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ABSTRACT

Considerable progress has been made in understanding the physiological basis for variation in the life-history patterns of
animals, particularly with regard to the roles of oxidative stress and hormonal regulation. However, an underappreciated
and understudied area that could play a role in mediating inter- and intraspecific variation of life history is endoplasmic
reticulum (ER) stress, and the resulting unfolded protein response (UPRER). ER stress response and the UPRERmaintain
proteostasis in cells by reducing the intracellular load of secretory proteins and enhancing protein folding capacity or ini-
tiating apoptosis in cells that cannot recover. Proper modulation of the ER stress response and execution of the UPRER

allow animals to respond to intracellular and extracellular stressors and adapt to constantly changing environments. ER
stress responses are heritable and there is considerable individual variation in UPRER phenotype in animals, suggesting
that ER stress and UPRER phenotype can be subjected to natural selection. The variation in UPRER phenotype presum-
ably reflects the way animals respond to ER stress and environmental challenges. Most of what we know about ER stress
and the UPRER in animals has either come from biomedical studies using cell culture or from experiments involving con-
ventional laboratory or agriculturally important models that exhibit limited genetic diversity. Furthermore, these studies
involve the assessment of experimentally induced qualitative changes in gene expression as opposed to the quantitative
variations that occur in naturally existing populations. Almost all of these studies were conducted in controlled settings
that are often quite different from the conditions animals experience in nature. Herein, we review studies that investi-
gated ER stress and the UPRER in relation to key life-history traits including growth and development, reproduction, bio-
energetics and physical performance, and ageing and senescence. We then ask if these studies can inform us about the
role of ER stress and the UPRER in mediating the aforementioned life-history traits in free-living animals. We propose
that there is a need to conduct experiments pertaining to ER stress and the UPRER in ecologically relevant settings, to
characterize variation in ER stress and the UPRER in free-living animals, and to relate the observed variation to key
life-history traits. We urge others to integrate multiple physiological systems and investigate how interactions between
ER stress and oxidative stress shape life-history trade-offs in free-living animals.
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ment, ageing, oxidative stress, protein folding
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I. INTRODUCTION

Ecologists and evolutionary biologists have long been
intrigued by inter- and intraspecific variation in life-history
strategies and the trade-offs that arise from the interactions
among life-history traits (Stearns, 1992; Zera &
Harshman, 2001). Considerable effort has been spent
attempting to elucidate the physiological mechanisms that
underlie individual variation in life-history traits such as
physical performance (Irschick & Higham, 2016; Killen,
Calsbeek, & Williams, 2017; Scott, Guo, & Dawson, 2018),
longevity (Miller et al., 2011; Munro & Pamenter, 2019),
reproduction (Harshman & Zera, 2007; Williams, 2012a;
Zhang & Hood, 2016), and growth and development
(Mueller et al., 2015). Recently, researchers have focused
on bioenergetics and oxidative stress (Monaghan,
Metcalfe, & Torres, 2009; Zhang & Hood, 2016; Munro &
Pamenter, 2019), as well as hormonal regulation (e.g. sex ste-
roids, glucocorticoids) (Crespi et al., 2013; Vera, Zenuto, &
Antenucci, 2017; Eyck et al., 2019), as potential physiological
mechanisms mediating life-history trade-offs. Although sig-
nificant progress has been made, our ability to explain the
mechanisms responsible for life-history trade-offs is still lim-
ited, in part due to research and analysis methodology
(Williams, 2008; Wilson & Nussey, 2010; Careau &
Wilson, 2017), but also due to our inadvertent neglect of
important aspects of animal physiology.

The survival and performance of individuals is deter-
mined by their ability to adapt to ever-changing endoge-
nous and exogenous conditions (Nevo, 2011; Lane, 2016).
Intracellular proteins carry out a multitude of biological
functions that allow cells to respond to these challenges.
Proteins catalyse cellular reactions, provide structure, trans-
port, and allow cells to respond to stressors (Nelson &
Cox, 2008). In order to carry out their functions, proteins
must be folded in their native conformation. The endoplas-
mic reticulum (ER), or sarcoplasmic reticulum in skeletal
muscle, plays a central role in synthesis, folding, modifica-
tion, and transport of proteins (Tu & Weissman, 2004;
Wu & Kaufman, 2006; Nelson & Cox, 2008; Cao &
Kaufman, 2012; Sherwood, 2016). Specifically, secreted
proteins in the ER may undergo a series of post-
translational modifications before folding (Feldman, Chau-
han, & Koong, 2005). The process of ER protein folding or
post-translational modification is achieved with the help of
molecular chaperones and molecular oxygen, which initi-
ates oxidative folding as the major electron acceptor in the

electron relay system (Tu & Weissman, 2004; Feldman
et al., 2005).
Proper processing of proteins requires tight regulation of

ER homeostasis. In an unstressed cell, the vast majority of
proteins are folded in their native conformation and are func-
tionally active. However, the difference in free energy
between the folded and unfolded states of proteins under
normal physiological conditions is small and thus the native
conformation of proteins is only marginally stable. Many
proteins readily unfold, or do not fold properly, when
exposed to small changes in the cellular environment such
as increased heat, change in pH, altered redox status, viral/
bacterial infection, and rapid increase in rate of protein syn-
thesis (Gething & Sambrook, 1992; Hartl, Martin, &
Neupert, 1992; Nelson & Cox, 2008). For example, heat
stress causes misfolding and other structural changes to pro-
teins that negatively affect enzyme functions (Tomanek, 2014;
Lee et al., 2019); some bacterial and viral infections disrupt
homeostasis such that the rate of protein synthesis outpaces
the capacity of cells to fold proteins (Celli & Tsolis, 2015; Liu
et al., 2020). In specialized secretory cells, the task of maintain-
ing protein homeostasis is especially challenging because of
their high demand for protein synthesis and processing
(Nelson & Cox, 2008). High levels of misfolded and/or
unfolded proteins can impair functionality of enzymes and
transport proteins by preventing substrate binding, as well as
causing protein aggregations that disrupt other cellular compo-
nents (Nelson & Cox, 2008). This prevents cells from function-
ing properly and can result in either cellular necrosis and
reduced organ capacity or the malignant transformation of
cells which causes them to become cancerous (Ni &
Lee, 2007; Sigurdsson & Miharada, 2018).
ER stress occurs when cells are overloaded with unfolded

or misfolded proteins and when protein production rates
exceed the cells’ protein folding capacities (Wu &
Kaufman, 2006; Cao & Kaufman, 2012; Bravo et al., 2013;
Hong et al., 2017). In response to ER stress, organisms
evolved a suite of machineries, including the unfolded pro-
tein response (UPRER) that maintains proper folding and
processing of intracellular proteins (Tu & Weissman, 2004;
Bravo et al., 2013; Díaz-Hung, Martínez, & Hetz, 2020).
Herein, we propose that the UPRER could play a role in
mediating inter- and intraspecific variation of life-history
strategies (Fig. 1). Throughout this review, we will refer to
stressors as any environmental or physiological challenges
that disrupt cellular homeostasis, and stress as the physiolog-
ical responses to these challenges (see Table 1 for a glossary of
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terms). We acknowledge that these definitions are very gen-
eral, especially in the context of ER stress where protein
homeostasis can be easily perturbed. However, we will follow
these broad definitions throughout to ensure that our use of
terminologies is consistent with how ER stress is defined in
the biomedical literature.

