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ABSTRACT: We consider the relationship between the classical and quantum descriptions of the electromagnetic
interaction with the use of harmonic oscillator model including the generalized Bohr correspondence principle, the
excitation of a quantum oscillator by electromagnetic pulses, harmonic limit of the Bloch equations, phenomenological
account of the damping of the quantum oscillator. This correspondence is traced mathematically and the conditions of its
applicability are established.
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1. INTRODUCTION

It is well known that the model of harmonic oscillator (HO) is the basic one for the description of the system near the
equilibrium position both in classical [1] and quantum physics. In quantum physics this model is unique because within
its framework it is possible to obtain an analytical description of the impact on the system of a force of arbitrary
magnitude [2].

HO model is applicable to a number of the most important quasi-particles, such as photons, phonons, vibrons etc.
This model is used for the description of electron in a magnetic field (Landau levels [3]), charge carriers in quantum
dots etc.

The theory of electromagnetic processes is an important field of the HO model application. Particularly, its wide
use in the case of interaction with atoms is explained by the large value of the atomic electric field (Ea�5.14×109 V/
cm). As a result, the effect of electromagnetic radiation with amplitude less than the atomic one on atom is weak, and
the HO model is valid [4].

Moreover, the harmonic oscillator provides the connection between quantum and classical physics of
electromagnetic interaction as can be seen from the Bohr correspondence principle [5]. This principle initiated the
use of the HO model in describing electromagnetic interaction, which includes both various photoprocesses (excitation,
ionization, dissociation, scattering, etc.) and the interaction of matter with charged particles [6, 7]. In the latter case,
the concept of photons (equivalent photons of the field of charged particles) can be used, as was demonstrated in the
paper of E. Fermi [8].

Although quantum HO has an infinite number of energy levels, its classical analog also appears when describing
the interaction of a two-level quantum system with a resonant electromagnetic field using the optical Bloch equations
[9]. Indeed, in this case, the dipole moment of a two-level system upon its weak excitation is described by the
equation for forced oscillations of a classical oscillator.
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The purpose of this paper is to briefly review the most significant manifestations of the HO model in describing
the interaction of radiation with matter in classical and quantum approaches and mathematically show the relationship
between these descriptions.

2. HARMONIC OSCILLATOR IN CLASSICAL PHYSICS

Model

Let us consider one-dimensional system near equilibrium position at point 0x . Then the following decomposition of its
potential energy � �xU  is valid [1]
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here 2x
U ��  is the second derivative of potential energy with respect to coordinate.

Quadratic dependence of potential energy on coordinate present in (2.1) is the characteristic feature of HO.
Total energy of HO is given by well-known expression
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here m is mass of HO and 0�  is its own frequency which can be expressed via potential energyfrom (2.1) as follows

� � mxU
x 00 2���� .                                                              (2.3)

We suppose that � � 002 ��� xU
x

.

Thus, for small deviations from the equilibrium position, each physical system can be associated with a harmonic
oscillator, the own frequency of which in the one-dimensional case is determined by equality (2.3).

Interaction with electromagnetic radiation

Let us consider the interaction of charged HO with electromagnetic radiation. Equation of HO motion with account
for damping has the form
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Here q and �  are charge and relaxation constant of oscillator, � �tE  is electric field strength in the radiation which can

be written as follows

� � � �tEEtE
~

0�                                                                     (2.7)

here � �tE
~  is dimensionless field strength, 0E is amplitude of electric field. We assume that � � 0����tE and

� � 0����tx� .

Note that equation (2.6) is valid in dipole approximation when the dependence of the electric field on the coordinate
can be neglected. Solution of (2.6) is equal to
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here � ��E
~  is Fourier transform of the dimensionless electric field strength.

