Math 2650 - Linear Differential Equations

A. J. Meir

Copyright (C) A. J. Meir. All rights reserved.
This worksheet is for educational use only. No part of this publication may be reproduced or transmitted for profit in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system without prior written permission from the author. Not for profit distribution of the software is allowed without prior written permission, providing that the worksheet is not modified in any way and full credit to the author is acknowledged.

Forced Undamped Oscillators

We consider equations of the type
\[m \frac{d^2 x}{dt^2} + kx = F \cos(\omega t). \]

For example take \(m = 1, k = 9 \), and \(F = 4 \) (the roots of the characteristic polynomial are \(3i \) and \(-3i\))
\[\frac{d^2 x}{dt^2} + 9x = 4 \cos(\omega t) \]

with initial conditions
\[x(0) = 0 \quad \text{and} \quad \frac{dx}{dt}(0) = 0. \]

\[
\begin{align*}
\text{restart:with(DEtools):} \\
> \text{dsolve}([\text{D}^2(x)(t)+9*x(t)=4*cos(omega*t),x(0)=0,D(x)(0)=0],x(t)); \\
\end{align*}
\]

\[x(t) = \frac{4 \cos(3t)}{-9 + \omega^2} - \frac{4 \cos(\omega t)}{-9 + \omega^2} \]

trig identities

That is given a periodic function of the form
\[f(t) = a \cos(\omega t) + b \sin(\omega t) \]

we can write it as
\[f(t) = A \cos(\omega t - \delta) \]

where
\[A = \sqrt{a^2 + b^2} \]

and
\[\delta = \arctan\left(\frac{b}{a} \right) \]

(note this last equation has two solutions which differ by \(\pi \), you must chose the correct solution).

Also recall the two trigonometric identities
\[\cos(\alpha) - \cos(\beta) = -2 \sin\left(\frac{\alpha + \beta}{2} \right) \sin\left(\frac{\alpha - \beta}{2} \right) \]

and
\[\sin(\alpha) - \sin(\beta) = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \sin \left(\frac{\alpha - \beta}{2} \right) \]

using these identities we can often rewrite periodic functions to better see the phenomenon of beats.

\[sol(t) := - \frac{8 \sin \left(\frac{1}{2} (3 - \omega) t \right) \sin \left(\frac{1}{2} (3 + \omega) t \right)}{-9 + \omega^2} \]

\[env(t) := - \frac{8 \sin \left(\frac{1}{2} (3 - \omega) t \right)}{-9 + \omega^2} \]

\[> \text{omega} := 1; \text{plot}([\text{sol}(t), \text{env}(t), -\text{env}(t)], t=0..20, \text{color}=[\text{black, red, red}]); \]

\[> \text{omega} := 2; \text{plot}([\text{sol}(t), \text{env}(t), -\text{env}(t)], t=0..20, \text{color}=[\text{black, red, red}]); \]
$\omega := \frac{5}{2}$: plot($[\text{sol}(t), \text{env}(t), -\text{env}(t)], t=0..20, \text{color}=[\text{black, red, red}])$;

$\omega := 1.75\sqrt{2}$: plot($[\text{sol}(t), \text{env}(t), -\text{env}(t)], t=0..20, \text{color}=[\text{black, red, red}])$;
\(\omega := \frac{29}{10} \):
\[
\text{plot([sol(t), env(t), -env(t)], t=0..50, color=[black, red, red])};
\]

For \(\omega = 3 \) we get
\[
\text{dsolve}\{\text{D(D(x)}(t)+9*x(t)=4*cos(3*t), x(0)=0, D(x)(0)=0}, x(t)\};
\]
\[
x(t) = \frac{2}{3} \sin(3 \ t) \ t
\]
\[
\text{sol(t):=2/3*sin(3*t)*t};
\]
\[
\text{env(t):=2/3*t};
\]
Forced Damped Oscillators

We consider equations of the type

\[m \frac{d^2x}{dt^2} + c \frac{dx}{dt} + kx = F \cos(\omega t) \]

For example assume that \(m = 1, k = 1, c = \frac{1}{8} \), and \(F = 3 \) (the roots of the characteristic polynomial are \(K_1 = \frac{-1 + \sqrt{255}}{\sqrt{256}} \) and \(K_2 = \frac{-1 - \sqrt{255}}{\sqrt{256}} \)).

