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Abstract 

 
Tokamak equilibria have been derived that are analytic solutions to the Grad-Shafranov 

equation.  Paper I describes a wide range of such equilibria including smooth limiter 

surfaces, double and single null divertor surfaces, arbitrary aspect ratio, elongation, 

triangularity, and beta.  Paper II generalizes the analysis to include edge pedestals and 

toroidal flow. 
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1. Introduction 

 

The title of the paper tells the whole story.  We have derived simple, general, realistic, 

robust, analytic, solutions to the Grad-Shafranov equation describing tokamak 

equilibria.  What is meant by all of these adjectives?  “Simple” refers to the fact that 

the equilibria require only a few, intuitively simple-to-visualize, terms.  “General” 

indicates that the equilibria are valid for a wide range of configurations, including 

smooth limiter surfaces, double null divertor surfaces, single null divertor surfaces, finite 

aspect ratio including spherical tokamaks, finite elongation, finite positive and negative 

triangularity, and small, medium, large beta.  “Realistic” implies that our profiles are 

continuous and monotonic with the pressure, pressure gradient, and toroidal current 

density smoothly vanishing at the plasma edge.  Finite edge pedestals, an edge 

contribution due to the bootstrap current, and toroidal flow are generalizations included 

in paper II.  “Robust” refers to the fact that only 4 (or 6 for asymmetric configurations) 

input parameters are required to obtain a solution for the flux surfaces – 3 (or 5) 

geometrical parameters and 1 simple physically intuitive parameter.  The model leads to 

well behaved solutions every time – no delicate choosing of any parameters.  Lastly, 

“analytic” indicates that our solutions satisfy the exact, unexpanded, Grad-Shafranov 

equation, and are expressed in terms of known functions. The final results are simple 

analytic expressions for the flux function and importantly its first and second 

derivatives.   

To put the present work in perspective, it is useful to compare with earlier related 

research.  Solov’ev calculated the first purely analytic equilibrium (Solov’ev 1968).  The 

well-known “Solov’ev profile” is characterized by choosing /dp d  and /FdF d , the 

free functions on the right hand side of the Grad-Shafranov equation, as constants.  The 

resulting solutions capture many useful features of tokamak equilibria, but are 

unrealistic in that important physical profiles have large jumps at the plasma edge.  

Specifically, in physical space, the toroidal and poloidal current densities, plus the 

plasma pressure gradient have edge jumps.  The pressure itself is parabolic.  Even so, it 
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is an analytic equilibrium and over the years several generalizations have been 

developed (Zheng et. al. 1996, Weening 2000, Shi 2005, Cerfon et. al. 2010) which 

allowed application to a much wider range of equilibrium plasma shapes, although still 

with the same jumps at the plasma edge. 

The next step of progress (see for instance Herrnegger 1972, Maschke 1972, De 

Menna 1977, McCarthy 1999, Atanasiu et. al. 2004, Guazzotto et. al. 2007, Shi 2009) 

allows the right hand side functions, /dp d  and /FdF d  to be linear (or linear plus 

constant) in    rather than purely constant.  This has the important benefit of 

producing smooth, monotonic profiles for which the current densities, pressure, and 

pressure gradient vanish at the plasma edge.  The resulting solutions more closely model 

experimental profiles than the Solov’ev solutions.   

In general, the solutions associated with the linear-in-  free functions /dp d  and 

/FdF d  are complicated, involving a sum of terms obtained by separation of 

variables.  The radial separation functions consist of unintuitive hypergeometric 

functions, Coulomb wave functions, or Whittaker functions of imaginary order and 

imaginary argument.  Furthermore, the number of terms to be maintained plus the 

choice of separation constants is not robust, and in some cases delicate choices have to 

be made to obtain physically realistic solutions.  Consequently, even though purely 

analytic solutions should be helpful in experimental comparisons, reactor design, 

diagnostic development, MHD stability determination, and benchmarking more general 

Grad-Shafranov solvers, the complexity and sensitivity of the solutions has hindered 

implementation from widely occurring.   

This assessment applies to the references listed above, from Herrnegger 1972 to Shi 

2009, including the one by the present authors Guazzotto et. al. 2007.  While the 

corresponding research traces a continuing path of progress, describing increasingly 

realistic plasma shapes and experimental comparisons, there is still more work to be 

done. 

In this context, the present work also focuses on analytic solutions in which the right 

hand side of the Grad-Shafranov equation is a combination of linear and constant terms 

in  .  However, an underutilized mathematic insight allows us to overcome the 
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difficulties just described.  In detail, we also use separation of variables and the resulting 

solutions can again be formally expressed in terms of Whittaker functions.  Even so, 

“Whittaker” is just a “name” for the functions.  Our solutions are rewritten in a much 

more convenient form in which each radial separation function is approximately a sine 

or cosine.  This enables a sharp determination of (a) the number of terms (7 for 

symmetric and 12 for asymmetric systems) required for the solution as well as (b) the 

choice plus number of separation constants (4 for both cases).  The details are described 

in the main text.  The end result is a robust and general analytic solution to the Grad-

Shafranov equation.  A computer code has been developed, primarily to plot flux 

surfaces and carry out post-processing evaluation of various plasma parameters of 

interest.  Typically, the eigenvalue is calculated to 6 figure accuracy (although this can 

easily be increased), while the value of the flux, and its first and second derivatives, are 

accurate to 10 - 15 significant figures.   

The code, written in MatLab is freely available by contacting Professor Luca 

Guazzotto lzg0022@auburn.edu.  On a laptop computer, it takes about 1 second to 

calculate and plot the flux surfaces and an additional 1 second for standard post-

processing evaluations.  The post-processing can take substantially longer, on the order 

of a minute, if a large number of very high resolution ( )q   surfaces are required.  In its 

present form the code, which has not been optimized for speed, is not practical for real 

time reconstruction and control.  However, optimization could resolve this problem 

although the solutions would still be limited by the choice of free functions required for 

analytic solutions. 

In terms of organization, the research is separated into two papers because of the 

large number of examples to be presented.  Paper I focuses on standard tokamaks with 

smooth, double null divertor or single null divertor plasma surfaces.  The plasma edge is 

idealized, with the pressure, pressure gradient, and current density all vanishing on this 

surface.  Paper II treats the same plasma shapes, but generalizes the edge treatment.  