Excitation energy of oscillator

The excitation energy of the HO at a given moment of time t is equal to the work done on the oscillator under the
action of radiation electric field by the time t:
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Substituting derivative of HO coordinate (2.8) in the equation (2.9) we obtain
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For oscillator without damping ( 0�� ), the formula (2.10) simplifies to the form [10]:
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In the derivation of formula (2.11) we used the Fourier decomposition of � �tE �~ and the relation
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where � ��� is the Heaviside theta function.

Let us consider the excitation of HO by electric pulse with duration t. Then in the long time limit ���t  we have
instead of (2.10)
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In the case of HO without damping we obtain from (2.11) and (2.13) the following simple expression for excitation
energy
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Here we explicitly show the dependence of Fourier transform of electric field strength on duration and carrier
frequency c�  of exciting electromagnetic pulse. Note that the resulting expression (2.14) coincides with the formula
for energy transfer to a classical harmonic oscillator under the action of an external force � � � �tEqtF � , which is
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given in the textbook [1].

Thus when oscillator damping is absent(�=0) the instant value of the excitation energy at the time moment t is
determined by incomplete Fourier transform of electric field strength calculated at own frequency of HO (2.11)
while in the limit of long time  it is determined by complete Fourier transform (2.14).

The resulting expressions for the excitation energy can be used to analyze its dependence on the pulse parameters
(duration, carrier frequency, and envelope).So in the paper[11] it is shown that the dependence of the excitation
energy on the pulse duration (�-dependence for short) is essentially determined by its envelope. In the case of a pulse
with an exponential envelope, this dependence has a monotonically increasing character for any carrier frequencies
of the pulse. For Gaussian envelope, the �-dependence can have extrema at sufficiently large detunings of the
carrier frequency from the own frequency of the oscillator. In the case of long quasi-monochromatic pulses, the -
dependence is linear for all pulse envelopes.

3. GENERALIZED BOHR CORRESPONDENCE PRINCIPLE

Original version of Bohr correspondence principle

Bohr’s so-called old quantum theory correctly describes the hydrogen atom and, using the postulates formulated by
N. Bohr, lays the foundations for the theory of interaction between atoms and electromagnetic radiation.

The next step towards the phenomenological description of this interaction was Bohr correspondence principle
(BCP). This principle states that an atom, when interacting with an electromagnetic field, can be represented by a
set of harmonic oscillators corresponding to dipole-allowed transitions between stationary states of electrons in an
atom [5]. The own frequencies of these oscillators are equal to the frequencies of transitions between atomic energy
levels, and the strength of the electromagnetic interaction is determined by a dimensionless parameter called the
oscillator strength. Each dipole-allowed transition can be associated with a two-level system (TLS), which, within
the framework of this principle, is described by a harmonic oscillator.

Note that BCP can, in particular, describe the dynamical polarizability of an atom without resorting to the quantum
mechanical formalism [6]. Dynamic polarizability is included in the expression for the cross section of Rayleigh
scattering of radiation on an atom [7], and also determines the constants of the van der Waals interaction and some
other atomic characteristics.

Generalization of Bohr correspondence principle

It is instructive to consider the generalization of the BCP to the time dependence of the process of excitation of
dipole-allowed transitions in an atom [10]. This generalization can be obtained by comparing the time dependence of
the excitation energy of TLS associated with the dipole-allowed transition and the harmonic oscillator corresponding
to this TLS according to BCP. Excitation energy of classical HO is described by the expression (2.10). Temporal
dependence of the excitation energy of TLS is given by the equality

                                         (3.1)

here  is spectral profile of TLS photoexcitation cross section. This formula can be derived in the framework of
conventional quantum-mechanical approach in the first order of perturbation theoryby analogy with the consideration
carried out in the paper [12].

In the case of spectral profile with zero width when equality(3.1) coincides with (2.11) and there
is a complete correspondence between the classical and quantum results.

