Trigonometric Approximation in Lie Groups

Wayne Lawton

Linear Algebra Seminar, March 29, 2016
Department of Mathematics and Statistics
Auburn University, Auburn, Alabama

Abstract

Weierstrass proved that every continuous function from the circle group R/Z to the Lie group $\mathrm{R}^{\wedge} \mathrm{n}$ can be uniformly approximated by functions with trigonometric polynomial entries. This property also holds for semisimple Lie groups. We discuss approximation methods and applications to optics, robotics, and wavelets.

Orthonormal Wavelet Bases

Orthonormal wavelets bases for $L^{2}(R)$

$$
\begin{aligned}
& \left\{2^{J / 2} \psi\left(2^{J} x-k\right): J, k \in Z\right\} \\
& \psi(x)=2 \sum_{k \in Z} d(k) \varphi(2 x-k) \\
& \varphi(x)=2 \sum_{k \in Z} c(k) \varphi(2 x-k)
\end{aligned}
$$

where c and d satisfy: $\sum_{k \in Z} c(k)=1$
$\sum_{k \in Z} c(k) \overline{c(k-2 l)}=\sum_{k \in Z} d(k) \overline{d(k-2 l)}=\frac{1}{2} \delta_{0, l}, l \in Z$

$$
\sum_{k \in Z} c(k) \overline{d(k-2 l)}=0, l \in Z
$$

Fourier Transforms

$$
C(z)=\sum_{k \in Z}^{z=e^{-2 \pi i \theta} \in T} \quad c(k) z^{k} \quad D(z)=\sum_{k \in Z} d(k) z^{k}
$$

$$
\text { satisfy: } C(1)=1
$$

$$
|C(z)|^{2}+|C(-z)|^{2}=|D(z)|^{2}+|D(-z)|^{2}=1
$$

$$
C(z) D(z)+C(-z) D(-z)=0
$$

$$
\Leftrightarrow M(1)=I, M(z)=\left[\begin{array}{cc}
C(z) & D(z) \\
C(-z) & D(-z)
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
C(z) & -\overline{C(-z)} \\
C(-z) & \overline{C(z)}
\end{array}\right] \in S U(2), z \in T
$$

Polyphase Matrix

$M(z)=\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & z\end{array}\right] P\left(z^{2}\right)\left[\begin{array}{cc}1 & 0 \\ 0 & -\bar{z}\end{array}\right]$
where $P \in C(T, S U(2))$.
Question Can P (so M) be approximated by $\widetilde{P} \in C_{p o l}(T, S U(2))$, loops with Laurent; trigonometric polynomial entries in $z ; \theta$. Answer: Yes, we refine the sketchy proof in given in Ref. L99. We may assume that P is smooth (in fact real analytic).

Hopf Fibration

$\operatorname{SU}(2) \ni g \rightarrow\left\{\left[\begin{array}{cc}w & u+i v \\ u-i v & -w\end{array}\right] \rightarrow g\left[\begin{array}{cc}w & u+i v \\ u-i v & -w\end{array}\right] g^{-1}:\left[\begin{array}{l}u \\ v \\ w\end{array}\right] \in R^{2}\right\}$
gives the exact sequence

$$
\left\{ \pm I_{2}\right\} \rightarrow S U(2) \xrightarrow{h} S O(3) \longrightarrow\left\{I_{3}\right\}
$$

and fibration

$$
S^{3} \approx S U(2) \ni g \xrightarrow{H} h(g) e_{3} \in S^{3}
$$

whose fibers are the right cosets

$$
\left\{g\left[\begin{array}{cc}
z & 0 \\
0 & \bar{z}
\end{array}\right]: z \in T\right\}, g \in T
$$

Sard's Theorem

Since the entries of P are smooth $\exists g \in S U(2)$ such that $\left\{e_{3},-e_{3}\right\}$ is disjoint from the image of
$H(g P)=h(g P) e_{3}=h(g) h(P) e_{3}=h(g) H(P)$
$Q=g P=\left[\begin{array}{ll}Q_{e} & -\bar{Q}_{o} \\ Q_{0} & \bar{Q}_{e}\end{array}\right] \Leftrightarrow\left\{ \pm\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right\}$
is disjoint from the image of Q

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] Q^{-1}=
$$

$$
\left[\begin{array}{cc}
\left|Q_{e}\right|^{2}-\left|Q_{o}\right|^{2} & 2 Q_{e} \bar{Q}_{o} \\
2 Q_{o} \bar{Q}_{e} & \left|Q_{o}\right|^{2}-\left|Q_{e}\right|^{2}
\end{array}\right] \Leftrightarrow \begin{aligned}
& Q_{\iota}(z) \neq 0, z \in T \\
& Q_{o}(z) \neq 0, z \in T
\end{aligned}
$$

Winding Numbers

$Q=\left[\begin{array}{cc}Q_{e} & -\bar{Q}_{o} \\ Q_{o} & \bar{Q}_{e}\end{array}\right]=\left[\begin{array}{cc}\alpha\left|Q_{e}\right| & -\bar{\beta}\left|Q_{o}\right| \\ \beta\left|Q_{o}\right| & \bar{\alpha}\left|Q_{e}\right|\end{array}\right]$ where $\alpha, \beta \in C(T, T)$
$Q\left(z^{2}\right)=\left[\begin{array}{cc}\gamma(z) & 0 \\ 0 & \gamma(z)\end{array}\right]\left[\begin{array}{cc}\left|Q_{e}\left(z^{2}\right)\right| & -\left|Q_{o}\left(z^{2}\right)\right| \\ \left|Q_{o}\left(z^{2}\right)\right| & \left|Q_{e}\left(z^{2}\right)\right|\end{array}\right]\left[\begin{array}{cc}\delta(z) & 0 \\ 0 & \overline{\delta(z)}\end{array}\right]$
$\Leftrightarrow \gamma(z)^{2}=\alpha\left(z^{2}\right) \beta\left(z^{2}\right), \delta(z)^{2}=\alpha\left(z^{2}\right) \beta\left(z^{2}\right)$ winding numbers of right sides are even so $\exists \gamma, \delta \in C(T, T)$ satisfying these equations.

Dirichlet and Fejer Kernels

$D_{N}(z)=\sum_{-N}^{N} z^{n}=\frac{\sin (2 N+1) \pi \theta}{\sin \pi \theta}$
$K_{N}(z)=\frac{1}{N+1} \sum_{0}^{N} D_{N}(z)=\frac{1}{N+1}\left(\frac{\sin (N+1) \pi \theta}{\sin \pi \theta}\right)^{2}$
For every $f \in C(T, C)$ the convolution
$\left(K_{N} * f\right)(z)=\int_{0}^{1} K_{N}\left(e^{2 \pi i \theta}\right) f\left(e^{-2 \pi i \theta} z\right) d \theta$
is a Laurent polynomial of degree N and
$\lim _{N \rightarrow \infty} K_{N} * f=f$.

