Exploding endpoints and Erdős spaces

David Lipham

November 5, 2019

Definitions

A topological space \boldsymbol{X} is:

- hereditarily disconnected if every connected subset of X is degenerate (either empty or consisting of exactly one point).
- totally disconnected if for every two points $x, y \in X$ there is a clopen set containing x and missing y.
- almost zero-dimensional provided X has a basis of open sets whose closures are intersections of clopen sets. This is equivalent to saying every point $x \in X$ has arbitrarily small neighborhoods which are intersections of clopen sets. Almost zero-dimensional spaces are totally disconnected, and have dimension at most 1.
- *zero-dimensional* if X has a basis of clopen sets.

$$ZD \implies AZD \implies TD \implies HD$$

• cohesive provided each point $x \in X$ has a neighborhood which contains no non-empty clopen set.

Erdős spaces

Almost zero-dimensional spaces of positive dimension include:

$$\mathfrak{E} = \{ x \in \ell^2 : x_i \in \mathbb{Q} \text{ for each } i < \omega \};$$

 $\mathfrak{E}_c = \{ x \in \ell^2 : x_i \in \{0\} \cup \{1/n : n = 1, 2, 3, \ldots\} \text{ for each } i < \omega \}.$

- \mathfrak{E} and \mathfrak{E}_c are cohesive. Their bounded open sets contain no nonempty clopen sets, so actually $\mathfrak{E} \cup \{\infty\}$ and $\mathfrak{E}_c \cup \{\infty\}$ are connected (Erdős 1940)
- Another cohesive almost zero-dimensional space is the stable complete Erdős space, the ω-power of E_c.

$$\mathfrak{E}_{c}^{\omega} \not\simeq \mathfrak{E}_{c},$$

despite $\mathfrak{E}^{\omega} \simeq \mathfrak{E}$. Erdős spaces are universal in the sense that all almost zero-dimensional spaces embed into them. And every complete almost zero-dimensional space is homeomorphic to a closed subspace of \mathfrak{E}_c^{ω} . (Dijkstra and van Mill 2004 & 2010)

Erdős spaces

Almost zero-dimensional spaces of positive dimension include:

$$\mathfrak{E} = \{ x \in \ell^2 : x_i \in \mathbb{Q} \text{ for each } i < \omega \};$$

$$\mathfrak{E}_c = \{ x \in \ell^2 : x_i \in \{0\} \cup \{1/n : n = 1, 2, 3, \ldots\} \text{ for each } i < \omega \}.$$

- \mathfrak{E} and \mathfrak{E}_c are cohesive. Their bounded open sets contain no nonempty clopen sets, so actually $\mathfrak{E} \cup \{\infty\}$ and $\mathfrak{E}_c \cup \{\infty\}$ are connected (Erdős 1940)
- Another cohesive almost zero-dimensional space is the stable complete Erdős space, the ω-power of E_c.

$$\mathfrak{E}_c^{\omega} \not\simeq \mathfrak{E}_c,$$

despite $\mathfrak{E}^{\omega} \simeq \mathfrak{E}$. Erdős spaces are universal in the sense that all almost zero-dimensional spaces embed into them. And every complete almost zero-dimensional space is homeomorphic to a closed subspace of \mathfrak{E}_c^{ω} . (Dijkstra and van Mill 2004 & 2010)

Erdős spaces

Almost zero-dimensional spaces of positive dimension include:

$$\begin{split} \mathfrak{E} &= \{x \in \ell^2 : x_i \in \mathbb{Q} \text{ for each } i < \omega\};\\ \mathfrak{E}_c &= \{x \in \ell^2 : x_i \in \{0\} \cup \{1/n : n = 1, 2, 3, \ldots\} \text{ for each } i < \omega\}. \end{split}$$

