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Abstract According to the IFCC, to determine the

population-based reference interval (RI) of a test, 120

reference individuals are required. However, for some age

groups such as newborns and preterm babies, it is difficult

to obtain enough reference individuals. In this study, we

consider both parametric and nonparametric bootstrap

methods for estimating RIs and the associated confidence

intervals (CIs) in small sample size groups. We used data

from four different tests [glucose, creatinine, blood urea

nitrogen (BUN), and triglycerides], each in 120 individu-

als, to calculate the RIs and the associated CIs using

nonparametric and parametric approaches. Also for each

test, we selected small groups (m = 20, 30,…, 120) from

among the 120 individuals and applied parametric and

nonparametric bootstrap methods. The glucose and creati-

nine data were normally distributed, and the parametric

bootstrap method provided more precise RIs (i.e., the

associated CIs were narrower). In contrast, the BUN and

triglyceride data were not normally distributed, and the

nonparametric bootstrap method provided better results.

With the bootstrap methods, the RIs and CIs of small

groups were similar to those of the 120 subjects required

for the nonparametric method, with a slight loss of preci-

sion. For original data with normal or close to normal

distribution, the parametric bootstrap approach should be

used, instead of nonparametric methods. For original data

that deviate significantly from a normal distribution, the

nonparametric bootstrap should be applied. Using the

bootstrap methods, fewer samples are required for com-

puting RIs, with only a slightly increased uncertainty

around the end points.
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Abbreviations

RI Reference interval

CI Confidence interval

URIL Upper reference interval limit

LRIL Lower reference interval limit

BUN Blood Urea Nitrogen

CLSI Clinical and Laboratory Standards Institute

IFCC International Federation of Clinical Chemistry and

Laboratory Medicine

ISO International Standardization for Organization

Introduction

Clinical laboratory test results are obtained from thousands

of patients, and the interpretation of these results is a

comparative decision-making process that requires a ref-

erence interval (RI) for each test [1]. We need reference

values of all tests performed in clinical laboratories. Ref-

erence value is obtained by measurement of a particular

type of quantity on a reference individual [2]. Reference

values are not identical for all individuals; they have a

dispersion termed the reference distribution. In general, RI

is accepted as the central 95 % interval of the reference

A. Coskun (&) � T. C. Inal � M. Serteser � I. Unsal

Department of Biochemistry, School of Medicine,

Acibadem University, Gulsuyu, Maltepe, Istanbul, Turkey

e-mail: coskun2002@gmail.com

E. Ceyhan

Department of Mathematics, College of Science,
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distribution bounded by the 2.5 and 97.5 percentiles. Since

the concept of a reference value was first introduced by

Grasbeck and Saris [3], reference values have been the

subject of many scientific studies and are widely accepted

by medical professionals [4]. Scientific organizations such

as the Clinical and Laboratory Standards Institute (CLSI)

and the International Federation of Clinical Chemistry and

Laboratory Medicine (IFCC) recommend that reference

values to be determined in individual laboratories by

measuring analyte levels in a group of reference individ-

uals who are healthy and represent the population served

by the laboratory [5, 6]. According to these recommenda-

tions, each laboratory would determine RIs for all of the

tests performed in the laboratory using its own methods

and reagents. In addition to clinical laboratories, manu-

facturers of lab kits are obliged to provide reference limits

in package inserts, according to directive 98/79/CE of the

European Community.

The current approach to establishing RIs is based on the

recommendations of the IFCC and CLSI [5, 7], which

require the analysis of 120 individuals to determine the

population-based RI for a test. However, 120 individuals

may not be adequate in certain situations, for example, a

reference population with a skewed distribution [8]. Indi-

viduals of a population are usually different from each

other, and consequently, the reference population would be

expected to be heterogeneous. To address these issues, we

use a partitioning method to obtain homogenous data,

which requires a greater number of reference individuals.

Additionally, for some age groups, such as newborns and

preterm babies, it is difficult to obtain adequate data for

determining RIs. For these reasons, despite their logical

approach and strong scientific background, the recom-

mendations of the CLSI and IFCC have not been followed

worldwide. Although many scientists accept this approach

theoretically, only a few laboratories have been able to

follow the recommendations in practice.