Riesz-Fejer Spectral Factorization Lemma If $f \in C_{p o l}(T,[0, \infty))$ is a Laurent polynomial of degree N then there exists and algebraic polynomial $g \in C_{p o l}(T, C)$ of degree N with $f=|g|^{2}$. We observe that there exist Laurent polynomials $Q_{e, N}, Q_{o, N}$ with $K_{N} *\left|Q_{e}\right|^{2}=\left|Q_{e N}\right|^{2} \quad K_{N} *\left|Q_{o}\right|^{2}=\left|Q_{o, N}\right|^{2}$
$\left.Q_{e, N}\right|^{2}+\left|Q_{e, N}\right|^{2}=1$

Back to Winding Numbers

$Q_{N}=\left[\begin{array}{cc}Q_{e, N} & -\bar{Q}_{o, N} \\ Q_{o, N} & \bar{Q}_{e, N}\end{array}\right]=\left[\begin{array}{cc}\alpha_{N}\left|Q_{e, N}\right| & -\bar{\beta}_{N}\left|Q_{o, N}\right| \\ \beta_{N}\left|Q_{o, N}\right| & \bar{\alpha}_{N}\left|Q_{e, N}\right|\end{array}\right]$
where $\alpha_{N}, \beta_{N} \in C(T, T)$
$Q_{N}\left(z^{2}\right)=\left[\begin{array}{cc}\gamma_{N}(z) & 0 \\ 0 & \gamma_{N}(z)\end{array}\right]\left[\begin{array}{cc}\left|Q_{e, N}\left(z^{2}\right)\right| & -\left|Q_{Q, N}\left(z^{2}\right)\right| \\ \left|Q_{Q, N}\left(z^{2}\right)\right| & \left|Q_{e, N}\left(z^{2}\right)\right|\end{array}\right]\left[\begin{array}{cc}\delta_{N}(z) & 0 \\ 0 & \delta_{N}(z)\end{array}\right]$
$\Leftrightarrow \gamma_{N}(z)^{2}=\alpha_{N}\left(z^{2}\right) \beta_{N}\left(z^{2}\right), \delta_{N}(z)^{2}=\alpha_{N}\left(z^{2}\right) \overline{\beta_{N}\left(z^{2}\right)}$
winding numbers of right sides are even so
$\exists \gamma, \delta \in C(T, T)$ satisfying these equations.

Milestone

$$
\begin{aligned}
& Q\left(z^{2}\right)=\lim _{N \rightarrow \infty}\left[\begin{array}{cc}
\gamma(z) & 0 \\
0 & \overline{\gamma(z)}
\end{array}\right]\left[\begin{array}{cc}
\left|Q_{e, N}\left(z^{2}\right)\right| & -\left|Q_{o, N}\left(z^{2}\right)\right| \\
\left|Q_{o, N}\left(z^{2}\right)\right| & \left|Q_{e, N}\left(z^{2}\right)\right|
\end{array}\right]\left[\begin{array}{cc}
\delta(z) & 0 \\
0 & \overline{\delta(z)}
\end{array}\right] \\
& =\lim _{N \rightarrow \infty} \Gamma_{N}(z)\left[\begin{array}{cc}
Q_{e, N}\left(z^{2}\right) & -Q_{o, N}\left(z^{2}\right) \\
Q_{o, N}\left(z^{2}\right) & Q_{e, N}\left(z^{2}\right)
\end{array}\right] \Delta_{N}(z) \text { where } \\
& \Gamma_{N}(z)=\left[\begin{array}{cc}
\gamma(z) \overline{\gamma_{N}(z)} & 0 \\
0 & \overline{\gamma(z)} \gamma_{N}(z)
\end{array}\right] \\
& \Delta_{N}(z)=\left[\begin{array}{cc}
\delta(z) \overline{\delta_{N}(z)} & 0 \\
0 & \overline{\delta(z)} \delta_{N}(z)
\end{array}\right]
\end{aligned}
$$

Finish Line

It suffices to show that every diagonal loop $\left[\begin{array}{ll}f & 0 \\ 0 & \bar{f}\end{array}\right] \in C(T, S U(2)) \quad$ can be approximated by elements in $C_{p o l}(T, S U(2))$. Approximate $f \approx f_{N}=K_{N} * f$, observe that $1-\left|f_{N}\right|^{2}>0$ and choose $g_{N} \in C_{p o l}(T, C)$ so $1-\left|f_{N}\right|^{2}=\left|g_{N}\right|^{2}$.

Then

$$
\left[\begin{array}{cc}
f & 0 \\
0 & \bar{f}
\end{array}\right] \approx\left[\begin{array}{cc}
f_{N} & -\bar{g}_{N} \\
g_{N} & \bar{f}_{N}
\end{array}\right] \in C_{p o l}(T, S U(2))
$$

Conjugate Quadrature Filters

Z,R,C, T integer, real, complex, unit circle
$C(\mathrm{~T}) \mathrm{C}$ - valued, continuous functions
$P(\mathrm{~T})$ Laurent polynomials

$\mathrm{m} \geq 2$ fixed integer

$\omega \equiv e^{i 2 \pi / m}$ primitive m-th root of unity
$P_{Q}(\mathrm{~T}), C_{Q}(\mathrm{~T})$ conjugate quadrature filters

$$
\sum_{k=0}^{m-1}\left|F\left(\omega^{k} z\right)\right|^{2}=1, \quad z \in \mathrm{~T}
$$

Applications and Requirements

CQF's are used to construct paraunitary
filter banks and orthonormal wavelet bases
$P_{Q}(\mathrm{~T})$ FIR filters, compactly supp. wavelets
$C_{Q}(\mathrm{~T}) \backslash P_{Q}(\mathrm{~T})$ linear phase filters
Factor $U(z) \equiv\left[\left(1-z^{m}\right) /(1-z)\right]^{d}$ for regularity
needed for stable filterbanks \& smooth wavelets

Design Approaches

Much more difficult to design polynomial CQF's
Jorgensen describes an approach based on factorizing their polyphase representations
(Notices of the AMS, 50(8)(2003),880-894)
We describe an alternate approach that is based on approximating elements in
$C_{Q}(\mathrm{~T})$ by elements in $P_{Q}(\mathrm{~T})$
This approach can preserve specified factors

Two-Step Approximation Method

Problem given $U \in P(\mathrm{~T}), H \in C(\mathrm{~T})$ э $U H \in C_{Q}(\mathrm{~T})$

 construct $P \in P(\mathrm{~T})$ э $U P \in P_{Q}(\mathrm{~T}), P \approx H$
Solution