- \mathfrak{E} and \mathfrak{E}_c are cohesive. Their bounded open sets contain no nonempty clopen sets, so actually $\mathfrak{E} \cup \{\infty\}$ and $\mathfrak{E}_c \cup \{\infty\}$ are connected (Erdős 1940)
- Another cohesive almost zero-dimensional space is the stable complete Erdős space, the ω-power of 𝔅_c.

$$\mathfrak{E}_{c}^{\omega} \not\simeq \mathfrak{E}_{c},$$

despite $\mathfrak{E}^{\omega} \simeq \mathfrak{E}$. Erdős spaces are universal in the sense that all almost zero-dimensional spaces embed into them. And every complete almost zero-dimensional space is homeomorphic to a closed subspace of $\mathfrak{E}_{c}^{\omega}$. (Dijkstra and van Mill 2004 & 2010)

- $\mathfrak{E}^n \simeq \mathfrak{E}$ for all $n \leq \omega$;
- $E \times \mathfrak{E} \simeq \mathfrak{E}$ for every complete AZD space E;
- $\mathfrak{E}_c \times \mathbb{Q}^{\omega} \simeq (\mathfrak{E}_c \times \mathbb{Q})^{\omega} \simeq \mathfrak{E};$
- $\mathfrak{E}_c \simeq \{x \in \ell^2 : x_i \notin \mathbb{Q} \text{ for each } i < \omega\}$ (Oversteegen, Tymchatyn, Kawamura 1996)
- $\mathfrak{E}_c \simeq \{x \in \ell^1 : x_0 = 0 \text{ and } x_n \in \{0, 1/n\} \text{ for each } n \ge 1\}$
- Identify C with the Cantor set $(\{0\} \cup \{1/n : n = 1, 2, 3, ...\})^{\omega}$. Define $\eta : C \to [0, 1]$ by $\eta(x) = 1/(1 + ||x||)$, where $1/\infty = 0$. Let $L_0^{\eta} = \{\langle x, t \rangle : 0 \le t \le \eta(x)\}$. Then ∇L_0^{η} is also a Lelek fan. And $\nabla \{\langle x, \eta(x) \rangle : x \in \mathfrak{E}_c\} \simeq \mathfrak{E}_c$.

Figure: Cantor fan and Lelek fan

- $\mathfrak{E}^n \simeq \mathfrak{E}$ for all $n \leq \omega$;
- $E \times \mathfrak{E} \simeq \mathfrak{E}$ for every complete AZD space E;
- $\mathfrak{E}_c \times \mathbb{Q}^{\omega} \simeq (\mathfrak{E}_c \times \mathbb{Q})^{\omega} \simeq \mathfrak{E};$
- $\mathfrak{E}_c \simeq \{x \in \ell^2 : x_i \notin \mathbb{Q} \text{ for each } i < \omega\}$ (Oversteegen, Tymchatyn, Kawamura 1996)
- $\mathfrak{E}_c \simeq \{x \in \ell^1 : x_0 = 0 \text{ and } x_n \in \{0, 1/n\} \text{ for each } n \ge 1\}$
- Identify C with the Cantor set $(\{0\} \cup \{1/n : n = 1, 2, 3, ...\})^{\omega}$. Define $\eta : C \to [0, 1]$ by $\eta(x) = 1/(1 + ||x||)$, where $1/\infty = 0$. Let $L_0^{\eta} = \{\langle x, t \rangle : 0 \le t \le \eta(x)\}$. Then ∇L_0^{η} is also a Lelek fan. And $\nabla \{\langle x, \eta(x) \rangle : x \in \mathfrak{E}_c\} \simeq \mathfrak{E}_c$.

Figure: Cantor fan and Lelek fan

- ∃ homogeneous AZD space of positive dimension that is not cohesive;
- \exists rigid cohesive AZD space

Endpoints of Julia sets

- For each $a \in (-\infty, -1)$ define $f_a : \mathbb{C} \to \mathbb{C}$ by $f_a(z) = e^z + a$.
- The Julia set $J(f_a)$ is a *Cantor bouquet* consisting of an uncountable union of pairwise disjoint rays, each joining a finite endpoint to the point at infinity. Let $E(f_a)$ be the set of finite endpoints these rays.

