 2 classes, in the pairwise comparison, we
only restrict our attention to two classes, i and j with i �= j , at a time, and treat
the classes as in the two-class case. In the one-vs-rest type of test for class i , we
pool the remaining classes and treat them as the “other class” in a two-class setting,
hence the name one-vs-rest test. In a multi-class setting with m classes, there are
m one-vs-rest type tests and m(m − 1)/2 pairwise tests. As m increases, the first
version is computationally less intensive and potentially easier to interpret. For any
number of classes and each type of post-hoc test, the RCT is of dimension 2 × 2,
and self-reflexivity and mixed-nonreflexivity relations are defined with different class
types.

In a RCT, if all column entries are significant in the same direction, then self or mixed
abundance might be operating. In such a case, one can follow up by cell-specific NNCT
tests (Dixon 2002a). For example, if the self column entries are significantly larger than
their expected values, this implies an abundance of self NN pairs which is indicating
segregation of some classes from the others. In order to determine which classes
exhibit segregation, one can perform the cell-specific tests for the diagonal entries in
the NNCT. On the other hand, if the mixed column entries are significantly larger
than their expected values, then mixed pairs abound indicating association of some
classes with others. To determine which classes are associated, one can perform cell-
specific tests in the off-diagonal entries in the NNCT. The more interesting reflexivity
patterns are when entries in the same column are significant in opposite direction or
only one of them is significant, which is suggestive of a pattern more intricate than
segregation/association.

In all the above cases, the post-hoc tests can give different and seemingly conflicting
results; e.g., one class can exhibit self-reflexivity in the NN structure with respect to
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some other class, while mixed-reflexivity in the NN structure with respect to another
class. Thus extra care should be taken about which post-hoc/follow-up test is used and
how it is interpreted.

Remark 3.4 (Further partitioning of the entries of RCT) Notice that it is possible to
refine the RCT in various ways. In the current form discussed in this article, RCT tests
provide information on whether self-reflexivity or mixed-nonreflexivity is present or
not. However, each entry can be partitioned into class- or pair-specific forms. For
example, we can write Ns,r as the sum N 1

s,r + N 2
s,r + · · · + N m

s,r where N i
s,r is the

number of self-reflexive pairs belonging to class i and test each N i
s,r for deviations from

its expected value under the null case or test (N 1
s,r , N 2

s,r , . . . , N m
s,r ) jointly. Similarly,

we can write Nm,nr = N 12
m,nr + N 13

m,nr + · · · + N (m−1)m
m,nr where N i j

m,nr is the number
of nonreflexive pairs with one member from class i and the other from class j with
i �= j and test each N i j

m,nr for deviations from its expected value under the null case.
Such a partition might provide further ecological information about the pattern/data
in question. However, this approach does not necessarily provide a post-hoc analysis
after a significant overall reflexivity test on the RCT. In particular, one might have N i

s,r
values significantly deviating from their expected values, but the overall reflexivity
test can be insignificant, and vice versa. Hence the study of these class- or pair-specific
reflexivity patterns/tests is a topic of ongoing research and deferred to a prospective
article.

4 Consistency of tests

The null hypotheses are different for our tests of reflexivity in the NN structure and
Pielou’s test in Sect. 3.2 (see also Eq. (10)) and so are the alternatives. Hence the
comparison of the tests is inappropriate even for large samples; but a reasonable test
should have more power as the sample size increases. So, we prove the consistency of
the tests in question under appropriate hypotheses. Let χ2

ν,α be the 100×αth percentile
of χ2 distribution with ν degrees of freedom.

We first prove the consistency of the self-reflexivity and mixed-nonreflexivity tests
and the overall reflexivity tests and then that of Pielou’s test (under the corresponding
appropriate settings).

Theorem 4.1 Under RL, we have:

(i) The self-reflexivity test, Zs,r in Eq. (6), rejecting Ho : E [Ns,r ] = R Paa against
the two-sided (and one-sided alternatives) for |Zs,r | > z1−α/2 (and Zs,r > z1−α

or Zs,r < zα) is consistent.
(ii) The mixed-nonreflexivity test, Zm,nr in Eq. (6) rejecting Ho : E [Nm,nr ] = R Pab

against the two-sided (and one-sided alternatives) for |Zm,nr | > z1−α/2 (and
Zm,nr > z1−α or Zm,nr < zα) is consistent.

(iii) The overall reflexivity test, X 2
R, in Eq. (7) rejecting Ho : E [Ns,r ] =

R Paa and E [Nm,nr ] = (n − R)Pab against the alternative Ha : E [Ns,r ] �=
R Paa or E [Nm,nr ] �= (n − R)Pab for X 2

R > χ2
2,1−α is consistent.
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Proof (i) Consider the one-sided alternative with Ha : E [Ns,r ] > R Paa . Under RL,
E [Zs,r ] = 0 and Var [Ns,r ] is given in Eq. (2). Consider the parametrization of the
alternative as Ha : E [Ns,r ] > R(Paa + ε) for ε ∈ (0, 1 − Paa). Then under Ha ,
E [Ns,r |Ha] = Rε > 0 which implies E [Zs,r ] > ε′ for some ε′ > 0. Under both
null and alternative hypothesis, Zs,r has asymptotic normal distribution. Then by the
standard arguments for the consistency of Z -tests, the test statistic, Zs,r , is consistent
for the right-sided alternative. The consistency for the other types of alternatives follow
similarly.

(ii) The consistency of Zm,nr for the one- and two-sided alternatives follows as in
case (i) above.

(iii) Under RL, Y := Vref − E [Vref ] is approximately distributed as N (0, �)

for large n where � is the variance-covariance matrix of Vref whose rank is 2. Then
by Theorem 3.1.2 of Moser (1996), under Ho, Y′�−1Y ∼ χ2

2 (λ = 0). Consider
any deviation from Ho. Then under Ha , E [Y|Ha] = µa and Y have multivariate
normal distribution with mean µa . Then by Theorem 3.1.2 of Moser (1996), under
Ha , Y′�−1Y ∼ χ2

2 (λ = µ′
a�−1µa). Since �−1 is positive definite and µa is nonzero,

the mean of the quadratic form X 2
R is 2 + λ with λ > 0. Then for large n, the null and

alternative hypotheses are equivalent to Ho : λ = 0 and Ha : λ > 0, respectively.
Then by standard arguments for consistency of the χ2 tests, the desired result follows.

�


Theorem 4.2 Let the RCT be constructed by a random sample of labels of base-NN
pairs in terms of NN reflexivity and pair type as self or mixed (or data is obtained by an
appropriate sparse sampling) under a row-wise multinomial framework with m ≥ 2
classes. Then, Pielou’s test, X 2

P , for the RCT given in Eq. (11) (i.e., the test rejecting
independence in the RCT for X 2

P > χ2
1,1−α) is consistent. The same holds under the

overall multinomial framework. The one-sided tests (hence the two-sided test) using
Zdir given in Eq. (12) are also consistent.

Proof Under the null hypothesis of independence with the row-wise multinomial
framework, as n → ∞, we have Zdir ∼ N (0, 1) and Zdir also has a normal distri-
bution under the alternative hypothesis. So under Ho, E [Zdir ] = 0 and under Ha :
positive dependence, we have E [Zdir |Ha] = ε > 0 and under Ha : negative depen-
dence, E [Zdir |Ha] = ε < 0 where ε is a parameterization of the alternative. Then by
the standard arguments for the consistency of Z -tests, the test using Zdir is consistent
for the one-sided (hence the two-sided) alternatives. Furthermore, we have Z2

dir = X 2
P .

The α-level test based on X 2
P is equivalent to the α-level two-sided test based on Zdir .

