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Definitions

A topological space X is:

hereditarily disconnected if every connected subset of X is degenerate
(either empty or consisting of exactly one point).

totally disconnected if for every two points x, y ∈ X there is a clopen
set containing x and missing y.

almost zero-dimensional provided X has a basis of open sets whose
closures are intersections of clopen sets. This is equivalent to saying
every point x ∈ X has arbitrarily small neighborhoods which are in-
tersections of clopen sets. Almost zero-dimensional spaces are totally
disconnected, and have dimension at most 1.

zero-dimensional if X has a basis of clopen sets.

ZD =⇒ AZD =⇒ TD =⇒ HD

cohesive provided each point x ∈ X has a neighborhood which con-
tains no non-empty clopen set.



Erdős spaces

Almost zero-dimensional spaces of positive dimension include:

E = {x ∈ `2 : xi ∈ Q for each i < ω};
Ec = {x ∈ `2 : xi ∈ {0} ∪ {1/n : n = 1, 2, 3, ...} for each i < ω}.

E and Ec are cohesive. Their bounded open sets contain no non-
empty clopen sets, so actually E∪{∞} and Ec ∪{∞} are connected
(Erdős 1940)

Another cohesive almost zero-dimensional space is the stable com-
plete Erdős space, the ω-power of Ec.

Eωc 6' Ec,

despite Eω ' E. Erdős spaces are universal in the sense that all almost
zero-dimensional spaces embed into them. And every complete almost
zero-dimensional space is homeomorphic to a closed subspace of Eωc .
(Dijkstra and van Mill 2004 & 2010)
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En ' E for all n ≤ ω;

E × E ' E for every complete AZD space E;

Ec ×Qω ' (Ec ×Q)ω ' E;

Ec ' {x ∈ `2 : xi /∈ Q for each i < ω} (Oversteegen, Tymchatyn,
Kawamura 1996)

Ec ' {x ∈ `1 : x0 = 0 and xn ∈ {0, 1/n} for each n ≥ 1}
Identify C with the Cantor set ({0} ∪ {1/n : n = 1, 2, 3, ...})ω.
Define η : C → [0, 1] by η(x) = 1/(1 + ‖x‖), where 1/∞ = 0. Let
Lη0 = {〈x, t〉 : 0 ≤ t ≤ η(x)}. Then ∇Lη0 is also a Lelek fan. And
∇{〈x, η(x)〉 : x ∈ Ec} ' Ec.

Figure: Cantor fan and Lelek fan
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∃ homogeneous AZD space of positive dimension that is not cohesive;

∃ rigid cohesive AZD space



Endpoints of Julia sets

For each a ∈ (−∞,−1) define fa : C→ C by fa(z) = ez + a.

The Julia set J(fa) is a Cantor bouquet consisting of an uncountable
union of pairwise disjoint rays, each joining a finite endpoint to the
point at infinity. Let E(fa) be the set of finite endpoints these rays.

Figure: Images of J(f−2)



E(fa)∪{∞} is connected, even though E(fa) is totally disconnected
(Mayer 1990).

The one-point compactification J(fa)∪{∞} is a Lelek fan (Overstee-
gen & Aarts 1991). A Lelek fan is a smooth fan with a dense set of
endpoints. Every two Lelek fans are homeomorphic, so E(fa) ' Ec.

Let Ė(fa) be the set of escaping endpoints of J(fa). Then Ė(fa)∪
{∞} is connected. The even smaller set of fast escaping endpoints
Ë(fa) also has the property that its union with {∞} is connected.
(Alhabib and Rempe-Gillen 2017)



Embedding results

Theorem 1
For every cohesive almost zero-dimensional space X, there is a dense home-
omorphic embedding h : X ↪→ Ec such that h[X] ∪ {∞} is connected.

Corollary 2
Every cohesive almost zero-dimensional space has a one-point connectifi-
cation in the Cantor fan.