Edge jumps, which are a simple approximation to narrow smooth pedestals, in the 

pressure, pressure gradient, and current density are allowed.  Also, the edge localized 

mailto:lzg0022@auburn.edu
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portion of the bootstrap current can be included.  Toroidal flow is a final feature that is 

added. 

In summary, we believe the work presented here represents a very useful step of 

progress along the path of obtaining realistic, analytic solutions to the Grad-Shafranov 

equation.  Our hope is that the simplicity, accuracy, and speed of the evaluation code 

will encourage researchers to make use of the results. 

 

2. Formulation of the problem 

 

• Starting equations and boundary conditions 

 

The tokamak equilibria of interest are described by the familiar Grad-Shafranov 

equation (Lust et. al. 1957, Grad et. al. 1958, Shafranov 1966) 
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with   the poloidal flux function and ( )p  , ( )F RB   the two free functions.  As 

discussed, we shall assume in Paper I that the free functions are chosen to be quadratic 
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Here, 
0

  is the flux on the magnetic axis, 
0

R  is the major radius, 
0

B  is the vacuum 

toroidal field at 
0

R R , 
0

p  is the pressure on axis, and 
0

/B B  is a measure of the 

toroidal field diamagnetism on axis.  Mathematically and physically, we require that 
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each of these parameters except 
0

  be specified as inputs.  The value of 
0

  is 

determined as an output of the calculation.  Also, based on our definition of realistic 

profiles, we require that the plasma pressure, plasma pressure gradient and toroidal 

current density vanish on the plasma surface.  This implies that the boundary condition 

on   is 

 

 (surf) 0    (3) 

 

With the choice of free functions given above, the Grad-Shafranov equation becomes a 

linear partial differential equation in  .   
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• The solution procedure 

 

The procedure used in earlier studies to obtain solutions is to introduce an 

appropriate set of normalized variables and then solve the resulting equation by 

separation of variables.  For example, define 1/2,R Ku Z Kv  , 2 1/4
0 0 0

( / 2 )K p  . 

The Grad-Shafranov equation reduces to 
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Solutions to this equation can be found by summing a finite or infinite set of terms, 

each obtained by separation of variables,   
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Here, 
n
  is the thn  separation constant, which can be positive or negative.  The solution 

is given by 
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( ) exp( ) exp( )

( ) ( ) ( )
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where ( ) / 4
n

     and  ,1/2 ,1/2
( ), ( )

i i
W iu M iu   are Whittaker functions.   

The Whittaker solutions are a mixed blessing.  On the positive side, the solutions are 

known analytic functions.  This is important because many basic mathematical 

properties have been derived and are easily accessible in the literature.  Also, they can 

be called in well-known mathematical programs such as MatLab and Mathematica or 

solved for by direct numerical computation. 

On the negative side, there is no guarantee that a sum of such terms will converge to 

a desired solution.  The reason is that the natural convergence boundaries for the ,R Z  

separated coordinates are rectangles while plasma boundaries are quite different, 

typically an elongated D-shape.  Thus, the radius of convergence of the series may not 

include the entire plasma shape.  It is somewhat like trying to fit a round peg into a 

square hole.  Another point is that the solutions are not very intuitive as they consist of 

Whittaker functions of imaginary order with imaginary argument.  This lack of intuition 

makes it difficult to choose values for the separation constants, and equally important, 

to decide how many terms to keep in the series.  Similarly, the normalized scale length 

is un-intuitively connected to the real geometry.  Lastly, while Whittaker functions are 

available in standard mathematical programs, their evaluation can be time consuming. 
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Even with these negative factors, authors have been successful in making the 

solutions work to a certain extent.  However, because of their complexity, they have not 

been as widely used as might be expected. 

 

• A new approach 

 

After analyzing the difficulties with the Whittaker function procedure, we have 

developed a new approach to solving the linear partial differential equation.  The 

approach is also based on separation of variables, but is much more mathematically 

intuitive, thereby eliminating many of the difficulties just discussed.  Specifically, the 

number of terms in the series, the choice of separation constants, and behavior of the 

solutions are much easier to understand and obtain.  This progress is the result of 

exploiting an underutilized mathematical insight into the nature of the separated 

solutions. 

Several steps are required to reduce the problem to the desired form.  First, we 

introduce a normalized flux and simple normalized coordinates into Eq. (4).  The 

normalizations are defined by 
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Here, a  is the plasma minor radius, 
0

/a R   is the inverse aspect ratio, and   is the 

plasma elongation, all assumed to be known inputs.  The Grad-Shafranov equation and 

boundary condition reduce to 
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There are several points worth discussing.  First, note that 0   satisfies the 

equation and boundary condition.  Our problem is thus an eigenvalue problem as has 

previously been pointed out by several authors (Goedbloed 1984, Takeda et. al. 1991, 

LoDestro et. al. 1994, Pataki et. al. 2013) 

Nontrivial solutions exist only for special choices of the eigenvalue 2 .  Only positive 

eigenvalues 2 0   need be considered, to insure that the physical requirement of non-

reversed toroidal current density is satisfied.  Since 
0

1 /    the eigenvalue determines 

the unknown value of the flux on axis.   

Second, for a given geometry, the parameter   is assumed to be a known quantity 

since 
0

p  and 
0

B B  are, at this point, known inputs.  It is critical to recognize that 

values of both 
0

p  and 
0

B B  are required for post-processing in order to evaluate various 

plasma quantities of interest.  However, only the value of a single parameter   is 

needed to determine the solution for   itself.  Furthermore, it is shown in Section 6 

that ,
P

   the poloidal beta, thus making it easy to choose reasonable values.  To be 

more specific, the interesting range of   is defined by 
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Note that solutions can be easily found for 
max

  .  However, these are considered to 

be physically uninteresting since they correspond to a reversal in direction of the 

toroidal current density near the inboard midplane.   

