Antimicrobial Agents 101

Summit on Antimicrobial Stewardship
May 19, 2018

Spencer H. Durham, Pharm.D., BCPS (AQ-ID)
Assistant Clinical Professor of Pharmacy Practice
Auburn University Harrison School of Pharmacy
I, Spencer Durham, have no actual or potential conflict of interest in relation to this program.
Objectives

• At the end of the presentation, the audience will be able to:
 – Identify the different classes of antimicrobial agents and review the individual agents within each class
 – Describe the spectrum of activity of the antimicrobial drug classes
 – Review major adverse effects associated with the antimicrobial drug classes
• Antimicrobial therapy crosses into most, if not all, areas of pharmacy practice
• Antimicrobial agents are widely prescribed in the acute care, long-term care, and outpatient settings
 – Frequently prescribed inappropriately (50%)
 • Wrong drug for disease
 • No antibiotic indication
• Limited development of new antibiotics, particularly *novel* antibiotics
• Antimicrobial resistance is rapidly increasing
In general, ultimate goal is to eradicate the causative organism of infection

Treat infection appropriately
- Empiric therapy: target most likely pathogens for the disease state
- Definitive therapy: use the least broad-spectrum, yet most appropriate, therapy to target the known pathogen

Prevent transmission
- Infection control
 - Hand hygiene
 - Appropriate disinfecting of medical equipment
Goals of Antimicrobial Therapy

- **Prevention of infections**
 - Vaccination
 - Prevent bacterial growth or colonization
 - Example: Cystic fibrosis

- **Prevent recurrence of infection**
 - Prophylaxis of infection – use judiciously
 - Examples: UTIs, meningitis

- **Minimize the development of antimicrobial resistance**
 - Use most narrow-spectrum, effective agent possible
 - Judicious overall use of antimicrobials
 - Example: Abx use for infections likely due to viral causes
Antimicrobial Considerations

• Consider:
 – Local susceptibility patterns
 – Overuse of specific antimicrobials in the local institution or area
 • Example: Fluoroquinolone overuse
 – Institutional formulary restrictions
 – Overall cost effectiveness
 • IV to PO conversions
 • Use of new, expensive antibiotics v. cheaper antibiotics with potential equal efficacy
Antimicrobial Considerations

• Empiric therapy
 – Broad-spectrum agent(s) with reliable coverage against the most likely causative pathogens

• Definitive therapy
 – Can generally only be done after obtaining culture and sensitivity results
 – May use other tests to guide therapy, such as PCRs

• Duration of treatment
 – Not well-defined, usually based on experience rather than evidence
 – Generally, 7-14 days for most infections
Microbiology

• Bacterial Pathogens
 – Normal commensal flora
 • Bacteria normally present in humans
 • Not pathogenic under usual circumstances
 – Can be if given appropriate opportunity
 – Sterile site growth
 • Blood stream
 • CSF
 – Nonsterile sites
 • Sputum
 • Wound
Gram-positive Bacteria

<table>
<thead>
<tr>
<th>Cocci in Clusters</th>
<th>Cocci in Pairs/Chains</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>Streptococcus pneumoniae</td>
<td>Clostridium species</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>Streptococcus pyogenes (group A)</td>
<td>Listeria monocytogenes</td>
</tr>
<tr>
<td>• Other coagulase-negative staphylococci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus saprophyticus</td>
<td>Streptococcus agalactiae (group B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viridans group streptococci</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enterococcus faecalis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enterococcus facium</td>
</tr>
</tbody>
</table>
Gram-Negative Bacteria

• Bacilli (rods)
 – Anaerobic
 • Bacteriodes
 – Facultative
 • Escherichia coli
 • Klebsiella
 • Proteus
 • Pseudomonas aeruginosa
 • Enterobacter
 • Serratia
Pharmacodynamics

- Minimum inhibitory concentration (MIC)
 - Bacteria are mixed with increasing concentrations of an antibiotic on microdilution plates
 - MIC = Mixture with the lowest concentration of antibiotic where there is no visible growth
 - ***Remember, just because an antibiotic has the lowest MIC for a pathogen, does not mean it is the best choice
 - The number associated with the MIC is variable by drug, so the lower the number does not necessarily mean a bacteria is more sensitive to the drug
Pharmacodynamics