Step One

construct $Q \in P(\mathrm{~T})$ э $U Q \in P_{Q}(\mathrm{~T}),|Q| \approx|H|$
Step Two
construct $P \in P(\mathrm{~T})$ э $U P \in P_{Q}(\mathrm{~T}), P \approx H$

Table of Contents

Introduction

Polyphase Representations and Loop Groups
Spectral Factorization and Bezout Identities

Phase Transformations of Modulation Matrices

Hermite Interpolation and CQF Approximation

Polyphase Representations

Theorem The functors

$$
\begin{aligned}
& \mathrm{T} \xrightarrow{\mathrm{f}} \mathrm{Y} \Rightarrow \mathrm{~T} \xrightarrow{\tau \mathrm{f}} \mathrm{Y}(\tau \mathrm{f})(\mathrm{z}) \equiv \mathrm{f}(\omega z), \quad z \in \mathrm{~T} \\
& \mathrm{~T} \xrightarrow[\mathrm{~h}]{ } \mathrm{Y} \Rightarrow \mathrm{~T} \xrightarrow{\sigma \mathrm{~h}} \mathrm{Y}(\sigma \mathrm{~h})(\mathrm{z}) \equiv \mathrm{h}\left(z^{m}\right), \quad z \in \mathrm{~T}
\end{aligned}
$$

$$
\text { satisfy } \tau \mathrm{f}=\mathrm{f} \Leftrightarrow \exists \mathrm{~h}: \mathrm{T} \rightarrow Y \ni \mathrm{f}=\sigma \mathrm{h}
$$

Corollary $\mathrm{v}: \mathrm{T} \rightarrow \mathrm{C}^{\mathrm{m}}$ is a modulation vector

$$
\mathrm{v}(\mathrm{~F}) \equiv\left[\mathrm{F}, \tau \mathrm{~F}, \ldots, \tau^{m-1} \mathrm{~F}\right]^{\mathrm{T}} \overline{\mathrm{~F} \in \mathrm{C}(\mathrm{~T}) \Leftrightarrow \mathrm{Cv}}=\tau \mathrm{v}
$$

where $C \equiv\left[\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & \ldots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & 0 & 0\end{array}\right]$ is circulant matrix

Polyphase Representations

Proposition $\forall \mathrm{w}(\mathrm{F}): \mathrm{T} \rightarrow \mathrm{C}^{\mathrm{m}}$ is polyphase vector for $\mathrm{F} \in \mathrm{C}(\mathrm{T}) \Leftrightarrow \mathrm{v}(\mathrm{F})=\Omega \Lambda \sigma \mathrm{w}(\mathrm{F})$ where $\Omega \equiv$ (Fourier transform)
$\frac{1}{\sqrt{m}}\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \cdots & \omega^{-1} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{-2} \\ \vdots & \cdots & \cdots & \cdots & \vdots \\ 1 & \omega^{-1} & \omega^{-2} & \cdots & \omega\end{array}\right]$

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & z & 0 & \cdots & 0 \\
0 & 0 & z^{2} & \cdots & 0 \\
\vdots & \cdots & \cdots & \cdots & \vdots \\
0 & 0 & 0 & 0 & z^{m-1}
\end{array}\right]
$$

Corollary $\mathrm{F}(\mathrm{z})=\sum_{k=1}^{m} z^{k-1} w(F)_{k}\left(z^{m}\right)$,

$$
\begin{aligned}
& \mathrm{F} \in \mathrm{P}(\mathrm{~T}) \Leftrightarrow w(F)_{k} \in \mathrm{P}(\mathrm{~T}), \\
& \mathrm{F} \in \mathrm{C}_{Q}(\mathrm{~T}) \Leftrightarrow w(F): \mathrm{T} \rightarrow S^{2 m-1} \subset C^{m}
\end{aligned}
$$

Winding Number

Definition The winding number of $\mathrm{f}: \mathrm{T} \rightarrow \mathrm{T}$
$\mathrm{W}(\mathrm{f}) \equiv \frac{1}{\mathrm{i} 2 \pi} \int_{0}^{2 \pi} \frac{\mathrm{df}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{\mathrm{f}\left(\mathrm{e}^{\mathrm{i} \theta}\right)}$ if f is differentiable
$\mathrm{W}(\mathrm{f}) \equiv \mathrm{W}(\tilde{\mathrm{f}}) \quad \tilde{\mathrm{f}}$ is differentiable and $\|\mathrm{f}-\tilde{\mathrm{f}}\|<2$ Remark $\mathrm{W}(\mathrm{f})$ is well defined, takes values in Z, is a continuous function of f, is a special case of the Brouwer degree of a map of sphere to itself Lemma Given $\mathrm{f}: \mathrm{T} \rightarrow \mathrm{T}$ there exists $\mathrm{h}: \mathrm{T} \rightarrow \mathrm{iR}$ with $\mathrm{f}=\exp (\mathrm{h})$ iff $\quad \mathrm{W}(\mathrm{f})=0$

Homotopy and Matrix Extension

Definition Maps $\mathrm{f}_{\mathrm{i}}: \mathrm{S}^{\mathrm{n}} \rightarrow \mathrm{S}^{\mathrm{n}}, i=0,1$ are homotopic

$$
\text { iff } \exists \mathrm{F}:[0,1] \times S^{\mathrm{n}} \rightarrow S^{\mathrm{n}} \ni \mathrm{~F}(\mathrm{j}, \cdot)=\mathrm{f}_{\mathrm{j}}, \mathrm{j}=0,1
$$

Theorem (H. Hopf) Map of a sphere into itself are homotopic iff their Brouwer degrees are equal
Corollary f is homotopic to constant iff $W(f)=0$ Proposition

$$
\forall \mathrm{f}: \mathrm{T} \rightarrow \mathrm{~S}^{2 \mathrm{~m}-1}, \exists \mathrm{~g}: \mathrm{T} \rightarrow \mathrm{SU}(\mathrm{~m}) \ni \mathrm{g}_{*, 1}=\mathrm{f}
$$

Proof Let $\mathrm{e}_{1} \equiv[1,0, \ldots, 0]^{\mathrm{T}}$ then $g \rightarrow \mathrm{p}(\mathrm{g}) \equiv \mathrm{ge}_{1}$ is a fiber bundle, and hence a fibration $\mathrm{p}: \mathrm{SU}(\mathrm{m}) \rightarrow \mathrm{S}^{2 \mathrm{~m}-1}=\mathrm{SU}(\mathrm{m}) / \mathrm{SU}(\mathrm{m}-1)$ and the result follows from the homotopy lifting property Definition g is a polyphase matrix for f

