Exploding endpoints and Erdős spaces

David Lipham

November 5, 2019

Definitions

A topological space X is:

- hereditarily disconnected if every connected subset of X is degenerate (either empty or consisting of exactly one point).
- totally disconnected if for every two points $x, y \in X$ there is a clopen set containing x and missing y.
- almost zero-dimensional provided X has a basis of open sets whose closures are intersections of clopen sets. This is equivalent to saying every point $x \in X$ has arbitrarily small neighborhoods which are intersections of clopen sets. Almost zero-dimensional spaces are totally disconnected, and have dimension at most 1.
- zero-dimensional if X has a basis of clopen sets.

$$
\mathrm{ZD} \Longrightarrow \mathrm{AZD} \Longrightarrow \mathrm{TD} \Longrightarrow \mathrm{HD}
$$

- cohesive provided each point $x \in X$ has a neighborhood which contains no non-empty clopen set.

Erdős spaces

■ Almost zero-dimensional spaces of positive dimension include:

$$
\begin{aligned}
& \mathfrak{E}=\left\{x \in \ell^{2}: x_{i} \in \mathbb{Q} \text { for each } i<\omega\right\} ; \\
& \mathfrak{E}_{c}=\left\{x \in \ell^{2}: x_{i} \in\{0\} \cup\{1 / n: n=1,2,3, \ldots\} \text { for each } i<\omega\right\} .
\end{aligned}
$$

- \mathfrak{E} and \mathfrak{E}_{c} are cohesive. Their bounded open sets contain no nonempty clopen sets, so actually $\mathfrak{E} \cup\{\infty\}$ and $\mathfrak{E}_{c} \cup\{\infty\}$ are connected (Erdős 1940)
- Another cohesive almost zero-dimensional space is the stable complete Erdős space, the ω-power of \mathfrak{E}_{c}.
despite $\mathfrak{E}^{\omega} \simeq \mathfrak{E}$. Erdős spaces are universal in the sense that all almost zero-dimensional spaces embed into them. And every complete almost zero-dimensional space is homeomorphic to a closed subspace of \mathbb{E}_{c}^{ω}. (Dijkstra and van Mill 2004 \& 2010)

Erdős spaces

- Almost zero-dimensional spaces of positive dimension include:

$$
\begin{aligned}
& \mathfrak{E}=\left\{x \in \ell^{2}: x_{i} \in \mathbb{Q} \text { for each } i<\omega\right\} ; \\
& \mathfrak{E}_{c}=\left\{x \in \ell^{2}: x_{i} \in\{0\} \cup\{1 / n: n=1,2,3, \ldots\} \text { for each } i<\omega\right\} .
\end{aligned}
$$

- \mathfrak{E} and \mathfrak{E}_{c} are cohesive. Their bounded open sets contain no nonempty clopen sets, so actually $\mathfrak{E} \cup\{\infty\}$ and $\mathfrak{E}_{c} \cup\{\infty\}$ are connected (Erdős 1940)
- Another cohesive almost zero-dimensional space is the stable complete Erdős space, the ω-power of \mathfrak{E}_{c}.
despite $\mathfrak{E}^{\omega} \simeq \mathfrak{E}$. Erdős spaces are universal in the sense that all almost zero-dimensional spaces embed into them. And every complete almost zero-dimensional space is homeomorphic to a closed subspace of \mathfrak{E}_{c}. (Dijkstra and van Mill 2004 \& 2010)

Erdős spaces

- Almost zero-dimensional spaces of positive dimension include:

$$
\begin{aligned}
& \mathfrak{E}=\left\{x \in \ell^{2}: x_{i} \in \mathbb{Q} \text { for each } i<\omega\right\} ; \\
& \mathfrak{E}_{c}=\left\{x \in \ell^{2}: x_{i} \in\{0\} \cup\{1 / n: n=1,2,3, \ldots\} \text { for each } i<\omega\right\} .
\end{aligned}
$$