To overcome the sample size problem, alternative

methods such as robust and bootstrap methods have been

developed [9, 10]. Robust methods are too complicated and

not practical for clinical laboratories. Among the bootstrap

methods, only nonparametric methods have been used in

limited studies.

In the present study, we consider nonparametric boot-

strap methods for the estimation of RIs and the associated

CIs for the end points of RIs in small sample size groups

(20 B m B 120). We also touch base on data transforma-

tions to normality, which is necessary prior to parametric

estimations of RIs. Furthermore, for the first time, we

propose parametric bootstrap methods applied to the

transformed data to construct RIs. We also provided a

guide for practical computation of RIs and the associated

CIs for the end points using bootstrap methods.

Methods

The data sets used in this study were obtained from the

Acibadem Labmed Clinical Laboratories (Istanbul, Tur-

key), which is the first clinical laboratory in Turkey to be

awarded the ISO 15189 accreditation standard. It provides

multidisciplinary clinical chemistry, hematology, immu-

nology, microbiology, and virology laboratory services in a

central laboratory for 14 different hospital laboratories and

five outpatient clinical laboratories.

For the present study, we selected four different tests

performed in our laboratory: glucose, BUN, creatinine, and

triglycerides. To evaluate the RIs, we selected 120 indi-

viduals for each test from our laboratory database. All data

were selected from the check-up unit of Acibadem Hos-

pital. For each test, we randomly selected small groups

(m individuals, m = 20, 30,…, 120) from the n = 120

individuals and applied nonparametric and parametric

bootstrap methods to compute the RIs and associated CIs

for the end points. The CIs are constructed for the lower

and upper end points of the RIs, to determine the precision

of the RIs and hence are referred to as ‘‘the associated CIs’’

for the RI end points. To distinguish the sample sizes used

for bootstrap sampling and the generally suggested sample

size for RI interval calculation, we use m for the former

and n for the latter.

To determine the optimal number of replications,

we also determined the RIs and associated CIs based

on nonparametric bootstrap methods with 999 or 9999

replications.

Nonparametric approach to RI estimation

Let X1, X2,…, Xm be m measurements or observations in

a random sample from a population of interest with

cumulative distribution function F with mean l and

standard deviation r. Denote the order statistics as

X1 \ X2 \ ... \ Xm. A 100(1 - a) % RI means that

100(a/2) % of values are below the left end of RI and

100(a/2) % of the values are above the right end of the RI.

Computation of a 100(1 - a) % RI by the nonpara-

metric approach requires to find the 100(a/2)th and

100(1 - a/2)th percentiles of the random sample (which

would be estimates of the given percentiles of the distri-

bution F). For example, for a 95 % RI, the standard limits

in the clinical chemistry are 2.5th and 97.5th percentiles of

the data set. The simplest way to find these percentiles in

the nonparametric approach is finding the values with the

appropriate rank. The pth percentile of a sample is the

value whose rank is p(n ? 1). If p(n ? 1) is not an integer,

we perform a linear interpolation between the two order

statistics whose ranks surround p(n ? 1). For example, for

m = 999, the 2.5th percentile is the order statistics whose
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rank is 25 (i.e., 25th value when ordered from smallest to

largest), and for m = 99, the 2.5th percentile is the value

whose rank is 2.5, so linear interpolation would imply

taking the average of second and third smallest values. The

RIs estimated in this way are also referred to as ‘‘quantile

RI estimates.’’

These estimates of RIs are distribution free or non-

parametric (i.e., do not require the data to be of a certain

distribution), and perform quite well (i.e., robust) for large

samples. However, they are usually less efficient and have

large variance [11]. Robust estimators for smaller samples

are also proposed in the literature. For example, Horn et al.

[9] propose a method that performs better than transfor-

mation to normality in estimating more accurate reference

limits and also Harrell and Davis [12] method performs

well for skewed data with 20 B m B 60. As an alternative

to many such robust methods, bootstrapping is also pro-

posed to estimate RIs.