Algebra and Matrix Extension

 Proposition If entries $\mathrm{f}: \mathrm{T} \rightarrow \mathrm{C}^{\mathrm{m}}$ in $\mathrm{P}(\mathrm{T})$ and have no common zeros in $C \backslash\{0\}$ then $\exists \mathrm{g}: \mathrm{T} \rightarrow \mathrm{SL}(\mathrm{m})$, with entries in $\mathrm{P}(\mathrm{T})$ and $\mathrm{g}_{*, 1}=\mathrm{f}$ Proof Follows from the Smith form for f Proposition If entries $\mathrm{f}: \mathrm{T} \rightarrow \mathrm{S}^{2 \mathrm{~m}-1}$ in $\mathrm{P}(\mathrm{T})$ then $\exists \mathrm{g}: \mathrm{T} \rightarrow \mathrm{SU}(\mathrm{m})$, with entries in $\mathrm{P}(\mathrm{T})$ and $\mathrm{g}_{*, 1}=\mathrm{f}$ Proof Follows from the factorization theorem for $m \times 1$ paraunitary matrices
Loop Groups

Remark Elements in $\mathrm{C}(\mathrm{T}) \otimes \mathrm{C}^{\mathrm{m} \times \mathrm{m}}$, called loops, may be regarded as matrix-valued functions on T or as matrices having values in $\mathrm{C}(\mathrm{T})$
Definition Loop groups

$$
\begin{aligned}
& G \equiv C(T) \otimes S U(m) \\
& G^{\infty} \equiv C^{\infty}(T) \otimes S U(m) \\
& G_{p o l} \equiv P(T) \otimes S U(m)
\end{aligned}
$$

their Lie algebras

$$
\begin{aligned}
& G \equiv \mathrm{C}(\mathrm{~T}) \otimes \mathrm{su}(\mathrm{~m}) \\
& G^{\infty} \equiv \mathrm{C}^{\infty}(\mathrm{T}) \otimes \mathrm{su}(\mathrm{~m}) \\
& G_{\mathrm{pol}} \equiv \mathrm{P}(\mathrm{~T}) \otimes \mathrm{su}(\mathrm{~m})
\end{aligned}
$$

Exponential Function

Proposition Let $O \subset \mathrm{su}(\mathrm{m})$ be matrices whose spectral radius $<\pi$ Then exp : $\mathrm{su}(\mathrm{m}) \rightarrow \mathrm{SU}(\mathrm{m})$ is a real-analytic diffeomorphism of O onto an open neigborhood O of $I \in S U(m)$

Proposition (Trotter) Given $\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{M}} \in G$

$$
\lim _{\mathrm{L} \rightarrow \infty}\left[\exp \left(\frac{\mathrm{~h}_{\mathrm{L}}}{\mathrm{~L}}\right) \cdots \exp \left(\frac{\mathrm{h}_{\mathrm{M}}}{\mathrm{~L}}\right)\right]^{\mathrm{L}}=\exp \left(\mathrm{h}_{1}+\cdots+\mathrm{h}_{\mathrm{M}}\right)
$$

Furthermore, if $\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{M}} \in G^{\infty}$ then convergence holds in the $C^{\infty}(\mathrm{T})$ topology

Magic Basis

Theorem For $n \geq 0, \rho \in\{1, i\}$ define
$a(n, \rho, z) \equiv\left[\begin{array}{cc}0 & \rho z^{n} \\ -\bar{\rho} z^{-n} & 0\end{array}\right], b(n, \rho, z) \equiv \overline{a(n, \rho, z)}$

$$
c(n, \rho, z) \equiv \frac{1}{2}\left[\begin{array}{cc}
\rho z^{n}-\bar{\rho} z^{-n} & -\rho z^{n}-\bar{\rho} z^{-n} \\
\rho z^{n}+\bar{\rho} z^{-n} & -\rho z^{n}+\bar{\rho} z^{-n}
\end{array}\right]
$$

$X \equiv\{c(0, i, z), a(0, i, z), a(0, i, z)\}$ is basis for $\operatorname{su}(2)$
$\mathrm{B}_{2} \equiv X \cup\{a, b, c: n>0, \rho=1, i\}$ basis $\mathrm{P}(\mathrm{T}) \otimes \mathrm{su}(2)$
leads to basis B for G_{pol} and $B \in \mathrm{~B} \Rightarrow B^{2}=-I$

Density

Theorem $\mathrm{G}_{\text {pol }}$ is dense in $\mathrm{G}^{\infty}, \mathrm{G}$

Proof Euler's formula implies that

$$
B \in \mathrm{~B} \Rightarrow \exp \theta B=\cos \theta I+\sin \theta B \in \mathrm{G}_{p o l}
$$

Trotter's formula implies that every element in $\exp G_{p o l}$ is the limit of elements in $\mathrm{G}_{p o l}$ and every element in G is the product of elements in $\exp G_{p o l}$

Corollary $\mathrm{P}_{Q}(\mathrm{~T})$ is dense in $\mathrm{C}_{Q}(\mathrm{~T})$
Proof Approximate polyphase matrix of $\mathrm{F} \in \mathrm{C}_{Q}(\mathrm{~T})$

Spectral Factorization

Definition Let $\mathrm{H} \in \mathrm{C}_{+}(\mathrm{T})$ A function $\mathrm{F} \in \mathrm{C}(\mathrm{T})$ is a spectral factor of H if $|\mathrm{F}|^{2}=\mathrm{H}$
Definition $\mathrm{P} \in \mathrm{P}(\mathrm{T})$ is minimal phase if all its roots have modulus ≥ 1
Theorem (L. Fejer and F. Riesz) Every $\mathrm{P} \in \mathrm{P}_{+}(\mathrm{T})$ has a minimal phase spectral factor
Definition $\mathrm{F} \in \mathrm{C}(\mathrm{T})$ is an outer function if $\exists \mathrm{c} \in \mathrm{T}, \mathrm{H} \in \mathrm{C}_{+}(\mathrm{T}) \ni \log \mathrm{H} \in \mathrm{L}^{1}(\mathrm{~T})$ and
$\mathrm{F}(\mathrm{z})=\mathrm{c} \exp \left[\lim _{r \uparrow 1} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\mathrm{e}^{\mathrm{is}}+\mathrm{rz}}{\mathrm{e}^{\mathrm{is}}-\mathrm{r} \mathrm{z}} \log \mathrm{H}\left(\mathrm{e}^{\mathrm{is}}\right) \mathrm{ds}\right]$