Hence the consistency of X 2
P follows as well. The cases for the overall multinomial

framework are similar. �


5 Empirical size and power analysis

In this section we investigate the finite sample behavior of the tests under their appro-
priate null hypotheses and under various alternatives via Monte Carlo simulations.
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5.1 Empirical size analysis

To determine empirical size performance of the tests, we use CSR independence
and RL as our null hypotheses. Under these patterns, self-reflexivity or mixed-
nonreflexivity in the NN structure would not deviate significantly from their expected
behavior. That is, under these cases, NN reflexivity would occur at expected levels:
Ho : E [Ns,r ] = R Paa and E [Nm,nr ] = (n − R)Pab in Eq. (5) would hold for
reflexivity in the NN structure.

We estimate the empirical sizes (i.e. significance levels) based on the asymptotic
critical values. For example, let T be a test with a χ2

d f distribution asymptotically,

and let Ti be the value of test statistic for the sample generated at i th Monte Carlo
replication for i = 1, 2, . . . , Nmc. Then the empirical size of T at level α = 0.05,

denoted α̂T is computed as α̂T = 1
Nmc

∑Nmc
i=1 I

(
Ti ≥ χ2

d f,0.95

)
. Furthermore, let Z be

a test with a N (0, 1) asymptotic distribution, and let Zi be the value of test statistic for
i th sample generated. Then the empirical size of Z for the left-sided alternative at level
α = 0.05, denoted α̂Z is computed as α̂Z = 1

Nmc

∑Nmc
i=1 I(Zi ≤ z0.05 = −1.645). The

empirical size for the right-sided alternative is computed as α̂Z = 1
Nmc

∑Nmc
i=1 I(Zi ≥

z0.95 = 1.645).

5.1.1 Empirical size analysis under CSR independence

We consider the two-class case, with classes X and Y (also referred to as classes 1
and 2) of sizes n1 and n2, respectively. Under Ho, at each of Nmc = 10000 replicates,
we generate n1 X points Xn1 = {X1, . . . , Xn1} and n2 Y points Yn2 = {Y1, . . . , Yn2}
independently of each other and iid from U((0, 1) × (0, 1)) and combine X and Y
points as Zn = Xn1 ∪ Yn2 = {Z1, Z2, . . . , Zn}. We consider two cases for CSR
independence:

Case 1 n1 = n2 = n = 10, 20, 30, 40, 50, Case 2 n1 = 20 and n2 = 20, 30, . . . , 60.

In case 1, the sample sizes are equal and increasing, in order to determine the
influence of the increasing balanced sample sizes on the empirical levels of the tests.
On the other hand, case 2 is designed to determine the influence of differences in the
sample sizes (i.e., differences in relative abundances of classes) on the empirical levels
of the tests.

The empirical significance levels for the tests under CSR independence cases 1
and 2 are presented in Table 3, where α̂P is the empirical significance level for X 2

P ,
Pearson’s χ2 test of independence with 1 df for the RCT (as suggested by Pielou), α̂>

dir
(resp. α̂<

dir ) is for the right(resp. left)-sided alternative, i.e., positive (resp. negative)
dependence between NN reflexivity and self pairs, for the directional test, Zdir , in
Eq. (12); α̂R is for the χ2 test statistic, X 2

R , for self-reflexivity or mixed-nonreflexivity
in the NN structure in Eq. (11); α̂Z

s,r is for the self-reflexivity in the NN structure test
statistic, Zs,r ; α̂Z

m,nr is for the mixed-nonreflexivity test statistic, Zm,nr (see Eq. (6)).
For Nmc = 10000 replications, an empirical size estimate is deemed conservative, if
smaller than .046 while it is deemed liberal, if larger than .054 at .05 level (based on
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Table 3 The empirical significance levels of the tests under CSR independence cases 1 and 2 with Nmc =
10000 at α = .05

Case 1: n1 = n2 = n = 10, 20, . . . , 50

n α̂P α̂>
dir α̂<

dir α̂R α̂Z
s,r α̂Z

m,nr

10 .044 .103 .058 .047 .054 .056

20 .056 .082 .051 .045 .051 .051

30 .056 .082 .046 .046 .048 .048

40 .065 .082 .047 .048 .048 .048

50 .068 .087 .052 .046 .046 .052

Case 2: n1 = 20, n2 = 20, 30, . . . , 60

n2 α̂P α̂>
dir α̂<

dir α̂R α̂Z
s,r α̂Z

m,nr

20 .053 .083 .048 .045 .052 .048

30 .057 .084 .050 .052 .045 .052

40 .055 .081 .040 .047 .046 .045

50 .056 .084 .040 .046 .046 .047

60 .051 .076 .034 .047 .051 .046

α̂P is the empirical significance level for the χ2 test of independence with 1 df for the RCT, α̂>
dir (resp.

α̂<
dir ) for the right (resp. left)-sided alternative for the directional test, Zdir , in Eq. (12); α̂R for the χ2 test

statistic X 2
R for self-reflexivity or mixed-nonreflexivity in the NN structure; α̂Z

s,r for the self-reflexivity in

the NN structure test statistic, Zs,r ; α̂Z
m,nr for the mixed-nonreflexivity test statistic, Zm,nr . Size estimates

larger than .054 (smaller than .046) are liberal (conservative)

binomial critical values with n = 10000 trials and probability of success 0.05). Under
CSR independence case 1, notice that α̂>

dir is significantly larger than 0.05 (i.e., Zdir is
significantly liberal) for all sample size combinations and the χ2 test of independence
for the RCT is liberal for large samples (i.e., for n ≥ 40). The reflexivity tests (namely,
X 2

R , Zs,r and Zm,nr ) seem to be of the desired level for each sample size considered
under case 1. Under case 2, observe that Zdir is liberal at .05 level (although less liberal
compared to case 1), and contrary to case 1, χ2 test of independence for the RCT, X 2

P
is at about the desired level for each sample size combination. Furthermore, α̂<

dir
seems to be significantly less than .05 (i.e., the corresponding tests are conservative)
when the relative abundance ratio gets larger than two (i.e., when n2/n1 ≥ 2). The
reflexivity tests show size performance similar to that in case 1 (i.e., they are at about
the nominal level of .05). In both cases, X 2

P has larger size estimates compared to X 2
R

and the right-sided directional test Zdir has larger size estimates compared to Z -test for
self-reflexivity in the NN structure, Zs,r . Furthermore, for balanced sample sizes, we
recommend the use of the Monte Carlo randomized versions or the use of Monte Carlo
critical values for X 2

P and the right-sided alternative for Zdir . Also, for unbalanced
sample sizes, we recommend the use of the Monte Carlo randomized versions or the
use of Monte Carlo critical values for the directional test Zdir . A Monte Carlo critical
value is determined as the appropriately ranked value of the test statistic in a certain
number of generated data sets from the distribution under the null hypothesis. The
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class sizes are said to be balanced, if the relative abundances of the classes are close to
one, and they are called unbalanced, if the relative abundances deviate substantially
from one.

5.1.2 Empirical size analysis under RL

Under the RL pattern, the class labels or marks are assigned randomly to points whose
locations are given. Recall that Zn = {z1, z2, . . . , zn} is the given set of locations for
n points from the background pattern. At each background realization, n1 of the points
are labeled as class 1 or X and the remaining n2 = n − n1 points are labeled as class
2 or Y .