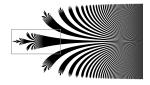


Figure: Images of $J(f_{-2})$

- $E(f_a) \cup \{\infty\}$ is connected, even though $E(f_a)$ is totally disconnected (Mayer 1990).
- The one-point compactification J(f_a)∪{∞} is a Lelek fan (Oversteegen & Aarts 1991). A Lelek fan is a smooth fan with a dense set of endpoints. Every two Lelek fans are homeomorphic, so E(f_a) ≃ 𝔅_c.
- Let $\dot{E}(f_a)$ be the set of **escaping endpoints** of $J(f_a)$. Then $\dot{E}(f_a) \cup \{\infty\}$ is connected. The even smaller set of **fast escaping endpoints** $\dot{E}(f_a)$ also has the property that its union with $\{\infty\}$ is connected. (Alhabib and Rempe-Gillen 2017)

Embedding results

Theorem 1

For every cohesive almost zero-dimensional space X, there is a dense homeomorphic embedding $h: X \hookrightarrow \mathfrak{E}_c$ such that $h[X] \cup \{\infty\}$ is connected.

Corollary 2

Every cohesive almost zero-dimensional space has a one-point connectification in the Cantor fan.

Corollary 3

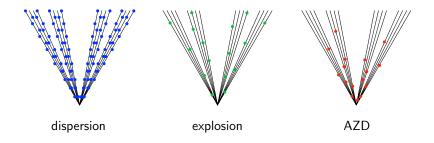
Every cohesive almost zero-dimensional subset of $C \times \mathbb{R}$ is nowhere dense.

Proof.

. . .

Suppose X is cohesive AZD dense in $C \times \mathbb{R}$. By Theorem 1 and Lavrentiev's Theorem, there is a *complete* cohesive AZD X' with $X \subseteq X' \subseteq C \times \mathbb{R}$. Then there exists $c \in C$ such that $\overline{X' \cap \{c\} \times \mathbb{R}} = \{c\} \times \mathbb{R}$. Let O be a convex open subset of the plane such that $x \in W := O \cap X'$ and W contains no non-empty clopen subset of X'. Let $x_1 = \langle c, r_1 \rangle$ and $x_2 = \langle c, r_2 \rangle$ be points in W such that $r_1 < r < r_2$.

Rim-type

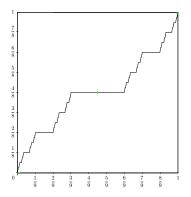


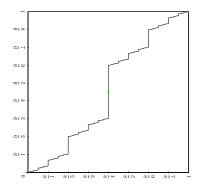
In the Cantor fan:

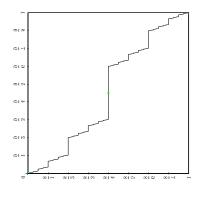
- \exists rim-discrete connected G_{δ} -set with a *dispersion point*; and
- \exists non-Borel rim-discrete connected set with an *explosion point*.

However:

■ \nexists rim-countable connected set X with a point ∞ such that $X \setminus \{\infty\}$ is almost zero-dimensional.





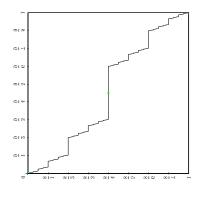


Let D be the "inverse" of the graph of the Cantor function. Let M be the set of midpoints of vertical arcs in D.

There is a collection of pairwise disjoint sets $D_n \cong D$ such that $[0,1]^2 \setminus \bigcup \{D_n : n < \omega\}$ is zero-dimensional and $\pi_0[M_n] \subseteq \mathbb{P}$. Let

 $X = (\mathbb{P} \times [0, 1]) \setminus \bigcup \{ D_n \setminus M_n : n < \omega \}.$

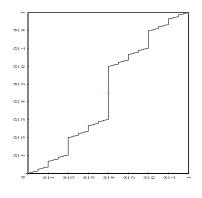
Then ∇X is a rim-discrete connected G_{δ} -set with dispersion point $\langle \frac{1}{2}, 0 \rangle$.