Bezout Identities

Theorem If $\mathrm{U}_{1}, \ldots, \mathrm{U}_{m} \in \mathrm{P}_{+}(\mathrm{T})$ have no common roots in $C \backslash\{0\}$ and $\mathrm{H}_{1}, \ldots, \mathrm{H}_{m} \in C(\mathrm{~T})$ satisfy the Bezout identity $\mathrm{U}_{1} \mathrm{H}_{1}+\cdots+\mathrm{U}_{\mathrm{m}} \mathrm{H}_{m}=1$ then $\forall \delta>0, \exists \mathrm{Q}_{1}, \ldots, \mathrm{Q}_{m} \in \mathrm{P}(\mathrm{T})$ э
$\mathrm{U}_{1} \mathrm{Q}_{1}+\cdots+\mathrm{U}_{\mathrm{m}} \mathrm{Q}_{m}=1, \quad\left\|H_{k}-Q_{k}\right\|<\delta, k=1, . ., m$ Proof Uses matrix extension in $\mathrm{P}(\mathrm{T}) \otimes \mathrm{SL}(\mathrm{m})$ and Weierstrass approximation

Remark Extends the 1-dim version of a multi-dim result in W. Lawton and C. A. Micchelli, Bezout identities with inequality constraints, Vietnam Journal of Mathematics 28\#2(2000),1-29

Step One

Theorem If $\mathrm{H} \in \mathrm{C}(\mathrm{T}), \mathrm{U} \in \mathrm{P}(\mathrm{T}), \mathrm{UH} \in \mathrm{C}_{\mathrm{Q}}(\mathrm{T})$ then $\forall \varepsilon>0, \exists Q \in \mathrm{P}(\mathrm{T}) \ni Q$ has no zeros in T $\mathrm{UQ} \in \mathrm{P}_{\mathrm{Q}}(\mathrm{T})$ and $\||H|-|Q|\|<\varepsilon$
Proof Uses previous theorem

Modulation Matrices

Definition $\mathrm{V}: \mathrm{T} \rightarrow C^{m \times m}$ is a (unitary) modulation matrix if it maps T into $\mathrm{U}(\mathrm{m})$ and if $\mathrm{CV}=\tau \mathrm{V}$ Proposition $\mathrm{V}: \mathrm{T} \rightarrow C^{m \times m}$ is a modulation matrix iff $\exists \mathrm{W}: \mathrm{T} \rightarrow \mathrm{U}(\mathrm{m}) \ni \mathrm{V}=\Omega \Lambda \sigma \mathrm{W}$

Furthermore $\mathrm{V}_{\mathrm{i}, \mathrm{j}} \in \mathrm{P}(\mathrm{T}) \Leftrightarrow \mathrm{W}_{\mathrm{i}, \mathrm{j}} \in \mathrm{P}(\mathrm{T})$ and
$\mathrm{F} \in \mathrm{C}_{\mathrm{Q}}(\mathrm{T}) \Rightarrow \exists$ modulation matrix $\mathrm{V} \ni \mathrm{V}_{1,1}=\mathrm{F}$ and if $\mathrm{F} \in \mathrm{P}_{\mathrm{Q}}(\mathrm{T})$ we may choose $\mathrm{V} \ni \mathrm{V}_{\mathrm{i}, \mathrm{j}} \in \mathrm{P}(\mathrm{T})$ Proof Follows directly from previous results

Stabilizer Subgroups

Definition Subroups $\mathrm{S}_{\mathrm{r}} \equiv \sigma \mathrm{G}, \quad \mathrm{S}_{\ell} \equiv \Omega \Lambda \mathrm{S}_{\mathrm{r}} \Lambda^{-1} \Omega^{-1}$ Lie algebras
$S_{\mathrm{r}} \equiv\left\{h \in G: \exp h \in \mathrm{~S}_{\mathrm{r}}\right\}, \quad S_{\ell} \equiv\left\{h \in G: \exp h \in \mathrm{~S}_{\ell}\right\}$
Subroups $\mathrm{S}_{\mathrm{r}}^{\infty} \equiv \mathrm{S}_{\mathrm{r}} \cap \mathrm{G}^{\infty}, \quad \mathrm{S}_{\ell}^{\infty} \equiv \mathrm{S}_{\ell} \cap \mathrm{G}^{\infty}$

$$
\Rightarrow \mathrm{S}_{\mathrm{r}}^{\infty}=\sigma \mathrm{G}^{\infty}, \quad \mathrm{S}_{\ell}^{\infty}=\Omega \Lambda \mathrm{S}_{\mathrm{r}}^{\infty} \Lambda^{-1} \Omega^{-1}
$$

Lie algebras $S_{r}^{\infty}=S_{r} \cap G^{\infty}, \quad S_{\ell}^{\infty}=S_{\ell} \cap G^{\infty}$
Corollary $\mathrm{V}: \mathrm{T} \rightarrow C^{m \times m}$ a modulation matrix $g \in \mathrm{G}$ $\mathrm{g} \in \mathrm{S}_{\ell} \Leftrightarrow \mathrm{g} \mathrm{V}$ is a modulation matrix $\Leftrightarrow \mathrm{CgC}^{-1}=\tau \mathrm{g}$ $\mathrm{g} \in \mathrm{S}_{r} \Leftrightarrow \mathrm{Vg}$ is a modulation matrix $\Leftrightarrow \mathrm{g}=\tau \mathrm{g}$ Analogous statements hold for C^{∞} functions

Bases for Stabilizer Subgroups

Corollary σ B is a basis for $S_{r} \cap G_{p o l}$ and $\Omega \Lambda \sigma \mathrm{B} \Lambda^{-1} \Omega^{-1}$ is a basis for $S_{\ell} \cap G_{p o l}$
Furthermore, $B^{2}=-I$ if B is in either basis Corollary $\mathrm{S}_{\mathrm{r}} \cap \mathrm{G}_{\mathrm{pol}}$ is dense in $\mathrm{S}_{\mathrm{r}}^{\infty}$ and in S_{r} $\mathrm{S}_{\ell} \cap \mathrm{G}_{\mathrm{pol}}$ is dense in $\mathrm{S}_{\ell}^{\infty}$ and in S_{ℓ}
Proof Follows from density theorem and the fact that $\forall h \in G, \exp \sigma h=\sigma \exp h$

Structure of Left Stabilizer Algebra

 Proposition If $h \in G$ then $h \in S_{\ell} \Leftrightarrow$$h=\left[\begin{array}{ccccc}h_{1} & h_{2} & h_{3} & \cdots & h_{m} \\ \tau h_{m} & \tau h_{1} & \tau h_{2} & \cdots & \tau h_{m-1} \\ \tau^{2} h_{m-1} & \tau^{2} h_{m} & \tau^{2} h_{1} & \cdots & \tau^{2} h_{m-2} \\ \vdots & \cdots & \cdots & \cdots & \vdots \\ \tau^{m-1} h_{2} & \tau^{m-1} h_{3} & \tau^{m-1} h_{4} & \cdots & \tau^{m-1} h_{1}\end{array}\right]$
where $h_{1}, \ldots, h_{m} \in G$ satisfy Structure Equations

$$
\begin{aligned}
& w\left(h_{1}\right)_{1}=0, \quad h_{1} \in i \mathrm{R} \quad m=2 n \Rightarrow h_{n+1}=-\tau^{n} h_{n+1} \\
& 2 n-1 \leq m \leq 2 n \Rightarrow h_{m+2-j}=-\overline{\tau^{m+1-j}} h_{j}, \quad j=2, \ldots, n
\end{aligned}
$$

