The qpr-sequence

A principal minor of a matrix is the determinant of a (square) submatrix whose row and column indices are the same. The enhanced principal rank characteristic sequence (eprsequence) of a symmetric matrix $B \in \mathbb{R}^{n \times n}$ is $\ell_{1} \ell_{2} \cdots \ell_{n}$, where ℓ_{k} is A (respectively, N) if all (respectively, none) of the principal minors of order k are nonzero; if some but not all are nonzero, then $\ell_{k}=\mathrm{S}$. Due to the numerous applications of principal minors, epr-sequences have received considerable attention since their introduction.

An almost-principal minor of a matrix is the determinant of a (square) submatrix whose row and column indices differ in exactly one index. Motivated by the fact that principal and almost-principal minors have applications in algebraic geometry, statistics, theoretical physics and matrix theory, for example, we have introduced a new sequence that extends the epr-sequence by also taking into consideration the almost-principal minors of the matrix. A minor of a matrix is quasi-principal if it is a principal or an almost-principal minor. The quasi principal rank characteristic sequence (qpr-sequence) of a symmetric matrix $B \in \mathbb{R}^{n \times n}$ is $q_{1} q_{2} \cdots q_{n}$, where q_{k} is A (respectively, N) if all of (respectively, none of) the quasi-principal minors of order k are nonzero; if some but not all are nonzero, then $q_{k}=\mathrm{S}$.

In this talk, a complete characterization of the qpr-sequences that are attainable by real, symmetric matrices will be presented. This characterization establishes a contrast between qpr- and epr-sequences, as the latter are still far from being characterized.