• **Bactericidal**
 • Actually destroys the organism
 • No help from immune system is required
 • Cell wall synthesis inhibitors (beta-lactams, vancomycin)
 • Aminoglycosides
 • Fluoroquinolones
 • Preferred for certain disease states
 • Endocarditis
 • Meningitis
 • Infections in neutropenic patients
 • Osteomyelitis
 • Sepsis
Pharmacodynamics

- **Bacteriostatic**
 - Inhibit growth of organism without killing it
 - Once antibiotics are removed, the organism can begin growing again
 - Works in conjunction with the patient’s immune system to clear the infection
 - Protein synthesis inhibitors (exception: aminoglycosides)
 - Tetracyclines
 - Clindamycin
 - Linezolid
 - Macrolides
Pharmacodynamics

• **Time dependent killing**
 – Duration of time drug remains above the MIC reflects bacterial inhibition
 • Beta-lactams
 • Vancomycin

• **Concentration dependent killing**
 – Ratio of peak concentration of the drug to the MIC
 • The higher the concentration, the greater degree of bacterial inhibition
 – Aminoglycosides
 – Fluoroquinolones
 – Daptomycin
Antibiotic MOAs

DNA replication

- Nucleotide biosynthesis
- Protein synthesis
- RNA transcription
- mRNA

- DNA replication
- Topoisomerase
- mRNA

- Cell wall synthesis
- Metronidazole
- Fluoroquinolones
-

- Fluoroquinolones
- Rifampin
- Cytoplasmic membrane integrity
- Daptomycin
- Telavancin
- Tigecycline
- Aminoglycosides
- Macrolides
- Linezolid
- Clindamycin
- Tetracyclines

 TMP-SMX = trimethoprim-sulfamethoxazole
Beta-Lactams

- Penicillins
- Cephalosporins
- Carbapenems
- MOA: inhibition of cell wall synthesis
- Bactericidal
- Time-dependent
• Adverse Effects
 – Hypersensitivity reactions
 • Mild rash
 • Acute interstitial nephritis
 • Anaphylaxis
 – Some cross-sensitivity between agents
 • Difficult to predict; closer structural relationships are more likely to cross-react
 – Seizures
 • High doses of beta-lactams
 • Particularly associated with the carbapenems (imipenem and ertapenem)
Beta-Lactams

• Generally, well-tolerated and safe antimicrobials
• ALL beta-lactams lack activity against atypical organisms
 – *Mycoplasma pneumoniae*
 – *Chlamydyphila pneumoniae*
• Lack MRSA activity
 – Exception: Ceftaroline (Teflaro®)
Natural Penicillins

• Penicillin G, Penicillin V
 – Good activity: *Treponema pallidum* and most streptococci
 – Moderate activity: *Streptococcus pneumoniae*, enterococci
 – Poor activity: almost everything else

• IM (long acting depot formulation)
 – Procaine, benzathine
 • **FATAL IF GIVEN IV**

• Treatment
 – Syphilis (neurosyphilis)
 – Susceptible streptococcal infections such as pharyngitis or endocarditis
• **Amoxicillin, ampicillin**
 – Good activity: streptococci, enterococci, *N.meningitidis*
 – Moderate activity: enteric gram-negatives, *Haemophilus*
 • Would NOT generally use for empiric therapy, but could consider for targeted therapy
 – Poor activity: staphylococci, anaerobes

• **Treatment:**
 – Upper respiratory infections
 – Infections due to *Enterococcus*
 – Select gram-negative infections
Penicillinase-Resistant Penicillins

• Nafcillin, dicloxacillin
 – Good activity: MSSA, streptococci
 – Poor activity: Gram (-), enterococci, anaerobes, MRSA
• Sometimes called the “anti-staphylococcal penicillins”
 – Used for MSSA, but NOT MRSA
• Eliminated by liver
 – No renal adjustment
• Used for MSSA infections, endocarditis, and SSTI’s
• Limited utility for empiric treatment now due to increasing MRSA
Beta-Lactam/Beta-Lactamase Inhibitor Combinations

• Amoxicillin/clavulanate
 – MSSA, streptococci
 – Respiratory pathogens, some enteric gram-negative pathogens (*E.coli, Klebsiella*, etc.)
 – Some anaerobic coverage