Third, the normalization requirement (axis) 1   is simple to satisfy.  Since Eq. (9) 

is linear in  , the condition just corresponds to a rescaling of the eigenfunction.  Lastly, 

observe that in the large aspect ratio limit, ˆ 0   , the equation reduces to the basic 

Cartesian form of Poisson’s equation.  The separated solutions are then intuitively 

simple sines, cosines or hyperbolic sines, cosines.  The toroidal modifications are 

proportional to 1  .  For most practical configurations of interest   is not very large: 

0.2 0.5  .  This, we shall see shortly, suggests a rapidly converging power series 

representation of the radial separated variable functions.  It also provides a primary 

motivation for our choice of independent variable x .  

 

• Separation of variables and a mathematical insight 

 

The next step in the analysis is to solve Eq. (9) using separation of variables, 
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For the moment we do not specify the number of terms to be included in the 

summation.  The equations for ,
n n
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In these equations, 2
n

h  is the separation constant.  Also, for physical systems recall that 
2 0   and correspondingly 2 0  . 

At this point we do not know how to choose the separation constants 2
n

h , which may 

be positive or negative with magnitudes small, medium, or large.  It is here that 

mathematical insight proves crucial.  The key point is the recognition that physically 

interesting solutions must have closed flux surfaces everywhere within the plasma.  

Therefore, if we make each term in our expansion separately produce closed flux surfaces 

about the geometric axis 0, 0x y  , then when summing the terms, the total flux 

surfaces will automatically be closed around 0, 0x y  , and almost certainly around 

the magnetic axis as well.   

Mathematically, the surfaces for each expansion term must be shifted ellipses with 

the center located approximately on the magnetic axis.  Since the solution for each 

expansion term behaves like 2 2
0 1 2 3 4n

c c x c y c x c y       near the geometric 

axis, the implication is that 3 4
,c c  must have the same sign, either positive or negative, 

for closed surfaces.  Now, if 2 0
n

h  , then 2 0
n

k   and the signs for 3 4
,c c  are opposite and 

the surfaces are open.  If, however, we choose 2 0
n

h   but limit its magnitude so that 
2 0
n

k  , then each and every term in the summation produces closed flux surfaces near 

the axis.  This insight translates into the following constraints on the separation 

constants, 

 

 

2 2 2 1/2
max max

2 2
max max

0 (1 )

0

n

n

h h h

k k k

 



   

  
  (13) 

 

Choosing the separation constants substantially outside this range leads to separate 

terms in the expansion having open flux surfaces near the axis, which then have to be 

compensated by other terms with comparable and cancelling open flux surfaces.  This is 

often a delicate balance, sometimes requiring many terms in the solution or even possibly 

not having a solution at all.  
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Implementation of these constraints is the reason why realistic solutions require only 

a few terms in the summation.  Specifically, in the sections that follow we shall show 

that realistic solutions require only 4 separation constants and either 7 or 12 terms in 

the summation depending on whether the configuration of interest is up-down 

symmetric or asymmetric.  These numerical values are not empirical but are based on 

firm mathematical constraints. 

Having laid the groundwork, we close this section by deriving the actual solutions for 

the separation functions ( )
n

X x  and ( )
n

Y y .  The ( )
n

Y y  solutions are straightforward, 

 

 
cos( )

( )
sin( )

n
n

n

h y
Y y

h y

 
  (14) 

 

The ( )
n

X x  solutions are more complicated.  We could write them in terms of Whittaker 

functions, but that would negate the usefulness of many of the steps so far introduced.  

Instead, let us take a step back and reexamine the ( )
n

X x  equation, given by Eq. (12).  

This equation has a regular singular point at ˆ1 / ( 0)x R    and an irregular 

singular point at x R   .  However, the regime of interest 1 1x    does not 

include either singularity.  From a mathematical point of view, the equation is “boring”.  

This behavior coupled with the fact that ( )
n

X x  reduces to sines and cosines as 0   

suggests that simple intuitive representations of its two solutions can be written as 

 

 
ˆˆ( ) cos( ) sin( )

( )
( ) cos( ) sin( )

m m
n m n m n

n m m
n m n m n

C x a x k x b x k x
X x

S x a x k x b x k x

                


 



  (15) 

 

We expect each power series to be rapidly converging since the thm  coefficients are 

proportional to ˆm .  It is a simple matter to calculate the recursion relations for the 

coefficients ˆˆ , , ,
m m m m

a b a b  as well as analytic first and second derivatives.  The details are 

described in Appendix A.  The end results are indeed highly accurate and 
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computationally fast representations of ( )
n

C x  and ( )
n

S x  plus first and second 

derivatives.  Stated differently, ( )
n

C x  and ( )
n

S x  can be viewed as known mathematical 

functions.  They are Whittaker functions that just happen to be expressed in a 

particularly convenient way that exploits the “boring” behavior of the solutions in the 

regime of interest. 

The tokamak equilibrium problem has now been formulated.  As such, we are now in 

a position to investigate various applications of interest. 

 

3. Smooth, up-down symmetric limiter equilibria  

 

• Number of terms in the series 

 

The number of terms and corresponding separation constants in the ( , )x y  series is 

determined by the number of constraints that must be applied.  The number of 

constraints is based on the following mathematical intuition.  Start by recognizing that 

the flux surfaces near the axis are, by construction, closed surfaces.  It then makes sense 

to require the flux, its slope, and its curvature to match a specified desired model 

surface at four critical points around the circumference: (a) the inner midplane point, 

(b) the outer midplane point, (c) the upper maximum point, and (d) the lower 

maximum point.  This, in principle, corresponds to 12 constraints.   

For an up-down symmetric configuration, the lower maximum point constraint is 

automatically satisfied by choosing only the cos( )
n

h y  terms in the ( )
n

Y y  series.  This 

reduces the number of constraints from 12 to 9.  Furthermore, since cos( )
n

h y  is up-down 

symmetric, the slope constraints at the inner and outer midplane points are also 

automatically satisfied.  This reduces the number of constraints by an additional factor 

of 2 from 9 to 7. 