For long time  we have from (3.1)
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                                         (3.2)

This expression corresponds to classical analogue (2.13) if the following relation is valid

                                              (3.3)

We introduce here so called “oscillator” spectral profile  It coincides with quantum spectral profilein the case
of Lorentz  and for sufficiently small spectral width 

Numerical analysis [10] shows that, in the general case, a good agreement between the time dependences of the
excitation energy calculated in the framework of the classical and quantum approaches takes place for a small value
of the ratio . As it increases, the correspondence worsens, especially for long times but nevertheless remains
good enough for the values of the ratio  characteristic for dipole-allowed transitions between atomic energy
levels.

Thus, the extension of the BCP to the time dependence of electromagnetic processes has been demonstrated via
comparison between classical HO and quantum two-level system.

4. QUANTUM OSCILLATOR IN THE ELECTROMAGNETIC FIELD

Schwinger formula

The basic formula describing the probability of the transition of an undamped quantum oscillator between stationary
states was obtained in the work of J. Schwinger [2] to describe the interaction of a quantized electromagnetic field
with a given electric current. This expression for the probability W

mn
 of transition from the stationary state  to the

stationary state  is given by the following equality [2]:

                                            (4.1)

here J is dimensionless Fourier transform of electric current,  are the generalized Laguerre polynomials. Too
obtain an expression for the probability of charged HO excitation by electromagnetic pulse, we use formula (4.1) and
the following relation [13]

                                                     (4.2)

We introduce here Rabi frequency  according to the definition

                                                              (4.3)

Thus Rabi frequency (4.3) describes the strength of electromagnetic influence on quantum HO.

In the paper [14] relation (4.2) was generalized to account the dependence of the excitation probability on
current time.

Classical HO is a driver of quantum one

Taking into account formula (2.11) and definition (4.3), replacement (4.2) can be represented as
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                                                           (4.4)

Here we introduce key dimensionless parameter v(t) which determines dynamics of quantum HO under external
action [14]. An expression for this parameter in terms of the excitation energy of a classical oscillator associated
(having the same parameters) with a quantum oscillator was first obtained by Husimi [15].

The Schwinger formula (4.1) takes into account all nonlinear effects in the interaction of an undamped quantum
oscillator with an electromagnetic pulse. It is important that in this way an exact description of the dynamics of a
quantum oscillator is carried out for any strength of external influence. This circumstance singles out the harmonic
oscillator as a unique quantum system, for which a fully analytical description is possible for any external perturbation.

An important consequence of the foregoing is the fact that the associated classical oscillator, according to
replacement (4.4), is a quantum oscillator “driver”, determining the dynamics of the latter in accordance with the
expression (4.1). Thus, there is a correspondence between the model of a harmonic oscillator in classical and
quantum physics of light-matter interactions.

Average number of excited quanta

Average number of excited quanta  under the action of electromagnetic pulse on quantum HO can be easily
obtained using formulas (4.1), (4.2)and the definition of this quantity. When HO is excited from ground state  is
equal to

                                                (4.5)

Obviously this expression can be rewritten in the form

                                                            (4.6)

This equality “returns” us from the quantum oscillator to the classical one; it has a clear physical meaning, which is
intuitively easy to understand. Formula (4.6) also demonstrates the relationship between the harmonic oscillator
model in classical and quantum physics, namely, the quantum oscillator after averaging gives the classical result for
the excitation energy.

Saturation effect upon pulsed excitation of a quantum oscillator

One of the important nonlinear phenomena arising during the interaction of resonant electromagnetic radiation with
a quantum system is the saturation effect. In the case of excitation of TLS, the saturation effect leads to the
equalization of the populations of both energy levels and to the field broadening of a homogeneous spectral absorption
profile or the burning of the spectral dips in the inhomogeneous spectral profile. When a quantum oscillator is excited
by electromagnetic pulse, other specific features of this effect appear, due to an infinite number of energy levels and
a finite duration of the exciting pulse.