Types of the background patterns:

Case 1 The background points are a realization of Zi
iid∼ U((0, 1) × (0, 1)) for

i = 1, 2, . . . , n. That is, the background points, Zn , are generated iid uniform in
the unit square (0, 1) × (0, 1). We consider n1 = n2 = 10, 20, . . . , 50.
Case 2 The background points, Zn , are generated as in case 1 above with n1 = 20
and n2 = 20, 30, . . . , 60.
Case 3 The background points, Zn , are generated from a Matérn cluster process,
MatClust(κ, r, μ) (Baddeley and Turner 2005). In this process, first “parent” points
are generated from a Poisson process with intensity κ . Then each parent point
is replaced by N ∼ Poisson(μ) new points which are generated iid inside the
circle of radius r centered at the parent point. Each background realization is a
realization of Zn and is generated from MatClust(κ, r, μ). Let n be the number
of points in a particular realization. Then n1 = �n/2� of these points are labeled
as class 1 where �x� stands for the floor of x , and n2 = n − n1 as class 2. In our
simulations, we use κ = 2, 4, . . . , 10, μ = �100/κ�, and r = 0.1. That is, we
take (κ, μ) ∈ {(2, 50), (4, 25) . . . , (10, 10)} so as to have about 100 background
points on the average with about half being from class 1 and the other half being
from class 2.

To reduce the influence of a particular background realization on the size perfor-
mance of the tests, we generate 100 different realizations of each background pattern.
For each case, the RL scheme described is repeated 1000 times for each (n1, n2) com-
bination at each of 100 different background realizations. So we have Nmc = 100000.
In RL with background cases 1 and 2, the points are from HPP in the unit square with
fixed n1 and n2 (i.e., from binomial process), where case 1 is for assessing the effect of
equal but increasing sample sizes on the tests, while case 2 is for assessing the effect of
increasing differences in sample sizes of the classes (with one class size being fixed,
while the other is increasing). On the other hand, in the background realizations of
case 3, centers and numbers of clusters are random. On the average, with increasing
κ , the cluster sizes tend to decrease and the number of clusters tend to increase (so
as to have fixed class sizes on the average). Hence in case 3, we investigate the influ-
ence of increasing number of clusters with randomly determined centers on the size
performance of the tests.

The empirical size estimates of the tests under RL with background cases 1-3 are
presented in Table 4. For Nmc = 100000 replications, an empirical size estimate is
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Table 4 The empirical
significance levels of the tests
under RL with background cases
1–3 with Nmc = 100000 (1000
replications for each of 100
background realizations) at
α = .05

The empirical size labeling for
the tests is as in Table 3. Size
estimates larger than .051
(smaller than .049) are liberal
(conservative).
MatClust(κ, r, μ) stands for the
Matérn cluster process

Case 1: U((0, 1) × (0, 1)) with n1 = n2 = n

n α̂P α̂>
dir α̂<

dir α̂R α̂Z
s,r α̂Z

m,nr

10 .045 .101 .052 .047 .054 .051

20 .056 .083 .051 .046 .054 .051

30 .060 .084 .045 .048 .047 .048

40 .067 .084 .048 .049 .050 .048

50 .070 .085 .050 .048 .050 .050

Case 2: U((0, 1) × (0, 1)) with n1 = 20 and n2

n2 α̂P α̂>
dir α̂<

dir α̂R α̂Z
s,r α̂Z

m,nr

20 .056 .082 .052 .047 .054 .052

30 .058 .086 .046 .049 .044 .048

40 .053 .080 .042 .047 .042 .046

50 .055 .080 .038 .047 .050 .045

60 .050 .074 .033 .046 .051 .046

Case 3: MatClust(κ, r = 0.1, μ = �100/κ�
κ α̂P α̂>

dir α̂<
dir α̂R α̂Z

s,r α̂Z
m,nr

2 .067 .085 .049 .048 .051 .048

4 .067 .084 .051 .048 .049 .050

6 .067 .085 .051 .049 .051 .051

8 .068 .084 .048 .047 .048 .048

10 .067 .083 .051 .049 .049 .050

deemed conservative, if smaller than .049 while it is deemed liberal, if larger than .051
at .05 level (based on binomial critical values with n = 100000 trials and probability
of success 0.05). The size performance under cases 1 and 2 are similar to that under
CSR independence cases 1 and 2, respectively. However, under RL with background
case 3, X 2

P is liberal for each κ value, which would be expected, since for each κ value
n1 ≈ n2 ≈ 50 (and this test was liberal for n1 = n2 = 50 under RL background case
1). Notice also that the size estimates of the tests are not influenced by the number of
clusters, κ , when the class sizes are fixed.

Based on the empirical size performance of the tests under CSR independence and
RL, we conclude that the newly proposed reflexivity tests, i.e., X 2

R , Zs,r and Zm,nr ,
are at about the desired nominal level, hence they are robust to the imbalance in the
class sizes and their asymptotic approximation can be employed for both balanced and
unbalanced class sizes. Furthermore, the directional test, Zdir , is liberal for the right-
sided alternative for small to large samples and Pielou’s χ2 test of independence on the
RCT, X 2

P , is liberal for large samples. So we recommend Monte Carlo randomization
for these tests under these situations. The left-sided directional Z -test is conservative
when the relative abundances of the classes are very different. That is, this test is
severely confounded by the differences in relative abundances of the classes. Therefore,
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Table 5 The power estimates under the cases I, II, and III alternatives in Eqs. (13), (14), (15), respectively,
with Nmc = 10000, n1 = n2 = 40 at α = .05. β̂R is power estimate for the χ2 test statistic, X 2

R in

Eq. (10); β̂Z
sr for the self-reflexivity in the NN structure test statistic, Zs,r ; β̂Z

mn for the mixed-nonreflexivity
test statistic, Zm,nr . The “>” (resp. “<”) sign in the superscript implies the power is estimated for the
right-sided (resp. left-sided) alternative

Case I alternatives Case II alternatives Case III alternatives

β̂R β̂
Z ,>
s,r β̂

Z ,<
m,nr β̂R β̂

Z ,<
s,r β̂

Z ,<
m,nr β̂R β̂

Z ,>
s,r β̂

Z ,<
m,nr

H1
I .24 .27 .26 H1

I I .23 .48 .03 H1
I I I .46 .45 .42

H2
I .995 .98 .97 H2

I I .63 .88 .01 H2
I I I .94 .87 .87

H3
I .994 .97 .96 H3

I I .79 .97 <.01 H3
I I I .9999 .998 .995

we recommend the use of these tests when the sample sizes are balanced, otherwise
we recommend Monte Carlo randomization for these tests.

5.2 Empirical power analysis

To compare the empirical power performance of the tests, we consider various alter-
native cases for self-reflexivity or mixed-nonreflexivity in the NN structure. The
empirical power estimates are computed at α = .05 as in the size estimates in Sect. 5.1.

Case I For this class of alternatives, we generate Xi
iid∼ U((0, 1) × (0, 1)) for

i = 1, . . . , n1 and Y j
iid∼ BVN(1/2, 1/2, σ1, σ2, ρ) for j = 1, . . . , n2, where

BVN(μ1, μ2, σ1, σ2, ρ) is the bivariate normal distribution with mean (μ1, μ2) and

covariance

[
σ1 ρ

ρ σ2

]
. In our simulations, we set σ1 = σ2 = σ and ρ = 0. We consider

the following three alternatives:

H1
I : σ = 1/5, H2

I : σ = 2/15, and H3
I : σ = 1/10. (13)

The classes 1 and 2 (i.e., X and Y ) have different distributions with different local
intensities. In particular, X points are a realization of uniform distribution in the unit
square, while Y points are clustered around the center of the unit square (1/2, 1/2)

with the level of clustering increasing as σ decreases. This suggests a high level of
segregation of Y points from X points.

The empirical power estimates under the alternatives, H1
I − H3

I , with n1 = n2 = 40
are presented in Table 5, where β̂R is power estimate for the χ2 test statistic, X 2

R ,
for self-reflexivity or mixed-nonreflexivity in the NN structure; β̂Z

sr is for the self-
reflexivity test statistic, Zs,r ; β̂Z

mn is for the mixed-nonreflexivity test statistic, Zm,nr .
We omit the power estimates for the χ2 test of independence and one-sided directional
tests on the RCT, since they are undefined when an entire column of the RCT is zero,
which happens with substantial probability under case I alternatives. Under the case
I alternatives, the power estimates increase as σ decreases. In particular, χ2 test of
NN reflexivity, and right-sided test of self-reflexivity in the NN structure, Zs,r and
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left-sided mixed-nonreflexivity test, Zm,nr have high power estimates, which implies
significant self-reflexivity in the NN structure, which is caused by the substantial level
of clustering of Y points around the center of the unit square.

