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Abstract

Weierstrass proved that every continuous

function from the circle group R/Z to the Lie group

R^n can be uniformly approximated by functions

with trigonometric polynomial entries. This

property also holds for semisimple Lie groups.

We discuss approximation methods and

applications to optics, robotics, and wavelets.



Orthonormal Wavelet Bases

Orthonormal wavelets bases for
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Fourier Transforms

satisfy: 
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Polyphase Matrix
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Question Can P (so M) be approximated by

Answer: Yes, we refine the sketchy proof

in given in Ref. L99. We may assume

that P is smooth (in fact real analytic).
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Hopf Fibration
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gives the exact sequence

and fibration
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whose fibers are the right cosets



Sard’s Theorem
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Winding Numbers

winding numbers of right sides are even so

satisfying these equations.







sin

)12(sin
)(




N
zzD

N

N

n

N

2

1
1

01
1

sin

)1(sin
)()( 







 


 


N
zDzK

N

N

NNN

 dzefeKzfK ii

NN )()())(( 2
1

0

2 



Dirichlet and Fejer Kernels

For every the convolution),( CTCf 

is a Laurent polynomial of degree N and 
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Riesz-Fejer Spectral Factorization Lemma

If )),0[,(  TCf pol is a Laurent polynomial

22 |||| eNeN QQK 

of degree N then there exists and algebraic 

polynomial ),( CTCg pol of degree N with

We observe that there exist

Laurent polynomials NoNe QQ ,, , with
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Back to Winding Numbers

winding numbers of right sides are even so

satisfying these equations.
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It suffices to show that every diagonal loop
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Finish Line

can be approximated

by elements in )).2(,( SUTCpol
Approximate

observe that

choose ),( CTCg polN  so .||||1 22
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and
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Conjugate Quadrature Filters

 T C,R,Z, integer, real, complex, unit circle

- valued, continuous functionsC

)T(P Laurent polynomials

)T(C

2 m fixed integer

mie /2  primitive m-th root of unity

)T(),T( QQ CP conjugate quadrature filters
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Applications and Requirements

CQF’s are used to construct paraunitary 

filter banks and orthonormal wavelet bases

)T(QP FIR filters, compactly supp. wavelets

dm zzzU )]1/()1[()( 

)T(\)T( QQ PC linear phase filters

Factor for regularity

needed for stable filterbanks & smooth wavelets



Design Approaches

Much more difficult to design polynomial CQF’s

Jorgensen describes an approach based on 

factorizing their polyphase representations

(Notices of the AMS, 50(8)(2003),880-894)

)T(QC

This approach can preserve specified factors

We describe an alternate approach that 

is based on approximating elements in

)T(QPby elements in



Two-Step Approximation Method

Solution 

Problem given )T()T(),T( QCUHCHPU 

construct HPPUPPP Q  ),T()T(

Step One 

construct ||||),T()T( HQPUQPQ Q 

Step Two 

construct HPPUPPP Q  ),T()T(
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Polyphase Representations
Theorem The functors

satisfy

YTYT ff   T),(ff)(z)(τ  zz

YTYT hh   T),(hh)(z)(  zzm
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vCv 

Corollary

C(T)FforT1 F]F,...,[F,v(F)  m
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is a modulation vector
mCT:v 

where is the m x m 

circulant matrix



Polyphase Representations

Proposition

w(F)σv(F) C(T)F
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Winding Number

Definition The winding number of TT:f 

if f is differentiable 




2

0 iθ

iθ
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)f(e

)df(e
W(f)

)f
~

W(W(f)  is differentiable and f
~

2||f
~

-f|| 

Remark W(f) is well defined, takes values in Z, 

is a continuous function of f, is a special case of 

the Brouwer degree of a map of sphere to itself 

Lemma Given f:TT there exists h:TiR with 

exp(h)f  iff 0W(f) 



Homotopy and Matrix Extension
Definition Maps 1,0,SS:f nn

i  i are homotopic

iff 

Theorem (H. Hopf) Map of a sphere into itself are 

homotopic iff their Brouwer degrees are equal

Corollary f is homotopic to constant iff W(f)=0

1)SU(m)/SU(mSSU(m):p 12m  

then

fgSU(m)T:g,ST:f
,1

12m 


-

1,0j,f)F(j,SS[0,1]:F j

nn


Proposition

Proof Let
T

1 ]0,...,0,1[e  1gep(g) g
is a fiber bundle, and hence a fibration

result follows from the homotopy lifting property
and the

Definition g is a polyphase matrix for f



Algebra and Matrix Extension
in  

and have no common zeros in 

Proposition If entries

then

mCT:f 

Proof Follows from the Smith form for f

}0{\C

Proof Follows from the factorization theorem 

for m x 1 paraunitary matrices

P(T)