Let D be the "inverse" of the graph of the Cantor function. Let M be the set of midpoints of vertical arcs in D. There is a collection of pairwise disjoint sets $D_n \cong D$ such that $[0,1]^2 \setminus \bigcup \{D_n : n < \omega\}$ is zero-dimensional and $\pi_0[M_n] \subseteq \mathbb{P}$. Let

$X = (\mathbb{P} \times [0, 1]) \setminus \bigcup \{ D_n \setminus M_n : n < \omega \}.$

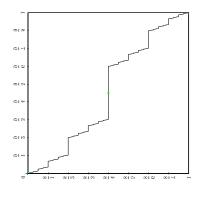
Then ∇X is a rim-discrete connected G_{δ} -set with dispersion point $\langle \frac{1}{2}, 0 \rangle$.



Let D be the "inverse" of the graph of the Cantor function. Let M be the set of midpoints of vertical arcs in D. There is a collection of pairwise disjoint sets $D_n \cong D$ such that $[0,1]^2 \setminus \bigcup \{D_n : n < \omega\}$ is zero-dimensional and $\pi_0[M_n] \subseteq \mathbb{P}$. Let

 $X = (\mathbb{P} \times [0,1]) \setminus \bigcup \{ D_n \setminus M_n : n < \omega \}.$

Then ∇X is a rim-discrete connected G_{δ} -set with dispersion point $\langle \frac{1}{2}, 0 \rangle$.

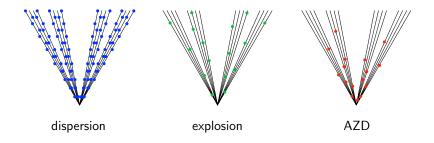


Let D be the "inverse" of the graph of the Cantor function. Let M be the set of midpoints of vertical arcs in D. There is a collection of pairwise disjoint sets $D_n \cong D$ such that $[0,1]^2 \setminus \bigcup \{D_n : n < \omega\}$ is zero-dimensional and $\pi_0[M_n] \subseteq \mathbb{P}$. Let

$$X = (\mathbb{P} \times [0, 1]) \setminus \bigcup \{ D_n \setminus M_n : n < \omega \}.$$

Then ∇X is a rim-discrete connected G_{δ} -set with dispersion point $\langle \frac{1}{2}, 0 \rangle$.

Rim-type



In the Cantor fan:

- \exists rim-discrete connected G_{δ} -set with a *dispersion point*; and
- \exists non-Borel rim-discrete connected set with an *explosion point*.

However:

■ \nexists rim-countable connected set X with a point ∞ such that $X \setminus \{\infty\}$ is almost zero-dimensional.

Theorem 4 (Taras Banakh)

Every non-empty bounded open subset of \mathfrak{E} (resp. \mathfrak{E}_c) has uncountable boundary.

Proof.

Let U be a non-empty open subset of \mathfrak{E} with $||U|| \leq N$. For $i \in \{0, 1\}$ consider the closed subspace $X_0 = \{(x_n)_{n \in \omega} \in X : \forall n \in \omega \ x_{2n} = 0\}$ and observe that $|U \cap X_0| = \mathfrak{c}$. We establish a one-to-one function from $U \cap X_0$ into ∂U .

Let $(e_i)_{i\in\omega}$ be the standard orthonormal basis for ℓ_2 . Inductively define two sequences of rationals $(x_{2i})_{i\in\omega}$ and $(x'_{2i})_{i\in\omega}$ such that for every $n\in\omega$ we have $|x'_{2n} - x_{2n}| < N/2^n$;

$$u + \sum_{i=0}^{n} x_{2i} e_{2i} \in U; \text{ and}$$
$$u + \sum_{i=0}^{n-1} x_{2i} e_{2i} + x'_{2n} e_{2n} \notin U$$

The function $u \mapsto u + \sum_{i=0}^{\infty} x_{2i} e_{2i} \in \partial U$, $u \in U \cap X_0$, is injective.