The molecular pathway of ER stress and the resulting
UPRER has been extensively reviewed by other authors

(Wu et al., 2011; Cao & Kaufman, 2012; Bravo et al., 2013;
Bohnert, McMillan, & Kumar, 2018; Fiorenza et al., 2018;
Sigurdsson & Miharada, 2018). We provide a brief descrip-
tion of the UPRER herein and refer our readers to those
reviews for more extensive descriptions of the UPRER path-
ways. When protein load and/or misfolded proteins surpass
a critical threshold, the UPRER is activated to alleviate ER
stress. The UPRER is governed by three ER transmembrane
sensors, namely protein kinase R-like endoplasmic reticulum
kinase (PERK), inositol-requiring protein 1α (IRE1α), and
activating transcription factor 6 (ATF6) (Wu & Kaufman,
2006; Cao & Kaufman, 2012). IRE1α and ATF6 are associ-
ated mostly with the adaptive phase of the UPRER while
PERK is primarily associated with the apoptotic phase.
During resting/unstressed conditions, the ER chaperone
protein binding immunoglobulin protein (BiP; also called
GRP78) binds to the transmembrane sensors to inhibit their
oligomerization and phosphorylation (Fig. 2A) (Wu &
Kaufman, 2006; Cao & Kaufman, 2012; Afroze &
Kumar, 2019). According to a widely accepted model, dur-
ing mild and/or transient ER stress due to accumulation of
misfolded or unfolded proteins, BiP dissociates from IRE1α
and ATF6, but not PERK. IRE1α is dimerized and phos-
phorylated to induce splicing of X-box binding protein-1
(XBP-1). At the same time, BiP dissociation causes transloca-
tion and cleavage of ATF6 (Fig. 2B). Both processes reduce
the secretory protein load, enhance ER protein folding, and
increase clearance capacity through degradation pathways
such as the ER-associated degradation pathway (ERAD)
(Fig. 2C) (Wu & Kaufman, 2006; Wu et al., 2011; Cao &
Kaufman, 2012; Sigurdsson & Miharada, 2018). During
prolonged and severe ER stress, BiP also dissociates from
PERK, induces phosphorylation of a downstream protein,
eukaryotic translation initiation factor 2α (eIF2α), which in
turn causes induction of the transcription factor C/EBP
homologous protein (CHOP) that initiates the apoptotic
pathway (Fig. 2D) (Wu & Kaufman, 2006; Wu et al., 2011;
Cao & Kaufman, 2012; Sigurdsson & Miharada, 2018). At
the same time, activation of PERK results in inhibition of
protein translation, relieving the load on the ER of newly syn-
thesized proteins (Wu & Kaufman, 2006; Cao &
Kaufman, 2012; Afroze & Kumar, 2019).

This response has similarities with the better-known stress
response involving the hypothalamic–pituitary–adrenal
(HPA) axis, where transient increases in glucocorticoid levels
due to acute stress are generally adaptive and promote sur-
vival, while prolonged elevated levels of glucocorticoids due
to chronic stress are generally maladaptive and can lead to
immunosuppression, disease, or even death (Levine, 1993;
Sapolsky, 2004; Crespi et al., 2013). Other physiological sys-
tems that maintain cellular proteostasis and that are arguably
more commonly evaluated in an ecological context include
the heat-shock response (HSR) that manages cytosolic dena-
tured proteins via the action of heat-shock factors such as
HSF1 and HSF2, and the mitochondrial unfolded protein
response (UPRmt) that facilitates protein folding and main-
tains proteostasis within the mitochondria through the

Fig 1. The balance between folded and unfolded proteins can
shift when exogenous or endogenous stressors disturb
homeostasis within cells. Labile proteins can unfold and many
proteins can misfold or remain unfolded when folding
mechanisms cannot keep pace with increased protein
syntheses. This increase in intracellular unfolded proteins is
referred to as endoplasmic reticulum (ER) stress. ER stress has
the capacity to impact animal performance
negativelyviachanges in capacity for growth, reproduction,
activity, and self maintanence.
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actions of mitochondrial heat-shock proteins, including
mtHSP70 and mtHSP60 (Gidalevitz, Prahlad, & Morimoto,
2011; Hill et al., 2013; Jovaisaite, Mouchiroud, & Auwerx,
2014; Wada, 2019). The UPRER, UPRmt and HSR work
together to allow organisms to adapt to constantly changing
environments by conferring on them the ability to respond
to a multitude of intracellular and extracellular stressors.
It has been shown that ER stress responses are heritable

(Dombroski et al., 2010) and that there is considerable
individual variation in UPRER phenotype in humans and
non-human animals, both in terms of baseline levels of
UPRER-associated genes such as BiP, GRP94, calnexin, and
CHOP, as well as stress-induced levels of the same genes
(Dombroski et al., 2010; Havighorst et al., 2019; Zhang
et al., 2019), suggesting that ER stress and UPRER phenotype
can be subjected to natural selection. Variation in UPRER

phenotype and plasticity presumably reflects the ability to
modulate the UPRER in the face of ER stress. For instance,
animals with higher baseline levels of chaperones such as
BiP and calnexin, or animals that exhibit a more intense
UPRER upon exposure to environmental or physiological
stressors, could be more capable of dealing with ER stress.
At the same time, an elevation in UPRER thresholds or
inducibility may render individuals more prone to ER
stress-associated apoptosis, which could impact ER stress-
associated phenotypes linked to ageing. Animals in nature
exhibit behaviours that increase activity and energy expendi-
ture (i.e. exercise) (Sinclair et al., 2014; Halsey, 2016;
Yap, Serota, & Williams, 2017), and are regularly exposed to
fluctuating environmental conditions (Swanson & Garland,
2009; Storz, Scott, & Cheviron, 2010; Nilsson &
Nilsson, 2016; Scott &Dawson, 2017), both of which have been
shown to induce ER stress (Deldicque et al., 2010; Bohnert
et al., 2018). Therefore, it is plausible that animals with different
UPRER phenotypes should adopt different life-history strategies
to copewith these energy demands and environmental stressors.
Indeed, there is some evidence suggesting that UPRER pheno-
type is linked to behavioural phenotype in rodents, especially
behaviours pertaining to energy consumption and expenditure,
learning and memory, as well as circadian rhythm (reviewed in
Díaz-Hung et al., 2020). We speculate that animals found in
harsh environments with unpredictable food availability have
a UPRER phenotype that confers on them the ability to cope
with high levels of ER stress. However, the sameUPRER pheno-
type could be maladaptive in a different environment, where
high UPRER responsivity could lead to development of cancer
or metabolic diseases (Ni & Lee, 2007; Bravo et al., 2013;
Havighorst et al., 2019). Hence, selection should not always
favour high UPRER responsivity as it does not necessarily lead
to high fitness. We suspect that variable environments will act
to maintain diversity in UPRER over time as a mechanism of
environmental adaptation.
To date, most of what we know about ER stress and the

UPRER in animals has either been frombiomedical studies using
cell culture (Salmon et al., 2009; Harper et al., 2011), from exper-
iments involving conventional laboratory model systems such as
Caenorhabditis elegans (Prahlad & Morimoto, 2009; Sadighi Akha

Table 1. Glossary of terms

Term Definition

Apoptosis A form of programmed cell
death.