The conjecture is that 7 carefully chosen terms in the series for ( , )x y  should 

produce a set of closed flux surfaces whose boundary closely approximates the specified 

model surface. 
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• Choice of the separation constants 

 

How many separation constants are needed and what values should they have in 

order to be able to satisfy the 7 constraints?  Now, each separation constant leads to 2 

terms in the series, one proportional to ( )
n

C x , the other to ( )
n

S x .  Allowing 3 

separation constants corresponds to 6 terms in the series (not enough by one) while 4 

separation constants produce 8 terms (one too many).  The minimum number of 

required separation constants is, therefore, equal to 4 although we need to decide the 

fate of the one extra term.   

One possibility is to add another constraint.  A simpler idea, and the one utilized in 

our studies, is to choose one of the separation constants, say 2
1

h , to make 2
1

0k  , 

 

 2 1/2
1 max 1

(1 )       0h h k        (16) 

 

This is useful, because as shown in Appendix A, the function 
1
( )S x  with 

1
0k   is 

identically zero, thereby eliminating one term in the series, reducing the total number 

from 8 to the desired 7.  The conclusion is that for a smooth up-down symmetric 

configuration, the solution for ( , )x y  and its first and second derivatives can be written 

as 
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  (17) 

  

The 7 unknown expansion coefficients to be determined by the constraints are 

1 2 2 3 3 4 4
[ , , , , , , ]c c s c s c su .   

The next step is the choice of the other separation constants 2 3 4
, ,h h h .  Intuitively, 

we might expect that equal separation of their values would be useful so as to prevent 

two terms from being too similar, thereby reducing the amount of independent 

information in the series.  But, this turns out to not exactly be the case. 

We have, in fact, tried a wide range of 
n

h , all satisfying the constraint given by Eq. 

(13).  A large fraction, but not all, of these choices yield very similar flux surfaces.  

Keep in mind that they are all analytic solutions to the Grad-Shafranov equation, the 

only difference being how closely they approximate the model surface.  However, since 

the model surface is only a model surface, there is nothing fundamental about it.  Each 

viable choice of the 
n

h  produces very reasonable looking surfaces, all with the same 

elongation and triangularity, and similar values for beta and safety factor.  In short, 

there is not a strong motivation to devote computational effort choosing the 
n

h  to get 

as close a match to the model surface as possible.   

Instead, our strategy has been to develop a simple, empirical, essentially universal, 

algorithm for choosing the 
n

h  that works robustly over a very wide range of magnetic 

geometries and plasma parameters.  Many, many test cases have shown that the choices 

below accomplish this goal, 
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                

                

 

  (18) 

 

Observe that the optimal choices in 
n

k  are bunched near the maximum and minimum 

values and not equally spaced as might have been expected.   

The number of terms in the series plus the separation constants have now been 

defined. 

 

• Model surface and matching constraints 

 

A good choice for a model surface that produces smooth, up-down symmetric, 

configurations is the well-known Miller profile [Miller et. al. 1998].  Although known as 

the “Miller profile”, Miller et. al. actually credit the profile to an earlier paper [Todd et. 

al. 1979].   For the actual surface coordinates ,
S S

R Z , plus the corresponding normalized 

surface coordinates ,
S S

x y , the Miller profile is defined in terms of an angle-like 

parameter  , 0 2   , as follows  

 

 
2

0
ˆ ˆ ˆcos( sin ) ( ) cos( sin ) sin ( sin )

2

sin ( ) sin

S S

S S

R R a x

Z a y


         

    

       

  
  (19) 

 

Here,   is the elongation,   is the triangularity, and 1ˆ sin  . 

The next task is to define the 7 constraints at the matching points: inner midplane 

point , 1, 0
S S

x y     , outer midplane point 0, 1, 0
S S

x y    , and upper 
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maximum point 2/ 2, ( / 2)(1 ),
S S

x y           .  The flux and slope 

constraints are easy to specify, 

 

 

( ) ( 1,0) 0 Flux surface at 

( ) (1,0) 0 Flux surface at 0

( ) ( , ) 0 Flux surface at / 2

( ) ( , ) 0 Flux surface slope at / 2
x

a

b

c x

d x





  

 

   

   

  

 

  

  

  (20) 

 

where we have defined 2( / 2)(1 )x      . 

The curvature constraints require a short analysis.  Their evaluation requires the 

local expansion of the surface about the three critical matching points.  A simple 

calculation yields 
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  (21) 

 

These relations can be converted into flux function constraints by expanding ( , )x y  

about the same three points, 
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  (22) 
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Combining Eqs. (21) and (22) we see that the curvature constraints reduce to 

 

 

2

12

2

22

32 2

ˆ( 1,0) (1 )(1 )
( )  

( 1,0)

ˆ(1,0) (1 )(1 )
( )  0

(1,0)

( , )
( )  / 2

( , ) (1 ) (1 )

yy

x

yy

x

xx

y

e

f

x
g

x




  
 

 

  


 

  
 

   

  
    



 
   


   

  

  (23) 

 

Equations (20) and (23) are the seven constraints on the flux function that 

determine 2  and the unknown expansion coefficients.  In terms of obtaining realistic 

analytic equilibria, it is worth emphasizing that the only purpose of the model surface is 

to provide reasonable values for the surface curvature at the three critical matching 

points. 

 

• Solution 

 

Using the results obtained in Appendix A, the constraint relations lead to a set of 

linear homogeneous algebraic equations for the expansion coefficients 

 

 ( ) 0  A u


  (24) 

 

Here,   appears as an eigenvalue but in a complex way, both as a “standard” 

eigenvalue, but also in the separation constants. 

The following procedure can be used to determine   and the expansion coefficients.  

Assume values for , , ,     have been specified.  Set the coefficient 
1

1c  .  Now, solve 

the first six constraint equations, ( ) ( )a f ,  for the six unknowns 2 3 4 2 3 4
, , , , ,c c c s s s .  

