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Abstract

Welerstrass proved that every continuous
function from the circle group R/Z to the Lie group
R”n can be uniformly approximated by functions
with  trigonometric polynomial entries. This
property also holds for semisimple Lie groups.
We discuss approximation methods and
applications to optics, robotics, and wavelets.



Orthonormal Wavelet Bases
Orthonormal wavelets bases for L*(R)
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Fourier Transforms
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Polyphase Matrix
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where P e C(T, SU (2)).

Question Can P (so M) be approximated by
PeC,.,(T,SU(2)), loops with Laurent;
trigonometric polynomial entries in z; 6.

Answer: Yes, we refine the sketchy proof
In given Iin Ref. L99. We may assume
that P is smooth (in fact real analytic).



Hopf Fibration
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Is disjoint from the image of

Sard’s Theorem
Since the entries of P are smooth

3 g e SU(2) such that {€;,—€;}
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Wlndmg Numbers
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winding numbers of right sides are even so

1y,6 € C(T,T) satisfying these equations.



Dirichlet and Fejer Kernels

N _, SIN(2N +1) 76
Du(2)=2. 2" = sin 76

K (2)= N+1Z D, (2) = N+1[sin(N +1)7u9]

Sin 76

Forevery f eC(T,C) the convolution
1 : ]

(Ky * £)(2) = | Ky (") f e *"72)do

IS a Laurent polynomial of degree N and
lim K, *f =f.

N —o0



Riesz-Fejer Spectral Factorization Lemma
If f €C_,(T,[0,20)) is a Laurent polynomial

of degree N then there exists and algebraic
polynomial 9 € C,,,(T.C) of degree N with
f =|g|?. We observe that there exist

Laurent polynomials Q. n,Q, n With
KN*‘Qe |2:|QeN‘2 KN*‘QO ‘ZZ‘QO,N‘Z
‘Qe,N ‘2 +‘Qe,N ‘2:1
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Back to Wlndmg Numbers
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winding numbers of right sides are even so

1y,6 € C(T,T) satisfying these equations.




Milestone
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Finish Line
It suffices to show that every diagonal loop

f 0

0 f

by elements in C_,,(T,SU(2)). Approximate
f~f, =K,*f,observe that 1-| f, |*> 0 and

choose gy €C,,,(T,C)so1—| f, |’ gy I*-

eC(T,SU(2)) can be approximated

X

Then 1T —~ ]
foo] [f -
- Inlec,,(T.SUQ).




Conjugate Quadrature Filters
Z.R,C, T integer, real, complex, unit circle
C(T) C - valued, continuous functions
P(T) Laurent polynomials

m> 2 fixed integer

@=¢e“"'"m primitive m-th root of unity

P, (T), Co (T) conjugate quadrature filters

ST F(@2)P=1, zeT



Applications and Reguirements

CQF’s are used to construct paraunitary
filter banks and orthonormal wavelet bases

P, (T) FIR filters, compactly supp. wavelets
Co(T)\R,(T) linear phase filters
Factor U(z)=[(1-z")/(1-2)]" for regularity

needed for stable filterbanks & smooth wavelets



Design Approaches
Much more difficult to design polynomial CQF’s

Jorgensen describes an approach based on
factorizing their polyphase representations

(Notices of the AMS, 50(8)(2003),880-894)

We describe an alternate approach that

IS based on approximating elements in
Co(T) by elements in P, (T)

This approach can preserve specified factors



Two-Step Approximation Method

Problem given U e P(T),H e C(T)>UH ¢ Co (T)
construct Pe P(T)>3UPePR,(T),P~H

Solution

Step One
construct Qe P(T)>UQePR,(T),|QI~ H ]|

Step Two
construct Pe P(T)3UPeP,(T),P~H
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Polyphase Representations
Theorem The functors
T Y=>T—25Y (tH@2)=f(wz), zeT
T sY=>T—5Y (@h)(@)=h(z"), zeT
satisfy tf =f < 3Ih: T->Y >f =coh