Case II For this type of alternatives, first, we generate Xi
iid∼ U((0, 1) × (0, 1)) for

i = 1, 2, . . . , n1 and for each j = 1, 2, . . . , n2, we generate Y j around a randomly
picked Xi with probability p in such a way that Y j = Xi + R j (cos Tj , sin Tj )

t

where vt stands for transpose of the vector v, R j ∼ U(0, mini �= j d(Xi , X j )) and
Tj ∼ U(0, 2 π) or generate Y j uniformly in the unit square with probability 1 − p. In
the pattern generated, Y j are more associated with Xi . The three values of p constitute
the following alternatives:

H1
I I : p = .25, H2

I I : p = .50, and H3
I I : p = .75. (14)

In this case, X points constitute a realization of the uniform distribution in the unit
square, while Y points are clustered around the X points, and the level of clustering
increases as p increases. The empirical power estimates under the alternatives, H1

I I −
H3

I I , with n1 = n2 = 40 are presented in Table 5. Notice that χ2 test of NN reflexivity
has high power which increases as p increases, and Zs,r has higher power for the left-
sided alternative. On the other hand, Zm,nr has very low power for both left- and right-
sided alternatives (even significantly lower than the nominal level of .05), but slightly
higher for the left-sided alternative (hence only power estimates for the left-sided
alternative are presented). Therefore, we can conclude that there is significant mixed-
reflexivity but there is lack of mixed-nonreflexivity (in fact, mixed-nonreflexivity in
the NN structure deviates from the expected level less frequently than it would under
the null case).

Case III For this class of alternatives, we consider Xi
iid∼ U((0, 1 − s) × (0, 1 − s))

for i = 1, . . . , n1, and Y j
iid∼ U((s, 1) × (s, 1)) for j = 1, . . . , n2. The three values

of s constitute the following alternatives;

H1
I I I : s = 1/6, H2

I I I : s = 1/4, and H3
I I I : s = 1/3. (15)

Notice that these alternatives are the segregation alternatives considered for Monte
Carlo analysis in Ceyhan (2010). The empirical power estimates under the segregation
alternatives H1

I I I − H3
I I I are presented in Table 5. The NN reflexivity tests have

high power which increases as s increases. Furthermore, Zs,r has high power for the
right-sided alternative and Zm,nr has high power for the left-sided alternative, which
indicates significant self-reflexivity in the NN structure.

Case IV We generate Xi
iid∼ S1 for i = 1, . . . , �n1/2� and Y j

iid∼ S2 for
j = 1, . . . , �n2/2�. Then for k = �n1/2� + 1, . . . , n1, we generate Xk =
Xk−�n1/2� + r (cos Tj , sin Tj )

t and for l = �n2/2� + 1, . . . , n2, we generate Yl =
Yl−�n1/2� + r (cos Tj , sin Tj )

t where r ∈ (0, 1) and Tj ∼ U(0, 2 π). Appropriate
small choices of r will yield an abundance of self-reflexive pairs. The three values of
r we consider constitute the self-reflexivity alternatives at each support pair (S1, S2).
Then the nine alternative combinations we consider are given by
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Table 6 The power estimates
under the case IV alternatives in
Eq. (16) with Nmc = 10000,
n1 = n2 = 40 at α = .05. The
empirical power labeling and
superscripting for “<” and “>”
are as in Table 5

r β̂R β̂
Z ,>
s,r β̂

Z ,>
m,nr

H1
I V

1/7 .06 .08 .08

1/8 .08 .13 .08

1/9 .10 .20 .09

H2
I V

1/7 .06 .08 .07

1/8 .07 .11 .07

1/9 .08 .16 .06

H3
I V

1/7 .06 .07 .06

1/8 .06 .11 .06

1/9 .08 .15 .05

(i)H1
I V : S1 = S2 = (0, 1) × (0, 1), (a) r = 1/7, (b) r = 1/8, (c) r = 1/9,

(ii)H2
I V : S1 = (0, 5/6) × (0, 5/6) and S2 = (1/6, 1) × (1/6, 1), (a) r = 1/7, (b)

r = 1/8, (c) r = 1/9,

(iii)H3
I V : S1 = (0, 3/4) × (0, 3/4) and S2 = (1/4, 1) × (1/4, 1)(a)

r = 1/7, (b) r = 1/8, (c) r = 1/9. (16)

In this case, under H2
I V and H3

I V , by construction, there is segregation of the classes
due to the choices of the supports. Additionally, with decreasing r , the self-reflexive
pairs will be more abundant. The empirical power estimates under the alternatives
H1

I V −H3
I V are presented in Table 6. Notice that the NN reflexivity tests have relatively

low power estimates. Furthermore, Zs,r and Zm,nr have higher power for the right-
sided alternative, which indicates significant presence of self-reflexivity and mixed
non-reflexivity in the NN structure (but each at a mild level). The power estimates for
these tests decrease from H1

I V to H3
I V but they increase as r decreases from (a) to (c)

at each (S1, S2) combination.

Case V In this case, first, we generate Xi
iid∼ U((0, 1) × (0, 1)) and then generate Y j

as Y j = Xi + r (cos Tj , sin Tj )
t where r ∈ (0, 1) and Tj ∼ U(0, 2 π). In the pattern

generated, appropriate choices of r will cause Y j and Xi more associated, that is, a Y
point will be more likely to be the NN of an X point, and vice versa. The three values
of r we consider constitute the three association alternatives;

H1
V : r = 1/4, H2

V : r = 1/7, and H3
V : r = 1/10. (17)

These are also the association alternatives considered for Monte Carlo analysis in
Ceyhan (2010).
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Table 7 The power estimates under the case V alternatives in Eq. (17) with Nmc = 10000, n1 = n2 = 40
at α = .05. The empirical power labeling and superscripting for “<” and “>” are as in Table 5

β̂R β̂
Z ,<
s,r β̂

Z ,>
m,nr

H1
V .16 .30 .12

H2
V .45 .63 .20

H3
V .70 .84 .24

0 50 100 150 200

0
50

10
0

15
0

Urkiola Woods

x coordinate (m)

y 
co

or
di

na
te

 (
m

)

Fig. 1 The scatter plot of the locations of birch trees (solid squares), and oak trees (plus symbols) in the
Urkiola Natural Park, Basque region, northern Spain

The empirical power estimates under H1
V − H3

V are presented in Table 7. Notice
that the χ2 test of NN reflexivity has high power (which increases as r decreases). But
Zs,r has high power for the left-sided alternative and Zm,nr has high power for the
right-sided alternative only, which indicates significant mixed-reflexivity and presence
of moderate mixed-nonreflexivity in the NN structure. The power estimates for these
tests increase as r decreases.

6 Example data sets

To illustrate the methodology, we use two example data sets: the Urkiola Woods data
(Laskurain 2008) which is available in the spatstat package in R (Baddeley and Turner
2005) and the swamp tree data of Good and Whipple (1982).