This is a simple linear solve.  The key point is that only if 2  just happens to be the 

correct value will the seventh equation be satisfied.  In general, it will not be satisfied 
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and some form of iteration on   is required.  Schematically, constraint ( )g   can be 

written as 

 

 
1 2 2 3 2 4 3 5 3 6 4 7 4

0Q Q c Q s Q c Q s Q c Q s         (25) 

 

Just looking for a zero crossing of this function should work but in practice there are 

often spurious results.  The reason is that sign changes occur when the function changes 

from plus to minus infinity at certain values of  .  These appear like spurious zero 

crossings when plotted versus  .  A better approach is to define an error function 

 

 

2

1 2 2 3 2 4 3 5 3 6 4 7 4

1 2 2 3 2 4 3 5 3 6 4 7 4

( ) 0
Q Q c Q s Q c Q s Q c Q s

E
Q Q c Q s Q c Q s Q c Q s


                   

  (26) 

 

Clearly this function is always positive and bounded by unity.  We carry out a scan in 

  and look for that value for which ( )E   has a minimum corresponding to ( ) 0E   .  

Our scanning procedure is straightforward, although somewhat “brute force” in nature. 

It is a two step process.  First we perform a fine scale scan over a hundred points to 

bracket the lowest   corresponding to minimum in ( )E   with 3( )  Tol 10E     .  

Second, we then use MATLAB’s standard minimizing option to find the actual   to 

whatever accuracy is desired, typically 6 significant figures.  The choice of a “brute 

force” procedure is made to keep the search algorithm robust.   

Even so, the numerical determination of   and the expansion coefficients, is very 

fast with   typically calculated to 6 figure accuracy (although this can easily be 

increased).  This represents the numerical solution to the Grad-Shafranov equation.  

The CPU times, with no attempt at numerical optimization, depend only weakly on 

how many terms are maintained in the series for ( )
n

C x  and ( )
n

S x .  For typical inverse 

aspect ratios 0.35  , approximately 10 terms are required for 5 – 6 significant figure 

accuracy in  , sufficient for practical applications.  The CPU time is typically 0.5 

seconds.  For 15 significant figure accuracy, the number of terms increases to about 25 
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while the CPU time is about the same (a nice feature of MatLab linear algebra 

calculations).  Even in an extreme spherical tokamak case with 0.75  , 220 terms 

produce 15 figure accuracy with the CPU time again about the same.  Overall, the 

ultimate accuracy of the solution is determined by the accuracy of the eigenvalue, not 

the accuracy of the expansion functions.  Specifically, the numerical solutions satisfy the 

Grad-Shafranov equation to a comparable number of significant figures as maintained in 

the expansion functions, while the boundary condition accuracy is comparable to the 

number of significant figures in  . 

Since the CPU times are so short, we admittedly use overkill, and for simplicity 

always maintain 150 terms in the series.  Overall, the total CPU time required to 

calculate an equilibrium is largely determined by the amount of post-processing desired.  

Typically, the evaluations of  , the expansion coefficients, a flux surface plot, and the 

key parameters of physical interest require about 2 seconds of CPU time.  This 

corresponds to a single evaluation of ( )q   at the 95% surface.  The post-processing can 

increase to about 1 minute if a large number of ultra-high resolution ( )q   surfaces is 

required.  Note also, that to carry out due diligence with respect to verification of our 

numerical code, we have compared results against an established Grad-Shafranov solver 

“FLOW” that includes plasma flow (Guazzotto et. al. 2004). In the limit of zero flow 

the agreement is very good, thereby verifying our numerical implementation. 

 

• Example: Circle, Ellipse, Elongated D, Inverse D 

 

To demonstrate the solutions we calculate and plot the flux surfaces for five model 

plasma surfaces: (a) a circle, (b) an ellipse, (c) an elongated D, (d) a high triangularity 

D, and (e) and an inverse D.  Also illustrated are the midplane plots for the pressure 

and current density, normalized to their maximum values.  The vertical axis is /Z a  

while the horizontal axis is 
0

/R R .  The circle and the ellipse are just reference cases to 

demonstrate credibility plus versatility of the procedure.  The elongated, high 

triangularity, and inverse D shapes are more relevant to modern tokamaks.  All 
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correspond to special choices of the Miller profile parameters.  The actual post 

processing physical parameters of interest are presented in Sec. 6, after they have been 

defined.  The flux surfaces and midplane plots are illustrated in Figs. 1 – 5 with the 

corresponding specific profile parameters listed below in Table 1. 

 

 

 

 

Plasma Shape         
Circle, standard  , standard 

P
   0.33 1 0 1 

Ellipse, small  , standard 
P

   0.25 2 0 1 

Elongated D, standard  , low 
P

   0.33 1.8 0.4 0.3 

High triangularity D, large  , standard 
P

  0.4 2 0.75 1 

Inverse D, standard  , low 
P

  0.33 1.9 - 0.6 0.5 

 

Table 1 Input parameters for smooth, up-down symmetric, limiter tokamaks 
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Figure 1 Circle: 0.33, 1, 0, 1         

 

 

 
  

                  Figure 2 Ellipse: 0.25, 2, 0, 1        
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                Figure 3 Elongated D: 0.33, 1.8, 0.4, 0.3        

 
 

 
 

                    Figure 4 High triangularity D: 0.4, 2, 0.75, 1        

 
 
 

 
 

Figure 5 Inverse D: 0.33, 1.9, 0.6, 0.5          
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There are two main points to observe.  First, flux surfaces (c) – (e) have reasonable, 

realistic shapes, quite comparable to existing tokamak experiments.  Similarly for the 

midplane profiles.  Second, plotted as a red curve is the model Miller surface for each 

configuration.  We see that the surfaces for the analytic equilibria closely match the 

Miller surface.  The analysis for smooth limiter surfaces appears to work quite well over 

a wide range of parameters. 

 

4. Up-down symmetric double null divertor equilibria 

 

The generalization of the analysis to include the treatment of double null divertor 

systems is straightforward.  Only two modifications are necessary.  First, a new X-point 

model surface must be introduced, enabling us to obtain modified curvature conditions 

at the inner and outer midplane points.  A new surface is needed because the Miller 

shape does not allow X-points.  Using its midplane curvatures resulted in flux surfaces 

that were overly distorted at the desired X-points.  Second the curvature constraint at 

the maximum point must be replaced by the X-point constraint that 
R

B  vanish at this 

point.   