Corollary v: T — C" is a modulation vector
v(F)=[F,zF,...c" " F] for FeC(T)<Cv=rV

001 0 - 0
00 1 -0/ ISthemxm

circulant matrix

where

O
If

o 0 0 .- 1
10 0 0 0




Polyphase Representations

Proposition vYw(F): T — C™ Is polyphase vector
for FeC(T) < v(F)=Q A o w(F) where

Q) = (Fourier transform) = A=
1 1 1 1 10 0 -0
) (02 a)_l 0 z O - 0

1 1 a)z a)4 a)_z 0 O Z2 - 0

Im|: oL JR s
Lot o? - w 00 0 0 2"

Corollary F(z)= Zrknzlzk‘IW(F)k_(Zm),
FeP(T)<= w(F), eP(T),
FeCo(T)owW(F): TS <C"



Winding Number

Definition The winding number of f: T —>T

Wi = [ G

W(H) = W(f) f isc

Remark W(f) i1s well @

If fIs differentiable

ifferentiable and || f - ﬂ\ <2

efined, takes values in Z,

IS a continuous function of f, Is a special case of
the Brouwer degree of a map of sphere to itself

Lemma Given f:T=>T

there exists h: T=2I1R with

f=exp(h) iff W(f)=0



Homotopy and Matrix Extension
Definition Maps f; :S" —S",i =01 are homotopic
iff 3F:[0,1]xS" —S" 5 F(j,") =f,j=01
Theorem (H. Hopf) Map of a sphere into itself are
homotopic Iff their Brouwer degrees are equal

Corollary f iIs homotopic to constant iff W(f)=0

Proposition
Vi:T—>S™,3g:T—>SUm)>g,, =f

IS a fiber bundle, and hence a fibration

p:SU(M) — S°™* =SU(m)/SU(m —1) and the
result follows from the homotopy lifting property

Definition g Is a polyphase matrix for f




Algebra and Matrix Extension

Proposition If entriesf : T — C™ in P(T)
and have no common zeros in C\{0} then
39g: T —SL(m), withentriesin P(T)and g,, =f

Proof Follows from the Smith form for f

Proposition If entries f: T — S?™ in P(T) then
39: T —>SU(m), withentriesin P(T)and g,, =f

Proof Follows from the factorization theorem
for m x 1 paraunitary matrices



Loop Groups

Remark Elements in C(T)&® C™™" , called loops,

may be regarded as matrix-valued functions on
T or as matrices having values in C(T)

Definition Loop groups
G= C(T) @ SU (m)
G” =C”(T)®SU(m)
G = P(T)®SU(m)
their Lie algebras
G =C(T)®su(m)
G” =C”(T)®su(m)
G,,, =P(T)®su(m)



Exponential Function

Proposition Let O < su(m) be matrices whose
spectral radius <7z Then €xp :su(m) — SU(m)
IS a real-analytic diffeomorphism of O onto an
open neigborhood O of | e SU(m)

Proposition (Trotter) Given h,,...,h,, €G

lim [exp(h—Ll)---exp(hTM)]L —exp (h, +---+hy,)

L—>o0

Furthermore, If h,,...,h,, € G then convergence

holds in the C*(T) topology



Magic Basis
Theorem For N=>0, pe{L 1} define

0 7"
a(n,p,z2)=| _ 'OO

,b(n, p,z) =a(n, p, 2)

B A Zn_—z—n_
c(n, p,2)==| P2 PE TP PT
2\ pt'+p7" —pl'+p7"
X ={c(0,1,z),a(0,1,z),a(0,1,2)} is basis for SuU(2)
B, =X u{a,b,c:n>0, p=11} basis P(T)®su(2)
leads to basisBfor G.. and BeB—= B? =1