As for the CIs for the end points of the RIs, we apply the

CI estimation for a quantile based on binomial distribution

and normal approximation to binomial [13]. In particular,

for continuous F, let F(xp), that is, let xp be the (100p)th

percentile of F. Then, 100(1 - a) % CI for xp is (X(i), X(j))

with B(j - 1, n, p) - B(i - 1, n, p) being as close as

possible to 1 - a, where B k;n;pð Þ¼
Pk

i¼0 ð
n
i
Þpið1�pÞðn�iÞ

(which is the cumulative distribution function for a bino-

mial distribution with n trials and success probability being

p). When such i and j do not yield the exact confidence, we

apply a linear interpolation in i in the right end and in j in

the left end of the RI. For large n, a normal approximation

can also be used. For example, let B(k - 1, n, p) = U(z)

where z = (k - 1 ? 0.5 - np)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnpð1�pÞÞ

p
and U(�) is

the cumulative distribution function of standard normal

distribution. So for a specified confidence level 1 - a,

setting z = z1-a/2 we obtain i¼0:5þnpþz1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1�pÞ

p

and j¼0:5þnp�z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1�pÞ

p
. If i and j are rounded

to nearest integers, then (X(i), X(j)) would be the desired CI

(or if i and j are not integers, one can perform a linear

interpolation to find the appropriate order statistics, which

is the practice we adopt in this article).

Parametric approach to RI estimation

The most common parametric approach to RI estimation is

based on assuming F to be the normal distribution with

mean l and standard deviation r, denoted as N(l, r). Then,

a 100(1 - a) % RI has end points l̂ � z1�a=2r̂ where l̂ and

r̂ are the sample estimates of the mean and standard

deviation. Although this interval gives the exact desired

level for RIs, it is not realistic in practice [14], since positive

skewness is common in clinical and biological measure-

ments. Many transformation techniques (to normality) are

recommended to overcome this difficulty of deviation from

normality [11].

The CIs for the end points of the RIs can be computed

based on the binomial approach or normal approximation

to binomial approach.

Nonparametric bootstrap methods for RI estimation

The nonparametric bootstrap approach to RI computations

involves sampling m values with replacement from the

original data set of size m, thereby generating a ‘‘boot-

strap’’ sample. For each bootstrap sample, we found the

empirical percentiles, with linear interpolation as neces-

sary. For example, if m = 100, and we want to find the

90 % empirical percentiles, we take the 5th and 95th

(smallest) values in the sample. We repeated this procedure

R times to obtain R bootstrap samples. For each bootstrap

sample, we compute the lower and upper limits (i.e., per-

centiles) as estimates of the reference limits so that we

obtain R lower and upper limits as estimates of the refer-

ence limits from the bootstrap samples. The mean of the R

bootstrap percentiles provided the bootstrap estimates of

the RIs. At each bootstrap replication, it is possible to use

other nonparametric methods for the RI calculation and

then take the average of the obtained RI estimates.

There are many methods for constructing CIs based on

nonparametric bootstrapping, including the basic bootstrap

CI, studentized CI, percentile CI, adjusted percentile CI

(BCa), ABC CI, and normal approximation CI [15, 16].

Here, we used only basic, percentile, and normal approx-

imation bootstrap CIs for the end points of the RIs, as these

are commonly used and are simpler than the other methods.

In particular, let T be the estimated quantity from the

original sample (T is 100(1 - a/2)th or 100(a/2)th per-

centile in our case). That is, if we have 1000 estimated

values, and RIs with 95 % would have 25th and 975th

values as upper and lower limits, respectively. Let T�
r be

the corresponding estimate for bootstrap sample r. Also, let

T�
ðkÞ is the kth value of T�

r values. Then, the basic CI is

estimated as

2T � T�
ððRþ1Þð1�aÞÞ; 2T � T�

ððRþ1ÞaÞ

� �
: ð1Þ

The percentile CI is estimated as

T�
ððRþ1ÞaÞ;T

�
ððRþ1Þð1�aÞÞ

� �
ð2Þ

and normal approximation CI is estimated as

T þ
ffiffiffiffiffiffi
VR

p
z1�a; T �

ffiffiffiffiffiffi
VR

p
z1�a

� �
ð3Þ

where tR ¼ 1
R�1

PR
r¼1 T�

r � T
�� �2

with T
� ¼ 1

R

PR
r¼1 T�

r and

za is the 100ð1 � aÞth percentile of the standard normal

distribution. There is also a bias correction possible for

normal approximation CI [16].
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Parametric bootstrap methods for RI estimation