- \mathfrak{E} and \mathfrak{E}_{c} are cohesive. Their bounded open sets contain no nonempty clopen sets, so actually $\mathfrak{E} \cup\{\infty\}$ and $\mathfrak{E}_{c} \cup\{\infty\}$ are connected (Erdős 1940)
- Another cohesive almost zero-dimensional space is the stable complete Erdős space, the ω-power of \mathfrak{E}_{c}.

$$
\mathfrak{E}_{c}^{\omega} \not \not ㇒ \mathfrak{E}_{c},
$$

despite $\mathfrak{E}^{\omega} \simeq \mathfrak{E}$. Erdős spaces are universal in the sense that all almost zero-dimensional spaces embed into them. And every complete almost zero-dimensional space is homeomorphic to a closed subspace of $\mathfrak{E}_{c}^{\omega}$. (Dijkstra and van Mill 2004 \& 2010)

- $\mathfrak{E}^{n} \simeq \mathfrak{E}$ for all $n \leq \omega$;
- $E \times \mathfrak{E} \simeq \mathfrak{E}$ for every complete AZD space E;
- $\mathfrak{E}_{c} \times \mathbb{Q}^{\omega} \simeq\left(\mathfrak{E}_{c} \times \mathbb{Q}\right)^{\omega} \simeq \mathfrak{E} ;$
$=\mathfrak{E}_{\mathrm{c}} \simeq\left\{x \in \ell^{2}: x_{i} \notin \mathbb{Q}\right.$ for each $\left.i<\omega\right\}$ (Oversteegen, Tymchatyn, Kawamura 1996)
■ $\mathfrak{E}_{c} \simeq\left\{x \in \ell^{1}: x_{0}=0\right.$ and $x_{n} \in\{0,1 / n\}$ for each $\left.n \geq 1\right\}$
- Identify C with the Cantor set $(\{0\} \cup\{1 / n: n=1,2,3, \ldots\})^{\omega}$. Define $\eta: C \rightarrow[0,1]$ by $\eta(x)=1 /(1+\|x\|)$, where $1 / \infty=0$. Let $L_{0}^{\eta}=\{\langle x, t\rangle: 0 \leq t \leq \eta(x)\}$. Then ∇L_{0}^{η} is also a Lelek fan. And $\nabla\left\{\langle x, \eta(x)\rangle: x \in \mathfrak{C}_{c}\right\} \simeq \mathfrak{C}_{c}$.
- $\mathfrak{E}^{n} \simeq \mathfrak{E}$ for all $n \leq \omega$;
- $E \times \mathfrak{E} \simeq \mathfrak{E}$ for every complete AZD space E;
- $\mathfrak{E}_{c} \times \mathbb{Q}^{\omega} \simeq\left(\mathfrak{E}_{c} \times \mathbb{Q}\right)^{\omega} \simeq \mathfrak{E} ;$
- $\mathfrak{E}_{c} \simeq\left\{x \in \ell^{2}: x_{i} \notin \mathbb{Q}\right.$ for each $\left.i<\omega\right\}$ (Oversteegen, Tymchatyn, Kawamura 1996)
- $\mathfrak{E}_{c} \simeq\left\{x \in \ell^{1}: x_{0}=0\right.$ and $x_{n} \in\{0,1 / n\}$ for each $\left.n \geq 1\right\}$
- Identify C with the Cantor set $(\{0\} \cup\{1 / n: n=1,2,3, \ldots\})^{\omega}$. Define $\eta: C \rightarrow[0,1]$ by $\eta(x)=1 /(1+\|x\|)$, where $1 / \infty=0$. Let $L_{0}^{\eta}=\{\langle x, t\rangle: 0 \leq t \leq \eta(x)\}$. Then ∇L_{0}^{η} is also a Lelek fan. And $\nabla\left\{\langle x, \eta(x)\rangle: x \in \mathfrak{E}_{c}\right\} \simeq \mathfrak{E}_{c}$.

Figure: Cantor fan and Lelek fan

- \exists homogeneous AZD space of positive dimension that is not cohesive;
- \exists rigid cohesive AZD space

Endpoints of Julia sets

■ For each $a \in(-\infty,-1)$ define $f_{a}: \mathbb{C} \rightarrow \mathbb{C}$ by $f_{a}(z)=e^{z}+a$.

