1040-30-97

R. Aulaskari^{*} (Rauno.Aulaskari@joensuu.fi), University of Joensuu, Department of Physics and Mathematics, 80101 Joensuu, Finland, and S. Makhmutov (makhm@squ.edu.om) and J. Rattya (Jouni.Rattya@joensuu.fi). On meromorphic Besov classes.

Let f be a meromorphic function and let $f^{\#} = |f'|/(1 + |f|^2)$ be its spherical derivative in the unit disk \mathcal{D} . The function f is normal if $\sup_{z \in \mathcal{D}} (1 - |z|^2) f^{\#}(z) < \infty$. For 0 , <math>f belongs to the spherical Besov class $B_p^{\#}$ if $\sup_{z \in \mathcal{D}} \int \int_{\mathcal{D}} (1 - |z|^2)^{p-2} (f^{\#}(z))^p dx dy < \infty$. It is shown that for $0 , <math>B_p^{\#}$ is clearly different from the analytic Besov space, $B_1^{\#}$ contains only either constant or non-normal functions and for $1 , <math>B_p^{\#}$ contains both some non-constant normal functions and non-normal functions. Further, for $1 , functions in <math>B_p^{\#}$ are described in terms of spherical oscillations. (Received January 28, 2008)