In general, in the parametric bootstrap method for a data set

from a distribution F which is specified by the parameter h,

each bootstrap sample is generated from F with an estimate

of h from the original sample [16]. In particular, if

F = N(l, r), then each bootstrap sample is generated from

a Nðl̂; r̂Þ distribution, where l̂ and r̂ are the sample mean

and standard deviation, respectively, based on the original

sample. To estimate the RI by the parametric bootstrap

method, the required percentile estimates were obtained

from each generated sample, and RIs are the means of these

sample percentiles. Associated CIs for the end points of the

RIs were obtained as in the nonparametric case, that is, basic,

percentile, and normal approximation methods for CIs.

Results

Table 1 presents the RIs and associated CIs for the end

points for the four data sets (with n = 120) we considered.

The RIs were constructed using the nonparametric

approach, while the CIs were constructed based on bino-

mial distribution and normal approximation to the

Table 1 RIs and associated CIs obtained using the nonparametric method, for glucose, BUN, creatinine, and triglyceride tests performed in our

laboratory

Test (n = 120) 95 % RI 90 % CIs for reference limits

Binomial distribution Normal approximation

Glucose (mmol/L) 4.33–6.33 (4.12, 4.44) (6.06, 6.83) (4.12, 4.44) (6.11, 6.37)

BUN (mmol/L) 2.43–6.85 (2.32, 3.00) (6.57, 7.68) (2.32, 2.96) (6.64, 7.68)

Creatinine (lmol/L) 40.7–92.8 (36.2, 47.7) (91.1, 98.1) (36.2, 47.7) (91.9, 98.1)

Triglyceride (mmol/L) 0.49–2.76 (0.41, 0.60) (2.65, 2.97) (0.41, 0.60) (2.66, 2.97)

RIs are at the 95 % level; CIs for the ends of RIs are at the 90 % level

Fig. 1 RI estimates based on the

nonparametric bootstrap method

for measurements of glucose

concentrations with sample sizes

m = 20, 30,…, 120. For each

sample size, 999 bootstrap

samples were generated. Upper

reference limits are plotted in the

top row, and lower limits are

plotted in the bottom row.

Horizontal dashed lines are

95 % RIs, and the 90 % CIs

around the reference limits based

on nonparametric estimation of

RIs with 120 observations.

‘‘Mean’’ is the average of the

reference limits from bootstrap

samples; ‘‘perc’’ is the percentile

bootstrap CI estimate, ‘‘norm’’ is

the normal approximation

bootstrap CI, ‘‘basic’’ is the basic

bootstrap CI for reference limits,

and ‘‘quant’’ is the quantile

estimate of the reference limit

based on the bootstrap samples.

The estimated RIs and the

associated CIs for m B 120 are

joined by straight lines for better

visualization. (URIL upper

reference interval limit, LRIL
lower reference interval limit)
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binomial. Because the sample size n is large (n = 120), the

CIs are very similar between the two methods (together

with linear interpolation).