Diagonal Stabilizer Subgroups

Definition $D \equiv\{g \in G: g$ is a diagonal matrix $\}$

$$
\mathrm{D}^{\infty} \equiv \mathrm{D} \cap \mathrm{G}^{\infty}
$$

$$
D \equiv\{d \in G: \exp (d) \in \mathrm{D}\}
$$

$$
D^{\infty} \equiv\left\{d \in G: \exp (d) \in \mathrm{D}^{\infty}\right\}
$$

Lemma $D=\{h \in G: h$ is a diagonal matrix $\}$

$$
D^{\infty} \equiv D \cap G^{\infty}
$$

Proposition $\quad h \in D \cap S_{r} \Rightarrow$

$$
\begin{gathered}
h=i \sigma \operatorname{diag}\left[b_{1}, \ldots, b_{m}\right], b_{j} \in \mathrm{C}(\mathrm{~T}) \text { real, } \sum_{\mathrm{j}=1}^{\mathrm{m}} b_{j}=0 \\
h \in D \cap S_{\ell} \Rightarrow \\
h=i \operatorname{diag}\left[a, \tau a, \ldots, \tau^{m-1} a\right], a \in \mathrm{C}(\mathrm{~T}) \text { real, } \mathrm{w}(\mathrm{a})_{1}=0
\end{gathered}
$$

Phase Transformations

Corollary V modulation matrix $f: \mathrm{T} \rightarrow \mathrm{T}, W(f)=0$

$$
\begin{aligned}
& \Rightarrow \exists d_{\ell} \in D \cap S_{\ell}, d_{r} \in D \cap S_{r} \ni \\
& \quad \quad\left(\left(\exp d_{\ell}\right) V\left(\exp d_{r}\right)\right)_{1,1}=f V_{1,1}
\end{aligned}
$$

Proof Since $W(f)=0 \quad \exists h: \mathrm{T} \rightarrow \mathrm{iR}$ э $\exp h=f$
Construct
$d_{\ell} \equiv i \operatorname{diag}\left[a, \tau a, \ldots, \tau^{m-1} a\right] \quad d_{r} \equiv i \sigma \operatorname{diag}\left[b_{1}, \ldots, b_{m}\right]$
where

$$
i a \equiv h-\sigma w(h)_{1}
$$

hence $w(a)_{1}=0$
and $i b_{1} \equiv w(h)_{1}$
$b_{2} \equiv-b_{1}$
$b_{3}, \ldots, b_{m} \equiv 0$

Factor Preserving Transformations

Definition $\mathrm{M}_{\mathrm{r}} \equiv\left\{g: \mathrm{T} \rightarrow \mathrm{C}^{m \times m}: U \mid g_{\mathrm{i}, 1}, \mathrm{i} \geq 2\right\}$

$$
\mathbf{M}_{\ell} \equiv\left\{g: \mathbf{T} \rightarrow \mathbf{C}^{m \times m}: U \mid g_{1, \mathrm{j}}, \mathrm{j} \geq 2\right\}
$$

Subroups $\mathrm{U}_{\mathrm{r}} \equiv \mathrm{G} \cap \mathrm{M}_{\mathrm{r}} \quad \mathrm{U}_{\ell} \equiv \mathrm{G} \cap \mathrm{M}_{\ell} \quad \mathrm{U}_{\mathrm{r}}^{\infty} \quad \mathrm{U}_{\ell}^{\infty}$ Lemma The Lie algebras
$U_{\mathrm{r}} \equiv\left\{h \in G: \exp h \in \mathrm{U}_{\mathrm{r}}\right\}=G \cap \mathbf{M}_{r} \quad U_{r}^{\infty}=G^{\infty} \cap \mathbf{M}_{r}$
$U_{\ell} \equiv\left\{h \in G: \exp h \in \mathrm{U}_{\ell}\right\}=G \cap \mathbf{M}_{\ell} \quad U_{\ell}^{\infty}=G^{\infty} \cap \mathbf{M}_{\ell}$ Proposition If $V: T \rightarrow C^{m \times m}$ and $U \mid V_{1,1}$
then $\mathrm{g} \in \mathrm{U}_{\ell} \Rightarrow U \mid(\mathrm{g})_{1,1}$ and $\mathrm{g} \in \mathrm{U}_{r} \Rightarrow U \mid(\mathrm{Vg})_{1,1}$
Definitions and assertions hold for C^{∞} functions Proof Follows directly from the equations

$$
(\mathrm{g} \mathrm{~V})_{1,1}=\sum_{k=1}^{m} g_{1, k} \mathrm{~V}_{k, 1} \quad(\mathrm{Vg})_{1,1}=\sum_{k=1}^{m} \mathrm{~V}_{1, k} g_{k, 1}
$$

Jets

Definition $\mathrm{C}^{\infty}(\mathrm{T})$ space of infinitely differentiable complex-valued functions on T with topology of uniform convergence of N -derivatives for any N

$$
D_{z}: \mathrm{P}(\mathrm{~T}) \rightarrow \mathrm{P}(\mathrm{~T}), \quad D_{z} f \equiv \partial f / \partial z
$$

$D_{\theta}: \mathrm{C}^{\infty}(\mathrm{T}) \rightarrow \mathrm{C}^{\infty}(\mathrm{T}), \quad D_{\theta} f \equiv \partial f\left(e^{i \theta}\right) / \partial \theta=i z D_{z} f$
For $U(z)=\prod_{j=1}^{s}\left(z-\mu_{j}\right)^{d_{j}}, d_{j} \geq 0, d \equiv \sum_{j=1}^{s} d_{j}$
define U-jet maps $\mathrm{J}_{\mathrm{z}}: \mathrm{P}(\mathrm{T}) \rightarrow C^{d}, \mathrm{~J}_{\theta}: \mathrm{C}^{\infty}(\mathrm{T}) \rightarrow \mathrm{C}^{\mathrm{d}}$

$$
\begin{aligned}
J_{z} f & \equiv\left[f\left(\mu_{1}\right), \ldots, D_{z}^{d_{1}-1} f\left(\mu_{1}\right), f\left(\mu_{2}\right), \ldots, D_{z}^{d_{s}-1} f\left(\mu_{s}\right)\right. \\
J_{\theta} f & \equiv\left[f\left(\mu_{1}\right), \ldots, D_{\theta}^{d_{1}-1} f\left(\mu_{1}\right), f\left(\mu_{2}\right), \ldots, D_{\theta}^{d_{s}-1} f\left(\mu_{s}\right)\right.
\end{aligned}
$$

