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Definitions

A topological space X is:

hereditarily disconnected if every connected subset of X is degenerate
(either empty or consisting of exactly one point).

totally disconnected if for every two points x,y € X there is a clopen
set containing x and missing y.

almost zero-dimensional provided X has a basis of open sets whose
closures are intersections of clopen sets. This is equivalent to saying
every point x € X has arbitrarily small neighborhoods which are in-
tersections of clopen sets. Almost zero-dimensional spaces are totally
disconnected, and have dimension at most 1.

zero-dimensional if X has a basis of clopen sets.

/D = AZD = TD = HD

cohesive provided each point x € X has a neighborhood which con-
tains no non-empty clopen set.
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m Almost zero-dimensional spaces of positive dimension include:

¢ ={recl?*: a;cQforeachi<w};
C.={rxecl z;c{0}U{l/n:n=1,23,..} for each i < w}.
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m Another cohesive almost zero-dimensional space is the stable com-
plete Erdds space, the w-power of €.
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despite &~ ~ &. Erdds spaces are universal in the sense that all almost
zero-dimensional spaces embed into them. And every complete almost
zero-dimensional space is homeomorphic to a closed subspace of &.
(Dijkstra and van Mill 2004 & 2010)



m E"~ € foralln <w;
m F X &~ €& for every complete AZD space F;
mC xQ¥~(E xQ¥W~¢



E" ~ ¢ for all n < w;
E x & ~ €& for every complete AZD space E;
E.xQ¥~(E. xQ¥~¢

€.~ {z € (?:x; ¢ Qforeachi < w} (Oversteegen, Tymchatyn,
Kawamura 1996)

¢ ~{zel:29=0and z, € {0,1/n} for each n > 1}

Identify C' with the Cantor set ({0} U {1l/n : n = 1,2,3,..})“.
Define np : C — [0,1] by n(z) = 1/(1 + ||=||), where 1/00 = 0. Let
Ll = {(z,t) : 0 <t < n(x)}. Then VL] is also a Lelek fan. And
V{(z,n(z)):z € €.} ~ &,

Figure: Cantor fan and Lelek fan



m J homogeneous AZD space of positive dimension that is not cohesive;

m 7 rigid cohesive AZD space



Endpoints of Julia sets

m For each a € (—o0, —1) define f, : C — C by f,(z) = €* +a.

m The Julia set J(f,) is a Cantor bouquet consisting of an uncountable
union of pairwise disjoint rays, each joining a finite endpoint to the
point at infinity. Let E(f,) be the set of finite endpoints these rays.

Figure: Images of J(f_2)



m E(f,)U{oo} is connected, even though E(f,) is totally disconnected
(Mayer 1990).

m The one-point compactification J(f,)U{co} is a Lelek fan (Overstee-
gen & Aarts 1991). A Lelek fan is a smooth fan with a dense set of
endpoints. Every two Lelek fans are homeomorphic, so E(f,) ~ €..

m Let E(fa) be the set of escaping endpoints of J(f,). Then E(fa)U
{00} is connected. The even smaller set of fast escaping endpoints
E(f,) also has the property that its union with {co} is connected.
(Alhabib and Rempe-Gillen 2017)



Embedding results

Theorem 1
For every cohesive almost zero-dimensional space X, there is a dense home-
omorphic embedding h : X < €. such that h[X] U {oo} is connected.

Corollary 2

Every cohesive almost zero-dimensional space has a one-point connectifi-
cation in the Cantor fan.

Corollary 3

Every cohesive almost zero-dimensional subset of C' x R is nowhere dense.

Proof.
Suppose X is cohesive AZD dense in C'xR. By Theorem 1 and Lavrentiev's
Theorem, there is a complete cohesive AZD X’ with X C X' C C x R.
Then there exists ¢ € C such that X’ N{c} xR = {c¢} x R. Let O be
a convex open subset of the plane such that x € W := O N X’ and
W contains no non-empty clopen subset of X’. Let 1 = {(¢,71) and
29 = (¢, r2) be points in W such that vy < r < 7.

[



dispersion explosion AZD

In the Cantor fan:

m J rim-discrete connected Ggs-set with a dispersion point; and

m 1 non-Borel rim-discrete connected set with an explosion point.
However:

m 7 rim-countable connected set X with a point co such that
X \ {o0} is almost zero-dimensional.
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Let D be the “inverse” of the graph
of the Cantor function. Let M be the
set of midpoints of vertical arcs in D.
There is a collection of pairwise dis-
joint sets D,, = D such that [0,1]?\
U{D» : n < w} is zero-dimensional
and mo[M,] C P. Let

X = (Px[0, P\U{Dw\ M, : n < w}.

Then VX is a rim-discrete connected
Gs-set with dispersion point (1,0).