We now in addition assume that \(\omega = 0.3 \) and solve the initial value problem with initial conditions

\[x(0) = 0, \quad \frac{dx}{dt}(0) = 0 \]

```
restart:with(DEtools):with(plots):
de:=diff(x(t),t,t)+1/8*diff(x(t),t)+x(t)=3*cos(omega*t);

d := \frac{d^2}{dt^2} x(t) + \frac{1}{8} \frac{dx}{dt} x(t) + x(t) = 3 \cos(\omega t)
```

```
dx(t); = subs(omega=3/10,de),x(0)=0,D(x)(0)=0},x(t));
```

\[x(t) = - \frac{34880}{2256257} e^{\frac{-1}{16} t} \sin \left(\frac{1}{16} \sqrt{255} t \right) \sqrt{255} - \frac{436800}{132721} e^{\frac{-1}{16} t} \cos \left(\frac{1}{16} \sqrt{255} t \right) \]
We now identify the steady state (the term that persists in t) and the transient the term that decays in t.

\[
\text{sol} := \text{rhs}(%);
\]

\[
sol := -\frac{18000}{132721} \sin\left(\frac{3}{10} t\right) + \frac{436800}{132721} \cos\left(\frac{3}{10} t\right)
\]

\[
+ \frac{134880}{2256257} e^{-\frac{1}{16} t} \sin\left(\frac{1}{16} \sqrt{255} t\right) \sqrt{255} - \frac{436800}{132721} e^{-\frac{1}{16} t} \cos\left(\frac{1}{16} \sqrt{255} t\right)
\]

\[
+ \frac{18000}{132721} \sin\left(\frac{3}{10} t\right) + \frac{436800}{132721} \cos\left(\frac{3}{10} t\right)
\]

\[
\text{transient} := \text{select}(\text{has}, \text{sol}, \exp);
\]

\[
\text{transient} := -\frac{34880}{2256257} e^{-\frac{1}{16} t} \sin\left(\frac{1}{16} \sqrt{255} t\right) \sqrt{255}
\]

\[-\frac{436800}{132721} e^{-\frac{1}{16} t} \cos\left(\frac{1}{16} \sqrt{255} t\right)
\]

\[
\text{steady} := \text{remove}(\text{has}, \text{sol}, \exp);
\]

\[
\text{steady} := \frac{18000}{132721} \sin\left(\frac{3}{10} t\right) + \frac{436800}{132721} \cos\left(\frac{3}{10} t\right)
\]

We now plot the solution, steady state and transient on the same coordinate system.

\[
\text{plot}\{\text{sol, transient, steady}>,
\text{t}=0..40, \text{color=[magenta, red, blue]};
\]

and

\[
\text{plot}\{\text{sol, transient, steady}>,
\text{t}=0..80, \text{color=[magenta, red, blue]};
\]
Note that the solution "converges" to the steady state as $t \to \infty$. Also note that the steady state is periodic with period $\frac{20\pi}{3}$ which is the same as the period of the forcing function. Moreover, we observe that the steady state is not in phase with the forcing. To determine the phase difference between the steady state and forcing, we write the steady state in phase-amplitude form.

\[
\begin{align*}
\text{s0} &:= \text{simplify}(\text{subs}(t=0,\text{steady})) \\
\quad &:= \frac{436800}{132721} \\
\text{phase_amp} &:= A \cos\left(\frac{3}{10} t - \delta\right) \\
\text{p0} &:= \text{simplify}(\text{subs}(t=0,\text{phase_amp})) \\
\quad &:= A \cos(\delta) \\
\text{s1} &:= \text{simplify}(\text{subs}(t=0,\text{diff(steady,t)})) \\
\quad &:= \frac{5400}{132721} \\
\text{p1} &:= \text{simplify}(\text{subs}(t=0,\text{diff(phase_amp,t)})) \\
\quad &:= \frac{3}{10} A \sin(\delta) \\
\text{solve}\{\text{p0}=\text{s0, p1}=\text{s1}\},\{A,\delta\} \\
\{\delta = \arctan(15 \text{ RootOf}(-1 + 132721 Z^2, label=_L7), 364 \text{ RootOf}(-1 + 132721 Z^2, label=_L7)) \}, A = 1200 \text{ RootOf}(-1 + 132721 Z^2, label=_L7)\} \\
\text{allvalues}(%) \\
\{\delta = \arctan\left(\frac{15}{364}\right), A = \frac{1200}{132721} \sqrt{132721} \}, \{A = -\frac{1200}{132721} \sqrt{132721}, \delta \\
\quad = \arctan\left(\frac{15}{364}\right) - \pi\}
The steady state is displaced in phase by about 0.0412 from the forcing.

Next we show that the amplitude and phase of the steady state are independent of the initial conditions (hence the initial conditions affect only the transient). To do this we find a general solution of the equation and show that \(x(0)=x_0\) and \(\frac{dx}{dt}(0)=x_1\) appear only in the transient terms.