Clearance capacity The capacity to remove
misfolded and/or unfolded
proteins from cells.

Endoplasmic-reticulum-
associated protein
degradation (ERAD)

A cellular process responsible for
degradation of misfolded/
unfolded proteins.

Endoplasmic reticulum
unfolded protein response
(UPRER)

A conserved cellular response
that increases the ER protein
folding capacity,
downregulates translation of
protein, and enhances
clearance of misfolded/
unfolded proteins.

Erythropoiesis The process of red blood cell
synthesis.

Heat shock response (HSR) A cellular stress response that is
activated upon cellular stress
and induces transcription of
molecular chaperones to
manage misfolded/unfolded
proteins in the cytosol.

Hypothalamic–pituitary–
adrenal (HPA) axis

An endocrine system that
regulates a suite of metabolic
processes and production of
glucocorticoids.

Mitochondria-associated
membrane (MAM)

Close contact sites between the
ER and mitochondria that
allow communication and
exchange of molecules
between the two organelles.

Mitochondrial unfolded
protein response (UPRmt)

A conserved cellular response
that maintains proteostasis of
mitochondria by activating
mitochondrial chaperones
upon sensing accumulation of
misfolded/unfolded proteins
within mitochondrial
compartments.

Molecular chaperone Proteins that assist in folding and
assembly of other cellular
proteins.

Myogenesis The process of muscular tissue
formation.

Proteostasis Maintenance of protein
homeostasis.

Stress Physiological responses to
environmental challenges.

Stressors Environmental or physiological
challenges that disrupt cellular
homeostasis.

Thapsigargin A common ER stress inducer
that inhibits sarco/
endoplasmic reticulum
calcium ATPase (SERCA) in
cells.

Tunicamycin A common ER stress inducer
that inhibits N-linked
glycosylation in cells.
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et al., 2011) and inbred laboratorymice (Musmusculus) (Deldicque
et al., 2010; Banerjee et al., 2011), and from agriculturally impor-
tant species such as cattle (Bos taurus) (Gessner et al., 2014; Yone-
kura et al., 2018) that exhibit limited genetic diversity, and almost
all studies were conducted in controlled settings that are often
quite different from the conditions animals experience in nature

(Fonseca et al., 2014; Yap et al., 2017). Furthermore, these studies
conventionally involve the study of qualitative changes in gene
expression, exemplified by loss of function or overexpression of
specific UPR-associated genes under investigation, ignoring the
impact of subtle quantitative changes that are frequently seen
in naturally existing populations. However, given that ER stress

Fig 2. (A) Under unstressed conditions, properly folded proteins are released into the cytosol from the ER lumenviavesicular export.
The chaperone BiPs are bound to IRE1α, ATF6, and PERK. (B) Under mild and transient stress, where moderate load of misfolded/
unfolded proteins are found in the ER, BiP dissociates from IRE1α and ATF6 to bind tomisfolded and unfolded proteins, and induces
activation of XBP-1 and cleavage of ATF6. (C) Activation of XBP-1 and cleavage of ATF6 lead to degradation of misfolded and
unfolded proteinsviaERAD, where misfolded proteins are translocated into the cytosol and degraded by proteasomes. (D) Under
severe/prolonged stress, where there is an overload of misfolded/unfolded proteins in the ER, BiP dissociates from PERK to
activate the downstream apoptotic pathwayviaCHOP, (E) eventually leading to apoptosis. ATF6, activating transcription factor 6;
BiP, binding immunoglobulin protein; CHOP, C/EBP homologous protein; ER, endoplasmic reticulum; ERAD, ER-associated
degradation; elF2α, eukaryotic translation initiation factor 2α; IRE1α, inositol-requiring protein 1α; mRNA, messenger RNA;
PERK, protein kinase R-like endoplasmic reticulum kinase; XBP-1, X-box binding protein-1.
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and theUPRER involve evolutionarily conserved pathways, find-
ings from the aforementioned studies should allow us to make
predictions pertaining to free-living organisms in natural settings.
Here, we review studies that investigated ER stress and the
UPRER in relation to key life-history traits including growth
and development, reproduction, bioenergetics and physical per-
formance, and ageing and senescence.We then ask if these stud-
ies can inform us about the role of ER stress and the UPRER in
mediating these life-history traits in free-living animals. Finally,
we discuss challenges of studying ER stress and the UPRER in
free-living animals and non-conventional model systems and
propose ways not only to study ER stress and the UPRER in
natural populations, but also to integrate other physiological
pathways to understand better the mechanisms underlying
life-history trade-offs in animals.

II. GROWTH AND DEVELOPMENT

Development and growth, especially during early life, are
periods of rapid cellular proliferation and transformation.
To support these processes, rates of protein synthesis and
secretion by the ER are high in many cell types, particularly
secretory cells (Shaffer et al., 2004; Hetz, 2012). The UPRER

and ERAD pathway play vital roles both in supporting these
developmental processes and in protecting young from envi-
ronmental stressors. Knockout experiments have highlighted
the importance of the ability to respond to ER stress during
development. Embryos with homozygous knockouts of many
ER stress chaperones are largely inviable (Ni & Lee, 2007).
For example, the transcription of BiP is upregulated in both
the mammalian trophoblast and the inner cell. Embryos
lacking BiP do not hatch from the zona pellucida and display
massive apoptosis as the inner cell mass starts to form (Luo
et al., 2006). The ERAD pathway is responsible for moving
misfolded and unassembled proteins into the cytosol where
they are degraded by the ubiquitin–proteasome system
(Ni & Lee, 2007). Sasagawa, Yamanaka, & Ogura (2007)
found that inhibition of key ligases (p97 and E3 ubiquintin
ligases) in the ERAD pathway inhibits the removal of mis-
folded proteins, hinders intestinal function, and ultimately
reduces growth in C. elegans. These studies confirm that natu-
ral processes that occur during development contribute to
ER stress and that ERAD and the UPRER play necessary
roles in mitigating ER stress. The extent to which natural
variation in the expression of the UPRER and ERAD pro-
teins impacts development, as well as how this variation
relates to animals with different growth rates (e.g. mouse ver-
sus elephant), is unknown and warrants further investigation.

