Math 2650 - Qualitative Analysis

Direction Fields

A. J. Meir

Qualitative analysis

One of the emphases of the class is qualitative analysis.

This is important since most differential equations cannot be solved explicitly, although in many cases we can still say something about the solution to the equation (existence, uniqueness, and qualitative behavior).

Even though we may not be able to find an explicit representation for the solution we may be able to show the solution exists and that it is unique, furthermore we may be able to answer the questions:

Does the solution tend to 0 or \(\infty \) as \(t \) tends to \(\infty \)?

Is the solution periodic, and if so with what period?

Does the solution approach 0, or some other value only as \(t \) tends to \(\infty \), or for some finite time \(t \)?

Does the solution "converge" to some other function as \(t \) tends to \(\infty \)?

Direction Fields

Starting the DE tools.

The basic Maple command for the graphical representation of direction fields and approximate solution curves is \texttt{DEplot}; it is part of a package of routines called \texttt{DEtools}, which must be explicitly loaded with the command.

\texttt{with(DEtools);}

What are direction fields?

The direction field is comprised of slope lines of the differential equation, for example,

\[
\frac{dx}{dt} = f(t, x)
\]

then \(f(t, x) \) is the slope of the graph of \(x(t) \) the solution at \(t \).

A solution of the differential equation is a function whose graph is consistent with the direction field (that is the tangent to the graph at each point must coincide with the slope line at that point).
Isoclines are curves along which the slope lines have constant slope (they are given by \(f(t, x) = c \), that is isoclines are level curves of the function \(f \)).

Some examples

\[
\frac{dx}{dt} = k x
\]

We will set \(k=1 \).

\[
> \text{DEplot(D(x)(t)=k*x(t),x(t),t=-4..4,x=-4..4);}\]

Properties:

For \(0 < x(t) \), then \(x \) is increasing.
For \(x(t) < 0 \), then \(x \) is decreasing.
\(x \) cannot change sign.
\(x = 0 \) is a constant solution (corresponding to the initial condition \(x(t_0) = 0 \)), it is the only constant solution.
\(x \) does not approach a constant value as \(t \) tends to \(\infty \).

\[
x(t) = c e^{kt}
\]

\[
> \text{DEplot(D(x)(t)=k*x(t),x(t),t=-4..4,x=-4..4,}
\{[x(0)=-1],[x(0)=0],[x(0)=1]\});\]
\[\frac{dx}{dt} = k x + 3 \]

> DEplot(\(D(x)(t)=k*x(t)+3, x(t), t=-4..4, x=-4..4\));
Properties:
For $-3 < x(t)$, then x is increasing.
For $x(t) < -3$, then x is decreasing.
x cannot cross the line $x(t) = -3$.
$x = -3$ is a constant solution (corresponding to the initial condition $x(t_0) = -3$), it is the only constant solution.
x does not approach a constant value as t tends to ∞.

\[x(t) = c e^{kt} - \frac{3}{k} \]

\[\frac{dx}{dt} = kx - 3 \]
\[x(t) = ce^{kt} + \frac{3}{k} \]

> DEplot(D(x)(t)=k*x(t)-3, x(t), t=-4..4, x=-4..4,
{[x(0)=1], [x(0)=3], [x(0)=7/2]};
\[
\frac{dx}{dt} = k x t
\]

```maple
DEplot(D(x)(t)=k*x(t)*t, x(t), t=-4..4, x=-4..4);
```
Properties:
For $0 < x$, then x is increasing.
For $x < 0$, then x is decreasing.

$x(t) = 0$ is the only constant solution (it correspond to the initial condition $x(t_0) = 0$).

If the initial condition is not zero (that is if $x(t_0) \neq 0$), then x is never 0.

$\lim_{t \to \infty} x = \infty$ if the initial value is positive and $\lim_{t \to \infty} x = -\infty$ if the initial value is negative.

$$x(t) = c e^{\frac{1}{2} k t^2}$$

\[
\text{DEplot}(D(x)(t) = k \cdot x(t) \cdot t, x(t), t = -4 \ldots 4, x = -4 \ldots 4, \\
\{[x(0) = -1], [x(0) = 0], [x(0) = 1]\});
\]

Try the previous example with $k = -1$.

\[
\text{DEplot}(D(x)(t) = -k \cdot x(t) \cdot t, x(t), t = -4 \ldots 4, x = -4 \ldots 4, \\
\{[x(-1) = 2], [x(0) = -1], [x(0) = 0], [x(0) = 1]\});
\]

Note: now $\lim_{t \to \infty} x = 0$ and also $\lim_{t \to -\infty} x = 0$.
\[\frac{dx}{dt} = x^2 + t^2 \]

\[\text{DEplot}(D(x)(t)=x(t)^2+t^2,x(t),t=-2..2,x=-2..2); \]
Properties:
- x is always increasing.
- There are no constant solutions.

Solution curves

```maple
> DEplot(D(x)(t)=x(t)^2+t^2, x(t), t=-2..2, x=-2..2, 
  {[x(0)=-1], [x(0)=0], [x(0)=1]});
```
\frac{dx}{dt} = t - x

\text{DEplot(D(x)(t)=t-x(t),x(t),t=-4..4,x=-4..4);}
Note: solutions "converge" to the function $x(t) = t - 1$. This becomes obvious if you know the solution is:

$$x(t) = t - 1 + c e^{-t}$$
Solution curves

> DEplot(D(x)(t)=t^2-x(t)^2,x(t),t=-3..3,x=-3..3,
 {[x(0)=-1],[x(0)=-1/2],[x(0)=0],[x(0)=1/2],[x(0)=2]});
Project 1

Study the problems:

i. \(\frac{dx}{dt} = x^3 \)

ii. \(\frac{dx}{dt} = t^2 - x^2 + 1 \)

a. Plot their direction field.
b. When is \(x(t) \) increasing, decreasing, constant, positive, and negative?
c. Is the solution valid for all \(t \)?
d. What are \(\lim_{t \to \infty} x(t) \), \(\lim_{t \to -\infty} x(t) \)?