An intersection of clopen sets is called a C-set.

Lemma 5 In an almost zero-dimensional space, every closed σ -C-set is a C-set.

Theorem 6 Every rim-σ-compact almost zero-dimensional space is zero-dimensional.

Proof of Lemma 5.

Suppose $A = \bigcup \{A_i : i < \omega\}$ where each A_i is a *C*-set, and *A* is closed. To prove *A* is a *C*-set, it suffices to show that for every $x \in X \setminus A$ there is an *X*-clopen set *B* such that $x \in B \subseteq X \setminus A$.

By the Lindelöf property and the fact that X has a neighborhood basis of C-sets, it is possible to write the open set $X \setminus A$ as the union of countably many C-sets whose interiors cover $X \setminus A$. The property of being a C-set is closed under finite unions, so in fact there is an increasing sequence of C-sets $C_0 \subseteq C_1 \subseteq ...$ with $x \in C_0$ and

$$\bigcup \{C_i : i < \omega\} = \bigcup \{C_i^{\circ} : i < \omega\} = X \setminus A.$$

For each $i < \omega$ there is an X-clopen set B_i such that $C_i \subseteq B_i \subseteq X \setminus A_i$. Let $B = \bigcap \{B_i : i < \omega\}$. Apparently B is closed, $x \in B$, and

$B \subseteq X \setminus A.$

Further, if $y \in B$ then there exists $j < \omega$ such that $y \in C_j^{\circ}$. The open set $C_j^{\circ} \cap \bigcap \{B_i : i < j\}$ witnesses $y \in B^{\circ}$. This shows B is open. \Box

Proof of Lemma 5.

Suppose $A = \bigcup \{A_i : i < \omega\}$ where each A_i is a *C*-set, and *A* is closed. To prove *A* is a *C*-set, it suffices to show that for every $x \in X \setminus A$ there is an *X*-clopen set *B* such that $x \in B \subseteq X \setminus A$.

By the Lindelöf property and the fact that X has a neighborhood basis of C-sets, it is possible to write the open set $X \setminus A$ as the union of countably many C-sets whose interiors cover $X \setminus A$. The property of being a C-set is closed under finite unions, so in fact there is an increasing sequence of C-sets $C_0 \subseteq C_1 \subseteq ...$ with $x \in C_0$ and

$$\bigcup \{C_i : i < \omega\} = \bigcup \{C_i^{o} : i < \omega\} = X \setminus A.$$

For each $i < \omega$ there is an X-clopen set B_i such that $C_i \subseteq B_i \subseteq X \setminus A_i$. Let $B = \bigcap \{B_i : i < \omega\}$. Apparently B is closed, $x \in B$, and

 $B \subseteq X \setminus A.$

Further, if $y \in B$ then there exists $j < \omega$ such that $y \in C_j^{\circ}$. The open set $C_j^{\circ} \cap \bigcap \{B_i : i < j\}$ witnesses $y \in B^{\circ}$. This shows B is open.

Proof of Lemma 5.

Suppose $A = \bigcup \{A_i : i < \omega\}$ where each A_i is a *C*-set, and *A* is closed. To prove *A* is a *C*-set, it suffices to show that for every $x \in X \setminus A$ there is an *X*-clopen set *B* such that $x \in B \subseteq X \setminus A$.