Proposition If entries 12mST:f - in  P(T) then

fgandP(T)in  entrieswith SU(m),T:g
,1




fgandP(T)in  entrieswith SL(m),T:g
,1






Loop Groups

Remark Elements in , called loops, mmCC(T) 

or as matrices having values in C(T)
may be regarded as matrix-valued functions on 

Definition Loop groups

T

SU(m)C(T)G 

SU(m)(T)CG  

their Lie algebras

su(m)P(T)polG

su(m)(T)C  G

SU(m)P(T)Gpol 

su(m)C(T)G



Exponential Function

Proposition (Trotter) Given

be matrices whose su(m)O
spectral radius Then SU(m)su(m):exp 

is a real-analytic diffeomorphism of O onto an

open neigborhood O of SU(m)I

Proposition Let

      M1

L

L

h

L

h

L
hhexpexpexplim M1 




GM1 h,...,h

Furthermore, if GM1 h,...,h then convergence

holds in the )T(C topology



Magic Basis

Theorem For
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},1{,0 in   define

),,(),,( znaznb  

is basis for su(2)

},1,0:,,{B2 incbaX   basis

polG

su(2)P(T)

leads to basis B for and IBB  2B



Density

Theorem polG is dense in

Proof Euler’s formula implies that

Trotter’s formula implies that every element in

and everyis the limit of elements in 

polBIBB GθsinθcosθexpB 

G,G

polGexp polG

element in polGexp

Corollary )T(PQ is dense in )T(CQ

Proof Approximate polyphase matrix of )T(CF Q

is the product of elements in G



Spectral Factorization

Definition Let A function

is a spectral factor of

is minimal phase if all its

if 

1

Theorem (L. Fejer and F. Riesz) Every

roots have modulus

)T(CH  )T(CF

H H|F| 2

Definition )T(PP

)T(PP 
has a minimal phase spectral factor

Definition )T(CF is an outer function if

(T)LHlog)T(CHT,c 1 
and 
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Bezout Identities

Theorem If have no common
roots in and 

)T(PU,...,U1 m

}0{\C
Bezout identity

SL(m))T(P 

then
)T(H,...,H1 Cm  satisfy the 
1HUHU m11  m

 )T(PQ,...,Q,0 1 m

mkQH kkm ,..,1,||||,1QUQU m11  

Proof Uses matrix extension in

and Weierstrass approximation

Remark Extends the 1-dim version of a multi-dim 

result in W. Lawton and C. A. Micchelli, Bezout 

identities with inequality constraints, Vietnam 

Journal of Mathematics 28#2(2000),1-29 



Step One

Theorem If

then

(T)CUH,P(T)UC(T),H Q

 |||||||| QH

Proof Uses previous theorem

QQ  )T(P,0 has no zeros in 

(T)PUQ Q and 

T



Modulation Matrices

Definition is a (unitary) modulation
mmC T:V

matrix if it maps

P(T)WP(T)V ji,ji, 

ΩΛσWVU(m)T:W 

Proposition 

τVCV 
mmC T:V is a modulation matrix

Furthermore

FVVmatrix  modulation (T)CF 1,1Q 

and

and if (T)PF Q we may choose P(T)VV ji, 

Proof Follows directly from previous results 

into U(m) and if T

iff



Stabilizer Subgroups

Definition 11

rr SSG,σS   

Lie algebras 

  GSS,GSS rr 

mmC T:V

Subroups

Corollary a modulation matrix

}Sexp:{},Sexp:{ rr   hGhShGhS

Subroups

Lie algebras 

11

rr SS,GS   
  GSSGSS rr ,

Gg

Analogous statements hold for 

gCgCmatrix  modulation a is VgSg -1  

ggmatrix  modulation a is VgSg  r
C functions 



Bases for Stabilizer Subgroups

Corollary Bσ is a basis for 

IB 2Furthermore, 

and

if

polr GS 



rS

Proof Follows from density theorem and the 

fact that hhGh expexp,  

11B    is a basis for polGS 

B is in either basis

polr GS Corollary is dense in and in rS

polGS  is dense in 

S and in S



Structure of Left Stabilizer Algebra

Proposition If thenGh
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where Ghh m ,,1  satisfy Structure Equations