- The Julia set $J\left(f_{a}\right)$ is a Cantor bouquet consisting of an uncountable union of pairwise disjoint rays, each joining a finite endpoint to the point at infinity. Let $E\left(f_{a}\right)$ be the set of finite endpoints these rays.

Figure: Images of $J\left(f_{-2}\right)$

- $E\left(f_{a}\right) \cup\{\infty\}$ is connected, even though $E\left(f_{a}\right)$ is totally disconnected (Mayer 1990).
- The one-point compactification $J\left(f_{a}\right) \cup\{\infty\}$ is a Lelek fan (Oversteegen \& Aarts 1991). A Lelek fan is a smooth fan with a dense set of endpoints. Every two Lelek fans are homeomorphic, so $E\left(f_{a}\right) \simeq \mathfrak{E}_{c}$.
- Let $\dot{E}\left(f_{a}\right)$ be the set of escaping endpoints of $J\left(f_{a}\right)$. Then $\dot{E}\left(f_{a}\right) \cup$ $\{\infty\}$ is connected. The even smaller set of fast escaping endpoints $\ddot{E}\left(f_{a}\right)$ also has the property that its union with $\{\infty\}$ is connected. (Alhabib and Rempe-Gillen 2017)

Embedding results

Theorem 1

For every cohesive almost zero-dimensional space X, there is a dense homeomorphic embedding $h: X \hookrightarrow \mathfrak{E}_{c}$ such that $h[X] \cup\{\infty\}$ is connected.

Corollary 2
Every cohesive almost zero-dimensional space has a one-point connectification in the Cantor fan.

Corollary 3

Every cohesive almost zero-dimensional subset of $C \times \mathbb{R}$ is nowhere dense.

Proof.

Suppose X is cohesive AZD dense in $C \times \mathbb{R}$. By Theorem 1 and Lavrentiev's Theorem, there is a complete cohesive AZD X^{\prime} with $X \subseteq X^{\prime} \subseteq C \times \mathbb{R}$. Then there exists $c \in C$ such that $\overline{X^{\prime} \cap\{c\} \times \mathbb{R}}=\{c\} \times \mathbb{R}$. Let O be a convex open subset of the plane such that $x \in W:=O \cap X^{\prime}$ and W contains no non-empty clopen subset of X^{\prime}. Let $x_{1}=\left\langle c, r_{1}\right\rangle$ and $x_{2}=\left\langle c, r_{2}\right\rangle$ be points in W such that $r_{1}<r<r_{2}$.

Rim-type

dispersion

explosion

AZD

In the Cantor fan:

- \exists rim-discrete connected G_{δ}-set with a dispersion point; and
- \exists non-Borel rim-discrete connected set with an explosion point.

However:
■ \ddagger rim-countable connected set X with a point ∞ such that $X \backslash\{\infty\}$ is almost zero-dimensional.

Construction of rim-discrete examples.

Construction of rim-discrete examples.

Construction of rim-discrete examples.

Let D be the "inverse" of the graph of the Cantor function. Let M be the set of midpoints of vertical arcs in D. There is a collection of pairwise disjoint sets $D_{n} \cong D$ such that $[0,1]^{2} \backslash$ $\bigcup\left\{D_{n}: n<\omega\right\}$ is zero-dimensional and $\pi_{0}\left[M_{n}\right] \subseteq \mathbb{P}$. Let $X=(\mathbb{P} \times[0,1]) \backslash \bigcup\left\{D_{n} \backslash M_{n}: n<\omega\right\}$ Then ∇X is a rim-discrete connected G_{δ}-set with dispersion point $\left\langle\frac{1}{2}, 0\right\rangle$

For an explosion point example, define the D_{n} 's so that $\pi_{0}\left[M_{i}\right] \cap \pi_{0}\left[M_{j}\right]=$ \varnothing whenever $i \neq j$. Each non-vertical continuum $K \subseteq[0,1]^{2}$ either intersects some M_{n}, or $\left|\pi_{0}[K \cap X]\right|=c$. Well-order the set of all such continua $\left\{K_{\alpha}: \alpha<\mathfrak{c}\right\}$. Recursively select $y_{\alpha} \in K_{\alpha}$ so that $\pi_{0}\left(y_{\alpha}\right) \in$ $\mathbb{P} \backslash\left\{\pi_{0}\left(y_{\beta}\right): \beta<\alpha\right\}$ and $\pi_{0}\left(y_{\alpha}\right) \notin \pi_{0}\left[M_{n}\right]$ for any $n<\omega$. Put nected with explosion point $\left\langle\frac{1}{2}, 0\right\rangle$

Construction of rim-discrete examples.