 

• The double null model surface 

 

A simple form for the shape of a double null surface consists of two intersecting 

ellipses.  Note that when the current density vanishes on the plasma surface then not 

only must 
x

  and 
y

  vanish simultaneously at the X-point, but there is a further 

constraint that must also be imposed.  Specifically, the ellipses must intersect 

perpendicular to each other.  The double null model surface satisfying these constraints 

can be expressed in terms of an angle-like parameter   and is defined by  

 

 



25 

 

Inboard ellipse  

 

 0 0 1 1 0 0
sin (1 )cos

S S
Z a R R a x x                     (27) 

 

Outboard ellipse 

 

    
0 0 2 2 0 0
sin (1 )cos

S S
Z a R R a x x                   (28) 

  

Here, 
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  (29) 

 

and ,
X X

   at the X-point are known inputs replacing ,   for the smooth surface. 

Observe that for real solutions to exist we require 0 1  .  The left limit is always 

satisfied but the right limit requires that 

 

 2 1/22(1 )
X X

     (30) 

 

This constraint arises because in low elongation, circular-like plasmas it is difficult to 

shrink the X-point angle to / 2 .  In practice if we assume 2
X

   the condition is 
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automatically satisfied, and this is not a very strong practical limitation.  A cleverer 

choice of model surface could lower this limit if important. 

 

• The 0
R

B   constraint 

 

In a double null system there is no longer a curvature constraint at the X-point as 

there is for a smooth surface.  Instead, we replace the curvature constraint given by 

term ( )g  in Eq. (23) with 

 

 2( , ) 0 ( / 2)(1 )
y X X X X X

x x           (31) 

 

• The full set of double null constraints 

 

The full set of double null constraints is summarized below 

 

 

1

( ) ( 1,0) 0 Flux surface at inner midplane

( ) (1,0) 0 Flux surface at outer midplane

( ) ( , ) 0 Flux surface at X-point

( ) ( , ) 0 0 at X-point
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X X

x X X Z

yy

x

a

b

c x

d x B

e





 

 





 



 

  
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e
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yy

x

y X X R

f
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



 
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  

  (32) 

 

In this equation, a short calculation shows that the values of 1 2
,   for the intersecting 

ellipse model are given by 
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1 2

2 2

(1 )(1 )(1 )

(1 )(1 )(1 )

X

X

X

X

  



  



  
 

  
 

  (33) 

 

Our expansion for ( , )x y  maintains the same form as Eq. (17).  The constraint 

relations determining the expansion coefficients are nearly identical to the smooth 

surface constraints except for the 0
R

B   replacement and the new values for 1 2
,  .  

Thus, the same solution procedure with similar CPU timing can be used to calculate 

equilibria. 

 

• Examples: Standard Tokamak, Spherical Tokamak 

 

Double null divertor analytic equilibria are illustrated for two examples: (a) a 

tokamak with standard aspect ratio, low 
p

  and (b) a spherical tokamak with high 

aspect ratio, high 
p

 .  The flux surfaces and midplane plots are illustrated in Figs. 6 

and 7.  The input parameters are listed in Table 2. 

 

Plasma Shape   X
  

X
    

Double null, standard  , low 
P

  0.33 2 0.5 0.4 

Double null, spherical tokamak  0.75 2.4 0.8 1.04 

 

Table 2 Input parameters for up-down symmetric, double null divertor tokamaks 
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                   Figure 6 Standard double null: 0.33, 2, 0.5, 0.4
X X

        

 

 

 
 

                         Figure 7 Spherical tokamak: 0.75, 2.4, 0.8, 1.04
X X

       

 

We again see that the analytic equilibrium model produces realistic looking results, and 

has no difficulty reproducing exact X-points.  Also, the fit of the analytic solutions 

closely matches the two-ellipse model surface.   
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5. Up-down asymmetric single null divertor equilibria 

 

The analysis thus far presented can be further generalized to describe an up-down 

asymmetric single null divertor configuration.  This generalization requires combining 

many of the results already derived.  The one main new step is the addition of several 

additional terms (but not additional separation constants) in the expansion to account 

for the asymmetry. 

 

• The single null model surface 

 

To begin, we introduce a convenient shape for the single null divertor surface that 

can again be expressed parametrically in terms of an angle-like variable  .  This is a 

combination of our previous surfaces.  The inputs to the shape are ,   for the smooth 

upper half and ,
X X

   for the single null lower half.  We also need to specify the inverse 

aspect ratio  .  The shape for the upper half (0 )    corresponds to the Miller 

profile 

 

 
0

ˆsin cos( sin ) 0
S S

Z a R R a              (34) 

 

The lower half is subdivided into the two intersecting ellipses model, 

 

 
0 0 1 1 0

0 0 2 2 0

sin (1 )cos

sin (1 )cos 0

S S

S S

Z a R R a x x

Z a R R a x x

      

    

          
           

  (35) 

 

• The constraints 

 

The constraints for an asymmetric single null divertor configuration again involve 

the flux, the slope, and the curvature at four critical points: outer midplane, inner 

midplane, upper maximum point, lower X-point.  There are, however, some differences 
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from symmetric systems that are described below.  We begin with the flux constraints 

on ( , )x y  , which are straightforward, 

 

 

( )   ( 1,0) 0 Inner midplane

( )   (1,0) 0 Outer midplane

( )   ( , ) 0 Upper maximum point

( )   ( , ) 0 Lower X-point
X X
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c x

d x
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
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 

 



 

  

  (36) 

 

The slope constraints are modified because /dx dy  is no longer automatically zero at 

the midplane points since the configuration no longer has up-down symmetry.  Our 

model surfaces for the upper and lower sections both require that / 0dx dy   at the 

outer and inner midplane points, as can be seen from Eqs. (34) and (35).  Nevertheless, 

this requirement must be enforced on our analytic solution since, by construction, 

( , )x y  is not automatically up-down symmetric.  A second modification occurs at the 

lower X-point.  Here, it is not actually a slope constraint that applies, but instead the 

requirement that both components of magnetic field simultaneously vanish.  Thus, there 

are two first derivative constraints at this point.  The total first derivative constraints 

can be written as, 
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 
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
  




  




  (37) 
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The curvature constraints at the midplane points are also modified.  The reason is 

that the second derivatives 2 2/x y   are different for the upper and lower surfaces.  If 

we imagine a smooth, rather than abrupt transition from one surface to the other, then 

the curvature constraint reduces to the average of the two separate curvature 

constraints.  Formally, we write ( ) / 2
Upper Lower

x x x   to obtain the midplane 

curvature constraints.  Also, at the X-point a curvature constraint is unnecessary.  