Corollary 3
Every cohesive almost zero-dimensional subset of C×R is nowhere dense.

Proof.
Suppose X is cohesive AZD dense in C×R. By Theorem 1 and Lavrentiev’s
Theorem, there is a complete cohesive AZD X ′ with X ⊆ X ′ ⊆ C × R.
Then there exists c ∈ C such that X ′ ∩ {c} × R = {c} × R. Let O be
a convex open subset of the plane such that x ∈ W := O ∩ X ′ and
W contains no non-empty clopen subset of X ′. Let x1 = 〈c, r1〉 and
x2 = 〈c, r2〉 be points in W such that r1 < r < r2.
...
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dispersion explosion AZD

In the Cantor fan:

∃ rim-discrete connected Gδ-set with a dispersion point; and

∃ non-Borel rim-discrete connected set with an explosion point.

However:

@ rim-countable connected set X with a point ∞ such that
X \ {∞} is almost zero-dimensional.



Construction of rim-discrete examples.
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Let D be the “inverse” of the graph
of the Cantor function. Let M be the
set of midpoints of vertical arcs in D.
There is a collection of pairwise dis-
joint sets Dn

∼= D such that [0, 1]2 \⋃
{Dn : n < ω} is zero-dimensional

and π0[Mn] ⊆ P. Let

X = (P×[0, 1])\
⋃
{Dn\Mn : n < ω}.

Then ∇X is a rim-discrete connected
Gδ-set with dispersion point 〈 12 , 0〉.

For an explosion point example, define the Dn’s so that π0[Mi]∩π0[Mj ] =
∅ whenever i 6= j. Each non-vertical continuum K ⊆ [0, 1]2 either in-
tersects some Mn, or |π0[K ∩ X]| = c. Well-order the set of all such
continua {Kα : α < c}. Recursively select yα ∈ Kα so that π0(yα) ∈
P \ {π0(yβ) : β < α} and π0(yα) /∈ π0[Mn] for any n < ω. Put
Y =

⋃
{Mn : n < ω} ∪ {yα : α < c}. Then ∇Y is rim-discrete con-

nected with explosion point 〈 12 , 0〉.
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dispersion explosion AZD

In the Cantor fan:

∃ rim-discrete connected Gδ-set with a dispersion point; and

∃ non-Borel rim-discrete connected set with an explosion point.

However:

@ rim-countable connected set X with a point ∞ such that
X \ {∞} is almost zero-dimensional.



Theorem 4 (Taras Banakh)
Every non-empty bounded open subset of E (resp. Ec) has uncountable
boundary.

Proof.
Let U be a non-empty open subset of E with ‖U‖ ≤ N . For i ∈ {0, 1}
consider the closed subspace X0 = {(xn)n∈ω ∈ X : ∀n ∈ ω x2n = 0}
and observe that |U ∩X0| = c. We establish a one-to-one function from
U ∩X0 into ∂U .

Let (ei)i∈ω be the standard orthonormal basis for `2. Inductively define two
sequences of rationals (x2i)i∈ω and (x′2i)i∈ω such that for every n ∈ ω we
have |x′2n − x2n| < N/2n;

u+

n∑
i=0

x2ie2i ∈ U ; and

u+

n−1∑
i=0

x2ie2i + x′2ne2n /∈ U.

The function u 7→ u+
∑∞
i=0 x2ie2i ∈ ∂U , u ∈ U ∩X0, is injective.



An intersection of clopen sets is called a C-set.

Lemma 5
In an almost zero-dimensional space, every closed σ-C-set is a C-set.

Theorem 6
Every rim-σ-compact almost zero-dimensional space is zero-dimensional.



Proof of Lemma 5.
Suppose A =

⋃
{Ai : i < ω} where each Ai is a C-set, and A is closed.

To prove A is a C-set, it suffices to show that for every x ∈ X \ A there
is an X-clopen set B such that x ∈ B ⊆ X \A.