Let D be the "inverse" of the graph of the Cantor function. Let M be the set of midpoints of vertical arcs in D. There is a collection of pairwise disjoint sets $D_{n} \cong D$ such that $[0,1]^{2} \backslash$ $\bigcup\left\{D_{n}: n<\omega\right\}$ is zero-dimensional and $\pi_{0}\left[M_{n}\right] \subseteq \mathbb{P}$.
 G_{δ}-set with dispersion point $\left\langle\frac{1}{2}, 0\right\rangle$

Construction of rim-discrete examples.

Let D be the "inverse" of the graph of the Cantor function. Let M be the set of midpoints of vertical arcs in D. There is a collection of pairwise disjoint sets $D_{n} \cong D$ such that $[0,1]^{2} \backslash$ $\bigcup\left\{D_{n}: n<\omega\right\}$ is zero-dimensional and $\pi_{0}\left[M_{n}\right] \subseteq \mathbb{P}$. Let
$X=(\mathbb{P} \times[0,1]) \backslash \bigcup\left\{D_{n} \backslash M_{n}: n<\omega\right\}$.
Then ∇X is a rim-discrete connected G_{δ}-set with dispersion point $\left\langle\frac{1}{2}, 0\right\rangle$.

Construction of rim-discrete examples.

Let D be the "inverse" of the graph of the Cantor function. Let M be the set of midpoints of vertical arcs in D. There is a collection of pairwise disjoint sets $D_{n} \cong D$ such that $[0,1]^{2} \backslash$ $\bigcup\left\{D_{n}: n<\omega\right\}$ is zero-dimensional and $\pi_{0}\left[M_{n}\right] \subseteq \mathbb{P}$. Let

$$
X=(\mathbb{P} \times[0,1]) \backslash \bigcup\left\{D_{n} \backslash M_{n}: n<\omega\right\}
$$

Then ∇X is a rim-discrete connected G_{δ}-set with dispersion point $\left\langle\frac{1}{2}, 0\right\rangle$.
For an explosion point example, define the D_{n} 's so that $\pi_{0}\left[M_{i}\right] \cap \pi_{0}\left[M_{j}\right]=$ \varnothing whenever $i \neq j$. Each non-vertical continuum $K \subseteq[0,1]^{2}$ either intersects some M_{n}, or $\left|\pi_{0}[K \cap X]\right|=\mathfrak{c}$. Well-order the set of all such continua $\left\{K_{\alpha}: \alpha<\mathfrak{c}\right\}$. Recursively select $y_{\alpha} \in K_{\alpha}$ so that $\pi_{0}\left(y_{\alpha}\right) \in$ $\mathbb{P} \backslash\left\{\pi_{0}\left(y_{\beta}\right): \beta<\alpha\right\}$ and $\pi_{0}\left(y_{\alpha}\right) \notin \pi_{0}\left[M_{n}\right]$ for any $n<\omega$. Put $Y=\bigcup\left\{M_{n}: n<\omega\right\} \cup\left\{y_{\alpha}: \alpha<\mathfrak{c}\right\}$. Then ∇Y is rim-discrete connected with explosion point $\left\langle\frac{1}{2}, 0\right\rangle$.

Rim-type

dispersion

explosion

AZD

In the Cantor fan:

- \exists rim-discrete connected G_{δ}-set with a dispersion point; and
- \exists non-Borel rim-discrete connected set with an explosion point.

However:
■ \ddagger rim-countable connected set X with a point ∞ such that $X \backslash\{\infty\}$ is almost zero-dimensional.

