1040-41-64 Konstantin Osipenko* (kosipenko@yahoo.com), Dept. of Math., MATI, Orshanskaya 3, Moscow, 121552, Russia, and Michael Stessin (stessin@math.albany.edu), Dept. of Math., 1400 Washington Ave., Albany, NY 12222. Hadamard and Schwarz type extremal problems and optimal recovery of functions.

Let $D \subset \mathbb{C}^k$ be a domain, ν be a probability measure on \overline{D} and X be a closed subspace of $L^2(\nu)$. Consider $D_0, \ldots, D_n \subset D$ and probability measures μ_0, \ldots, μ_n on D_0, \ldots, D_n respectively. We suppose that $X \subset L^2(\mu_j), j = 0, 1, \ldots, n$. We consider the following extremal problem

$$\sup\left\{ \|f_0\|_{L^2(\mu_0)}^2 : f \in X, \ \|f_j\|_{L^2(\mu_j)}^2 \le \delta_j^2, \ j = 1, \dots, n \right\},\tag{1}$$

where f_j is the restriction of f to D_j and $\delta_j \ge 0$, j = 1, ..., n. We show that this problem is closely related to the problem of optimal recover of f_0 knowing f_j with some errors (δ_j are levels of accuracy).

We prove a general theorem which gives a necessary condition of extremum in this problem in terms of inclusion in certain annihilators. Using this theorem we obtain the solution of (1) for extremal problems similar to the well-known Hadamard three circle theorem and Shwartz Lemma. (Received January 22, 2008)