For the glucose test, we constructed the RIs and asso-

ciated CIs based on nonparametric bootstrap methods with

R = 999 and R = 9999 replications. Figure 1 presents

the nonparametric bootstrap RIs and associated basic,

percentile, and normal approximation CIs with R = 999

replications, with different sample sizes (m = 20,

30,…, 120) as well as with n = 120 for comparative pur-

poses. The bootstrap RIs and associated CIs with R = 9999

replications are presented in Fig. 2. Notice that a tenfold

increase in the number of bootstrap samples caused only a

slight decrease in the bandwidth of the CIs and did not

improve the RIs (i.e., they were not narrower than those

with R = 999). As a similar trend was observed for the

other three tests, the bootstrap RIs and associated CIs for

the other tests with R = 9999 replications are not pre-

sented. The nonparametric bootstrap RIs and associated

CIs for the other three tests (BUN, creatinine, and tri-

glycerides) with R = 999 are presented in Fig. 3, where the

basic bootstrap CIs for the end points are omitted. The

trends are similar to those of the glucose test shown in

Fig. 1.

In the parametric construction of the RIs for the glucose

data, we first test for normality (p = 0.2741 based on the

Anderson–Darling test). Although this is not significant

evidence against normality, we also performed a Box-Cox

transformation on the glucose data to further get it close to

the normal distribution. For the other data sets, we fol-

lowed a similar procedure. For the triglyceride data, we

also performed an IFCC transformation to correct for the

kurtosis.

Table 2 presents the RIs and associated CIs for the end

points obtained using the parametric approach. The CIs

based on the binomial distribution and normal approxi-

mation were very similar because of the large sample size.

Compared with the nonparametric RIs in Table 1, the

parametric RIs were similar for the glucose, BUN, and

creatinine data. The parametric RIs for the triglyceride data

based on the Box-Cox transformation were much wider

than their nonparametric counterparts, such that the lower

ends were very similar, but the upper ends were much

higher. Parametric RIs for the triglyceride data based on

the IFCC transformation were narrower than those with the

Box-Cox transformation, but were still wider than the

nonparametric counterparts, such that the lower ends were

increased, but the upper ends were still higher. The CIs for

Fig. 2 RI estimates based on

the nonparametric bootstrap

method for measurements

of glucose concentration

with sample sizes m = 20,

30,…, 120. For each sample

size, 9999 bootstrap samples

were generated. Figure and

legend descriptions are as in

Fig. 1
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the end points are very similar between the nonparametric

and parametric RIs, as they are computed using the same

method.

The RIs and associated CIs for the end points based on

the parametric bootstrap method for the glucose, BUN, and

creatinine data with Box-Cox transformation are presented

in Fig. 4. With the parametric bootstrap, the RIs for all

m C 20 were narrower than those for the n = 120 original

data points. We recommend that the basic bootstrap CI

should be avoided, because it may miss the corresponding

reference limit estimate, and a CI should at least contain

the estimate of the parameter it is used for. Compared with

a normal approximation CI, a percentile CI has a lower

upper end and a higher lower end of the RI.

The RIs and associated CIs for the end points for the

triglyceride data with Box-Cox and IFCC transformations

based on the parametric bootstrap method are presented in

Fig. 5. Again, with the parametric bootstrap, the RIs for all

Fig. 3 RI estimates based on

the nonparametric bootstrap

method for measurements of

BUN, creatinine, and

triglyceride concentrations

with sample sizes m = 20,

30,…, 120. For each sample

size, 999 bootstrap samples

were generated. Figure and

legend descriptions are as in

Fig. 1 (except basic CIs are

not presented)
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m C 20 with both transformations were narrower than

those for the n = 120 original data points. However, per-

centile CIs are lower for both ends of the RIs compared to

those of normal approximation CIs. With IFCC transfor-

mation, RIs are slightly narrower and so are the associated

CIs compared to the ones with Box-Cox transformation.

The discrete values at integers are joined for better

visualization in Figs. 1, 2, 3, 4, and 5. However, in Figs. 1,

2 and 3, samples of size m only point out to an increase in

the sample size, and no clear trend occurs, so a linear or

any other type of interpolation would not be meaningful.

For example, it will not be possible to estimate a value at

m = 22.3 in these figures. But in the parametric bootstrap

figures (i.e., in Figs. 4, 5), there seems to be a continuous

trend; hence, a value at m = 22.3 can be approximated by

linear interpolation. Notice also that erratic fluctuations

occur for nonparametric bootstrap RIs, not for parametric

bootstrap RIs. Because in nonparametric bootstrap, we use

random samples of size m = 20, 30,.., 120 measurements

from the original sample of n = 120 measurements, as our

original data sets from which bootstrap samples are taken.