Theorem 4 (Taras Banakh)

Every non-empty bounded open subset of \mathfrak{E} (resp. \mathfrak{E}_{c}) has uncountable boundary.

Proof.

Let U be a non-empty open subset of \mathfrak{E} with $\|U\| \leq N$. For $i \in\{0,1\}$ consider the closed subspace $X_{0}=\left\{\left(x_{n}\right)_{n \in \omega} \in X: \forall n \in \omega x_{2 n}=0\right\}$ and observe that $\left|U \cap X_{0}\right|=\mathfrak{c}$. We establish a one-to-one function from $U \cap X_{0}$ into ∂U.

Let $\left(e_{i}\right)_{i \in \omega}$ be the standard orthonormal basis for ℓ_{2}. Inductively define two sequences of rationals $\left(x_{2 i}\right)_{i \in \omega}$ and $\left(x_{2 i}^{\prime}\right)_{i \in \omega}$ such that for every $n \in \omega$ we have $\left|x_{2 n}^{\prime}-x_{2 n}\right|<N / 2^{n}$;

$$
\begin{aligned}
& u+\sum_{i=0}^{n} x_{2 i} e_{2 i} \in U ; \text { and } \\
& u+\sum_{i=0}^{n-1} x_{2 i} e_{2 i}+x_{2 n}^{\prime} e_{2 n} \notin U .
\end{aligned}
$$

The function $u \mapsto u+\sum_{i=0}^{\infty} x_{2 i} e_{2 i} \in \partial U, u \in U \cap X_{0}$, is injective.

An intersection of clopen sets is called a C-set.
Lemma 5
In an almost zero-dimensional space, every closed σ - C-set is a C-set.
Theorem 6
Every rim- σ-compact almost zero-dimensional space is zero-dimensional.

Proof of Lemma 5.
Suppose $A=\bigcup\left\{A_{i}: i<\omega\right\}$ where each A_{i} is a C-set, and A is closed. To prove A is a C-set, it suffices to show that for every $x \in X \backslash A$ there is an X-clopen set B such that $x \in B \subseteq X \backslash A$.

By the Lindelöf property and the fact that X has a neighborhood basis of C-sets, it is possible to write the open set $X \backslash A$ as the union of countably many C-sets whose interiors cover $X \backslash A$. The property of being a C-set is closed under finite unions, so in fact there is an increasing sequence of C-sets $C_{0} \subseteq C_{1} \subseteq \ldots$ with $x \in C_{0}$ and

For each $i<\omega$ there is an X-clopen set B_{i} such that $C_{i} \subseteq B_{i} \subseteq X \backslash A_{i}$. Let $B=\bigcap\left\{B_{i}: i<\omega\right\}$. Apparently B is closed, $x \in B$, and

Proof of Lemma 5.

Suppose $A=\bigcup\left\{A_{i}: i<\omega\right\}$ where each A_{i} is a C-set, and A is closed. To prove A is a C-set, it suffices to show that for every $x \in X \backslash A$ there is an X-clopen set B such that $x \in B \subseteq X \backslash A$.

By the Lindelöf property and the fact that X has a neighborhood basis of C-sets, it is possible to write the open set $X \backslash A$ as the union of countably many C-sets whose interiors cover $X \backslash A$. The property of being a C-set is closed under finite unions, so in fact there is an increasing sequence of C-sets $C_{0} \subseteq C_{1} \subseteq \ldots$ with $x \in C_{0}$ and

$$
\bigcup\left\{C_{i}: i<\omega\right\}=\bigcup\left\{C_{i}^{\mathrm{o}}: i<\omega\right\}=X \backslash A .
$$

For each $i<\omega$ there is an X-clopen set B_{i} such that $C_{i} \subseteq B$
Let $B=\bigcap\left\{B_{i}: i<\omega\right\}$. Apparently B is closed, $x \in B$, and

Proof of Lemma 5.

Suppose $A=\bigcup\left\{A_{i}: i<\omega\right\}$ where each A_{i} is a C-set, and A is closed. To prove A is a C-set, it suffices to show that for every $x \in X \backslash A$ there is an X-clopen set B such that $x \in B \subseteq X \backslash A$.