The stressors that animals experience during development
andpostnatal growthcanhave lasting impactson thephenotypes
that they display throughout life (Barker, 1990;
Monaghan, 2008; Gardner, Ozanne, & Sinclair, 2009;
Kasumovic, 2013). While little studied, the UPRER and ERAD
likely play vital roles in buffering young animals from these
stressors. In viviparous species, uterine development buffers

offspring from the external environment prior to birth and thus
many of the stressors that alter offspring phenotype are mater-
nally derived. It is likely that some maternal stressors contribute
toERstress in theirdevelopingembryosandactivate theUPRER

andERAD. It has been shown that thematernal consumptionof
a high-fat diet contributes to ER stress and transgenerational
increases in the ratio of phosphorylated eIF2α to unphosphory-
lated eIF2α andCHOP in the liver of male offspring later in life
(Li et al., 2012). This suggests that there is progressive accumula-
tion of unresolved ER stress across generations (Li et al., 2012).
Whether maternal high-fat intake contributed to ER stress in
young in utero was not evaluated but it is possible that early-life
activation of ER stress could be responsible for the increase in
ER stress markers seen from one generation to the next.
Because the barrier between the embryo and its environ-

ment is more limited, oviparous species have a greater prob-
ability of environmental perturbation during development
than viviparous species. Thus, oviparous species may be
more likely to experience increased ER stress associated with
exogenous variables. Skeletal muscle myofibrils proliferate
during early development (van der Ven et al., 1991). As a
result, disturbances that alter skeletal muscle development
in ovo, can have lifelong effects on muscle performance.
Indeed, a 1�C increase in incubation temperature during
the second half of incubation has been shown to reduce skel-
etal muscle mass and upregulate genes associated with the
ER stress response in Peking ducks Anas platyrhynchos domestica
(Liu et al., 2015). Li et al. (2017) repeated this experiment and
compared birds that experienced an increase of 1�C in incu-
bation temperature to birds that received no thermal manip-
ulation but instead received a dose of tunicamycin.
Administration of tunicamycin inhibits N-glycosylation and
is commonly used experimentally to induce ER stress in ani-
mals. They found that the mass of the breast muscle of
embryos in both the thermal and tunicamycin groups were
lower than the normothermic and untreated controls. Fur-
ther, messenger RNA (mRNA) markers of ER stress, includ-
ing ATF6, BiP, eIF2α, and XBP-1, were upregulated in both
thermal and tunicamycin groups, suggesting that ER stress is
likely responsible for the decline in the breast muscle mass of
duck embryos subjected to thermal stress (Li et al., 2017). It
remains to be seen if lower muscle mass in ducks exposed to
thermal stress and ER stress during development lead to
lower muscle performance later in life.
Taken together, we hypothesize that ER stress and the

UPRER are more tightly regulated at earlier stages of devel-
opment compared to later stages of development or during
ageing. We also hypothesize that during development, ovip-
arous species have more tolerance for ER stress and have
higher UPRER responsivity than viviparous species.

III. REPRODUCTION

Reproduction, along with survival, are the key determinants
of lifetime fitness (Roff, 2008; Wilson & Nussey, 2010).
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Reproduction can be a highly physiologically demanding
event and the potential costs of reproduction have been rela-
tively well studied (Calow, 1979; Speakman, 2008; but see
Williams, 2012b, 2018). Many reproductive events and
stages, including gametogenesis, lactation, and morphologi-
cal changes in reproductive organs, require drastic changes
in rates of protein synthesis and folding (Guzel et al., 2017)
and thus likely impact the ER and regulation of the UPRER.
However, research effort to date aiming to elucidate poten-
tial mechanisms for individual variation in reproductive per-
formance has largely ignored ER stress and the UPRER, and
has mainly focused on the endocrine system and oxidative
stress (Jones et al., 1987; Clutton-Brock, 1988; Hamel
et al., 2009; Williams & Fowler, 2015). Only recently have
ER stress and ER dysfunction been investigated as a possible
cause for infertility in limited biomedical studies (Guzel
et al., 2011; Yang et al., 2016; Karna et al., 2019). To our
knowledge, the role of ER stress and the UPRER in animal
reproduction has not been evaluated in the context of ecol-
ogy and evolution.

One of the main components of reproductive success is
fecundity, a measure of an animal’s maximum reproductive
potential (Bradshaw & McMahon, 2008). In females, fecun-
dity is determined, in part, by the process of oogenesis. Pro-
tein synthesis is vital to proper oocyte development and
maturation and the ER plays a key role in meeting oocyte
protein demand (Guzel et al., 2017). The effects of ER stress
and the UPRER on oocyte maturation and preimplantation
embryonic development have recently been reviewed by
Lin et al. (2019). Studies in mice (Zhang et al., 2012a), pigs
(Zhang et al., 2012b; Lin et al., 2016), and cattle (Song
et al., 2014; Sharma et al., 2015) show that ER stress induction
via tunicamycin negatively impacts oocyte maturation by
causing protein misfolding and inducing apoptosis (Lin
et al., 2019). Similarly, another study found that ER stress
caused abnormal mouse oocyte development during in vitro

maturation when treated with high levels of palmitic acid
(Wu et al., 2012). Taken together, these studies showed that
experimentally induced ER stress negatively impacts oocyte
development and that the UPRER could influence overall
female reproductive success.

Along the same lines, spermatogenesis and sperm function
rely on the ER for protein synthesis and development with
the implication that ER function affects male fertility
(Karna et al., 2019). Most studies have shown that ER stress
induction increases apoptosis in the testes and decreases
sperm quality. For example, a study conducted by Ji
et al. (2012) exposed male mice to cadmium, a testicular toxin
that induces ER stress and the UPRER by increasing oxida-
tive stress, and found significantly higher numbers of apopto-
tic cells in the testes, as well as increased expression of
CHOP, IRE1α, XBP-1, and BiP. Exposure to fine particu-
late matter is known to decrease sperm quality. Sprague–
Dawley rats exposed to fine particulates displayed increased
expression of BiP, XBP-1, and CHOP, as well as more apo-
ptotic cells in the testis and epididymis (Liu et al., 2017). This
finding indicates that relatively high expression of the

UPRER in the reproductive tract will likely correlate with
reproductive success in male animals. One study produced
Drosophila melanogaster lines that had excessive ER stress, either
by increasing the expression of a misfolded protein or by
knocking down BiP expression in the male accessory gland,
which excretes seminal proteins essential for reproduction.
Interestingly, this study found that in both lines of Drosophila
melanogaster with excessive ER stress, males were almost
completely infertile and produced no progeny, despite hav-
ing similar sperm production to controls (Chow
et al., 2015). This finding suggests that even though ER stress
may not affect spermatogenesis in flies directly, the UPRER

and ER stress still play a major role in reproductive success
of males.

Outside of oocyte and sperm development and function,
ER stress and the UPRER have been linked to other aspects
of reproduction. Most other studies have focused on how
the ER and UPRER interact with female reproduction in
mammals, and these studies have been extensively reviewed
elsewhere (Yang et al., 2016; Burton, Yung, &
Murray, 2017; Guzel et al., 2017). A few of the areas that
ER stress and/or the UPRER have been linked to are follicle
atresia (Lin et al., 2012), preimplantation embryonic develop-
ment (Kim, Kim, & Lee, 1990; Zhang et al., 2012a; Basar
et al., 2014), embryonic implantation and decidualization
(Gao et al., 2012; Lin et al., 2014), corpus luteum development
and regression (Kogure et al., 2013; Park et al., 2013), and in
the endometrium throughout the menstrual cycle (Guzel
et al., 2011). Upregulation of the UPRER has also been
explored as a possible mechanism and treatment for human
infertility and reproductive problems such as endometriosis,
and endometrial, cervical, and ovarian cancers (Guzel
et al., 2017). There is also a link between the expression of
BiP and oestradiol production (Guzel et al., 2011, 2017),
which is a major steroid hormone that regulates female
reproduction and has been linked to variation in reproduc-
tive success in various taxa (Williams, 2012b; Verderame &
Scudiero, 2018). All of the evidence above points to the
potentially important role of ER stress and the UPRER in
determining fertility of females, especially in placental
mammals.