These “quantum HO features” of the saturation effect can be analyzed using expressions (4.1), (4.2), as well as
the explicit form of the Fourier transform of an electric field strength in a pulse. Such an analysis was carried out in
the [13] for the Gaussian envelope and the envelope in the form of a hyperbolic secant, and in the paper [16] for a
double exponential envelope.

In the papers cited the conditions for weak and strong excitation modes were determined depending on the
parameters of the exciting pulse. In the strong excitation mode, the saturation effect manifests itself both in the
spectrum (dependence of the excitation probability on the carrier frequency of the pulse) and in the �-dependence.
This manifestation is in the transformation of the maximum to a minimum and the appearance of new maxima in the
spectral and t-dependencies. The Rabi frequency, which determines the effect of “spectral” saturation, is inversely



Model of Harmonic Oscillator in the Theory of Electromagnetic Processes: Relationship...

International Review of Atomic and Molecular Physics, 14 (2), July-December 2023 55

proportional to the pulse duration, while the saturation Rabi frequency for the �-dependence of the excitation probability
is proportional to the detuning of the pulse carrier frequency from the own frequency of the oscillator.

The essential difference between the saturation effect upon excitation of a quantum oscillator and the saturation
effect upon excitation of TLS is that in the case of an oscillator, the populations of nearby levels do not equalize with
increasing field amplitude (Rabi frequency). Instead, the population maximum shifts to higher energy levels due to
their infinite number. The latter circumstance can be seen from formula (4.5), which implies an increase in the
average number of excited quanta with increasing Rabi frequency.

5. OTHER RELATIONSHIPS BETWEEN QUANTUM DESCRIPTIONS OF  ELECTROMAGNETIC
INTERACTION AND CLASSICAL HO MODEL

HO limit of Bloch equations

The dynamics of a two-level system with a dipole-allowed transition in the electric field can be described in terms of
the optical Bloch vector R [4].The first and the third components of the this vector are defined by the equalities

                                             (5.1)

here d(t)is dipole moment of TLS (d
0
 is matrix element of dipole moment)and N1, 2(t) are populations of TLS levels.

The second component of the optical Bloch vector is related to the quadrature component of the dipole moment. It
is shifted in phase by 90 degrees with respect to the first component.

The system of equations for the components of the optical Bloch vector has the form [4]

                                                                 (5.2)

                                                        (5.3)

.                                                              (5.4)

The time-dependent Rabi frequency introduced here is defined by

                                                              (5.5)

It is convenient to represent the matrix element of the TLS dipole moment in the form

                                                                    (5.6)

x0 is characteristic length dimension parameter equal to the matrix element of the coordinate calculated between the
wave functions of the TLS. Using this parameter, one can determine the TLS coordinate in terms of the first
component of the Bloch vector by the equality

                                                                 (5.7)

The system of equations (5.2)-(5.4) is a consequence of the Schrödinger equation. It is written in neglect of the
relaxation of the Bloch vector, which is valid at times  are the relaxation times of the populations and the
dipole moment of the TLS), what we are assuming here.

Eliminating the second component of the Bloch vector from the system of equations (5.2)-(5.4), we find

                                                       (5.8)

Taking into account equalities (5.6) and (5.7), we arrive at the following equation for the TLS coordinate
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                                                         (5.9)

Here, the oscillator strength of the TLS is introduced by the formula

                                                              (5.10)

This equality coincides with the standard definition of the oscillator strength of a dipole-allowed transition [17].

So the derived equation (5.9) describes the forced oscillations of a classical harmonic oscillator corresponding to
TLS coordinate under the action of a driving force F(t)=qE(t). In addition to the oscillator strength, the coupling
between the TLS and the electric field is also determined by the third component of the Bloch vector R3(t). In the
case of a weak perturbation  and equation (5.9) coincides completely with the equation for HO without
damping in an external field. If the populations of the TLS levels are equal, then R3(t)=0, and there is no coupling
between the TLS and the electric field. This is a distinctive feature of the equation for the TLS coordinate, due to the
quantum nature of the optical Bloch vector.