By the Lindelöf property and the fact that X has a neighborhood basis of C-sets, it is possible to write the open set $X \backslash A$ as the union of countably many C-sets whose interiors cover $X \backslash A$. The property of being a C-set is closed under finite unions, so in fact there is an increasing sequence of C-sets $C_{0} \subseteq C_{1} \subseteq \ldots$ with $x \in C_{0}$ and

$$
\bigcup\left\{C_{i}: i<\omega\right\}=\bigcup\left\{C_{i}^{\circ}: i<\omega\right\}=X \backslash A .
$$

For each $i<\omega$ there is an X-clopen set B_{i} such that $C_{i} \subseteq B_{i} \subseteq X \backslash A_{i}$. Let $B=\bigcap\left\{B_{i}: i<\omega\right\}$. Apparently B is closed, $x \in B$, and

$$
B \subseteq X \backslash A
$$

Further, if $y \in B$ then there exists $j<\omega$ such that $y \in C_{j}^{\mathrm{o}}$. The open set $C_{j}^{\mathrm{o}} \cap \bigcap\left\{B_{i}: i<j\right\}$ witnesses $y \in B^{\mathrm{o}}$. This shows B is open.

Proof of Theorem 6.

Let X be rim- σ-compact AZD. Let $x \in X$ and let U be any open set containing x. Let V be an open set with $x \in V \subseteq \bar{V} \subseteq U$ and ∂V is σ-compact. Since X is totally disconnected, every compact subset of X is a C-set. Thus ∂V is a σ - C-set. By Lemma $5, \partial V$ is a C-set. Thus there is a clopen set A with $\partial V \subseteq A \subseteq X \backslash\{x\}$. Then $B:=V \backslash A$ is an X-clopen set with $x \in B \subseteq U$.

Lemma 5 also implies:
Theorem 7
Cohesive almost zero-dimensional space is nowhere rational.
Theorem 8
If X is almost zero-dimensional and $X \cup\{\infty\}$ is connected, then every
σ-compact separator of $X \cup\{\infty\}$ contains the point ∞.

Proof of Theorem 6.

Let X be rim- σ-compact AZD. Let $x \in X$ and let U be any open set containing x. Let V be an open set with $x \in V \subseteq \bar{V} \subseteq U$ and ∂V is σ-compact. Since X is totally disconnected, every compact subset of X is a C-set. Thus ∂V is a σ - C-set. By Lemma $5, \partial V$ is a C-set. Thus there is a clopen set A with $\partial V \subseteq A \subseteq X \backslash\{x\}$. Then $B:=V \backslash A$ is an X-clopen set with $x \in B \subseteq U$.

Lemma 5 also implies:
Theorem 7
Cohesive almost zero-dimensional space is nowhere rational.
Theorem 8
If X is almost zero-dimensional and $X \cup\{\infty\}$ is connected, then every σ-compact separator of $X \cup\{\infty\}$ contains the point ∞.

Subsets of curves

Recall $\mathrm{HD} \Longleftarrow \mathrm{TD} \Longleftarrow \mathrm{AZD} \Longleftarrow \mathrm{ZD}$.
By a classical result,

$$
\mathrm{HD} \stackrel{(1)}{\Longrightarrow} \mathrm{TD} \xrightarrow{(2)} \mathrm{AZD} \xrightarrow{(3)} \mathrm{ZD}
$$

for subsets of hereditarily locally connected continua.
By results of S.D. Iliadis and E.D. Tymchatyn, the rim-discrete examples show (1) and (2) are generally false for subsets of rational curves.

The implication (3) extends to the larger class of subsets of rational curves.
Question 1
Can \mathfrak{E}_{c} be embedded into a Suslinian continuum?
Question 2
Is $\mathfrak{E}_{c} \cup\{\infty\} \sigma$-connected?