By the Lindelöf property and the fact that X has a neighborhood basis of C-sets, it is possible to write the open set $X \setminus A$ as the union of countably many C-sets whose interiors cover $X \setminus A$. The property of being a C-set is closed under finite unions, so in fact there is an increasing sequence of C-sets $C_0 \subseteq C_1 \subseteq ...$ with $x \in C_0$ and

$$\bigcup \{C_i : i < \omega\} = \bigcup \{C_i^{o} : i < \omega\} = X \setminus A.$$

For each $i < \omega$ there is an X-clopen set B_i such that $C_i \subseteq B_i \subseteq X \setminus A_i$. Let $B = \bigcap \{B_i : i < \omega\}$. Apparently B is closed, $x \in B$, and

$$B \subseteq X \setminus A.$$

Further, if $y \in B$ then there exists $j < \omega$ such that $y \in C_j^{o}$. The open set $C_j^{o} \cap \bigcap \{B_i : i < j\}$ witnesses $y \in B^{o}$. This shows B is open. \Box

Proof of Theorem 6.

Let X be rim- σ -compact AZD. Let $x \in X$ and let U be any open set containing x. Let V be an open set with $x \in V \subseteq \overline{V} \subseteq U$ and ∂V is σ -compact. Since X is totally disconnected, every compact subset of X is a C-set. Thus ∂V is a σ -C-set. By Lemma 5, ∂V is a C-set. Thus there is a clopen set A with $\partial V \subseteq A \subseteq X \setminus \{x\}$. Then $B := V \setminus A$ is an X-clopen set with $x \in B \subseteq U$.

Lemma 5 also implies:

Theorem 7

Cohesive almost zero-dimensional space is nowhere rational.

Theorem 8

If X is almost zero-dimensional and $X \cup \{\infty\}$ is connected, then every σ -compact separator of $X \cup \{\infty\}$ contains the point ∞ .

Proof of Theorem 6.

Let X be rim- σ -compact AZD. Let $x \in X$ and let U be any open set containing x. Let V be an open set with $x \in V \subseteq \overline{V} \subseteq U$ and ∂V is σ -compact. Since X is totally disconnected, every compact subset of X is a C-set. Thus ∂V is a σ -C-set. By Lemma 5, ∂V is a C-set. Thus there is a clopen set A with $\partial V \subseteq A \subseteq X \setminus \{x\}$. Then $B := V \setminus A$ is an X-clopen set with $x \in B \subseteq U$.

Lemma 5 also implies:

Theorem 7

Cohesive almost zero-dimensional space is nowhere rational.

Theorem 8

If X is almost zero-dimensional and $X \cup \{\infty\}$ is connected, then every σ -compact separator of $X \cup \{\infty\}$ contains the point ∞ .

Subsets of curves

 $\mathsf{Recall}\;\mathsf{HD} \Longleftarrow \mathsf{TD} \Longleftarrow \mathsf{AZD} \Longleftarrow \mathsf{ZD}.$

By a classical result,

$$\mathsf{HD} \overset{(1)}{\Longrightarrow} \mathsf{TD} \overset{(2)}{\Longrightarrow} \mathsf{AZD} \overset{(3)}{\Longrightarrow} \mathsf{ZD}$$

for subsets of hereditarily locally connected continua.

By results of S.D. Iliadis and E.D. Tymchatyn, the rim-discrete examples show (1) and (2) are generally false for subsets of **rational** curves.

The implication (3) extends to the larger class of subsets of **rational** curves.

Question 1 Can \mathfrak{E}_c be embedded into a Suslinian continuum?

Question 2 Is $\mathfrak{E}_c \cup \{\infty\}$ σ -connected?

Homeomorphism types of endpoint sets

• Define $I(f) = \{z \in \mathbb{C} : f^n(z) \to \infty\}.$

Define the maximum modulus function

$$M(r) := M(r, f) := \max\{|f(z)| : |z| = r\}$$

for $r\geq 0.$ Choose R>0 sufficiently large that $M^n(R)\to +\infty$ as $n\to\infty$ and define

$$A_R(f) := \{ z \in \mathbb{C} : |f^n(z)| \ge M^n(R) \text{ for all } n \ge 0 \}.$$

The fast escaping set for f is the increasing union of closed sets

$$A(f) = \bigcup_{n \ge 0} f^{-n}[A_R(f)].$$

For $a \in (-\infty, -1)$ and $f_a = \exp + a$, define $\dot{E}(f_a) = I(f_a) \cap E(f_a)$; and $\ddot{E}(f_a) = A(f_a) \cap E(f_a)$ Theorem 9 $\dot{E}(f_a)$ and $\ddot{E}(f_a)$ are first category.