6.1 Urkiola woods data

The Urkiola Woods data contains locations of trees (in meters) in a secondary wood
in Urkiola Natural Park, Basque region, northern Spain (Laskurain 2008). The data
set contains 886 birch trees (Betula celtiberica) and 359 oak trees (Quercus robur).
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Table 8 The RCT for Urkiola
Woods data

The expected values of the cell
counts under RL are provided in
parentheses

Pair type Total

Self Mixed

Reflexivity

Reflexive 474 (431.34) 258 (300.66) 732

Non-reflexive 323 (302.29) 190 (210.71) 513

Total 797 448 1245

Table 9 The test statistics and the p values for Urkiola Woods data

X 2
P Z>

dir Z<
dir T >

F T <
F X 2

R Z>
sr Z<

mn

TS .35 .65 1.08 11.37 2.50 −2.00

pasy .5564 .2584 .7415 .2780* .7607* .0034 .0062 .0230

prand .5648 .3079 .6921 .3079 .6928 .0030 .0070 .0209

ptor .4275 .4275 .5763 .4275 .5763 .4948 .4293 .5523

Zsr , Zmn , X 2
P , and X 2

R are as defined in the text; Z>
dir and Z<

dir are for the right- and left-sided alternatives
with Zdir ; T >

F and T <
F are one-sided Fisher’s exact test (for the right and left-sided tests on the RCT,

respectively). “TS” stands for the test statistic, pasy for the p values based on asymptotic critical values
(except for the exact tests), prand for the p values based on Monte Carlo randomization, and ptor for the
p values based on random toroidal shifts. *The p values for the exact tests are computed using the table
inclusive version as described in Ceyhan (2014)

This data set is actually a part of a more extensive data set collected and analyzed by
Laskurain (2008). The scatter plot of the tree locations are presented in Fig. 1.

The RCT for this data set is presented in Table 8 where the expected values of the
entries of the RCT are provided in parentheses. We estimate the “self-enrichment”
by the ratio of number of observed self pairs to the number of expected self pairs for
each row (reflexive or non-reflexive), i.e., Ns,r/E [Ns,r ] and Ns,nr/E [Ns,nr ]. In this
data set, these ratios are 474/431.34 ≈ 1.10 for reflexive and 323/302.29 ≈ 1.07 for
non-reflexive self-pairs. The similarity of the row-specific ratios in the self column
suggests that the pattern in this data set is the overall enrichment of self-pairs.

We compute Q = 812, R = 732, and T = 360, and the corresponding empirical
ratios are Q/n ≈ .65, R/n ≈ .59 and T/n ≈ .29. We present the test statistics and the
associated p values in Table 9, where Zsr , Zmn , X 2

P , and X 2
R are as defined in the text,

and Z>
dir and Z<

dir are for the right-sided and left-sided versions of the directional test
Zdir , respectively. Furthermore, T >

F and T <
F are one-sided Fisher’s exact test (for the

right and left-sided tests on the RCT, respectively) where the test statistic is the odds
ratio. In this table pasy stands for the p-value based on the asymptotic approximation
(i.e., asymptotic critical value), except for the exact tests; prand is based on Monte Carlo
randomization of the labels on the given locations of the trees 10000 times; and ptor is
based on 100000 random toroidal shifts of the data set. For the exact tests, the p-value
written for the pasy row is computed using the table inclusive version as described in
Ceyhan (2014). Notice that pasy and prand are similar for all the tests. However, ptor
values are very different from pasy and prand values, especially for the reflexivity tests.
The reason for this discrepancy is that the supports of the classes in Urkiola Woods data
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are not rectangular, hence the use of toroidal shifts is not appropriate (Dixon 2002c).
Notice that Pearson’s χ2 test of independence and Fisher’s exact test on the RCT
suggest no significant deviation from independence. However, these tests do not have
the correct sampling distribution and also the exact tests are valid for small sample sizes
(less than about 50). Hence the asymptotic approximation for Pielou’s test and the exact
tests would not be reliable. However, the more reliable Monte Carlo randomized p
values, prand, are also not significant for Pearson’s χ2 test of independence and Fisher’s
exact test suggesting independence between NN reflexivity and pair type as self or
mixed. On the other hand, the Z -test for self-reflexivity in the NN structure is significant
for the right-sided alternative and the Z -test for mixed-nonreflexivity is significant for
the left-sided alternative and χ2 test for NN reflexivity, X 2

R , is significant. Thus, the
overall reflexivity test implies there is significant deviation of diagonal cells from their
expected values. In particular, there is significant self-reflexivity and significant lack
of self-nonreflexivity in the NN structure. In other words, we show that reflexive pairs
are more likely to be self-self and non-reflexive pairs are less likely to be mixed (and
hence non-reflexive pairs are more likely to be self-self also). Hence the total number
of self NN pairs significantly exceeding its expected value leads towards an analysis
of species-specific contributions to these totals. Regardless of reflexivity, this analysis
of the species-specific contributions can be performed by an analysis of the diagonals
of the usual NNCT (Dixon 1994). The cell-specific test (i.e., the test for the diagonal
cell) for birch trees in the NNCT is Z = 2.91 with p = .0018 and for oaks is Z = 2.71
with p = .0034 which implies significant segregation of both species from each other.
This significant segregation of the species supports self enrichment in NN pairs, and
this enrichment is at about the same level for reflexive and non-reflexive pairs.

6.2 Swamp tree data

From the swamp tree data of Good and Whipple (1982), Dixon (2002b) used a single
50 m × 200 m rectangular plot (denoted as the (0, 200)×(0, 50) rectangle) to illustrate
his nearest neighbor contingency table (NNCT) methods. All live or dead trees with
4.5 cm or more dbh (diameter at breast height) were recorded together with their
species labels. The plot contains 13 different tree species, but for illustrative purposes
(and for brevity in presentation) we only consider the three groups, namely, Carolina
ashes, bald cypresses, and miscellaneous other trees (i.e., trees not belonging to one
of the first five most frequent species). In practice, such an omission of classes or
species is not recommended (see Remark 6.1). The scatter plot of these tree locations
are presented in Fig. 2 where for convenience in presentation x and y coordinates are
flapped which do not influence the methods based on NN distances.

The RCT for this data together with the expected values of the entries is presented
in Table 10. In this data set, self-enrichment ratios are 1.73 for reflexive and 1.07
for non-reflexive self-pairs. The substantial difference between the row-specific ratios
in the self column suggests that the pattern in this data set is the abundance of self
reflexive pairs.

We compute Q = 160, R = 210, and T = 75 and the corresponding empirical
proportions are .51, .67 and .24. We present the test statistics and the associated p val-
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Fig. 2 The scatter plot of the locations of Carolina ashes (circles), bald cypresses (triangles), and miscel-
laneous trees (plus symbols) in the Swamp Tree data

Table 10 The RCT for the
Swamp Tree data

The expected values of the cell
counts under RL are provided in
parentheses

Pair type Total

Self Mixed

Reflexivity

Reflexive 138 (79.54) 72 (130.46) 210

Non-reflexive 42 (39.39) 62 (64.61) 104

Total 180 134 314

Table 11 The test statistics and the p values for Swamp Tree data

X 2
P Z>

dir Z<
dir T >

F T <
F X 2

R Z>
sr Z<

mn

TS 17.22 4.27 2.81 38.40 6.14 −.54

pasy <.0001 <.0001 ≈1.00 <.0001 ≈1.00 <.0001 <.0001 .2950

prand .0001 .0001 .9999 .0001 .9999 <.0001 <.0001 .2987

ptor .2170 .2170 .7886 .2170 .7886 .0731 .6233 .9310

The column and row labeling are as in Table 9

ues in Table 11, where pasy and prand are similar for all the tests, but are very different
from ptor values since the processes generating the points seem to be non-stationary.
Furthermore, toroidal shift might produce biased results when there are clusters around
the edges. Pearson’s χ2 test of independence and Fisher’s exact test on the RCT sug-
gests significant deviation from independence based on the more reliable Monte Carlo
randomized p values. This result supports dependence (in the form of positive asso-
ciation) between NN reflexivity and pair type as self or mixed. On the other hand,
the overall reflexivity test is also highly significant, which implies a significant devi-
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ation of one or both of the diagonal cells from their expected values. In particular,
the Z -test for self-reflexivity is significant for the right-sided alternative, but the Z -
test for mixed-nonreflexivity is not significant for either of the one-sided alternatives.
Hence there is strong self-reflexivity in the NN structure and no significant deviation
from mixed-nonreflexivity in the NN structure (i.e., no significant deviation from self-
nonreflexivity). In other words, reflexive pairs are more likely to be self NN pairs but
non-reflexive pairs are at about their expected levels. To figure out which species con-
tribute more to the abundance of self-reflexive NN pairs, we conduct cell-specific tests
on the diagonals of the NNCT. The cell-specific test for Carolina ashes in the NNCT
is Z = 4.86 with p < .0001, for bald cypresses is Z = 1.07 with p = .1414 and for
others is Z = 6.76 with p < .0001 which implies significant segregation of Carolina
ashes and other trees, which partly accounts for abundance of self-reflexive NN pairs.