• Ampicillin/sulbactam
 – Same as amoxicillin/clavulanate
 – *Acinetobacter*

• Piperacillin/tazobactam
 – MSSA, streptococci
 – Excellent gram-negative coverage
 – *Pseudomonas*
 – Anaerobic pathogens
Cephalosporins

- Grouped into generations
 - 1st generation
 - Cefazolin, cephalexin, cefadroxil, cephalothin
 - 2nd generation
 - Cefuroxime, cefoxitin, cefotetan, cefprozil
 - 3rd generation
 - Ceftriaxone, cefotaxime, ceftazidime, cefdinir, cefpodoxime, cefixime, ceftibuten
 - 4th generation
 - Cefepime
 - “5th” generation
 - Ceftaroline
 - Other: Ceftolozane/tazobactam; ceftazidime/avibactam
Cephalosporins

- As a general rule, when moving from the 1st to the 4th generation, gram-positive activity stays the same and gram-negative activity increases
 - However, NUMEROUS important exceptions to this rule exist
- NO cephalosporins cover enterococci
- Most have little or no activity against anaerobes
 - Exception: some 2nd generation agents
- Ceftazidime and Cefepime cover \textit{Pseudomonas}
- Ceftaroline is the \textbf{ONLY} beta-lactam that covers MRSA
- Potential cross-reactivity with the penicillins
 - Lower generations more likely to cross-react
1st Generation

• **Good activity:** MSSA, streptococci
• **Moderate activity:** some enteric GNRs
 • *E.coli*
• **Poor activity:** enterococci, anaerobes, MRSA, *Pseudomonas*
• **Good alternative to anti-staphylococcal penicillins**
 • Less phlebitis
 • Infused less frequently
• **Do NOT cross blood-brain barrier**
 • Do NOT use for CNS infections
2nd Generation

• Similar spectrum of activity to first generation agents, but better gram-negative activity

• Cefotetan
 – Disulfuram-like reaction with ethanol
 – Inhibit vitamin K production and prolong bleeding

• Anaerobic coverage
 – Cefotetan, cefoxitin
 – These are the ONLY cephalosporins that have adequate activity against anaerobes

• Do NOT cross blood-brain barrier
• Greater gram-negative activity compared to first and second generation agents
 – Several important exceptions
• Ceftazidime
 – NOT active against gram-positives
 – ONLY third generation agent with activity against *Pseudomonas*
• Ceftriaxone, cefotaxime, ceftazidime
 – Cross blood-brain barrier
 – CNS infections
4th Generation

• Cefepime
 – “Cefazolin + Ceftazidime”
 – Active against many gram-positive and gram-negative organisms, including *Pseudomonas*

• Good empiric choice for many nosocomial infections

• Use associated with increased incidence of *Clostridium difficile* infections and extended-spectrum beta-lactamase (ESBL) production
 – Also true for third generation agents
• Ceftaroline
 – Does not really fit well into the “generation” scheme usually associated with the cephalosporins
 – **ONLY** beta-lactam antibiotic with activity against MRSA
 – Less gram-negative activity when compared to cefepime
 • Does NOT reliably cover *Pseudomonas*
 – asdf
Other Cephalosporins

• Ceftolozane/tazobactam
 – New cephalosporin combined with an existing beta-lactamase inhibitor

• Ceftazidime/avibactam
 – Existing cephalosporin combined with a new beta-lactamase inhibitor

• Active against ESBL organisms and some carbapenemase-producing organisms
• Place in therapy still to be determined
Carbapenems

- Imipenem/cilastatin, meropenem, doripenem
- Ertapenem
- Extremely broad-spectrum antimicrobials
 - Probably the most broad-spectrum of any class of agents currently available on the market
 - Active against many gram-positive and gram-negative organisms
 - Often used for multi-drug resistant infections
Carbapenems

• Spectrum of activity:
 – Imipenem/cilastatin, meropenem, doripenem:
 • MSSA, streptococci, Enterococcus, Listeria
 • Pseudomonas and other gram-negatives, including ESBL-producing organisms, anaerobes
 – Ertapenem:
 • Similar to other carbapenems, but NO Pseudomonas or Enterococcus activity
 • Once daily dosing