Hence, each sample of size m is different and may result in

shifts of RI estimates, say from m = 20 to 30. On the other

hand, parametric bootstrap RIs are based on sampling from

the fitted normal distribution (after a transformation is

employed); hence, bootstrap samples are generated from

approximately normal distributions.

Discussion

Sample size is a significant issue in calculating the RI.

Currently, nonparametric methods are widely used to cal-

culate RIs. However, neither parametric nor nonparametric

methods should be applied to limited sample sizes such as

20 or 40. To overcome this limitation, new statistical

methods are required. In the present study, we evaluated

both parametric and nonparametric bootstrap methods for

the calculation of RIs and the associated CIs for the end

points for small sample size groups in different tests. We

demonstrated that both parametric and nonparametric

bootstrap methods are powerful tools to calculate RIs and

the associated CIs in small sample size groups.

In the bootstrap method, a set of data is randomly

resampled, with replacement, multiple times (about 1000

and 10000 times), and statistical calculations such as RI

and CI are performed using this large data collection.

Although bootstrapping is a computer-based procedure, it

was a time consuming and impractical method for deter-

mining the RI in clinical laboratories. However, most

clinical laboratories now have improved computing power

and are able to apply this method.

In the present study, using nonparametric and/or para-

metric bootstrap methods with fewer data, we showed that

it is possible to obtain results that are close to the ones

obtained from the nonparametric construction of RIs with

n = 120 values. When the RIs and CIs for the glucose test

were determined using the nonparametric bootstrap

method, increasing the number of bootstrap samples ten-

fold (R = 999 to R = 9999 replications) caused only a

slight reduction in the bandwidth of the CIs and did not

improve the RIs (Figs. 1, 2). A similar trend was observed

for the other tests. Hence, the smaller bootstrap sampling

with R = 999 replications can be used, although there is

only a small gain in computation time compared to

R = 9999 replications. In comparison, Wright and Royston

[11] recommended at least 500 bootstrap samples. The

bootstrap-estimated CIs were as wide as or wider than the

CIs based on the nonparametric estimation. That is,

the bootstrap RIs had more variation than the nonpara-

metric RI estimates. Thus, the bootstrap approach does not

provide the same precision as the nonparametric method,

but the RIs can be similar, with a little more uncertainty for

the end points of the RIs.

Table 2 RIs and associated CIs for the end points of RIs obtained using the parametric method, for glucose, BUN, creatinine, and triglyceride

tests performed in our laboratory

Test (n = 120) 95 % RI 90 % CIs for reference limits

Binomial distribution Normal approximation

Parametric method with n = 120 (based on Box-Cox transformation)

Glucose (mmol/L) 4.27–6.29 (3.83, 4.44) (6.06, 6.83) (3.83, 4.44) (6.11, 6.83)

BUN (mmol/L) 2.75–7.10 (2.32, 3.00) (6.57, 7.68) (2.32, 2.96) (6.64, 7.68)

Creatinine (lmol/L) 41.5–96.4 (36.2, 47.7) (91.1, 98.1) (36.2, 47.7) (91.9, 98.1)

Triglyceride (mmol/L) 0.49–3.07 (0.41, 0.60) (2.65, 2.97) (0.41, 0.60) (2.66, 2.97)

Parametric method with n = 120 (based on transformation recommended by IFCC)

Triglyceride (mmol/L) 0.53–2.97 (0.41, 0.60) (2.65, 2.97) (0.41, 0.60) (2.66, 2.97)

RIs are at the 95 % level; CIs for the ends of RIs are at the 90 % level
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The trends for the BUN, creatinine, and triglyceride tests

were similar to the glucose test results (Fig. 3): The RIs

tended to be narrower, and the percentile CIs were slightly

lower at the upper end and substantially higher at the lower

end of the RIs. For narrower RIs, the percentile bootstrap

CIs are recommended when the nonparametric bootstrap

method is employed to construct the RIs; otherwise, normal

approximation CIs are preferred.

