MATH 7820-7830 Applied Stochastic Processes Prelim Exam, August 2022

To pass you need to get at least 65%

Name: PID:

- 1. (20pts)
 - (a) (10pts) Let X be a random variable and c > 0. Prove that

$$P(X > c) \le M_X(t)e^{-ct}$$

where $M_X(\cdot)$ is the moment generating function of X.

- (b) (10pts) Using the result in part (a) try to give the best possible estimate you can get for P(X > 200) where X is a Poisson variable with parameter 50.
- (10pts) Let X_n be a Negative Binomial random variable with parameters r and p = n/λ. Find a random variable X so that ¹/_nX_n ⇒ X (converges in distribution). Justify your answer.
- 3. (10pts) Let N(t) be a Poisson process with rate λ , with arrival times $\{S_n, n = 0, 1, \dots\}$. Evaluate the expected sum of squares of the arrival times occurring before t,

$$E(t) = E\left(\sum_{n=1}^{N(t)} S_n^2\right)$$

where we define $\sum_{n=1}^0 S_n = 0$

- 4. (25pts) Let N(t) be a renewal process with cycle times T_n with distribution F and renewal function m(t) = E(N(t)).
 - (a) Show that renewal function m(t) = E(N(t)) satisfies the renewal equation. In other words, show that m(t) satisfies

$$m(t) = F(t) + \int_0^t m(t-x)dF(x).$$

- (b) Define what it means for a random process X(t) to be T_1 -shift invariant.
- (c) What is the renewal equation for E(X(t)) if X(t) is T_1 -shift invariant? What is the solution of this renewal equation?
- (d) Show that the event $A(t) = \{t S_{N(t)} \le y\}$ is T_1 -shift invariant for any $y \ge 0$.
- (e) What is the distribution of A(t) using parts (c) and (d)? What is the limiting distribution of A(t)?
- 5. (10pts) The life of a car is a random variable with distribution F. An individual has a policy of trading in his car either when it fails or reaches the age A. Let R(A) denote the resale value of an A-year-old car. There is no resale value of a failed car. Let C_1 denote the cost of a new car and suppose that an additional cost C_2 is incurred whenever the car fails.
 - (a) Say that a cycle begins each time a new car is purchased. Compute the long-run average cost per unit time.
 - (b) Say that a cycle begins each time a car in use fails. Compute the long-run average cost per unit time.

- 6. (40pts) Consider the birth or death model with transition probabilities $p(i, i + 1) = p_i$ for $i = 0, 1, 2, \dots$, $p(i, 0) = q_i$ for $i = 0, 1, 2, \dots$, here $0 < p_i, q_i < 1$ and $p_i + q_i = 1$.
 - (a) (5 pts) Find the transition matrix, and give the diagram of transitions.
 - (b) (10pts) Find the stationary distribution in terms of one of the coordinates.
 - (c) (5pts) Show that the stationary distribution exists if and only if

$$C = 1 + p_0 + p_0 p_1 + p_0 p_1 p_2 + \dots < \infty.$$

- (d) (5pts) What is the stationary distribution?
- (e) (5pts) When is the chain positive recurrent?
- (f) (5pts) If $p_i = p$ is a constant what is the stationary distribution?
- (g) (5pts) Suppose the chain starts at 0. What is the expected first return time to state 0 if $p_i = p$ a constant?
- 7. (10pts) Demands, each is of 1 or 2 units with equal probability, arrive at a store according to a Poisson process of rate 1 and are fulfilled immediately when there is enough inventory. When the inventory level falls to 0, it is replenished to 3 units, but it takes an exponential time of mean 1 to complete the replenishment, during which time, demands are lost. Note that if 2 units of demand arrive when the inventory level is 1, then 1 unit of demand is lost.
 - (a) Find the long run fraction of time when the inventory level is at 0.
 - (b) What fraction of demand units are lost in the long run?

- 8. (30pts) Let X(t) be a continuous time Markov chain.
 - (a) State the Chapman-Kolmogorov identity.
 - (b) Prove the Chapman-Kolmogorov identity.
 - (c) Let q_j be the rate out of state j and q_{ij} be the rate from i to j. Show that the $\{\pi_j\}$ satisfy the balance equation

$$\pi_j q_j = \sum_{i \neq j} \pi_i q_{ij}$$
 together with $\sum_j \pi_j = 1$

if and only if $\{\pi_j\}$ satisfy

$$\pi_j = \sum_i \pi_i P_{ij}(t) \text{ for all } t \ge 0.$$

- 9. (10pts) Let B(t) be a standard Brownian motion and define $W(t) = B(a^2t)/a$ for a > 0. Verify that W(t) is also Brownian motion.
- 10. (15pts) Let B(t) be a standard Brownian motion. The event that B(t) has a zero crossing between s and t is A(s,t) = {B(u) = 0 for some u with s < u < t}.
 - (a) Let $\tau_x = \inf\{u > 0 : B(u) = x\}$ for x > 0. Find $P(\tau_x \le t)$ in terms of the standard normal distribution function $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp(-\frac{u^2}{2}) du$.
 - (b) By conditioning on B(s), find an expression for P(A(s,t)). Evaluate this expression using the identity

$$\int_0^\infty e^{-v^2/2s} \left\{ \int_v^\infty e^{-u^2/2(t-s)} du \right\} dv = \sqrt{s(t-s)} \arccos \sqrt{s/t}$$

where \arccos is the inverse of the cosine function. You are not asked to prove this identity, but you are asked to use it.