One key determinant of reproductive success that is
unique to mammals is capacity for milk synthesis. Lactation
is a physiologically stressful event due to a sharp increase in
demand for the synthesis of milk fats and proteins, which
can lead to ER stress and activation of the UPRER

(Invernizzi, Naeem, & Loor, 2012). Most studies investigat-
ing the links between ER stress, the UPRER, and lactation
and milk yield have been conducted in dairy cows. Many
dairy cows are susceptible to liver diseases like fatty liver
and ketosis because of a negative energy balance during early
lactation, and the UPRER has been implicated as a possible
mechanism for these diseases (Ringseis, Gessner, &
Eder, 2015). Multiple studies have also shown that dietary
supplements or changes that reduce the overall amount of
ER stress usually increase overall milk yield (Winkler
et al., 2015; Nichols et al., 2017). A study conducted by
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Yonekura et al. (2018) showed a positive correlation between
XBP-1 expression and milk yield, as well as a negative corre-
lation between CHOP expression and milk yield, suggesting
that both the IRE1α arm and the PERK arm of the UPRER

system work in tandem to regulate lactation in dairy cows.
Specifically, the IRE1α arm of the UPRER system is respon-
sible for maintaining the milk production machinery, while
the PERK arm of the UPRER system is responsible for
supressing apoptosis during lactation (Yonekura
et al., 2018). Thus, it seems plausible that females that are
able to modulate the IRE1α arm and the PERK arm of the
UPRER system efficiently are more likely to wean more
young post-parturition.

Many studies support the link between the UPRER, ER
stress, and reproduction. However, current research is biased
towards mammals, and more research needs to be conducted
in a diverse range of taxa to understand this link better.
There is also a lack of studies that connect the UPRER, ER
stress, and whole-organism or population-level reproductive
success. Although oocyte and sperm development, the health
of the female reproductive environment, and capacity for lac-
tation no doubt affect reproductive success, to our knowl-
edge, there is no study looking directly at how intra- and
interspecific variation of the UPRER affect reproductive suc-
cess. We hypothesize that females that are better able to cope
with ER stress during reproduction, either by having higher
levels of chaperones such as BiP and calnexin, or by exhibit-
ing a more intense UPRER in the face of ER stress, will have
higher reproductive performance. Further, according to life-
history theory, it seems plausible the sameUPRER phenotype
that leads to higher reproductive performance could also
lead to negative ramifications on the lifespan or survival of
animals. However, more empirical tests need to be con-
ducted to address this hypothesis.

IV. BIOENERGETICS AND PHYSICAL
PERFORMANCE

An important determinant of Darwinian fitness is physical
performance of animals. Traits that lead to superior physical
and exercise performance can allow individuals to forage
more, escape from predators, and attract high-quality mates
(Le Galliard, Clobert, & Ferrière, 2004; Lailvaux &
Husak, 2014; Killen et al., 2017), although presumably at a
cost (Lailvaux & Husak, 2014; Husak, Ferguson, &
Lovern, 2016; Husak, Roy, & Lovern, 2017). Considerable
progress has been made regarding physiological and biome-
chanical mechanisms that underpin inter- and intraspecific
variation in exercise performance (Lailvaux & Husak, 2014;
de Albuquerque, Bonine, & Garland, 2015; Sathe &
Husak, 2015; Irschick & Higham, 2016; Yap et al., 2017).
However, one area that has largely been overlooked by eco-
logical and evolutionary physiologists so far is the role of ER
stress and the UPRER in mediating animals’ capacity to
engage in moderate- to high-intensity physical activity

(i.e. exercise), as well as the effects of sustained activity (for
example, exercise training in humans) on ER physiology.
It has been well documented that free-living animals expe-

rience radical changes in their morphology and physiology
during life-history stages that are particularly energetically
demanding and involve elevated physical performance, par-
ticularly physical performance that involves aerobic traits.
For instance, prior to and during migration, migratory birds,
mammals, and fishes upregulate the rate of erythropoiesis
(Fudickar et al., 2016; Krause et al., 2016; Yap, Tsai, &
Williams, 2019), myogenesis (Swanson, 2010; Palstra
et al., 2014; Fudickar et al., 2016), mitochondrial biogenesis
(Bremer & Moyes, 2011; McClelland, 2012; Fudickar
et al., 2016), and metabolic enzyme activities (Weber, 2009;
Guglielmo, 2010, 2018; Price et al., 2011; McGuire, Fen-
ton, & Guglielmo, 2013; Morash et al., 2014; Fudickar
et al., 2016), all of which require proper regulation of ER
stress and UPRER pathways (Bohnert et al., 2018; Sigurds-
son & Miharada, 2018). More specifically, these physiologi-
cal processes involve increased proliferation and
differentiation of adult stem cells, changes in the rate of pro-
tein synthesis and folding in mature differentiated cells, vas-
cular remodelling and angiogenesis (Phillips et al., 2013), all
of which are controlled or mediated by various arms of the
UPRER system (Trumpp, Essers, & Wilson, 2010; Bohnert
et al., 2018; Sigurdsson & Miharada, 2018; Liu et al., 2019;
Merle et al., 2019; Mohammad et al., 2019).
Dormant adult stem cells such as muscle satellite cells and

haematopoietic stem cells typically have low levels of oxida-
tive phosphorylation as well as low rates of protein synthesis
(Mohammad et al., 2019). Under proliferative conditions,
which can be induced by injury or the need to increase phys-
ical performance (e.g. exercise), adult stem cells need to deal
with increased protein production rate. This increase in pro-
tein synthesis rate could potentially cause dysregulation of
proteostasis in cells, leading to ER stress and the UPRER

(Sigurdsson & Miharada, 2018). Hence, tight regulation of
ER stress and UPRER signals is essential for the health of pro-
liferating and differentiating adult stem cells, and for safe-
guarding downstream physiological processes such as
erythropoiesis and myogenesis.
Most studies to date have used injury and regeneration

models to study the role of ER stress and the UPRER on
erythropoiesis, an important determinant of aerobic capacity
(Sigurdsson & Miharada, 2018). The precise ER stress and
UPRER pathway responsible for regulating erythropoiesis is
still under investigation, mainly due to difficulties in estab-
lishment of haematopoietic stem cells in vitro. However, an
in vivo study found that XBP-1 knockout mice developed
hypoplastic liver and severe anaemia, although development
of anaemia and lethality was mostly attributed to impaired
hepatocyte growth rather than erythropoiesis per se

(Reimold et al., 2000; Sigurdsson & Miharada, 2018).
Another study found that oestrogen administration augments
regeneration capacity of haematopoietic stem cells in mice by
binding to a promoter region of IRE1α and directly modulat-
ing the IRE1α arm of the UPRER system (Chapple