Consequently, there are three curvature constraints that must be applied, which are 

given by 

 

 

1
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3

( 1, 0)
( ) Curvature at inner midplane

( 1,0)

(1,0)
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(1,0)

( , )
( ) Curvature at top maximum

( , )

yy
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yy

x

xx
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x
l

x

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 
 


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

 


 



  (38) 

 

where  

 

 

2

1 2 2

2

2 2 2

3 2 2

ˆ (1 )(1 )(1 )1 (1 )(1 )
2

ˆ (1 )(1 )(1 )1 (1 )(1 )
2

(1 ) (1 )

X

X

X

X

   
 

   
 


 

        
  
        
  

 
 

  (39) 

 

All told, there are twelve constraints that must be satisfied by our analytic solution. 

 

• The single null flux function expansion 
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As before, we write the analytic solution as a sum of terms containing four 

separation constants.  The most general solution satisfying the four separation constants 

constraint can be written as 

 

 

4

1

4

4 4
1

( , ) cos( ) ( ) ( )

sin( ) ( ) ( )

n n n n n

n n n n n

x y h y c C x s S x

h y c C x s S x



 

    

    




  (40) 

 

Observe that the expansion in principle contains 16 unknown coefficients whereas our 

formulation has only 12 constraints.  This problem can be resolved by choosing the 

separation constants in the same way as for the up-down symmetric systems.  

Specifically, one separation constant is chosen so that 
1

0k   while a second is chosen so 

that 
4

0h  .  With these two choices plus the same intermediate separation constants 

the total number of unknown coefficients is reduced to 12.  The counting of constraints 

and unknown coefficients is now consistent.  The modified expansion for the flux can 

now be written as 

 

 

4

1 1 1
2

3

5 1 5 4 4
2

( , ) cos( ) ( ) cos( ) ( ) ( )

sin( ) ( ) sin( ) ( ) ( )

n n n n n

n n n n n

x y c h y C x h y c C x s S x

c h y C x h y c C x s S x



 

     

     




  (41) 

 

• Solution procedure 

 

The solution procedure is the same as for the symmetric case except that we now 

have a 12 x 12 set of linear homogeneous algebraic equations with   as the eigenvalue, 

 

 ( ) 0  A u


  (42) 
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Here, 
1 2 2 3 3 4 4 5 6 6 7 7

[ , , , , , , , , , , , ]c c s c s c s c c s c su .  We again set 
1

1c  , solve the first 11 

constraint equations for the remaining ,
j j

c s  and then iterate the value of   until the 

12th equation is satisfied.  The equilibrium CPU time is only slightly changed, increasing 

from about 0.5 seconds to about 1 second for an equilibrium calculation where 150 terms 

are maintained in the series for ,
n n

C S . 

 

• Examples: Standard Tokamak, High 
p

  Tokamak 

 

Single null divertor analytic equilibria are illustrated for two examples: (a) a 

tokamak with standard  , standard 
p

  and (b) a tokamak with high 
p

 , small  .  The 

flux surfaces and midplane plots are illustrated in Figs. 8 and 9.  The input parameters 

are listed in Table 3. 

 

 

Plasma Shape         X
  

X
    

Single null, standard  , standard 
P

  0.33 1.6 0.4 2 0.5 1 

Single null, small  , high 
P

  0.25 1.8 0.6 2.1 0.8 2.1 

 

Table 3 Input parameters for up-down asymmetric, single null divertor tokamaks 
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Figure 8 Standard single null: 0.33, 1.6, 0.4, 2, 0.5, 1
X X

            

 

 

 
 

Figure 9 High 
P

  single null: 0.25, 1.8, 0.6, 2.1, 0.8, 2.1
X X

            

 

Once again, we see that the analytic solutions have no difficulty generating realistic 

single null divertor flux surfaces.  The outer surfaces are quite close to the two-ellipse 

model surface and the midplane profiles smoothly approach zero on the surface.  

 

6. Plasma parameters 

 

The examples presented have shown that our analysis produces realistic flux surfaces 

over a wide range of interesting tokamak plasma configurations.  In addition to flux 
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surface plots, the results include analytic expressions for the flux ( , )x y  normalized so 

that (axis) 1  , its first and second derivatives, and a value for the eigenvalue  .  We 

can use these results to evaluate important plasma parameters of physical interest.  To 

carry out this task several additional input quantities must be specified.  A list of the 

original input parameters plus the new post-processing parameters is given below.  

 

Initial equilibrium parameters 

 

              

( ) Inverse aspect ratio

( ) , Elongation

( ) , Triangularity

( ) Parameter approximately equal to 

X

X

P

a

b

c

d


 
 



  (43) 

 

Post-processing parameters 

 

              
0

0 0

0

( ) Major radius

( ) Vacuum toroidal field at 

( ) Safety factor on the magnetic axis

e R

f B R R

g q

   (44) 

 

With these as inputs, we can evaluate the plasma parameters of interest.  It is 

convenient for mathematical compactness to express the results in terms of 
0

 , the 

toroidal beta on axis (i.e. 2
0 0 0 0

2 /p B  ) rather than 
0

q .  However, there is a one-to-

one relation between 
0

q  and 
0

  that can easily be derived without the need for any 

iteration on the equilibrium parameters.  The explicit relation between 
0

q  and 
0

  is 

given at the end of this subsection.  The desired plasma parameters are as follows. 