Parameterization of Jets

Lemma $\mathrm{P}(\mathrm{T}) \subset \mathrm{C}^{\infty}(\mathrm{T})$ and \exists linear isomorphism $\mathrm{L}: \mathrm{C}^{\mathrm{d}} \rightarrow \mathrm{C}^{\mathrm{d}} \ni \mathrm{J}_{\theta} f=L \mathrm{~J}_{z} f, \quad f \in P(T)$
Proof Follows from $D_{\theta}=i z D_{z}$
Proposition $\operatorname{ker}\left(\mathrm{J}_{\mathrm{z}}\right)=U \mathrm{P}(\mathrm{T})$ is an ideal in $\mathrm{P}(\mathrm{T})$ and $\operatorname{ker}\left(\mathrm{J}_{\theta}\right)=U \mathrm{C}^{\infty}(\mathrm{T})$ is an ideal in $\mathrm{C}^{\infty}(\mathrm{T})$
$\mathrm{J}_{\mathrm{z}} \mathrm{P}(\mathrm{T}) \approx \mathrm{P}(\mathrm{T}) / \mathrm{UP}(\mathrm{T}), \mathrm{J}_{\theta} \mathrm{C}^{\infty}(\mathrm{T}) \approx \mathrm{C}^{\infty}(\mathrm{T}) / \mathrm{UC}^{\infty}(\mathrm{T})$
\exists linear injection $\Phi: \mathrm{C}^{\mathrm{d}} \rightarrow \mathrm{P}(\mathrm{T}) \ni \mathrm{J}_{\mathrm{z}} \Phi \mathrm{v}=\mathrm{v}, \mathrm{v} \in \mathrm{C}^{\mathrm{d}}$ $\Phi \mathrm{C}^{\mathrm{d}}=$ space of algebraic poly nomials of degree $<\mathrm{d}$ Proof First two assertions are standard algebra, Shilov's Linear Algebra proves third using CRT

Extended Jets

Definition The extended right and left jets

$$
\mathrm{J}_{\mathrm{r}}: G^{\infty} \rightarrow \mathrm{C}^{\mathrm{d}(\mathrm{~m}-1)} \quad \text { and } \quad \mathrm{J}_{\ell}: G^{\infty} \rightarrow \mathrm{C}^{\mathrm{d}(\mathrm{~m}-1)}
$$

are C-linear maps of the loop algebra into $\mathrm{C}^{\mathrm{d}(\mathrm{m}-1)}$

$$
\begin{array}{ll}
\mathrm{J}_{\mathrm{r}} h \equiv\left[\mathrm{~J}_{\theta} h_{2,1}, \ldots, \mathrm{~J}_{\theta} h_{m, 1}\right]^{\mathrm{T}}, & h \in G^{\infty} \\
\mathrm{J}_{\ell} h \equiv\left[\mathrm{~J}_{\theta} h_{1,2}, \ldots, \mathrm{~J}_{\theta} h_{1, m}\right]^{\mathrm{T}}, & h \in G^{\infty}
\end{array}
$$

Lemma $U_{r}^{\infty}=\left\{h \in G^{\infty}: \mathrm{J}_{r} h=0\right\}$

$$
U_{\ell}^{\infty}=\left\{h \in G^{\infty}: \mathbf{J}_{\ell} h=0\right\}
$$

Lemma $\quad V_{r} \equiv \mathrm{~J}_{r} S_{r}^{\infty}=\mathrm{J}_{r}\left(S_{r} \cap G_{p o l}\right)$

$$
V_{\ell} \equiv \mathbf{J}_{\ell} S_{\ell}^{\infty}=\mathbf{J}_{\ell}\left(S_{\ell} \cap G_{p o l}\right)
$$

are R-linear subspaces of $C^{d(m-1)}$

Cross Sections and Hermite Interpolation

 Lemma If $d_{r} \in D \cap S_{r} \cap G_{p o l}$ there exists $\Theta_{\mathrm{r}}: V_{r} \rightarrow S_{r} \cap G_{p o l} \ni h \rightarrow \Theta_{\mathrm{r}}(h)-d_{r}$ is R-linear and $\operatorname{diag}\left(\Theta_{r}(h)\right)=d_{r}, \quad h \in V_{r}$ and $\mathrm{J}_{\mathrm{r}} \Theta_{\mathrm{r}}: V_{r} \rightarrow V_{r}$ is the identity map on V_{r} Analogous assertions hold for d_{ℓ} and Θ_{ℓ} Theorem If $d_{r} \in D \cap S_{r}$ then $\exp \left(d_{r}\right)$ is in the closure of $\mathrm{U}_{\mathrm{r}} \cap \mathrm{S}_{\mathrm{r}} \cap \mathrm{G}_{\mathrm{pol}}$Analogous assertions hold for $d_{\ell} \in D \cap S_{\ell} \cap G_{p o l}$ Proof Let $A_{r}: \Theta_{r}\left(V_{r}\right) \rightarrow \mathrm{G}_{p o l}$ Trotter approx. exp $\Rightarrow B_{r} \equiv \mathrm{~J}_{r} \log A_{r} \Theta_{r}: V_{r} \rightarrow V_{r}$ approx. identity so result follows by Brouwer degree argument

Step Two

Theorem If $\mathrm{H} \in \mathrm{C}(\mathrm{T}), \mathrm{U} \in \mathrm{P}(\mathrm{T}), \mathrm{UH} \in \mathrm{C}_{\mathrm{Q}}(\mathrm{T})$ then $\forall \varepsilon>0, \exists P \in \mathrm{P}(\mathrm{T}) э P$ has no zeros in T $\mathrm{UP} \in \mathrm{P}_{\mathrm{Q}}(\mathrm{T})$ and $\|H-P\|<\varepsilon$
Proof Compute $\widetilde{\mathrm{H}} \in \mathrm{C}(\mathrm{T})$ with no zeros in T with $\tilde{\mathrm{H}} \approx \mathrm{H}$ then compute Q using Step One and multiplication by an integer power of z so that $U Q \in \mathrm{P}_{\mathrm{Q}}(\mathrm{T}),|Q| \approx|H|, W(\operatorname{phase}(f))=0$ where $f \equiv \operatorname{phase}(\tilde{H} / Q): \mathrm{T} \rightarrow \mathrm{T}$
Now compute d_{r}, d_{ℓ} as in the Phase Modulation page and then apply the previous Theorem

References

BC92 S. Basu, Complete parameterization of 2-D non-separable orthonormal wavelets, IEE Int. Conf. on Time Frequency Analysis, Victoria, Canada, 1992.
B98 S. Basu, Multi-dimensional filter banks and wavelets - a systems theoretic perspective, J. Franklin Inst, 335B(8) (1998) 1367-1409.
D88 I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure App. Math., 41 (1988) 909-996.
D92, I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.
E04 L. Ephremidze, An elementary proof of the polynomial matrix spectral factorization theorem, Proc. Roy. Soc. Edinburgh, Sect. A 144 (2014) 747-751.