• ADRs: Seizures
• Aztreonam
 – Safe to give in patients with allergies to other beta-lactams
 • Contains only the four-membered ring of the basic beta-lactam structure
 – Cross-reactivity with ceftazidime
 • Share an identical side chain
 – Only covers gram-negative organisms, including *Pseudomonas*
• Vancomycin
• MOA: inhibition of cell wall synthesis
 – Different binding site than beta-lactams
• Bactericidal, time-dependent
• Spectrum of activity: ONLY gram-positives
 – MSSA, MRSA, streptococci, Clostridium difficile, enterococci
 – Used for resistant gram-positive infections
 – Vancomycin is increasing
• **Adverse Effects (vancomycin)**
 – Ototoxicity
 – Nephrotoxicity
 • Associated with the original formulation (“Mississippi Mud”)
 – Red man syndrome
 • Histamine-mediated reaction
 • Slow infusion

• **Dosing**
 – Pharmacokinetically monitored
 • Troughs

• **Oral vancomycin**
 – Poor absorption across intestinal mucosa
 – Only used for *Clostridium difficile* infections
 • IV vancomycin does not reach high enough concentrations to eliminate
Glycopeptide

• Monitoring:
 – In general, peaks are no longer recommended to be monitored
 • No good correlation with efficacy nor toxicity
 – Best predictor of efficacy is AUC/MIC ratio
 • Difficult to measure clinically, so trough is used as a surrogate marker
 – Trough goal:
 • 10-15 mg/L
 • 15-20 mg/L for pneumonia, osteomyelitis, endocarditis, meningitis, sepsis/bacteremia (POEMS)
Cyclic Lipopeptides

• Daptomycin
• MOA: depolarizes cell membrane, leading to potassium leakage from cell
• Bactericidal, concentration-dependent
• Renal elimination and dose adjustment
• Spectrum of activity
 – Only active against gram-positive organisms, but useful for resistant infections
Cyclic Lipopeptides

• Adverse effects:
 – Muscle pain, myopathy
 • Monitor CPK level at baseline and then periodically
 • Use caution in patients on statins
 – Drug fever
• Inactivated by pulmonary surfactant
 – Cannot be used for treatment of pneumonia or any other pulmonary infections
• Used most commonly in skin/soft tissue infections and bacteremia/sepsis
• Quinupristin/dalfopristin
• MOA: protein synthesis inhibitor
• Individual agents are bacteriostatic, but combination is bactericidal (synergistic effect)
• Post-antibiotic effect, time-dependent
• Spectrum of activity:
 – Gram-positives ONLY
 – Active against *E. faecium*, NOT *E. faecalis*
Fluoroquinolones

• Ciprofloxacin, levofloxacin, moxifloxacin, delafloxacin
• MOA: inhibit DNA replication and repair through inhibition of topoisomerase II and IV
 – Unique mechanism compared to other classes
 – Active against replicating and non-replicating bacteria
• Bactericidal, concentration-dependent
• Renal dose adjustment for all but moxifloxacin
• 80-100% oral bioavailability
Fluoroquinolones

• Spectrum of activity:
 – Ciprofloxacin: gram-negatives, including *Pseudomonas*, atypicals
 – Levofloxacin: gram-positives (streptococci and MSSA) and gram-negatives, including *Pseudomonas*, and atypicals
 – Moxifloxacin: same as levo, but **WITHOUT** the *Pseudomonas* coverage
 – Delafloxacin: has additional MRSA coverage

• Widespread overuse has caused highly variable resistance patterns, so must know local susceptibilities
Fluoroquinolones

• Adverse Effects – well tolerated overall
 – GI effects
 – Headache
 – Photosensitivity
 – Hypoglycemia
 – Seizures
 – Prolongation of QT interval
 – BBW
 • Achilles tendon rupture (uncommon)
Aminoglycosides

- Gentamicin, tobramycin, amikacin
- MOA: inhibition of protein synthesis
- Bactericidal, concentration-dependent
 - Pronounced post-antibiotic effect
- Renal dose adjustments necessary
- Minimal penetrations into fat tissue, CNS
- Very narrow therapeutic index
 - Nephrotoxicity, ototoxicity
Aminoglycosides

• Spectrum of activity:
 – Gram-negatives, including *Pseudomonas*
 – Synergistic effect when used with beta-lactams against gram-positives
 • Example: ampicillin + gentamicin
 – **NO** activity against anaerobes or atypicals
• Amikacin should be reserved for infections caused by organisms resistant to gentamicin/tobramycin
Macrolides