Post hoc tests as pairwise or one-vs-tests are performed as described in Sect. 3.4
each in a two-class setting as in Sect. 6.1 to determine which (pairs) of species exhibit
reflexivity in the NN structure. The corresponding test statistics and the p values are
presented in Table 12. The pasy and prand values are very close, but very different
from ptor values, due to inappropriateness of the toroidal shift for this data set. In
the pairwise test setting, we observe a significant presence of self-reflexivity and self-
nonreflexivity when Carolina ashes and others are compared. But when bald cypresses
and others are compared there is significant self-reflexivity and no deviation from
mixed-nonreflexivity; the same conclusion is reached when Carolina ashes and bald
cypresses are compared. In the one-vs-rest setting, we observe a significant presence
of self-reflexivity and no deviation from mixed-nonreflexivity when each group is
compared to the rest.

Remark 6.1 (Caveat on exclusion of species) The exclusion of classes or species
in a data set is not recommended in practice, as it will very likely yield spurious
results. In the Swamp Tree data set, we omit some of the tree species in order to
simplify our presentation, and this is solely done for the purpose of illustration, in
the sense that, the conclusions of the analysis of this data set would hold only if
there were only three groups, whose locations were as in Fig. 2. However, regarding
ecological relevance, removing species changes the neighborhood relationships. In
fact, this can be observed in the pairwise analysis provided in Table 12. Hence, in
practice all (relevant) groups/species should be included. For example, if only the five
most prevalent species were of interest (as in Dixon 2002a), they should be included
in the analysis, or else all 13 species should be included.

7 Discussion and conclusions

In this article, we discuss various tests of reflexivity in the NN structure. In particular,
we investigate Pielou’s test proposed for niche specificity (Pielou 1961) and introduce
new tests of NN reflexivity using a contingency table based on the NN relations
between classes or species. We consider Pielou’s test, determine its appropriate null
hypothesis and the underlying assumptions and demonstrate that Pielou’s contingency
table intended for niche specificity is actually more appropriate for NN reflexivity
(hence called reflexivity contingency table (RCT) in this article). We demonstrate that
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Pielou’s approach is not appropriate for completely mapped spatial data. We provide
the (correct) asymptotic distribution for the entries of the RCT and thus propose new
tests of NN reflexivity. Pearson’s χ2 test of independence (whose use on RCT is
suggested by Pielou 1961) and the one-sided versions on the RCT are slightly liberal
with the asymptotic approximation, but our new NN reflexivity tests are at about the
desired level. We also provide extensions of the methodology to multi-class case with
more than two classes and describe the possible post hoc tests in such a multi-class
case when the overall test of NN reflexivity yields a significant result.

Pielou’s approach and the new approach on the RCT are testing different null
and alternative hypotheses (hence they would have different rejection and acceptance
regions). In particular, Pielou’s approach is based on the usual χ2 test for the indepen-
dence of NN reflexivity and pair type, while the new NN reflexivity tests are based
on the normal approximation of the entries with their expected values under CSR
independence or RL with completely mapped data. Hence Pielou’s test is appropriate
when, under Ho, we have a random sample of labels of base-NN pairs in terms of NN
reflexivity and pair type as self or mixed, and such a random sample can be obtained by
an appropriate sparse sampling from the data. On the other hand, the tests in Eqs. (6)
and (7) (i.e., the reflexivity tests) are appropriate for completely mapped spatial data
under RL (and under CSR independence conditional on various quantities such as the
number of reflexive NN pairs).

Throughout this article, we assume that the total sample size and class sizes are all
fixed. If it is desired to have the sample size be a random variable, we may consider a
spatial Poisson point process on the region of interest instead of the uniform binomial
process. In fact, this case is also a realistic situation for a data collection scheme in
the plant ecology. That is, in the region of interest, one can examine each subject,
determine its species and that of its NN. In this framework, all margins in the RCT
would be random. The effects of such randomness on the behavior (e.g., distribution),
size and power performance of the tests is a topic of ongoing research. For the cases
where CSR independence is the appropriate benchmark (see Sect. 2), this framework
might be more realistic, but for the cases where RL is the appropriate benchmark, then
our approach in this article might be more realistic.

In the literature usually NN relationships are based on the distance metrics. For
example, in this article, Euclidean distance in R

2 is the only metric used. The NN
relations based on dissimilarity measures is an extension of NN relations based on
distance metrics. In such an extension, NN of an object, x , refers to the object with
the minimum dissimilarity to x . We assume that the objects (events) lie in a finite or
infinite dimensional space satisfying the lack of any inter-dependence which implies
self-reflexivity or mixed-nonreflexivity in the NN structure. Under RL, the objects’
locations are fixed yielding fixed interpoint dissimilarity measures, but the labels are
assigned randomly to the objects. The extensions of Pielou’s test of independence and
our newly proposed tests on the RCT are straightforward.
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Appendix: Sampling distribution of the diagonal cell counts in the RCT
under RL

Ns,r : Number of self-reflexive NNs

Recall that Ns,r = ∑m
u=1 N u

r where N u
r = ∑n

i=1
∑n

j=1 ri j zu
i j (see Sect. 3).

Since zu
i j is an indicator random variable, we have E [zu

i j ] = P(Li = L j = u) =
puu , and hence by the linearity of the expectation we have

E [N u
r ] =

n∑
i=1

n∑
j=1

ri j E [zu
i j ] = puu

n∑
i=1

n∑
j=1

ri j = Rpuu .

Therefore, we obtain

E [Ns,r ] = R
m∑

a=1

paa = R Paa .

To compute the variance of Ns,r , we need to evaluate E [N u
r N v

r ] for every u, v.

E [N u
r N v

r ] = E

⎡
⎣∑

i, j

ri j z
u
i j

∑
k,l

rkl z
v
kl

⎤
⎦ =

∑
i, j,k,l

ri j rklE [zu
i j z

v
kl ].

First note that ri j = 0 whenever i = j . We also have ri j rkl = 0 if {i, j} ∩ {k, l}
has exactly one element, since each point has a unique NN. Moreover, observe that
r2

i j = ri j r ji = ri j . Therefore, we obtain

E [N u
r N v

r ] =
∑
i, j

ri j E [zu
i j z

v
i j ] +

∑
i, j

ri j E [zu
i j z

v
j i ] +

∑
i �= j �=k �=l

ri j rk,lE [zu
i j z

v
kl ].

Notice that

∑
i �= j �=k �=l

ri j rk,l = R2 − 2R and E [zu
i j z

v
kl ] = puuvv if i �= j �= k �= l,

and for distinct class labels a and b we have

E [za
i j z

b
i j ] = E [za

i j z
b
ji ] = 0.

Thus, we obtain

E [(N a
r )2] = 2Rpaa + (R2 − 2R)paaaa and E [N a

r N b
r ] = (R2 − 2R)paabb,
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and

E [N 2
s,r ] = 2R

m∑
a=1

paa + (R2 − 2R)

m∑
a=1

paaaa + (R2 − 2R)
∑

1≤a �=b≤m

paabb.