The established correspondence of the TLS to the classical HO can also be considered as a substantiation of the
Bohr correspondence principle from the point of view of the quantum approach. It follows from the above consideration
that exact correspondence takes place when the TLS is weakly excited, when .

Accounting for the damping of HO in the framework of the classical and quantum approaches

The basic equation (2.6) of a damped classical harmonic oscillator in electric fieldcan be rewritten via dimensionless
coordinate

                                            (5.11)

in the form

                                               (5.12)

Rabi frequency �0 is given by equation (4.3).

The Hamiltonian of a harmonic oscillator in an electric field is defined as follows [18]:

                                                    (5.13)

Where  is the creation operator,  is the annihilation operator of oscillator quanta.

The operator of the dipole moment of a quantum oscillator  has the following form:

                                                          (5.14)

and

                                                (5.15)

A consistent description of the damping of a quantum oscillator is a difficult quantum mechanical problem [19]. Here
we use the phenomenological approach, in which damping is taken into account using the following substitution [20]:

                                                             (5.16)
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This substitution is used, in particular, to take into account the finite lifetime of the stationary states of an electron in
an atom [3].

Using (5.16) we have for quantum HO Hamiltonian with phenomenological account for damping

                                                   (5.17)

Let us write the Heisenberg equations  for the creation and annihilation operators using Hamiltonian

(5.17):

                                                            (5.18)

                                                          (5.19)

We introduce dimensionless operators of coordinate and momentum of a quantum oscillator using the formulas

                                                                       (5.20)

                                                                      (5.21)

Rewriting equations (5.18), (5.19) in terms of the variables (5.20), (5.21) we obtain:

                                                                    (5.22)

.                                                             (5.23)

Eliminating the momentum operator from (5.22), (5.23), we arrive at the equation for the quantum oscillator coordinate
operator

                                                      (5.24)

Equation (5.24) coincides with equation (5.12) up to the replacement

.                                                                      (5.25)

Relation (5.25) means renormalization of the own frequency of the oscillator with damping taken into account.

We see that the phenomenological replacement of the own frequency of a quantum oscillator (5.16) corresponds
to the equation for forced oscillations of damped classical oscillator with renormalization (5.25) taken into account.
Thus, a connection is traced between the classical and quantum models of damped HO.

6. CONCLUSIONS

We briefly considered the application of HO model in the classical and quantum theories of light-matter interaction
and on a number of different examples demonstrated mathematically the correspondence between them. It is shown
that this correspondence, postulately introduced by N. Bohr to describe atomic radiation processes in the framework
of classical physics, can be generalized to time dependence and substantiated in quantum formalism using the Bloch
equations.

The probability of excitation of a quantum HO, derived in the framework of a rigorous quantum approach, is
determined by the excitation energy of the associated classical oscillator, which, therefore, is the “driver” of its
quantum counterpart. The dependence of the excitation energy of classical HO on the duration of the exciting
pulse(t) is essentially determined by the pulse envelope. This dependence, when the envelope changes from exponential
to Gaussian, is transformed from a monotonically increasing function into a function with extrema. The above is true
for the t-dependence of the average number of excited quanta of the quantumHO, which is equal to the ratio of the
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excitation energy of the associated classical HO to the quantum energy.

The phenomenological account for the damping of a quantum HO leads to an equation for the operator of its
coordinates, which coincides with the corresponding classical equation, up to renormalization of the eigenfrequency
of the oscillator.

Thus, it is shown that the quantum-mechanical Bloch equations and the Heisenberg equations for quantum GO
are conjugate with the equation of forced oscillations of a classical oscillator.

It follows from the analysis carried out in the present paper that the HO model has interconnected “projections”
on the classical and quantum theory of electromagnetic processes, thus uniting them into one whole.
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