 

Plasma pressure on axis 
0

p  

 

 
2
0

0 0
0

2

B
p 



      
  (45) 
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Plasma diamagnetism 
0

/B B  

 

 
2

0

0

(1 ) 1
2

B
B

  


        
  (46) 

 

Magnetic flux on axis 
0

  

 

 

1/22
0 0 0

0

B R 
 

      
  (47) 

 

Volume averaged toroidal beta 
T
  

 

 
2

0
02

0

2
T V

dxdy
p

B dxdy


  




  (48) 

 

Volume averaged poloidal beta 
P

  

 

 
2

0 0

2 2 2 2
20 0 0

2 2

ˆ12 ( / ) /
ˆ1

V V
P

P V V

dxdyp p

xB p F R B r dxdy
x

  


 


  
        




  (49) 

 

Toroidal plasma current I  

 

 

1/2

0
0 0 0 0

ˆ1
ˆ1

A

x
I J dA B R dxdy

x

 
    

 

             
    (50) 

 

Normalized internal inductance per unit length 
i
l  
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          





r   (51) 

 

The kink safety factor 
*

q  (
95

   for divertor surfaces) 
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  (52) 

 

The local safety factor ( )q    
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  

  (54) 

 

In these expressions recall that 2( ) 1 2r x x    .  Also, note from Eq. (54) that the 

ratio 
0
/   is finite as 0   so there is no difficulty taking this limit.  The plasma 

parameters of interest have now been defined.   



38 

 

As examples we have evaluated the dimensionless parameters 
T
 , 

P
 , 

i
l , 

95
q , and 

*
q  

for the test cases previously presented, assuming that 
0

1q  .   Also given are the 

corresponding eigenvalues   in truncated form.  The actual   values are accurate to at 

least 6 significant figures. Lastly, keep in mind that 
95

( 0.05)q q   .  The plasma 

parameters are listed in Table 4.   

 

Plasma Shape T
   

P
   

i
l   

95
q   

*
q      

Circle, standard  , standard 
P

   0.014 1 1.04 3.21 2.88 2.38 

Ellipse, standard  , standard 
P

   0.018 1 0.85 3.32 3.04 1.88 

Elongated D, standard  , low 
P

   0.0084 0.27 0.85 3.84 2.90 1.96 

High triangularity D, large  , high 
P

  0.024 1 0.91 6.82 4.71 2.05 

Inverse D, small  , low 
P

  0.014 0.49 0.97 3.12 3.08 1.91 

Double null, standard  , low 
P

  0.011 0.38 0.86 3.74 2.65 1.96 

Double null, spherical tokamak  0.041 1.05 0.97 18.2 5.57 1.90 

Single null, standard  , standard 
P

  0.020 1 0.93 4.45 3.05 2.04 

Single null, small  , high 
P

  0.018 2.16 1.00 6.17 3.71 2.09 

 

Table 4 Dimensionless plasma parameters for the test examples 

 

We observe that the analytic equilibria have no difficulty modeling configurations 

covering a wide range of operating space for smooth, double null, and single null 

plasmas.  One interesting value worth mentioning is 
95

18.2q   for the high 
P

  spherical 

tokamak.  This high value occurs because the inboard poloidal magnetic field is very 

small because of the high 
P

 .  The implication is that a separatrix is closely 

approaching the inboard midplane, corresponding to the equilibrium beta limit. 
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7. Conclusions 

 

We have derived simple, general, realistic, robust, analytic, tokamak equilibria which 

are solutions to the Grad-Shafranov equation.  They apply to a wide range of 

configurations: smooth surface, double null divertor, single null divertor, arbitrary 

, , , ,
T P

     .  Simple expressions for the plasma parameters of interest have also been 

derived.  The model provides analytic expressions for the flux and its first and second 

derivatives.  A simple code has been developed that typically takes on the order of two 

seconds to plot the flux surfaces and evaluate the plasma parameters of interest.  The 

code is available to all interested readers.  The code can also switch from a lower null to 

an upper null divertor, or to a smooth surface with different upper and lower shapes.  

These are trivial changes and as such there has been no need to explicitly discuss them 

in the text. 

This first paper assumes simple but realistic boundary constraints in which the 

pressure, pressure gradient, and current density all vanish on the plasma surface.  The 

follow-on paper generalizes the analysis to include pedestals in these same quantities.  It 

also includes the highly localized fraction of the bootstrap current appearing at the 

plasma edge in the presence of a density pedestal.  A further generalization allows 

toroidal plasma flow.  Again, all of these new effects are included in simple, analytic 

solutions to the Grad-Shafranov equation (including flow modifications when 

appropriate). 
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Appendix A 

Solution of the 
n

X  Equation 

 

The goal of Appendix A is to obtain a fast and accurate solution for the 
n

X  equation 

repeated here for convenience, 

 

 

2
2 2

2

2
2 2

2

2 2

ˆ(1 ) 0 1 1

   
1

ˆ   

n
n n

n
n

d X
x k x X x

dx

h
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


  

         

 




  (A1) 

 

The basic idea is to exploit the fact that for small   the problem reduces to one in 

which the solutions are simple cosines and sines.  Several steps are required to obtain a 

useful and simple power series representation of the solution which converges rapidly. 

There are two solutions, both regular in the domain of interest.  Straightforward 

application of the method of Frobenius shows that one solution behaves like 

0
( )

n
C x a  for small x .  The other solution behaves like 

1
( )

n
S x b x .  We thus 

obtain the two solutions by expanding  
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0 1 2 0 1 2

0

0 1 2 0 1

ˆˆ( ) cos( ) sin( ) Cosine-like expansion

ˆ ˆ ˆˆ ˆ ˆ   1     0     0

( ) cos( ) sin( ) Sine-like expansion
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m m
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m m
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C x a x k x b x k x

a a a b b b

S x a x k x b x k x

a a a b b









    

     

    

   



 



 

  

2
0b 

  (A2) 

 

We substitute each expansion into Eq. (A1).  This leads to two types of terms for 

both the cosine-like and sine-like expansions, one proportional to cos( )
n

k x , the other to 

sin( )
n

k x .  We then set each coefficient to zero which yields the desired recursion 
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relations.  Obtaining these relations requires a small amount of algebra.  The recursion 

relations are identical for both expansions, although the nonzero starting coefficients are 

different.  The results are summarized below. 
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1 3

1 2

2 2
1 3

1 2

1
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  (A3) 

 

In terms of typical values for the parameters, we find that 2
n

k  .  Also needed for 

the analysis are derivatives of the functions.  These can be easily obtained and are given 

by, 
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