Homeomorphism types of endpoint sets

- Define $I(f)=\left\{z \in \mathbb{C}: f^{n}(z) \rightarrow \infty\right\}$.
- Define the maximum modulus function

$$
M(r):=M(r, f):=\max \{|f(z)|:|z|=r\}
$$

for $r \geq 0$. Choose $R>0$ sufficiently large that $M^{n}(R) \rightarrow+\infty$ as $n \rightarrow \infty$ and define

$$
A_{R}(f):=\left\{z \in \mathbb{C}:\left|f^{n}(z)\right| \geq M^{n}(R) \text { for all } n \geq 0\right\} .
$$

The fast escaping set for f is the increasing union of closed sets

$$
A(f)=\bigcup_{n \geq 0} f^{-n}\left[A_{R}(f)\right]
$$

- For $a \in(-\infty,-1)$ and $f_{a}=\exp +a$, define

$$
\begin{aligned}
& \dot{E}\left(f_{a}\right)=I\left(f_{a}\right) \cap E\left(f_{a}\right) ; \text { and } \\
& \ddot{E}\left(f_{a}\right)=A\left(f_{a}\right) \cap E\left(f_{a}\right)
\end{aligned}
$$

Theorem 9
$\dot{E}\left(f_{a}\right)$ and $\ddot{E}\left(f_{a}\right)$ are first category.

Proof.

For any transcendental entire function $f, I(f) \cap J(f)$ is first category. We have $I\left(f_{a}\right) \subseteq J\left(f_{a}\right)$, so $I\left(f_{a}\right)$ is first category. $\dot{E}\left(f_{a}\right)$ and $\ddot{E}\left(f_{a}\right)$ are dense subsets of $I\left(f_{a}\right)$.

Theorem 11
\square

Theorem 9
$\dot{E}\left(f_{a}\right)$ and $\ddot{E}\left(f_{a}\right)$ are first category.

Proof.

For any transcendental entire function $f, I(f) \cap J(f)$ is first category. We have $I\left(f_{a}\right) \subseteq J\left(f_{a}\right)$, so $I\left(f_{a}\right)$ is first category. $\dot{E}\left(f_{a}\right)$ and $\ddot{E}\left(f_{a}\right)$ are dense subsets of $I\left(f_{a}\right)$.

Theorem 10
Neither $\dot{E}\left(f_{a}\right)$ nor $\ddot{E}\left(f_{a}\right)$ is homeomorphic to $E\left(f_{a}\right)$.
Proof.
$E\left(f_{a}\right)$ is completely metrizable (recall $E\left(f_{a}\right) \simeq \mathfrak{E}_{c}$).

Theorem 11

Theorem 9
$\dot{E}\left(f_{a}\right)$ and $\ddot{E}\left(f_{a}\right)$ are first category.

Proof.

For any transcendental entire function $f, I(f) \cap J(f)$ is first category. We have $I\left(f_{a}\right) \subseteq J\left(f_{a}\right)$, so $I\left(f_{a}\right)$ is first category. $\dot{E}\left(f_{a}\right)$ and $\ddot{E}\left(f_{a}\right)$ are dense subsets of $I\left(f_{a}\right)$.

Theorem 10
Neither $\dot{E}\left(f_{a}\right)$ nor $\ddot{E}\left(f_{a}\right)$ is homeomorphic to $E\left(f_{a}\right)$.
Proof.
$E\left(f_{a}\right)$ is completely metrizable (recall $E\left(f_{a}\right) \simeq \mathfrak{E}_{c}$).
Theorem 11
$\ddot{E}\left(f_{a}\right) \not 千 \mathfrak{E}$.
Proof.
$\ddot{E}\left(f_{a}\right)$ is an absolute $G_{\delta \sigma}$-space because $A\left(f_{a}\right)$ and $E\left(f_{a}\right)$ are F_{σ} and G_{δ} subsets of \mathbb{C}, respectively. On the other hand, \mathfrak{E} is not absolute $G_{\delta \sigma}$ because it has a closed subspace homeomorphic to \mathbb{Q}^{ω}.

Question 3
(a) $\ddot{E}\left(f_{a}\right) \simeq \dot{E}\left(f_{a}\right)$?
(b) $\dot{E}\left(f_{a}\right) \simeq \mathfrak{E}$?
(c) $\ddot{E}\left(f_{a}\right) \simeq \mathbb{Q} \times \mathfrak{E}_{c}$?