Hence, we get

Var [Ns,r ] = R2

⎛
⎝ m∑

a=1

paaaa +
∑

1≤a �=b≤m

paabb −
(

m∑
a=1

paa

)2
⎞
⎠

+ 2R

⎛
⎝ m∑

a=1

paa −
m∑

a=1

paaaa −
∑

1≤a �=b≤m

paabb

⎞
⎠ .

Nm,nr : Number of mixed-nonreflexive NNs

Recall that Nm,nr = ∑
1≤a �=b≤m N ab

nr (see Sect. 3). Since

E [N ab
nr ] =

n∑
i=1

n∑
j=1

yi j E [zab
i j ] = (n − R)pab,

we get

E [Nm,nr ] = (n − R)
∑

1≤a �=b≤m

pab = (n − R)Pab.

We now compute E [N ab
nr N cd

nr ] where a �= b and c �= d.

E [N ab
nr N cd

nr ] = E

⎡
⎣∑

i �= j

yi j z
ab
i j

∑
k �=l

ykl z
cd
kl

⎤
⎦ =

∑
1≤i, j,k,l≤n

yi j yklE [zab
i j zcd

kl ].

First note that yi j = 0 whenever i = j . Also, observe that the sum in the right hand
side of equation above can be rewritten as sum of seven summations which are grouped
with respect to the indices of yi j ykl as follows:

∑
i �= j

y2
i j E [zab

i j zcd
i j ] +

∑
i �= j

yi j y ji E [zab
i j zcd

ji ] +
∑

i �= j �=k

yi j yikE [zab
i j zcd

ik ] +
∑

i �= j �=k

yi j yki E [zab
i j zcd

ki ]

+
∑

i �= j �=k

yi j y jkE [zab
i j zcd

jk ] +
∑

i �= j �=k

yi j yk j E [zab
i j zcd

k j ] +
∑

i �= j �=k �=l

yi j ykl E [zab
i j zcd

kl ].

Clearly we have y2
i j = yi j and yi j y ji = yi j yik = 0, so we may ignore the second and

the third summands above. Then we have
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∑
i �= j

y2
i j = n − R.

Let wi j be the indicator of the event N N (zi ) = z j . Then observe that yi j = wi j (1 −
w j i ) and wi jwik = 0 whenever j �= k. So, yi j yki = wi jwki − wi jw j iwki , and
summing over i �= j �= k yields

∑
i �= j �=k

yi j yki = (n − R) − T = n − R − T .

Similarly we get

∑
i �= j �=k

yi j y jk = n − R − T .

Also, yi j yk j = wi jwk j − wi jw j iwk j − wi jwk jw jk and summing up over i �= j �= k
gives

∑
i �= j �=k

yi j yk j = Q − 2T .

Moreover, we have

∑
i �= j �=k �=l

yi j ykl = (n − R)2 − ((n − R) + 2(n − R − T ) + (Q − 2T ))

= n2 − n(2R + 3) + R2 + 3R + 4T − Q.

There are again seven cases for the pairs a, b and c, d. Since

E [zab
i j zab

i j ] = pab, E [zab
i j zab

ki ] = 0, E [zab
i j zab

jk ] = 0, E [zab
i j zab

k j ] = paab,

E [zab
i j zab

kl ] = paabb,

we have

E [N ab
nr N ab

nr ] = (n − R)pab + (Q − 2T )paab

+ (n2 − n(2R + 3) + R2 + 3R + 4T − Q)paabb. (18)

Since

E [zab
i j zba

i j ] = 0, E [zab
i j zba

ki ] = pabb, E [zab
i j zba

jk ] = paab, E [zab
i j zba

k j ] = 0,

E [zab
i j zba

kl ] = paabb,
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we have

E [N ab
nr N ba

nr ] = (n − R − T )(pabb + paab) + (n2 − n(2R + 3)

+ R2 + 3R + 4T − Q)paabb. (19)

Since

E [zab
i j zac

i j ] = 0, E [zab
i j zac

ki ] = 0, E [zab
i j zac

jk] = 0, E [zab
i j zac

k j ] = 0, E [zab
i j zac

kl ] = paabc,

we get

E [N ab
nr N ac

nr ] = (n2 − n(2R + 3) + R2 + 3R + 4T − Q)paabc. (20)

Since

E [zab
i j zca

i j ] = 0, E [zab
i j zca

ki ] = pabc, E [zab
i j zca

jk] = 0, E [zab
i j zca

k j ] = 0,

E [zab
i j zca

kl ] = paabc,

we obtain

E [N ab
nr N ca

nr ] = (n − R − T )pabc + (n2 − n(2R + 3) + R2 + 3R + 4T − Q)paabc.

(21)

As

E [zab
i j zbc

i j ] = 0, E [zab
i j zbc

ki ] = 0, E [zab
i j zbc

jk] = pabc, E [zab
i j zbc

k j ] = 0,

E [zab
i j zbc

kl ] = pabbc,

we obtain

E [N ab
nr N bc

nr ] = (n − R − T )pabc + (n2 − n(2R + 3) + R2 + 3R + 4T − Q)pabbc.

(22)

As

E [zab
i j zcb

i j ] = 0, E [zab
i j zcb

ki ] = 0, E [zab
i j zcb

jk] = 0, E [zab
i j zcb

k j ] = pabc,

E [zab
i j zcb

kl ] = pabbc,

we have

E [N ab
nr N cb

nr ] = (Q − 2T )pabc + (n2 − n(2R + 3) + R2 + 3R + 4T − Q)pabbc.

(23)
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Finally, since

E [zab
i j zcd

i j ] = 0, E [zab
i j zcd

ki ] = 0, E [zab
i j zcd

jk] = 0, E [zab
i j zcd

k j ] = 0, E [zab
i j zcd

kl ] = pabcd ,

we have

E [N ab
nr N cd

nr ] = (n2 − n(2R + 3) + R2 + 3R + 4T − Q)pabcd . (24)

Adding up the Eqs. (18)–(24) over pairwise distinct a, b, c, d, we get

E [N 2
m,nr ] = (n − R)Pab + 2(n − R − T )(Paab + Pabc) + (Q − 2T )(Paab + Pabc)

+ (n2 − n(2R+3)+R2 + 3R + 4T − Q)(2Paabb + 4Paabc + Pabcd),

and hence

Var [Nm,nr ] = (n − R)2(2Paabb + 4Paabc + Pabcd − P2
ab)

+ (n − R)Pab + (2n − 2R + Q − 4T )(Paab + Pabc)

+ (−3n + 3R − Q + 4T )(2Paabb + 4Paabc + Pabcd).

Covariance of Ns,r and Nm,nr

Since Ns,r = ∑m
a=1 N a

r and Nm,nr = ∑
1≤u �=v≤m N uv

nr , we first compute E [N a
r N uv

nr ].

E [N a
r N uv

nr ] = E

⎡
⎣∑

i, j

ri j z
a
i j

∑
k,l

ykl z
uv
kl

⎤
⎦ =

∑
i, j,k,l

ri j yklE [zi j z
uv
kl ].

Observe that ri j yi j = ri j y ji = ri j yik = ri j y jk = 0, because each point has only one
NN. Therefore the sum above can be written as sum of three summations as follows;

∑
i �= j �=k

ri j yki E [za
i j z

uv
ki ] +

∑
i �= j �=k

ri j yk j E [za
i j z

uv
k j ] +

∑
i �= j �=k �=l

ri j yklE [za
i j z

uv
kl ].

Note that ri j = wi jw j i , and recall ykl = wkl(1−wlk) and wi jwik = 0. Thus, ri j yki =
wi jw j iwki and we get

∑
i �= j �=k ri j yki = T . Similarly we obtain

∑
i �= j �=k ri j yk j = T,

and so

∑
i �= j �=k �=l

ri j ykl =
∑
i �= j

ri j

∑
k �=l

ykl − 2T = R(n − R) − 2T .