For the parametric bootstrap estimation of RIs and

associated CIs for the end points, the transformation that

renders the distribution closest to normality should be

selected. The IFCC transformation [7] usually performs

better in this regard, but requires more effort. As for the

CIs, either percentile or normal approximation CIs can be

used, depending on the data.

For the glucose and creatinine data, the parametric

bootstrap method provided more precise RIs, as evidenced

by the narrower associated CIs, compared with the non-

parametric bootstrap method. For the BUN and triglyceride

data, the opposite was true. Therefore, when the original

Fig. 4 RI estimates based on

the parametric bootstrap method

for measurements of glucose,

BUN, and creatinine

concentrations with Box-Cox

transformation and with sample

sizes m = 20, 30,…, 120. For

each sample size, 999 bootstrap

samples were generated.

Horizontal dashed lines are

95 % RIs and the 90 % CIs

around the reference limits

based on parametric estimation

of RIs with 120 observations.

Legend labeling is as in Fig. 1
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data are close to being normally distributed, the parametric

bootstrap approach may be preferred over the nonpara-

metric bootstrap method, whereas the nonparametric

bootstrap method may be preferable when the original data

show a significantly non-normal distribution. This suggests

that a transformation to normality does not entirely com-

pensate for the deviation of the original data from

normality, but may reduce its impact on the RIs. With

bootstrap method (when better of parametric and non-

parametric bootstrap is employed), about 60 (in fact 40–60)

observations seem to suffice instead of 120 observations

required for the nonparametric method with a slight loss in

precision, that is, slight increase in the widths of the CIs for

the end points of the RIs.

Conclusion

Our findings in this article are suggestive of reduction in

the required sample size in RI estimation. Using the

methods presented in this study, we can obtain RIs using

fewer samples at a cost of slightly more uncertainty around

the end points. Nevertheless, this work also points out

potential prospective research aspects such as the effect of

skewness on nonparametric bootstrap and the level of

deviation from normality that would render parametric

bootstrap biased. An extensive investigation based on four

data sets would not provide very general results, in par-

ticular, for nonparametric bootstrap RI estimation.

However, based on statistical theory, we can conclude that

it is possible to use bootstrap for skewed distributions or

even with heavy-tailed distributions, but with attentive

care. Nonparametric bootstrap is more robust to skewed

distributions, but may require larger samples compared to

parametric bootstrap on untransformed data. Our study

suggests that even for skewed distributions, nonparametric

bootstrap might still require sample sizes smaller than 120.

Moreover, with the IFCC transformation procedure, it is

possible to transform skewed or heavy-tailed data to

approximate normality. Then, one can perform parametric

Fig. 5 RI estimates based on the parametric bootstrap method for

measurements of triglyceride concentrations with Box-Cox transforma-

tion (top row) or IFCC recommended transformation (bottom row) and

with sample sizes m = 20, 30,…, 120. For each sample size, 999

bootstrap samples were generated. Horizontal dashed lines are 95 % RIs

and the 90 % CIs around the reference limits based on parametric

estimation of RIs with 120 observations. Notice that in the upper reference

limit with the IFCC transformations, there seem to be two instead of three
dashed lines; however, it is actually three lines with 2.966 (RI upper limit),

2.653 (lower CI), and 2.972 (upper CI). Legend labeling is as in Fig. 1

Accred Qual Assur (2013) 18:51–60 59

123



bootstrap on the transformed data, estimate RIs, and

transform back to the original data units. The IFCC

transformation usually fixes skewness or heavy-tailedness

to a greater extent and then the transformed data are

approximately normal. The main problem with transfor-

mation method is not the severity of skewness; it is how

close it is possible to transform data to normality. The

closer the transformed data to normality, the more appro-

priate the parametric bootstrap methods.

Taken together, we concluded that the nonparametric

bootstrap and proposed parametric bootstrap (possibly with

transformation to normality) methods are simple, reliable,

and particularly cost-effective and can be incorporated into

clinical laboratories.
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