• Clarithromycin, azithromycin, telithromycin (a ketolide)
 – Erythromycin is rarely used for antimicrobial activity anymore due to resistance
• MOA: protein synthesis inhibitor
• In general, bacteriostatic, with exceptions:
 ▪ Azithromycin is bactericidal against *S. pneumoniae*, *group A streptococci*, and *H. influenzae*
• Pharmacodynamics: difficult to classify
 – Some exhibit both time and concentration dependent activity
Macrolides

• Spectrum of activity:
 – Primary use is against respiratory pathogens
 – Atypicals (Mycoplasma pneumoniae),
 – H. influenzae,
 – Moraxella catarrhalis,
 – Helicobacter pylori,
 – Mycobacterium avium
 – Streptococcus pneumoniae
 – Poor activity: Most other pathogens
• Potent inhibitors of CYP450 enzymes
 – Exception ➔ azithromycin
• Monitor QTc prolongation
Tetracyclines

- Tetracycline, doxycycline, minocycline
- MOA: protein synthesis inhibitor
- Bacteriostatic, time-dependent
- Spectrum of activity:
 - Atypicals
 - Tick-born infections (*Rickettsia, Borrelia burgdorferi*)
 - *Plasmodium* species (malaria)
 - Staphylococci (including MRSA), *S. pneumoniae*
 - Poor activity against many GNRs, anaerobes, enterococci
• Tigecycline
• MOA: protein synthesis inhibitor
• Bacteriostatic, time-dependent, post-antibiotic effect
• Spectrum of activity:
 – Gram-positives (including MRSA and VRE)
 – Many enteric gram-negatives
 • NOT *Pseudomonas* or *Proteus*
 – Anaerobes
• Highly distributes to tissues, but does not maintain adequate concentrations in urine or blood
Tetracyclines and Glycylcyclines

• Adverse Effects
 – GI effects
 – Photosensitivity
 – Esophageal irritation
 • Tetracyclines
 – Dizziness/vertigo
 • Minocycline
 – Tooth discoloration
 • Contraindicated in pregnant women and children < 8 years of age

• Tigecycline: BBW for increase in all-cause mortality
• Clindamycin
• MOA: protein synthesis inhibitor
• Bacteriostatic, time-dependent
• Spectrum of activity:
 – Gram-positives (including MRSA), anerobes
 – No activity against gram-negatives or Enterococcus
• Also inhibits bacterial toxin production
• Prototypical agent for inducing C. difficile infections
Folate Antagonists

- Trimethoprim/sulfamethoxazole (TMP/SMX)
- MOA: inhibits the biosynthesis of folate co-factors needed for DNA and RNA synthesis
- Concentration dependent
- Pharmacodynamics: appears to display both bactericidal and bacteriostatic activity
- Elimination/dose adjustment: renal
Folate Antagonists

• Spectrum of activity:
 – *Staphylococcus aureus* (including community-associated MRSA)
 – *Stenotrophomonas maltophilia* and *Burkholderia cepacia*,
 – *Listeria*,
 – *Pneumocystis jirovecii*
 – Variable activity against enteric GNRs
• No useful activity against *Enterococcus*, anaerobes
Folate Antagonists

• Adverse Effects
 – Dermatologic
 • Rash
 – Hematologic
 • Bone marrow suppression
 – More common with prolonged therapy, but can occur at any point in therapy
 – Renal toxicity
 – Hypersensitivity
 • Steven-Johnson Syndrome
Oxazolidinones

- Linezolid, tedizolid
- MOA: protein synthesis inhibitor
- Bacteriostatic, time-dependent
 - Bactericidal against *Streptococcus* species
- Spectrum of activity
 - Only active against gram-positives, but highly useful resistant infections
 - VRE
Oxazolidinones

- 100% oral bioavailability
- Adverse Effects:
 - Bone marrow suppression
 - Usually occurs after prolonged therapy, but can occur at any time
 - Must carefully monitor CBCs
 - Peripheral neuropathy (uncommon)
- Monoamine oxidase inhibitor
 - Must use very carefully (prefer to avoid) in patients taking SSRIs due to risk of serotonin syndrome
Nitroimidazoles

- Metronidazole
- MOA: protein synthesis inhibitor
- Bactericidal, concentration-dependent
- Hepatic elimination
- Dose adjust in both severe renal and hepatic impairment
- Spectrum
 - ONLY active against obligate anaerobes, *H. pylori*
Nitroimidazoles