Proof.

For any transcendental entire function f, $I(f) \cap J(f)$ is first category. We have $I(f_a) \subseteq J(f_a)$, so $I(f_a)$ is first category. $\dot{E}(f_a)$ and $\ddot{E}(f_a)$ are dense subsets of $I(f_a)$.

Theorem 10 Neither $\dot{E}(f_a)$ nor $\ddot{E}(f_a)$ is homeomorphic to $E(f_a)$

Proof. $E(f_a)$ is completely metrizable (recall $E(f_a) \simeq \mathfrak{E}_c$).

Theorem 11 $\ddot{E}(f_a) \not\simeq \mathfrak{E}.$

Proof.

 $\ddot{E}(f_a)$ is an absolute $G_{\delta\sigma}$ -space because $A(f_a)$ and $E(f_a)$ are F_{σ} and G_{δ} subsets of \mathbb{C} , respectively. On the other hand, \mathfrak{E} is not absolute $G_{\delta\sigma}$ because it has a closed subspace homeomorphic to \mathbb{Q}^{ω} .

Theorem 9 $\dot{E}(f_a)$ and $\ddot{E}(f_a)$ are first category.

Proof.

For any transcendental entire function f, $I(f) \cap J(f)$ is first category. We have $I(f_a) \subseteq J(f_a)$, so $I(f_a)$ is first category. $\dot{E}(f_a)$ and $\ddot{E}(f_a)$ are dense subsets of $I(f_a)$.

Theorem 10 Neither $\dot{E}(f_a)$ nor $\ddot{E}(f_a)$ is homeomorphic to $E(f_a)$.

Proof. $E(f_a)$ is completely metrizable (recall $E(f_a) \simeq \mathfrak{E}_c$).

Theorem 11 $\ddot{E}(f_a) \not\simeq \mathfrak{E}$.

Proof.

 $\ddot{E}(f_a)$ is an absolute $G_{\delta\sigma}$ -space because $A(f_a)$ and $E(f_a)$ are F_{σ} and G_{δ} subsets of \mathbb{C} , respectively. On the other hand, \mathfrak{E} is not absolute $G_{\delta\sigma}$ because it has a closed subspace homeomorphic to \mathbb{Q}^{ω} .

Theorem 9 $\dot{E}(f_a)$ and $\ddot{E}(f_a)$ are first category.

Proof.

For any transcendental entire function f, $I(f) \cap J(f)$ is first category. We have $I(f_a) \subseteq J(f_a)$, so $I(f_a)$ is first category. $\dot{E}(f_a)$ and $\ddot{E}(f_a)$ are dense subsets of $I(f_a)$.

Theorem 10 Neither $\dot{E}(f_a)$ nor $\ddot{E}(f_a)$ is homeomorphic to $E(f_a)$.

Proof. $E(f_a)$ is completely metrizable (recall $E(f_a) \simeq \mathfrak{E}_c$).

Theorem 11 $\ddot{E}(f_a) \not\simeq \mathfrak{E}$.

Proof.

 $\ddot{E}(f_a)$ is an absolute $G_{\delta\sigma}$ -space because $A(f_a)$ and $E(f_a)$ are F_{σ} and G_{δ} subsets of \mathbb{C} , respectively. On the other hand, \mathfrak{E} is not absolute $G_{\delta\sigma}$ because it has a closed subspace homeomorphic to \mathbb{Q}^{ω} .

Question 3

(a) $\ddot{E}(f_a) \simeq \dot{E}(f_a)$? (b) $\dot{E}(f_a) \simeq \mathfrak{E}$? (c) $\ddot{E}(f_a) \simeq \mathbb{Q} \times \mathfrak{E}_c$?