PO |



Density

Theorem G is dense in G*,G

Proof Euler’s formula implies that

BeB=exp0B=cosO1+sin6BeG

Trotter’'s formula implies that every element in

exp G, is the limit of elements in G ,and every
element in G is the product of elements in exp G

Corollary P,(T) is dense in C,(T)
Proof Approximate polyphase matrix of Fe C, (T)



Spectral Factorization

Definition Let He C_(T) A function FeC(T)

is a spectral factor of H if |F|°’=H

Definition P € P(T) is minimal phase if all its
roots have modulus =1

Theorem (L. Fejer and F. Riesz) Every PP (T)

has a minimal phase spectral factor

Definition F < C(T) Is an outer function if
dceT,HeC (T)>logH e L'(T) and

F(z)=cexp

.1
lim

27

e +rz

r'T1 272'

|
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e® —rz

log H(e"®) ds




Bezout Identities

Theorem If U,,...,U_€P_(T) have no common

roots in C\{0} and H +H_eC(T) satisfy the
Bezout identity U.H, + +U H_ —1 then

Vo>0,3Q,,...,Q, eP(T)a

J,Q, +---+U Q =1 |[H —-Q [<d,k=1.,m
Proof Uses matrix extension in P(T) ® SL(m)
and Welerstrass approximation

Remark Extends the 1-dim version of a multi-dim
result in W. Lawton and C. A. Micchelli, Bezout
identities with inequality constraints, Vietham
Journal of Mathematics 28#2(2000),1-29



Step One

Theorem If HeC(T),UeP(T), UHeC,(T)

then Ve >0,3QeP(T)>5Q hasno zerosin T
UQeP,(T)and || |H|-[Q] [[<e

Proof Uses previous theorem




Modulation Matrices

Definition V: T —C™" s a (unitary) modulation
matrix if it maps T into U(m) and if CV =1V

Proposition V: T — C™" is a modulation matrix
iff IW:T > U(mM)>V =QAcW
Furthermore V,; e P(T) < W,; e P(T) and

FeCy(T)=4 modulatlon matrlx VsV, =F
and if FeP,(T) we may choose V>V, eP(T)

Proof Follows directly from previous results



Stabilizer Subgroups

Definition Subroups S =6G, S,=QAS A'Q™
Lie algebras

S,={heG:expheS }, S,={heG:expheS,}
Subroups S” =S nNG”, S/=S,NG"
=S =0G", ST=QAS'AQ™"

Lie algebras S =S, nG”, S/ =S5,NG"
Corollary V: T — C™™a modulation matrix g € G
g €S, < gVisamodulation matrix < CgC™ =g
geS, < Vg isamodulation matrix < g=r7g
Analogous statements hold for C” functions



Bases for Stabilizer Subgroups

Corollary 6B is a basis for S, "G _, and
QAocBA" Q™" is a basis for S, NG,
Furthermore, B* =—| if B is in either basis

Corollary S, "G, is dense in S* and in S,
S,NG,, isdenseinS; andin S,

Proof Follows from density theorem and the
fact that Vhe G,exp ch=cexph



Structure of Left Stabilizer Algebra
Proposition If heG then heS, <

h, h, h, N
Th Th Th, .
h=| 7 .4 T° hm r’ h1 7’ hm—2
z"*h, "'h, "h, " h

where h,...,h € G satisfy Structure Equations
w(h),=0, h eiR m=2n=h_,=-7"h,

m+1— | h
1!

2n-1<m<2n=h —T

m+2— j




Diagonal Stablilizer Subgroups
Definition D={g e G:qgis a diagonal matrix}
D*=DnNG”
D={d eG:exp(d) € D}
D” ={d eG:exp(d) e D™}
Lemma D ={heG:hisadiagonal matrix}
D*"=DnNG”

Propositon heDnNS =
h=iodiag[b,,...,b ], b eC(T)real, > " b, =0

J_J

heDnNS, =
h=idiag[a,za,...,z""a], ac C(T)real, w(a), =



Phase Transformations
Corollary V modulation matrix f:T — T,W(f)=0
—=3d, eDnNS,,d, eDNS, >
(&P d)V (&pd)), =TV,
Proof Since W(f)=0 3h:T—>iR>exph=f

