1040-46-23Dinamérico Pereira Pombo Jr.* (dpombo@terra.com.br), Instituto de Matemática,
Universidade Federal Fluminense, Rua Mário Santos Braga, s/n, Niterói, RJ 24020-140, Brazil.
Linearly compact modules of continuous mappings.

Throughout, R shall denote a topological ring with an identity element and all R-modules under consideration are unitary left R-modules.

Proposition 1. If X is a topological space, F is a separated linearly topologized R-module and H is a submodule of the *R*-module C(X; F) of all continuous mappings from X into F, then (H, τ_o) is a separated linearly topologized R-module, where τ_o denotes the compact-open topology on H.

Theorem 2. If M is an equicontinuous submodule of C(X; F) such that $\overline{M(x)}$ is linearly compact in F for all $x \in X$, then \overline{M} is linearly compact in $(C(X; F), \tau_o)$.

Corollary 3. Assume that R is commutative. If E is a topological R-module, F is a separated linearly topologized R-module and M is an equicontinuous submodule of the R-module L(E; F) of all continuous R-linear mappings from E into F such that $\overline{M(x)}$ is linearly compact in F for all $x \in E$, then \overline{M} is linearly compact in $(L(E; F), \tau_o)$.

Corollary 4. If K is a discrete field, E is a topological vector space over K and U is a neighborhood of 0 in E, then $M = \{f \in L(E; K); f(x) = 0 \text{ for all } x \in U\}$ is linearly compact in $(L(E; K), \tau_0)$. (Received January 03, 2008)