ESL15 L. Ephremidze, E. Lagvilava and I. Spitkovsky, Rankdeficient spectral factorization and wavelets completion problem, International Journal of Wavelets, Multiresolution and Information Processing, 13(3) (2015), 1550013 (9 pages), World Scientific
L78 T.Y.Lam, Serre Conjecture, Lect. Notes Math, 635, Springer, 1978.

LR99 W. Lawton and H. L. Resnikoff, Multidimensional wavelet bases, Aware, Inc., Bedford, MA, Technical Report (40 pages), May 1993. LLS96 W. Lawton, S. L. Lee and Z. Shen, An algorithm for matrix extension and wavelet construction, Mathematics of Computation, 65(214), (1996) 723--737.

LM97a W. Lawton and C. A. Micchelli, Design of conjugate quadrature filters having specified zeros, Vol. 3, p. 2069-2073, Proc. ICASSP97, Munich, Germany, April 21--24, 1997.
LM97b W. Lawton and C. A. Micchelli, Construction of conjugate quadrature filters with specified zeros, Numerical Algorithms, 14 (1997) 383--399.

LL99 W. Lawton and Z. Lin, Matrix completion problems in multidimensional systems, Proc. of IEEE Int. Symposium on Circuits and Systems, Orlando, Florida, May 30 - June 2, 1999.
LM00 W. Lawton and C. Micchelli, B\'ezout identities with inequality constraints, Vietnam J. of Math., 28(2) (2000) 1-29.

L99 W. Lawton, Conjugate quadrature filters, Advances in Wavelets, 103--119 (Ka-Sing Lau, ed.), Springer, Singapore, 1999.
L00 W. Lawton, Infinite convolution products and refinable distributions on Lie groups, Transactions of the American Mathematical Society, 352 (6), (2000), 2913--2936.

LN01 W. Lawton and L. Noakes, Computing the inertia operator of a rigid body, Journal of Mathematical Physics, 42(4), (2001) 1--11.

L02 W. Lawton, The inverse problem for Euler's equation on 2 and 3 dimensional Lie groups, ScienceAsia, 28(1) (2002) 61-70.

LL04 W. Lawton andY. Lenbury, Interpolatory properties of trajectories in Lie groups, p. 19-31 in Proceedings of Conference on Harmonic Analysis and its Applications in Osaka, Osaka, Japan, November 15--17, 2004.

L04 W. Lawton, Hermite interpolation in loop groups and conjugate quadrature filter approximation, Acta Applicandae Mathematicae, 84 (3), . 2004 (349--349)

OMK04 P. Oswald, C. K. Madsen and R. L. Konsbruck, Analysis of

 scalable PMD compensators using FIR filters and wavelengthdependent optical power measurements, J. of Lightwave Technology, 22 (2) (2004) 647-657.OS08 P. Oswald and T. Shingel, Splitting methods for SU(N) loop approximation, J. of Approximation Theory 161 (2009) 174-186. OS10 P. Oswald and T. Shingel, Close-to-optimal bounds for SU(N) loop approximation, J. of Approximation Theory 162 (2010) 1511-1517.

S10 T. Shingel, Trigonometric approximation of SO(N) loops, Constructive Approximation, 32 (2010) 597-618.

PR03 J. A. Parker and M. A. Rieffel, Wavelet filter functions, the matrix completion problem, and projective modules over $\boldsymbol{C}\left(\boldsymbol{T}^{\wedge} \boldsymbol{n}\right)$, The Journal of Fourier Analysis and Appl., 9(2) (2003) 101-116. PR04 J. A. Parker and M. A. Rieffel, Projective multi-resolution analyses for $L^{\wedge} 2\left(R^{\wedge} 2\right)$, The Journal of Fourier Analysis and Appl., 9(2) (2003) 101-116.

RS95 A. Ron and Z. Shen, Frames and stable bases for shift-inv ariant subspaces of L2(R^d),Can.J. Math.74(5)(1995)1051-1094. RS97a A. Ron and Z. Shen, Weyl-Heisenberg frames and Rieszbases in L2(R^d), Duke Math. J. 89 (2) (1997) 237-282. RS97b A. Ron and Z. Shen, Affine systems in L2($\left.\mathrm{R}^{\wedge} \mathrm{d}\right)$: The analysis of the analysis operator, Journal of Functional Analysis, 148 (1997) 408-447.
DHRS04 I. Daubechies, B. Han, A. Ron and Z. Shen, Framelets: MRA-based constructions of wavelet frames, Applied and Computational Harmonic Analysis 14(1) (2003) 1-46. FGS15 Z. Fan, H. Ji and Z. Shen, Dual Grammian analysis: duality principle and unitary extension principle, Mathematics of Computation, http://dx.doi.org/10.1090/mcom/2987
Article electronically published on June 23, 2015 V86 M. Vidyasagar, Control System Synthesis-A Factorization Approach. MIT Press, 1986.
YP84 D. C. Youla T. and Pickel, The Quillen-Suslin theorem and the structure of n-dimensional polynomial matrices, IEEE Transactions on Circuits and Svstems 31(6) (1984) 513-518

FZ95 S. J. Favier and R. Zalik, On the stability of frames and Riesz bases, Appl. Comput. Harm. Analysis 2 (1995) 160-173. GZ95 N. K. Govil and R. Zalik, Perturbations of the Haar Wavelet, Proc. Amer. Math. Soc. 125 (1997) 3363-3370.
Z99 R. Zalik, Riesz Bases and Multiresolution Analyses, Appl.
Comput. Harm. Analysis 7 (1999) 315-331.
GZ04 A. L. Gonzales and R. Zalik, Riesz bases, multiresolution analyses, and perturbation in "Wavelets, Frames, and Operator Theory" (D. Larson, P. E. T. Jorgensen and C. Heil, Eds.), 163182. Contemporary Math., Vol. 345, AMS, Providence, RI, 2004. Z07 R. Zalik, On MRA Riesz wavelets, Proc. American Math. Soc. 135 (2007), 777-785.
AZ12 A. San Antol'ın and R. Zalik, Matrix-valued wavelets and multiresolution analysis, J. Appl. Functional Anal. 7(2012)13-25.
AZ13 A. San Antol'ın andR. Zalik, A family of nonseparable scaling functions and compactly supported tight framelets, J. Mathematical Analysis and Applications 404 (2013), 201-211. DOI: 10.1016/j.jmaa.2013.02.040.