• Adverse effects:
 – Disulfuram-like reaction
 • Patient counseling point: Do not drink alcohol while taking this medication
 – Neurologic
 • Reversible peripheral neuropathy
 – GI intolerances

• Used most commonly for abdominal infections and Clostridium infections
Nitrofurans

- Nitrofurantoin
- MOA: multifactorial, including protein synthesis inhibition and cell wall synthesis inhibition
- Bactericidal in urine, mixed concentration and time-dependent effects
- Spectrum of activity:
 - *E. coli*, *Staphylococcus saprophyticus*, *Citrobacter*, *Klebsiella*, *Enterococcus*
 - NOT *Proteus*
- No tissue penetration outside of urinary tract
- Do not use in CrCL<30 mL/min
 - Updated in Beers Criteria in 2015
Rifamycins

- Rifampin
- MOA: interferes with bacterial RNA synthesis
- Bactericidal and bacteriostatic depending on the concentration
- Both time and concentration-dependent properties
- Elimination and dose adjustment: hepatic
- Patient counseling: will strain bodily secretions red/orange
Rifamycin

• Spectrum of activity:
 – Gram-positives (*Staphylococcus* and *Streptococcus*), *Neisseria*, *Moraxella*, *H. influenzae*, *Brucella*, *Chlamydophilia*

• In general, always use in combination with another agent due to rapid development of resistance

• Strong CYP inducer (lots of drug interactions)

• Excellent tissue/CNS penetration
• Colistin (colistimethate sodium), polymyxin B
• MOA: cationic detergent that disrupts cell membrane
• Spectrum of activity:
 • Can be used to treat carbapenemase-producing strains of gram-negative species
 • Many GNRs, including multi-drug resistant *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, and *Klebsiella pneumoniae*; *Stenotrophomonas maltophilia*
 • Poor activity: All gram-positive organisms, anaerobes, *Proteus, Providencia, Burkholderia, Serratia*, Gram-negative cocci
• Adverse effects:
 – Nephrotoxicity
 • Must monitor closely
 • Do not use with other nephrotoxic medications
 – Peripheral neuropathy

• In general, reserve for use in highly-resistant organisms when other drugs cannot be used
Antimicrobial Stewardship

• The perfect recipe for a bug to develop resistance to an antibiotic is to give a low concentration of the antibiotic over a prolonged period of time
 – In general, use upper end of dosing range
 – Do not prolong therapy longer than needed, but MUST counsel patients to finish their course of antibiotics!

• Try to use the most narrow-spectrum agent possible as quickly as possible
Antimicrobial Stewardship

• SNAP: a method for assessing appropriateness of antimicrobial therapy
 • S – Safety
 – Is the drug safe for the patient?
 • Allergies? ADRs?
 • N – Need
 – Is there a reasonable indication to give antibiotics?
 • A – Adequate
 – Is the prescribed antibiotic effective, or is likely to be effective, for the indication? Guideline recommendations?
 • P – Prudent
 – Is it the BEST choice?
• Use the SNAP approach if antimicrobial therapy has already been prescribed
• If recommending therapy, assess the same components, but in a slightly different order
 — NAPS
Case 1

• HPI: D.B. is a 65-year-old WM who presents to the ED via ambulance for severe difficulty breathing, with a 3 day history of fever, productive cough, night sweats, and chills
• PMH: DM, HTN, dyslipidemia
• Meds: Metformin, glypizide, atorvastatin, lisinopril, HCTZ
• PE: BP 87/48; HR 116; RR 28; Temp 104.5; 97% 2L
Case 1

• Chest x-ray: bilateral infiltrates
Case 1

• Using the NAPS approach, what would be the most appropriate therapy for the patient at this time?
Case 2

- J.K. is a 50-year-old male who presents to the Emergency Department for evaluation of a large, erythematous, pus-filled ulcer on his left foot
- PMH: DM, HTN
- Meds: Insulin, enalapril, amlodipine
- PE: BP 156/98, P 85, RR 22, T 101.1°F
- Allergies: NKDA
Case 2

- J.K. is initiated on piperacillin/tazobactam + vancomycin and admitted to the general wards medical service

- Utilizing the SNAP approach, assess this patient’s antimicrobial therapy.
References

QUESTIONS???