Since E [za
i j z

ab
ki ] = 0, E [za

i j z
ab
k j ] = 0 and E [za

i j z
ab
kl ] = paaab for a �= b, we have

E [N a
r N ab

nr ] = (R(n − R) − 2T )paaab. (25)
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Since E [za
i j z

ba
ki ] = paab, E [za

i j z
ba
k j ] = paab and E [za

i j z
ba
kl ] = paaab for a �= b, we

obtain

E [N a
r N ba

nr ] = 2T paab + (R(n − R) − 2T )paaab. (26)

As E [za
i j z

bc
ki ] = 0, E [za

i j z
bc
k j ] = 0 and E [za

i j z
bc
kl ] = paabc for a �= b �= c, we get

E [N a
r N bc

nr ] = (R(n − R) − 2T )paabc, (27)

and hence summing up the equations in (25)–(27) over all a �= b �= c gives

E [Ns,r Nm,nr ] = (R(n − R) − 2T )(2Paaab + Paabc) + 2T Paab.

Therefore, we obtain

Cov [Ns,r , Nm,nr ] = (R(n − R) − 2T )(2Paaab + Paabc)

+ 2T Paab − R(n − R)Paa Pab

= R(n − R)(2Paaab + Paabc − Paa Pab)

+ 2T (Paab − 2Paaab − Paabc).

Asymptotic (joint) distribution of Ns,r and Nm,nr

We show that the asymptotic joint distribution of Ns,r and Nm,nr is bivariate normal
under RL where Q, R and T are fixed quantities. This is required for the test X 2

R in
Eq. (7) to have a χ2 distribution in the limit. In what follows, we assume that R/n → r ,
Q/n → q, T/n → t and ni/n → λi for all 1 ≤ i ≤ m, as n → ∞.

At first glance, each of Var (Ns,r ), Var (Nm,nr ) and Cov (Ns,r , Nm,nr ) looks like
of order n2 (i.e., O(n2)). However, each one of them is of order n. To show that, it
suffices to prove that the coefficients of the terms of order n2 goes to 0 as n → ∞.
Note that as n → ∞ we have Paa → ∑

1≤a≤m λ2
a , Pab → ∑

1≤a �=b≤m λaλb, Paab →∑
1≤a �=b≤m λ2

aλb and so on. Then, as n → ∞ we get

Paaaa + Paabb − (Paa)2 →
∑

1≤a≤m

λ4
a +

∑
1≤a �=b≤m

λ2
aλ2

b −
⎛
⎝ ∑

1≤a≤m

λ2
a

⎞
⎠

2

= 0,

2Paabb + 4Paabc + Pabcd − (Pab)
2 → 2

∑
1≤a �=b≤m

λ2
aλ2

b + 4
∑

1≤a �=b �=c≤m

λ2
aλbλc

+
∑

1≤a �=b �=c �=d≤m

λaλbλcλd −
⎛
⎝ ∑

1≤a �=b≤m

λaλb

⎞
⎠

2

= 0,

123



106 Environ Ecol Stat (2017) 24:69–108

2Paaab + Paabc − Paa Pab → 2
∑

1≤a �=b≤m

λ3
aλb

+
∑

1≤a �=b �=c≤m

λ2
aλbλc −

⎛
⎝ ∑

1≤a≤m

λ2
a

⎞
⎠

⎛
⎝ ∑

1≤a �=b≤m

λaλb

⎞
⎠ = 0.

Therefore, Var (Ns,r )/n → σ 2
1 , Var (Nm,nr )/n → σ 2

2 and Cov (Ns,r , Nm,nr )/n →
ρ for some constants σ 2

1 , σ 2
2 and ρ.

We next prove the asymptotic joint normality of self reflexive and mixed non-
reflexive counts. By Cramér-Wold device, it suffices to prove the asymptotic normality
of any linear combination of Ns,r and Nm,nr , c1 Ns,r + c2 Nm,nr , where c1 and c2 are
arbitrary real numbers. That is,

c1 Ns,r + c2 Nm,nr − c1E [Ns,r ] − c2E [Nm,nr ]
σ
√

n
L−→ N (0, 1),

where σ 2 = c2
1σ

2
1 +2c1c2ρ+c2

2σ
2
2 , N (0, 1) is the standard normal distribution and

L−→
stands for convergence in law. Notice that we may assume that σ 2 > 0 since otherwise
(c1 Ns,r + c2 Nm,nr − c1E [Ns,r ] − c2E [Nm,nr ])/√n converges in law to the constant
random variable 0 (i.e., degenerate normal distribution with mean and variance 0).

Let ai j = c1ri j −c2(yi j + y ji )/2 for every 1 ≤ i, j ≤ n. Fix a labeling of z1, . . . , zn

and let bi j = 1{Li =L j } for all 1 ≤ i, j ≤ n. Then, observe that

U := U (π) :=
∑

1≤i �= j≤n

ai j bπ(i)π( j)
d= c1 Ns,r − c2 Ns,nr , (28)

where π is uniformly distributed over all permutations of {1, 2, . . . , n} and
d= denotes

equality in distribution. Moreover, note that (ai j ) and (bi j ) are symmetric n × n
matrices. Let s2 = Var (U ) and note that by (28) we have s2/n → σ 2 > 0 as
n → ∞. Also, recall that Ns,nr + Nm,nr = n − R which is non-random. Therefore,
by (28) we see that U is asymptotically normal if and only if

c1 Ns,r − c2 Ns,nr + c2(Ns,nr + Nm,nr ) = c1 Ns,r + c2 Nm,nr

is asymptotically normal. To prove that U is asymptotically normally distributed we
use Corollary 2.1 in Barbour and Eagleson (1986).

Let (n)k denote n(n − 1) · · · (n − k + 1) and

a1 = 1

(n)2

∑
1≤i �= j≤n

|ai j |, a2 = 1

(n)3

∑
1≤i �= j �=k≤n

|ai j aik |,

a3 = 1

(n)4

∑
1≤i �= j �=k �=l≤n

|ai j aikail |, a4 = 1

(n)4

∑
1≤i �= j �=k �=l≤n

|ai j aika jl |,
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a5 = 1

(n)3

∑
1≤i �= j �=k≤n

|a2
i j aik |, a6 = 1

(n)2

∑
1≤i �= j≤n

|ai j |3,

a7 = 1

(n)3

∑
1≤i �= j �=k≤n

|ai j aika jk |, a8 = 1

(n)2

∑
1≤i �= j≤n

a2
i j .

Similarly, define b1, . . . , b8 for bi j ’s and let

ε = s−3(n4(a3
1 + a1a2 + a3 + a4)(b

3
1 + b1b2 + b3 + b4)

+ n3(a5 + a1a8)(b5 + b1b8) + n2a6b6).

Barbour and Eagleson (1986) show that if ε → 0 as n → ∞, then U is asymptotically
normal. (Notice that a7 and b7 do not appear in ε, but these quantities are used in the
proof of Theorem 2.1 in Barbour and Eagleson (1986) and hence, to be consistent with
their notation we define both quantities.)

Let C = max{|c1|, |c2|}. It is easy to see that a point in the sample on a plane can be
the NN of at most 6 points. Then we have a1 ≤ 7C/(n−1) ≤ K1/n where K1 = 14C .
Similarly, one can obtain a2, a5 ≤ K2/n2, a3, a4 ≤ K3/n3 and a6, a8 ≤ K4/n for
some constants K2, K3 and K4. On the other hand, |bi j | ≤ 1 for each i and j and
hence, we get bi ≤ 1 for every 1 ≤ i ≤ 8. Therefore, we have that ε is O(1/

√
n)

since s is of order
√

n, and thus the desired result follows.
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