Report Information

<table>
<thead>
<tr>
<th>Award Type</th>
<th>Award Number</th>
<th>Prime DUNS</th>
<th>Calendar Year / Quarter</th>
<th>Final Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant</td>
<td>0934860</td>
<td>066470972</td>
<td>2011 / 2</td>
<td>No</td>
</tr>
</tbody>
</table>

Award Recipient Information

- **Recipient DUNS Number**: 066470972
- **Recipient Account Number**: 219045
- **Recipient Congressional District**: 02
- **Parent DUNS Number**: 066470972
- **Recipient Type**: 2U.G6.M8.OH.VW
- **Recipient Legal Name**: AUBURN UNIVERSITY
- **Recipient DBA Name**:
- **Recipient Address 1**: 107 SAMFORD HALL
- **Recipient Address 2**:
- **Recipient City**: AUBURN
- **Recipient State**: AL
- **Recipient ZIP Code + 4**: 368490001
- **Recipient Country**: USA

Project / Award Information

- **Funding Agency Code**: 4900
- **Awarding Agency Code**: 4900
- **Program Source (TAS) Code**: 49-0101
- **CFDA Number**: 47.082
- **Amount of Award**: 287553.00
- **Award Date**: 08/20/2009
- **Award Description**: Light microscopy is the major biological research technology that enabled modern knowledge of structure and function of biological cells. With the discovery of super-resolution light microscopy in the late 1990s the size of observable features diminished twenty times to as small as ten nanometers, promising to revolutionize sub-cellular and molecular biology research. Super-resolution microscopy is still in its infancy. Specifically, imaging speeds are below 1 frame/s. The research objective of this proposal is the development of a novel microscopy platform that combines spatial super-resolution in all three dimensions with high imaging speed of 5000 frames/s to enable study of fast intracellular events. The principle of the method is based on simultaneous illumination of the

Total Number of Sub Awards less than $25,000/award: 0
Total Amount Sub Awards less than $25,000/award: 0.00
Total Number of Sub Awards to Individuals: 0
Total Amount of Sub Awards to Individuals: 0.00
Total Number of Payments to Vendors less than $25,000/award: 9
Total Amount of Payments to Vendors less than $25,000/award: 1212.33

July 6, 2011
object by about a hundred thousand narrow light spots, each focused to the diffraction-limited size. The illumination pattern is generated by a computer-controlled digital micro-mirror device (DMD); the pattern's quality satisfies the rigid super-resolution conditions as tested by preliminary experiments. The super-resolution image will be reconstructed using 9-25 frames recorded for different illuminations. Theoretically, in linear mode the 3D resolution enhancement is two-fold compared to the classical diffraction limit. In non-linear mode of saturated fluorescence further resolution enhancement occurs with no theoretical limit. This supreme 3D imaging capability will be due to the super-resolution in axial direction and low out-of-focus light. The developed technique will be widely applicable to the study of the structural organization and dynamic processes in living cells, in particular in the area of mitochondria research.
Project Information

<table>
<thead>
<tr>
<th>Project Name or Project/ Program Title</th>
<th>Activity Codes (NAICS or NTEE-NPC) (up to 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-speed Super-Resolution Light Microscopy for 3D Imaging of Living Cells</td>
<td>Activity Code 1 B43 - NTEE</td>
</tr>
<tr>
<td>Computational algorithms for super-resolution image reconstruction were designed with initial implementation as MatLab software computer codes.</td>
<td>Activity Code 2</td>
</tr>
<tr>
<td>Dr. Igor Makarenko from Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia started his 11 weeks long J-1 visa visit to work on the project.</td>
<td>Activity Code 3</td>
</tr>
<tr>
<td>The use of a modern water immersion microscope lens was tested.</td>
<td>Activity Code 4</td>
</tr>
<tr>
<td>Evaluation of samples comprised of bacteria imbedded in epoxy resin was performed. Prospects of integrated super-resolution optical and electron microscopy are under study.</td>
<td>Activity Code 5</td>
</tr>
</tbody>
</table>

Quarterly Activities/ Project Description

- Faculty

Project Status

- Less than 50% completed

<table>
<thead>
<tr>
<th>Total Federal Amount ARRA</th>
<th>3660.98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funds Received/ Invoiced</td>
<td></td>
</tr>
<tr>
<td>Number of Jobs</td>
<td>0.03</td>
</tr>
<tr>
<td>Description of Jobs Created</td>
<td>Faculty</td>
</tr>
<tr>
<td>Total Federal Amount of ARRA Expenditure</td>
<td>5005.93</td>
</tr>
<tr>
<td>Total Federal ARRA Infrastructure Expenditure</td>
<td>0.00</td>
</tr>
<tr>
<td>Infrastructure Purpose and Rationale</td>
<td></td>
</tr>
</tbody>
</table>
Report Information

<table>
<thead>
<tr>
<th>Award Type</th>
<th>Award Number</th>
<th>Prime DUNS</th>
<th>Calendar Year / Quarter</th>
<th>Final Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant</td>
<td>0934860</td>
<td>066470972</td>
<td>2011 / 2</td>
<td>No</td>
</tr>
</tbody>
</table>

Infrastructure Contact

- **Name**
- **Email**
- **Phone**
- **Ext**
- **Street Address 1**
- **Street Address 2**
- **Street Address 3**
- **City**
- **State**
- **ZIP Code + 4**

Primary Place of Performance

- **Address 1**: Department of Anatomy, Physiology and Pharmacology
- **Address 2**: 109 Greene Hall
- **City**: Auburn University
- **Country Code**: US
- **State**: AL
- **ZIP Code + 4**: 36849 - 0001
- **Congressional District**: 02

Recipient Highly Compensated Officers

- **Prime Recipient Indication of Reporting Applicability**: No
- **Officer 1 Name**: Officer 3 Name
- **Officer 1 Compensation**: Officer 3 Compensation
- **Officer 2 Name**: Officer 4 Name
- **Officer 2 Compensation**: Officer 4 Compensation
- **Officer 3 Name**: Officer 5 Name
- **Officer 3 Compensation**: Officer 5 Compensation

Report Audit Trail

- **Created By**: Cindy Selman
- **Date Created**: 07/06/2011 03:58 PM
- **Last Updated By**: Cindy Selman
- **Last Updated On**: 07/06/2011 03:58 PM