R,0)( 111 ihhw 

njj
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Diagonal Stabilizer Subgroups

Definition

matrix} diagonal a is :{ hGhD 

matrix} diagonal a is g:G{gD 

Proposition 

  GDD

  GDD

 rSDh

 


m

1j1 0 real, C(T)],,...,[ diag jjm bbbbih 

 SDh

0 w(a)real, C(T)],,...,,[ diag 1

1   aaaaih m

}D)exp(:{  dGdD

Lemma 

}D)exp(:{   dGdD



Phase Transformations

Corollary 0TT  W(f),f:modulation matrixV

Proof Since

 rr SDdSDd ,

1,11,1))(exp)((exp VfdVd r 

fhh  expiRT:

],...,[ diag 1 mr bbid 

1)(hwhia 

],...,,[ diag 1aaaid m 

0W(f)

Construct

hence 0)( 1 aw

andwhere 11 )(hwib 

12 bb 

0,...,3 mbb



Factor Preserving Transformations

Definition

Lemma The Lie algebras 

mmCTV :Proposition If

rGhGhU M}Uexp:{ rr 

Subroups

Definitions and assertions hold for C

and

rr MGU 

1,1V)g(|Ug U then 1,1g)V(|Ug Ur and

functions
Proof Follows directly from the equations

1,1 ,11,1 VV)g( k

m

k kg 
  


m

k kk g
1 1,,11,1 Vg)V(

},|:CT:{M 2ii,1r 
 gUg mm

},|:CT:{M 2jj1, 
 gUg mm



 MGU 

 M}Uexp:{  GhGhU
rr GU M 



rU 

U

 M  GU

1,1|VU



Jets

Definition (T)C
space of infinitely differentiable

complex-valued functions on T with topology of

zffDD zz  ,)T(P)T(P:

define U-jet maps 
d

z C(T)C:J,P(T):J  


dC

For

)(),...,(),(),...,([
1

21

1

1
1

s

d

z
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zz fDffDffJ s  
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j dddzzU j

11
,0,)()( 

uniform convergence of N-derivatives for any N

fizDeffDD z

i   
 )(,(T)C(T)C:

)(),...,(),(),...,([
1

21

1

1
1

s

dd
fDffDffJ s  






Parameterization of Jets
Lemma (T)CP(T) 

)(,JJ zθ TPffLf 

and 

(T)CU/(T)C(T)CJP(T),U/P(T)P(T)J θz

 

Proof Follows from



P(T)in  idealan  isP(T))(Jker z U

zizDD 

 P(T)C:injection linear  d

misomorphislinear  

 dd CC:L

Proposition
and (T)Cin  idealan  is(T)C)(Jker U

d  degree of spolynomial algebraic of space Cd 

d

z Cvv,vΦJ 

Proof First two assertions are standard algebra, 

Shilov’s Linear Algebra proves third using CRT



Extended Jets

Definition The extended right and left jets

and 

are C-linear maps of the loop algebra into

1)-d(m

r C:J G

 Ghhhh m ,]J,...,J[J T

1,1,2r 

Lemma

1)-d(mC:J G

1)-d(mC

 Ghhhh m ,]J,...,J[J T

,12,1 

}0J:{   hGhU rr

}0J:{   hGhU 

Lemma )(JJ polrrrrr GSSV  

)(JJ polGSSV  



are R-linear subspaces of
1)-d(mC



Cross Sections and Hermite Interpolation

Lemma If there exists 

is R-linear
polrr GSDd 

rpolrr dhhGSV  )(: rr

and rVis the identity map on

rrr Vhdh  ,))((diag

)exp( rd

Analogous assertions hold for 

polrr GSU 

rr VV :ΘJ rr

d and 

and

Theorem If rr SDd  then

is in the closure of

Analogous assertions hold for polGSDd  

Proof Let polrrr VA G)(:  Trotter approx. exp

rrrrrr VVAB  :logJ approx. identity so
result follows by Brouwer degree argument



Step Two

Theorem If

then

(T)CUH,P(T)UC(T),H Q

 |||| PH

Proof

PP  )T(P,0 has no zeros in 

(T)PUP Q and 

T

0))( phase(|,|||,(T)PQ  fWHQQU

Qwith 

T

then compute 

Compute C(T)H
~
 with no zeros in 

HH
~
 using Step One 

and multiplication by an integer power of z

so that

where TT:)
~

( phase  QHf

Now compute ddr , as in the Phase Modulation

page and then apply the previous Theorem
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