We now consider the general equation where \(\omega\) is a fixed positive constant. We solve the equation with that initial conditions \(x(0)=x_0\) and \(\frac{dx}{dt}(0)=x_1\). We again identify the steady state and show it is independent of \(x_0\) and \(x_1\).
\[
e^{-\frac{1}{16} t} \cos \left(\frac{1}{16} \sqrt{255} t \right) \left(64 x_0 - 127 x_0 \omega^2 + 64 x_0 \omega^4 - 192 + 192 \omega^2 \right) \]
\[
\frac{64 - 127 \omega^2 + 64 \omega^4}{64 - 127 \omega^2 + 64 \omega^4}
\]
\[
+ \frac{24 \sin(\omega t) \omega + 192 \cos(\omega t) - 192 \omega^2 \cos(\omega t)}{64 - 127 \omega^2 + 64 \omega^4}
\]
\[
\Rightarrow \text{combine(%, trig);}
\]
\[
\text{gen sol:}=\text{collect(rhs(%)}, \exp);\]
\[
\text{gen sol} := \frac{1}{16320 - 32385 \omega^2 + 16320 \omega^4} \left(-2032 \sin \left(\frac{1}{16} \sqrt{255} t \right) \sqrt{255} x_1 \omega^2 - 192 \sin \left(\frac{1}{16} \sqrt{255} t \right) \sqrt{255} x_0 \omega^2 + 24 \sin(\omega t) \omega + 192 \cos(\omega t) - 192 \omega^2 \cos(\omega t) \right)
\]
\[
+ 1024 \sin \left(\frac{1}{16} \sqrt{255} t \right) \sqrt{255} x_1 + 64 \sin \left(\frac{1}{16} \sqrt{255} t \right) \sqrt{255} x_0 + 16320 \cos \left(\frac{1}{16} \sqrt{255} t \right) x_0 - 32385 \cos \left(\frac{1}{16} \sqrt{255} t \right) x_0 \omega^2 + 16320 \cos \left(\frac{1}{16} \sqrt{255} t \right) x_0 \omega^4 - 48960 \cos \left(\frac{1}{16} \sqrt{255} t \right)
\]
\[
+ 48960 \cos \left(\frac{1}{16} \sqrt{255} t \right) \omega^2 + 1024 \sin \left(\frac{1}{16} \sqrt{255} t \right) \sqrt{255} x_1 \omega^4 - 2032 \sin \left(\frac{1}{16} \sqrt{255} t \right) \sqrt{255} x_0 \omega^4 + 192 \sin \left(\frac{1}{16} \sqrt{255} t \right) \sqrt{255} x_0 \omega^2 e^{-\frac{1}{16} t} \right)
\]
\[
+ \frac{6120 \sin(\omega t) \omega + 48960 \cos(\omega t) - 48960 \omega^2 \cos(\omega t)}{16320 - 32385 \omega^2 + 16320 \omega^4}
\]
\[
\Rightarrow \text{steady:=simplify(remove(has, %, exp));}
\]
\[
\text{steady} := -\frac{24 \left(\sin(\omega t) \omega - 8 \cos(\omega t) + 8 \omega^2 \cos(\omega t) \right)}{64 - 127 \omega^2 + 64 \omega^4}
\]
\[
\Rightarrow \text{s0:=simplify(subs(t=0, steady));}
\]
\[
s0 := -\frac{192 \left(-1 + \omega^2 \right)}{64 - 127 \omega^2 + 64 \omega^4}
\]
\[
\Rightarrow \text{phase_amp:=A*cos(omega*t-delta);} \quad \text{phase amp} := A \cos(\omega t - \delta)
\]
\[
\Rightarrow \text{p0:=simplify(subs(t=0, phase_amp));}
\]
\[p_0 := A \cos(\delta) \]

\[s_1 := \text{simplify}(\text{subs}(t=0, \text{diff}(\text{steady}, t))) \]

\[s_1 := \frac{24 \omega^2}{64 - 127 \omega^2 + 64 \omega^4} \]

\[p_1 := \text{simplify}(\text{subs}(t=0, \text{diff}(\text{phase_amp}, t))) \]

\[p_1 := A \sin(\delta) \omega \]

\[\delta = \text{arctan} \left(\omega \text{RootOf} \left(-1 + \left(64 - 127 \omega^2 + 64 \omega^4 \right) Z^2, \text{label} = _L12 \right), 8 \right) \]

\[\text{RootOf} \left(-1 + \left(64 - 127 \omega^2 + 64 \omega^4 \right) Z^2, \text{label} = _L12 \right), A = 24 \text{RootOf} \left(-1 + \left(64 - 127 \omega^2 + 64 \omega^4 \right) Z^2, \text{label} = _L12 \right) \]
We also determine the amplitude of the steady state as a function of the forcing frequency ω.

```latex
\[ A := \sqrt{\frac{24}{64 - 127 \omega^2 + 64 \omega^4}} \]
```

```latex
\[ \text{plot}(A, \omega = 0.1 \ldots 10); \]
```

We finally find the value of ω for which the amplitude is maximal.

```latex
\[ A' := \text{diff}(A,\omega); \]
\[ A' := \frac{12 (-254 \omega + 256 \omega^3)}{\sqrt{64 - 127 \omega^2 + 64 \omega^4}} \left(64 - 127 \omega^2 + 64 \omega^4\right)^2 \]
```

```latex
\[ \text{solve}(A'=0,\omega); \]
\[ 0, \frac{1}{16} \sqrt{254}, -\frac{1}{16} \sqrt{254} \]
The maximum amplitude occurs when \( \omega \) is approximately 0.9961. This value is close to 1 at which the corresponding undamped oscillator exhibits resonance. Also note that we exclude \( \omega = 0 \) since then the forcing is constant.

Also note that unlike resonance the amplitude for this \( \omega \) is still finite (approximately 24.05).