For an explosion point example, define the D,,'s so that mo[M;]Nmo[M;] =
& whenever i # j. Each non-vertical continuum K C [0, 1]? either in-
tersects some M, or |mo[K N X]|| = c¢. Well-order the set of all such

continua {K, :

a < c}. Recursively select y, € K, so that my(y) €

P\ {mo(ys) : 8 < a} and mo(ya) ¢ mo[My] for any n < w. Put
a < ¢}. Then VY is rim-discrete con-

Y = |U{M, :

n < whU{yy :
nected with explosion point <%,O>.
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Theorem 4 (Taras Banakh)

Every non-empty bounded open subset of € (resp. €.) has uncountable
boundary.

Proof.

Let U be a non-empty open subset of & with ||U|| < N. For i € {0,1}
consider the closed subspace Xo = {(2n)new € X : Vn € w 29, = 0}
and observe that |U N Xy| = ¢. We establish a one-to-one function from
U N Xy into OU.

Let (e;);icw be the standard orthonormal basis for ¢5. Inductively define two
sequences of rationals (2;);e., and (x5;);e, such that for every n € w we
have |x5,, — ®a2n| < N/2™;

n

U+ g Toez; € U; and
i=0
n—1

’
u + E T2;€2; + Xy, Con ¢ U.
=0

The function u — u + Y .2 ae9; € OU, u € U N Xy, is injective. O



An intersection of clopen sets is called a C-set.
Lemma 5

In an almost zero-dimensional space, every closed o-C-set is a C-set.

Theorem 6
Every rim-o-compact almost zero-dimensional space is zero-dimensional.



Proof of Lemma 5.

Suppose A = [J{A; : i < w} where each A; is a C-set, and A is closed.
To prove A is a C-set, it suffices to show that for every z € X \ A there
is an X-clopen set B such that z € B C X \ A.
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By the Lindelof property and the fact that X has a neighborhood basis of
C-sets, it is possible to write the open set X \ A as the union of countably
many C-sets whose interiors cover X \ A. The property of being a C-set
is closed under finite unions, so in fact there is an increasing sequence of
C-sets Cy C C; C ... with z € Cj and

H{Ciri<w}=U{C?:i<w}=X\A.

For each i < w there is an X-clopen set B; such that C; C B; C X \ A;.
Let B=(){B;:i < w}. Apparently B is closed, = € B, and

BCX\ A

Further, if y € B then there exists j < w such that y € C. The open set
CeN{Bi i< j} witnesses y € B°. This shows B is open. OJ



Proof of Theorem 6.

Let X be rim-o-compact AZD. Let x € X and let U be any open set
containing x. Let V be an open set with z € V C V C U and 9V is
o-compact. Since X is totally disconnected, every compact subset of X is
a C-set. Thus OV is a 0-C-set. By Lemma 5, 9V is a C-set. Thus there is
a clopen set A with 9V C A C X'\ {z}. Then B :=V \ A is an X-clopen
set withx € BCU. O
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Lemma 5 also implies:

Theorem 7
Cohesive almost zero-dimensional space is nowhere rational.

Theorem 8
If X is almost zero-dimensional and X U {oc} is connected, then every
o-compact separator of X U {oco} contains the point cc.



Subsets of curves

Recall HD <= TD <= AZD <= ZD.

By a classical result,

HD <% 1D 2 azD & 7D

for subsets of hereditarily locally connected continua.

By results of S.D. lliadis and E.D. Tymchatyn, the rim-discrete examples
show (1) and (2) are generally false for subsets of rational curves.

The implication (3) extends to the larger class of subsets of rational
curves.
Question 1

Can €, be embedded into a Suslinian continuum?

Question 2
Is €. U {o0} o-connected?



Homeomorphism types of endpoint sets
m Define I(f) ={z € C: f"(z) = oo}.
m Define the maximum modulus function
M(r) == M(r, f) == max{[f(2)] : || =7}

for r > 0. Choose R > 0 sufficiently large that M™(R) — +oco as
n — oo and define

Ar(f):=={z € C:|f"(2)] = M"(R) for all n > 0}.

The fast escaping set for f is the increasing union of closed sets

A = 1AM

n>0
m Fora € (—o00,—1) and f, = exp +a, define

E(fa) = 1(fa) N B(fa); and
E(fa) = A(fa) N E(fa)



Theorem 9
E(f.) and E(f,) are first category.

Proof.

For any transcendental entire function f, I(f)NJ(f) is first category. We
have I(fo) C J(fa), so I(f,) is first category. E(f,) and E(f,) are dense
subsets of I(fy). O
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Theorem 10 )
Neither E(f,) nor E(f,) is homeomorphic to E(f,).

Proof.
E(fa) is completely metrizable (recall E(f,) ~ &.). O

Theorem 11
E(fa) #£ €.

Proof.

E(f.) is an absolute Gs,-space because A(f,) and E(f,) are F, and
G5 subsets of C, respectively. On the other hand, € is not absolute G,
because it has a closed subspace homeomorphic to Q. O



Question 3