Construct
d, =idiag[a,7a,..,7""a] d =icdiag[b,,....b ]

where and 1b, =w(h),
la =h—-ow(h), b, =D
hence w(a), =0 bs,.. ’bm =0



Factor Preserving Transformations

Definiton M, ={g:T—>C":U|g;,,i=2}
M, ={g:T—>C™":U|g, =2}

Subroups U =GnM, U, =GnM, U" U7
Lemma The Lie algebras

U ={heG:expheU }=GnM, U"=G"nM,
U,={heG:exphelU,}=GnM, U =G"nM,
Proposition If V:T —C™" and U |V,
thengeU, =U|(@QV),;and geU, =U|(VQ),,

Definitions and assertions hold for C* functions
Proof Follows directly from the equations

(9 \/)1,1 = Zrkn:1 O1x Vk,l (V 9)1,1 = Zrzlvl,k Ok 1




Jets
Definition C”(T) space of infinitely differentiable
complex-valued functions on T with topology of
uniform convergence of N-derivatives for any N

D, :P(T)>P(T), D,f=0f/oz
D,:C*(T)—>C*(T), D f=8f(e‘6')/86’—izD f

For U(Z):szl(z_ d; 20, d= Z_l j
define U-jet maps J, :P(T)_)Cdﬂjg .C*(T)—>C°
J,f=[f() DI F(1a), F (1), D F (1)
3, F =[F (ta)om DE (1), F (), D (11,)



Parameterization of Jets
Lemma P(T)c=C”(T) and 3Flinear isomorphism
L:C*>C% J,f=LJf, feP(T)
Proof Follows from D, =1zD,
Proposition ker (J,) =U P(T)is an ideal in P(T)
and ker(J,)=U C*(T)isan ideal in C*(T)

J,P(T)=P(T)/UP(T),J,C*(T)=C™(T)/UC™(T)

Flinear injection ®:C* > P(T)> J,dv=V, veC"
® C? =spaceof algebraic polynomials of degree <d

Proof First two assertions are standard algebra,
Shilov’s Linear Algebra proves third using CRT



Extended Jets

Definition The extended right and left jets
J,:G* —»C'™ and J,:G” —»C™

are C-linear maps of the loop algebra into C%™M%)
J.h= [Jghz,l,...,Jghm,l]T, heG”

Jh=[3,h,,.,3,h,.1, heG”
Lemma U" ={heG™:J h=0}
U ={heG":J,h=0}

Lemma V, =J,S;” =J,(S, NG,,)
Vg E\]ES;O =J€(S€ ﬁGpm)

: d(m-1
are R-linear subspaces of C*™"




Cross Sections and Hermite Interpolation

Lemmalf d eDnNS NG, there exists
OV, >3 NG, 5h—0,(h)-d, is R-linear
and diag (®.(h))=d_, heV,

and J ®, V. =V, is the identity map on V,
Analogous assertions hold for d, and O,
Theorem If d_ e DS, then exp(d, )

is in the closure of U NS, NG,

Analogous assertions hold for d, e DS, NG,
Proof Let A 10O, (V,) > G, Trotter approx. exp
= B, =J,10g A ©,:V, =V, approx. identity so
result follows by Brouwer degree argument




Step Two

Theorem If HeC(T),UeP(T) UHeC,(T)
then Ve >0,3P eP(T)>P hasnozerosin T
UPePy(T) and || H-P | <&

Proof Compute H e C(T) with no zerosin T

with H ~ H then compute Q using Step One
and multiplication by an integer power of z

so that U Q e Py (T), |Q|=|H |, W(phase(f))=0
where f Ephase(H/Q):T—>T

Now compute d_, d, as in the Phase Modulation
page and then apply the previous Theorem
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