Biological Reviews 96 (2021) 541–556 © 2020 Cambridge Philosophical Society

548 Kang Nian Yap et al.



et al., 2018; Sigurdsson & Miharada, 2018). Adaptive modu-
lation of haematological parameters is important for optimal
physical performance of animals, especially in environments
with fluctuating oxygen levels (Fedde, 1990; Prats et al., 1996;
Yap et al., 2018). Given the central role of the IRE1α arm of
the UPRER system in regulating erythropoiesis, it seems plau-
sible that individuals with the ability to adaptively modulate
IRE1α expression or the UPRER in general will be able to
optimize their aerobic performance better in different envi-
ronments. Indeed, there is some evidence showing that deer
mice Peromyscus maniculatus adapted to a high-altitude envi-
ronment have a distinct polymorphism in the BiP promoter
and exhibit a more intense UPRER to ER stress (Havighorst
et al., 2019). However, it is not entirely clear whether this dis-
tinct UPRER phenotype is directly linked to adaptation to a
high-altitude environment. It remains to be seen whether
IRE1α expression differs between migratory versus non-
migratory animals.

Performance traits that are largely anaerobic such as sprint
speed and bite force are determined in part by muscle pheno-
type and physiology (Husak & Lailvaux, 2017). Regulation of
muscle physiology and myogenesis by ER stress and UPRER

pathways has been well studied and reviewed extensively
(Bohnert et al., 2018; Afroze & Kumar, 2019; Mohammad
et al., 2019). A study conducted by Xiong et al. (2017) found
that upon muscle injury, satellite cells showed increases in
levels of PERK and IRE1α. However, inhibition of PERK,
but not IRE1α in satellite cells negatively affected muscle
regeneration in adult mice, suggesting that the PERK arm
of the UPRER system is the main regulator of regeneration
myogenesis. Another important cellular process that occurs
during myogenesis is apoptosis, where differentiation-
incompetent myoblasts are eliminated from the system
(Nakanishi, Sudo, & Morishima, 2005; Nakanishi, Doh-
mae, &Morishima, 2007; Afroze & Kumar, 2019). This pro-
cess is mainly mediated by the ATF6 arm of the UPRER

system (Nakanishi et al., 2005, 2007; Afroze &
Kumar, 2019). Furthermore, a study conducted in muscle
cells isolated from ducks showed that myoblast proliferation
and myotube hypertrophy are mediated through ER-stress-
dependent pathways (Sun et al., 2013). Together, the PERK
arm and ATF6 arm of the UPRER system regulate the phys-
iological process of myogenesis, ultimately determining mus-
cle phenotype and consequently the physical performance of
animals.

Aside from haematological parameters and muscle physi-
ology, both anaerobic and aerobic performance of animals
are also determined by the capacity of their metabolic
enzymes and to some extent, mitochondrial density
(Coyle, 1999; Joyner&Coyle, 2008; Conley, 2016; Irschick&
Higham, 2016; Yap et al., 2017). Many studies have found
exercise-induced upregulation of the transcriptional coacti-
vator peroxisome proliferator-activated receptor gamma
coactivator-1 alpha (PGC-1α) as a result of the activation of
the ATF6 arm of the UPRER system (Wu et al., 2011; Bohnert
et al., 2018; Afroze & Kumar, 2019). Likewise, it has also
been shown that the bile acid receptor, Takeda G-protein

receptor 5 (Tgr5), that regulates energy metabolism in vari-
ous tissues and promotes muscle cell differentiation and
hypertrophy, is upregulated upon activation of the UPRER

(Sasaki et al., 2018). Animals with higher muscle-specific
Tgr5 expression also showed higher muscle strength (Sasaki
et al., 2018), further supporting the role of the UPRER in
determining variation in physical performance of animals.
There is also ample experimental evidence showing
increased ER–mitochondria coupling, activation of mito-
chondrial oxidative phosphorylation, and enhanced ATP
synthesis during early stages of ER stress, indicating a strong
link between UPRER activation and mitochondrial function,
oxidative metabolism, and energy homeostasis (Lin,
Handschin, & Spiegelman, 2005; Bravo et al., 2011, 2013;
Wu et al., 2011). A large-scale study conducted by Bowden-
Davies et al. (2015) compared the proteome of two diver-
gently selected high- and low-endurance running-capacity
rats and found that low-capacity runners, which had lower
endurance performance, had higher levels of BiP in their adi-
pose tissue, despite not showing any major differences in
mitochondrial enzyme content. However, due to the correla-
tional nature of the data, we need to be cautious about infer-
ring causal relationships between BiP level, mitochondrial
enzyme content, and running performance. It remains to
be seen whether experimental manipulation of either BiP
level or the ATF6 arm of the UPRER system (e.g. through
overexpression or knockdown of genes) affects the energy
metabolism and exercise performance of animals.

We predict that animals with a more energetically
demanding life history (e.g. involving migration), or animals
that live in harsher environments that require high aerobic
and anaerobic performance will have a UPRER phenotype
that confers on them the ability to withstand high levels of
ER stress. The plasticity of the UPRER in relation to different
life-history stages (e.g. moult versus migration) also warrants
further investigation. Furthermore, we need to consider the
different kinds of physical performance (i.e. aerobic versus

anaerobic) that are sustained by different morphologies and
physiological pathways, as these types of performance show
specific pattens of life-history trade-offs (Lailvaux &
Husak, 2014; Husak & Lailvaux, 2017). Animals with differ-
ent life-history strategies that require optimisation of differ-
ent kinds of physical performance likely modulate ER stress
and the UPRER differently.

V. AGEING AND SENESCENCE

For decades, evolutionary biologists have been trying to
uncover the physiological basis of ageing and senescence –
a process characterized by decline in tissue and cellular func-
tion (Speakman, 2005; Miller et al., 2011; Selman et al., 2012;
Gorbunova et al., 2014; Childs et al., 2015). How physiologi-
cal processes break down with ageing and senescence has
been well established in conventional laboratory model sys-
tems (Morley & Morimoto, 2004; Higuchi-Sanabria
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et al., 2018). Perhaps the best-studied theory for the physio-
logical basis of ageing and senescence is Harman’s ‘free rad-
ical theory of ageing’, which posits that reactive oxygen
species (ROS)-induced oxidative damage accumulates as
animals age and ultimately determines the lifespan of animals
(Harman, 1992; Beckman & Ames, 1998; Metcalfe &
Alonso-Alvarez, 2010; Selman et al., 2012). Since the publi-
cation of Harman’s seminal paper in Harman, 1992, count-
less ecological studies have been conducted to evaluate the
role of oxidative stress in ageing and senescence, but support
for the theory has been equivocal (Selman et al., 2012;
Gladyshev, 2014; Hood, Williams, & Hill, 2019). One key
area that has so far been overlooked by the ecology and evo-
lution community is the role of ER stress and UPRER on age-
ing and senescence (Pluquet, Pourtier, & Abbadie, 2015).