By the Lindelöf property and the fact that X has a neighborhood basis of
C-sets, it is possible to write the open set X \A as the union of countably
many C-sets whose interiors cover X \ A. The property of being a C-set
is closed under finite unions, so in fact there is an increasing sequence of
C-sets C0 ⊆ C1 ⊆ ... with x ∈ C0 and⋃

{Ci : i < ω} =
⋃
{Co

i : i < ω} = X \A.

For each i < ω there is an X-clopen set Bi such that Ci ⊆ Bi ⊆ X \Ai.
Let B =

⋂
{Bi : i < ω}. Apparently B is closed, x ∈ B, and

B ⊆ X \A.

Further, if y ∈ B then there exists j < ω such that y ∈ Co
j . The open set

Co
j ∩

⋂
{Bi : i < j} witnesses y ∈ Bo. This shows B is open.
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Proof of Theorem 6.

Let X be rim-σ-compact AZD. Let x ∈ X and let U be any open set
containing x. Let V be an open set with x ∈ V ⊆ V ⊆ U and ∂V is
σ-compact. Since X is totally disconnected, every compact subset of X is
a C-set. Thus ∂V is a σ-C-set. By Lemma 5, ∂V is a C-set. Thus there is
a clopen set A with ∂V ⊆ A ⊆ X \{x}. Then B := V \A is an X-clopen
set with x ∈ B ⊆ U .

Lemma 5 also implies:

Theorem 7
Cohesive almost zero-dimensional space is nowhere rational.

Theorem 8
If X is almost zero-dimensional and X ∪ {∞} is connected, then every
σ-compact separator of X ∪ {∞} contains the point ∞.
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Subsets of curves

Recall HD⇐= TD⇐= AZD⇐= ZD.

By a classical result,

HD
(1)
=⇒ TD

(2)
=⇒ AZD

(3)
=⇒ ZD

for subsets of hereditarily locally connected continua.

By results of S.D. Iliadis and E.D. Tymchatyn, the rim-discrete examples
show (1) and (2) are generally false for subsets of rational curves.

The implication (3) extends to the larger class of subsets of rational
curves.

Question 1
Can Ec be embedded into a Suslinian continuum?

Question 2
Is Ec ∪ {∞} σ-connected?



Homeomorphism types of endpoint sets

Define I(f) = {z ∈ C : fn(z)→∞}.

Define the maximum modulus function

M(r) :=M(r, f) := max{|f(z)| : |z| = r}

for r ≥ 0. Choose R > 0 sufficiently large that Mn(R) → +∞ as
n→∞ and define

AR(f) := {z ∈ C : |fn(z)| ≥Mn(R) for all n ≥ 0}.

The fast escaping set for f is the increasing union of closed sets

A(f) =
⋃
n≥0

f−n[AR(f)].

For a ∈ (−∞,−1) and fa = exp+a, define

Ė(fa) = I(fa) ∩ E(fa); and

Ë(fa) = A(fa) ∩ E(fa)



Theorem 9
Ė(fa) and Ë(fa) are first category.

Proof.
For any transcendental entire function f , I(f)∩J(f) is first category. We
have I(fa) ⊆ J(fa), so I(fa) is first category. Ė(fa) and Ë(fa) are dense
subsets of I(fa).

Theorem 10
Neither Ė(fa) nor Ë(fa) is homeomorphic to E(fa).

Proof.
E(fa) is completely metrizable (recall E(fa) ' Ec).

Theorem 11
Ë(fa) 6' E.

Proof.
Ë(fa) is an absolute Gδσ-space because A(fa) and E(fa) are Fσ and
Gδ subsets of C, respectively. On the other hand, E is not absolute Gδσ
because it has a closed subspace homeomorphic to Qω.
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Question 3

(a) Ë(fa) ' Ė(fa)?

(b) Ė(fa) ' E?

(c) Ë(fa) ' Q× Ec?