As organisms age, there is a marked change from protec-
tive processes of the UPRER (i.e. IRE1α and ATF6; Fig. 2B)
to more pro-apoptotic processes of the UPRER (i.e. PERK;
Fig. 2D) (Paz Gavilán et al., 2006; Szegezdi et al., 2006; Hus-
sain & Ramaiah, 2007; Naidoo et al., 2008). CHOP is consid-
ered a key pro-apoptotic marker of sustained ER stress, and
as the ageing process continues organisms show increased
CHOP expression in both the cerebral cortex (Naidoo
et al., 2008) and the hippocampus (Paz Gavilán et al., 2006),
as well as other body tissues including the lung, liver, kidney
and spleen (Hussain & Ramaiah, 2007). This suggests that as
ageing occurs, organisms experience increased rates of apo-
ptosis and cell death.

One of the hallmarks of ageing is cellular senescence
(Childs et al., 2015; Pluquet et al., 2015). The various inter-
connections between UPRER signalling and the different
aspects of the cellular senescence programs, as well as their
functional implications have been elegantly reviewed by Plu-
quet et al. (2015). With cellular senescence, elevated CHOP
levels have been shown to sensitise cells to oxidative stress
(McCullough et al., 2001; Shizuo et al., 2018). In addition to
CHOP, an apoptotic protein, c-Jun N-terminal kinase
(JNK) activated by IRE1α is upregulated as cells and tissues
senesce (Davis, 2000; Hussain & Ramaiah, 2007). Senescent
cells exhibit enhanced ER–mitochondrial tethering, leading
to an increase in calcium flux between the mitochondria
and the ER (Madreiter-Sokolowski et al., 2019). Although
the increased linkage results in increased mitochondrial res-
piration, it also increases production of ROS, which in turn
makes senescent cells more vulnerable to oxidative damage
and calcium-overload-induced cell death (Madreiter-
Sokolowski et al., 2019). These factors together could account
for an increased sensitivity to ER stress as cellular senescence
occurs (Chadwick & Lajoie, 2019).

Ageing and senescence are often accompanied by cellular
decline and in some cases, ER stress and the associated
UPRER have been linked to cellular decline (Taylor &
Dillin, 2013). Current data suggest that age-related decline
is associated with an inability to activate ER stress pathways
and other protective processes, and thus may be a key reason
why the physiological effects of ageing are so easily seen
(Taylor & Dillin, 2013). An organism’s ability to respond to

and cope with environmental stimuli and stress declines with
age and this decline in ability is linked in part to ER stress and
the associated UPRER (Taylor & Dillin, 2013). In many spe-
cies, the ability to undergo the UPRER has been noted to
decline sharply during ageing, possibly as processes shift from
the protective arms (i.e. IRE1α and ATF6; Fig. 2B) to the
pro-apoptotic arm (i.e. PERK; Fig. 2D) of the UPRER

(Hussain & Ramaiah, 2007; Higuchi-Sanabria et al., 2018).
Ageing cells have been shown to have both an altered capac-
ity to transcribe, translate and degrade proteins, as well as a
lowered number of important ER chaperones (Erickson,
Dunning, & Holtzman, 2006; Nuss et al., 2008), indicating
that certain ER stress pathways and UPRER activation are
negatively impacted with ageing. In C. elegans, activation of
the IRE1α arm of the UPRER along with its downstream tar-
gets and other transcription factors result in promotion of
longevity (Henis-Korenblit et al., 2010). Interestingly, it has
been shown that primary fibroblasts from long-lived rodents
such as the naked mole rat Heterocephalus glaber and Snell
dwarf mice are more sensitive to ER stress inducers like tuni-
camycin and thapsigargin, which inhibit N-linked glycosyla-
tion and sarco/endoplasmic reticulum calcium ATPase
(SERCA), respectively (Salmon et al., 2009), suggesting that
there may be species-specific differences in how longevity is
influenced by ER stress and the associated UPRER. It would
be interesting to find out whether repeated ER stress expo-
sure and activation of the UPRER throughout an animal’s life
has an effect on its longevity.
In addition to cellular decline, ER stress and the UPRER

have also been linked to a number of neurodegenerative dis-
eases (Yoshida et al., 2001; Harding & Ron, 2002; Lindholm,
Wootz, & Korhonen, 2006; Fonseca et al., 2014). In the
brain, breakdown of the UPRER and ER stress pathways
are often linked to a decreased responsivity to the ER
stress chaperone BiP, and downstream regulators
PERK, CHOP and IRE1α (Lindholm et al., 2006). Rabek,
Boylston & Papaconstantinou (Rabek, Boylston III, &
Papaconstantinou, 2003) showed a 50% reduction in BiP
protein expression in aged mouse liver and a 30% decrease
in the cerebral cortex. Decreased hippocampal concentra-
tion of BiP has also been shown in aged rats (Paz Gavilán
et al., 2006). As a result of decreased BiP levels, hippocampal
PERK mRNA downregulates significantly as an organism
ages, and the expression of PERK was limited in aged indi-
viduals compared to 3-month-old mice (Paz Gavilán
et al., 2006). Additionally, it has been found that brain eIF2α
kinase activity is less efficient in aged animals than in younger
individuals (Hussain & Ramaiah, 2007). Specifically, phos-
phorylation of PERK and eIF2α is lowered in an aged indi-
vidual, which impacts the ability of the UPRER to mitigate
ER stress (Hussain & Ramaiah, 2007). Calnexin, another
molecular chaperone associated with glycan binding in the
ER lumen, has also been implicated in a number of ageing-
related diseases (Hebert & Molinari, 2007). Specifically, cal-
nexin loss increases a cell’s sensitivity to apoptotic factors
through the activation of ganglioside GD3 (Tomassini
et al., 2004).
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Most studies regarding ageing and senescence in relation
to the UPRER and ER stress have been completed in a labo-
ratory setting, under tightly controlled conditions or using
cell culture lines. Very little research has investigated the
effects of ER stress and the UPRER on free-living, ageing ani-
mals under natural conditions. We speculate that the shift
from protective to pro-apoptotic processes of the UPRER

likely happens earlier in animals with shorter lifespans.
Developing a clear and generic hypothesis regarding UPRER

phenotype and longevity is challenging due to species and
taxon differences. Harper et al. (2011) found that although
fibroblasts isolated from long-lived bird species are resistant
to multiple forms of stress, their resistance to ER stress is sim-
ilar to birds with shorter lifespans. Surprisingly, Salmon
et al. (2009) found that fibroblasts isolated from naked mole
rats, which typically show minimal signs of senescence, are
less resistant to ER stress than other short-lived rodent spe-
cies. However, we need to be cautious about generalizing
findings from fibroblasts to other tissues and whole organ-
isms. Nevertheless, this gap in knowledge leaves many ques-
tions unanswered about how ER stress and the UPRER are
related to ageing and senescence in organisms in the wild.
Additionally, it should be noted that ER stress and the
UPRER can affect ageing both directly, as discussed in
this section, as well as indirectly through their effects
on other life-history variables that also mediate ageing
(e.g. reproduction) (Maklakov et al., 2017; Maklakov &
Chapman, 2019).

VI. DISCUSSION: CHALLENGES MOVING
FORWARD AND INTEGRATION WITH OTHER
PHYSIOLOGICAL SYSTEMS

Amultitude of biomedical studies have shown support for the
essential role of ER stress, the UPRER, and associated down-
stream pathways in modulating aspects of animal reproduc-
tion, growth and development, bioenergetic capacity and
physical performance, and ageing and senescence. However,
these studies are largely conducted in conventional
laboratory-based model systems and in environments that
are not ecologically relevant. Perhaps rather unsurprisingly,
there tends to be a bias towards mammalian models in the
current literature regarding ER stress and the UPRER. We
argue that there is a need to develop more ecologically rele-
vant studies to understand how ER stress and the UPRER

are related to various life-history traits in free-living animals.
An obvious place to start is characterizing ER stress and
UPRER phenotypes in free-living animals and investigating
how inter- and intraspecific variation in phenotypes relate
to life-history traits such as growth and development, repro-
duction, whole-organism performance, and ageing and
senescence. To achieve this, identifying key biomarkers to
characterise the UPRER phenotype representative of the
whole organism is essential. As discussed in Section V,
UPRER phenotype shown by primary fibroblasts have

provided valuable insights in studies of ER stress but it is
unclear whether the ER stress response of primary fibroblasts
can serve as a reliable indicator for tissues throughout the
body. Additionally, commonly employed ER stress inducers
(e.g. tunicamycin, thapsigargin, brefeldin A, bortezomib,
etc.) often elicit drug-specific physiological effects that are
not related to the UPRER (Chidawanyika et al., 2018). Hence,
it remains to be seen whether there is a universal marker or
metric that encompasses all forms of ER stress. Nevertheless,
studies should capitalize on existing populations of free-living
animals with large and distinct variation in ER stress respon-
sivity, such as the high- and low-altitude populations of
P. maniculatus reported by Havighorst et al. (2019), and ask
how life-history traits differ between these two populations,
as well as along the ER stress-responsivity continuum.
Another approach is to manipulate ER stress experimentally
in animals housed in natural or semi-natural enclosures using
ecologically relevant stressors such as infection and measure
fitness-related traits including reproductive output, growth
rate, and survival.

Another area of potential value is to focus not on the levels
of expression of individual chaperones as markers of UPRER

efficiency, but rather on the degree of UPRER coordination.
As it is a well-orchestrated response involving several molec-
ular components, it is plausible that the degree to which the
UPRER is coordinated across tissues and at the whole-
organism level during exposure to environmental stressors
will be of particular value in deciphering the role of ER stress
in environmental adaptation and evolution. It is still unclear
how differential regulation of the UPRER in different tissues
is integrated with UPRER intensity at the organismal level.
To that end, tissue-specific modifiers of the UPRERmay exist
and operate independently, influencing the organism’s
response to ER stress.

To accomplish these tasks, a number of barriers need to be
overcome. First, despite being a rather conserved physiolog-
ical pathway (Hollien, 2013), the ability to quantify physio-
logical ER stress at the protein level has only been
developed in recent years (Gupta et al., 2010; Qi, Yang, &
Chen, 2011) and there are specificity concerns regarding
commercial antibodies for detection of ER stress markers
(Haataja et al., 2008). Secondly, there are also logistical bar-
riers with animal tracking and non-lethal sampling of ani-
mals. However, recent advances in methods for wildlife
tracking and bio-logging (Wilmers et al., 2015) now allow
biologists to track animals effectively. ER stress and UPRER

phenotypes can also be characterized in primary culture of
fibroblasts (Havighorst et al., 2019), which can be isolated
from small skin biopsy samples (Khan &Gasser, 2016). How-
ever, how different cell and tissue types (e.g. secretory versus

non-secretory cells) respond to ER stress is variable, making
quantification of the impact of ER stress on performance at
the organismal level challenging. Thus, it remains to be seen
whether findings from primary fibroblasts can be extrapo-
lated to other tissues or to the whole-organism level. Further-
more, animals could be housed and experimentally
manipulated in natural or semi-natural enclosures
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(Mokkonen et al., 2011; Lonn et al., 2017), which would allow
for exposure to environmental conditions and stressors typi-
cal of their natural habitat, while at the same time allowing
easy tracking and close monitoring by researchers.

Cellular organelles such as the ER are generally very
dynamic; they often interact with other organelles to regulate
physiological functions and homeostasis. These intricate
interactions among organelles ultimately determine physio-
logical phenotype at the cell and organ levels, which eventu-
ally contribute to expression of whole-organism phenotype
(Tu & Weissman, 2004; Csordás et al., 2006; Giorgi
et al., 2009; Lebiedzinska et al., 2009; Janikiewicz
et al., 2018; Gordaliza-Alaguero, Cantó, & Zorzano, 2019).
It has been shown recently that close contact sites between
the ER and mitochondria, known as the mitochondria-
associated membrane (MAM), play an important role in age-
ing processes and longevity (Janikiewicz et al., 2018). Mito-
chondrial dysfunction and ER stress impair calcium and
redox homeostasis, which may initiate a cycle of increasing
oxidative stress, causing further calcium homeostasis dysre-
gulation, which in turn disrupts ER protein folding and
increases mitochondrial ROS production, eventually leading
to further ER and mitochondrial dysfunction (Malhotra &
Kaufman, 2007; Chaudhari et al., 2014; Janikiewicz
et al., 2018). Therefore, given the extensive research on how
oxidative stress influences life-history in the realm of ecology
and evolution (Monaghan et al., 2009; Metcalfe & Alonso-
Alvarez, 2010; Selman et al., 2012; Olson, 2020), and the
tight link between the ER and mitochondria (Giorgi
et al., 2009; Lebiedzinska et al., 2009; Chaudhari
et al., 2014; Janikiewicz et al., 2018), it is important to inte-
grate ER physiology and mitochondrial physiology when
studying the physiological basis of life-history trade-offs.

VII. CONCLUSIONS

(1) The ER is vital for protein folding and synthesis. ER
stress and the UPRER maintain proteostasis in cells to
ensure proper cellular functions. Animals vary in their
ability to respond to ER stress and undergo the
UPRER. This variation in ER stress and UPRER phe-
notype should lead to variation key life-history traits,
including growth rate, reproductive performance,
physical performance, and ageing.

(2) Various biomedical studies have documented the role
of ER stress and the UPRER in determining variation
in life-history traits. However, the vast majority of
these studies were conducted in captive animals and
cell cultures in laboratory settings that are drastically
different from those experienced in nature. We
hypothesize that animals found in different environ-
ments and adopting different life-history strategies
should exhibit different ER stress responsivity and
UPRER phenotypes that allow them to cope with the
unique challenges and characteristics of these

environments and life histories. Efforts should be made
to characterize variation in ER stress and the UPRER

in free-living animals, and to relate the observed vari-
ation to key life-history traits.

(3) The ER interacts with other cellular organelles
dynamically to regulate cellular functions. In particu-
lar, there is tight interaction between the ER and mito-
chondria, leading to significant crosstalk between ER
stress pathways and oxidative stress pathways. We urge
ecological and evolutionary biologists to investigate
how interactions between ER stress and oxidative
stress shape life-history trade-offs in free-living
animals.
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